Precision Series Sub-Band Gap
Voltage Reference
Data Sheet ADR130
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2006–2011 Analog Devices, Inc. All rights reserved.
FEATURES
Initial accuracy
A grade: +0.70% (maximum)
B grade: +0.35% (maximum)
Maximum temperature coefficient
A grade: 50 ppm/°C
B grade: 25 ppm/°C
CLOAD = 0.1 μF to 1 μF
Output current: +4 mA/−2 mA
Low operating current: 80 μA (typical)
Output noise: 6 μV p-p @ 1.0 V output
Input range: 2.0 V to 18 V
Temperature range: −40°C to +125°C
Tiny, Pb-free TSOT package
APPLICATIONS
Battery-powered instrumentation
Portable medical equipment
Communication infrastructure equipment
PIN CONFIGURATION
NC = NO CONNECT
ADR130
TOP VIEW
(Not to Scale)
NC
1
NC
6
GND
2
SET
5
V
IN 3
V
OUT
4
06322-001
Figure 1. 6-Lead TSOT (UJ-6)
GENERAL DESCRIPTION
The ADR130 is the industry’s first family of tiny, micropower,
low voltage, high precision voltage references. Featuring 0.35%
initial accuracy and 25 ppm/°C of temperature drift in the tiny
TSOT-23 package, the ADR130 voltage reference only requires
80 μA for typical operation. The ADR130 design includes a
patented temperature drift curvature correction technique that
minimizes the nonlinearities in the output voltage vs. tempera-
ture characteristics.
Available in the industrial temperature range of −40°C to
+125°C, the ADR130 is housed in a tiny TSOT package.
For 0.5 V output, tie SET (Pin 5) to VOUT (Pin 4). For 1.0 V
output, tie SET (Pin 5) to GND (Pin 2).
ADR130 Data Sheet
Rev. B | Page 2 of 16
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications....................................................................................... 1
Pin Configuration............................................................................. 1
General Description......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Electrical Characteristics............................................................. 3
Absolute Maximum Ratings............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution.................................................................................. 5
Typical Performance Characteristics ............................................. 6
Terminology .................................................................................... 11
Theory of Operation ...................................................................... 12
Power Dissipation Considerations........................................... 12
Input Capacitor........................................................................... 12
Output Capacitor........................................................................ 12
Application Notes........................................................................... 13
Basic Voltage Reference Connection ....................................... 13
Stacking Reference ICs for Arbitrary Outputs ....................... 13
Precision Current Source .......................................................... 14
Outline Dimensions ....................................................................... 15
Ordering Guide .......................................................................... 15
REVISION HISTORY
11/11—Rev. A to Rev. B
Change to CLOAD in Features Section.............................................. 1
Changed 10 μF to 1 μF in Output Capacitor Section ................ 12
Deleted Negative Precision Reference Without Precision
Resistors Section ............................................................................. 14
9/11—Rev. 0 to Rev. A
Changes to Lead Temperature (Soldering, 60 sec) Parameter,
Table 3 .................................................................................................5
10/06—Revision 0: Initial Version
Data Sheet ADR130
Rev. B | Page 3 of 16
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
TA = 25°C, VIN = 2.0 V to 18 V, unless otherwise noted. SET (Pin 5) tied to VOUT (Pin 4).
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO
A Grade 0.49650 0.5 0.50350 V
B Grade 0.49825 0.5 0.50175 V
INITIAL ACCURACY ERROR VOERR
A Grade −3.50 +3.50 mV
B Grade −1.75 +1.75 mV
TEMPERATURE COEFFICIENT TCVO −40°C < TA < +125°C
A Grade 15 50 ppm/°C
B Grade 5 25 ppm/°C
LOAD REGULATION −40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V;
0 mA < IOUT < 4 mA
−0.13 +0.13 mV/mA
−40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V;
−2 mA < IOUT < 0 mA
−1.0 +1.0 mV/mA
LINE REGULATION 2.0 V to 18 V, IOUT = 0 mA −40 +10 +40 ppm/V
QUIESCENT CURRENT IQ −40°C < TA < +125°C, no load 75 150 μA
SHORT-CIRCUIT CURRENT TO GROUND VIN = 2.0 V 15 mA
V
IN = 18.0 V 50 mA
VOLTAGE NOISE 0.1 Hz to 10 Hz 3 μV p-p
TURN-ON SETTLING TIME To 0.1%, CLOAD = 0.1 μF 80 μs
LONG-TERM STABILITY 1000 hours @ 25°C 100 ppm/1000 hours
OUTPUT VOLTAGE HYSTERESIS 150 ppm
ADR130 Data Sheet
Rev. B | Page 4 of 16
TA = 25°C, VIN = 2.0 V to 18 V, unless otherwise noted. SET (Pin 5) tied to GND (Pin 2).
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO
A Grade 0.9930 1.0 1.0070 V
B Grade 0.9965 1.0 1.0035 V
INITIAL ACCURACY ERROR VOERR
A Grade −7.0 +7.0 mV
B Grade −3.5 +3.5 mV
TEMPERATURE COEFFICIENT TCVO −40°C < TA < +125°C
A Grade 15 50 ppm/°C
B Grade 5 25 ppm/°C
LOAD REGULATION −40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V;
0 mA < IOUT < 4 mA
−0.25 +0.25 mV/mA
−40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V;
−2 mA < IOUT < 0 mA
−2.0 +2.0 mV/mA
LINE REGULATION 2.0 V to 18 V, IOUT = 0 mA −40 +10 +40 ppm/V
QUIESCENT CURRENT IQ −40°C < TA < +125°C, no load 85 150 μA
SHORT-CIRCUIT CURRENT TO GROUND VIN = 2.0 V 15 mA
V
IN = 18.0 V 50 mA
VOLTAGE NOISE 0.1 Hz to 10 Hz 6 μV p-p
TURN-ON SETTLING TIME To 0.1%, CLOAD = 0.1 μF 80 μs
LONG-TERM STABILITY 1000 hours @ 25°C 100 ppm/1000 hours
OUTPUT VOLTAGE HYSTERESIS 150 ppm
Data Sheet ADR130
Rev. B | Page 5 of 16
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 3.
Parameter Ratings
VIN to GND 20 V
Internal Power Dissipation 40 mW
Storage Temperature Range −65°C to +150°C
Specified Temperature Range −40°C to +120°C
Lead Temperature (Soldering, 60 sec) 300°C
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 4. Thermal Resistance
Package Type θJA θ
JC Unit
6-Lead TSOT (UJ-6) 186 67 °C/W
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
ADR130 Data Sheet
Rev. B | Page 6 of 16
TYPICAL PERFORMANCE CHARACTERISTICS
0.4985
0.4980
0.4990
0.4995
0.5000
0.5005
0.5010
0.5015
0.5020
–40 –25 –10 5 20 35 50 65 80 95 110 125
06322-002
V
OUT
(V)
TEMPERATURE (°C)
Figure 2. VOUT vs. Temperature, VOUT = 0.5 V
0
1
2
3
4
5
6
7
8
9
10
06322-003
NUMBER OF PARTS
TEMPERATURE COEFFICIENT (ppm/°C)
–50 –45 –40 –35–30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 45 50
Figure 3. Temperature Coefficient, VOUT = 0.5 V
2.0
1.8
1.6
1.4
1.2
1.021012345
06322-004
V
IN_MIN
(V)
LOAD CURRENT (mA)
–40°C
+125°C +25°C
Figure 4. Minimum Input Voltage vs. Load Current, VOUT = 0.5 V
–40 –25 –10 5 20 35 50 65 80 95 110 125
06322-005
V
OUT
(V)
TEMPERATURE (°C)
0.996
0.997
0.998
0.999
1.000
1.001
1.002
1.003
1.004
Figure 5. VOUT vs. Temperature, VOUT = 1 V
0
1
2
3
4
5
6
7
8
9
10
06322-006
NUMBER OF PARTS
TEMPERATURE COEFFICIENT (ppm/°C)
–50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 45 50
Figure 6. Temperature Coefficient, VOUT = 1 V
2.0
1.8
1.6
1.4
1.2
1.021012345
06322-007
V
IN_MIN
(V)
LOAD CURRENT (mA)
+25°C
–40°C
+125°C
Figure 7. Minimum Input Voltage vs. Load Current, VOUT = 1 V
Data Sheet ADR130
Rev. B | Page 7 of 16
06322-008
SUPPLY CURRENT (µA)
INPUT VOLTAGE (V)
0
20
40
60
80
100
120
140
160
23456789101112131415161718
+125°C
+25°C
–40°C
Figure 8. Supply Current vs. Input Voltage, VOUT = 0.5 V
6
0
1
2
3
4
5
06322-009
SUPPLY CURRENT (mA)
21012345
LOAD CURRENT (mA)
T
A
= –40°C, +25°C, +125°C
Figure 9. Supply Current vs. Load Current, VOUT = 0.5 V
0
2
4
6
8
10
–40 –25 –10 5 20 35 50 65 80 95 110 125
06322-010
LINE REGULATION (ppm/V)
TEMPERATURE (°C)
V
IN
= 2V TO 18V
Figure 10. Line Regulation vs. Temperature, VOUT = 0.5 V
06322-011
SUPPLY CURRENT (µA)
INPUT VOLTAGE (V)
0
20
40
60
80
100
120
140
160
23456789101112131415161718
+125°C
+25°C
–40°C
Figure 11. Supply Current vs. Input Voltage, VOUT = 1 V
6
0
1
2
3
4
5
06322-012
SUPPLY CURRENT (mA)
2 012345
LOAD CURRENT (mA)
–1
T
A
= –40°C, +25°C, +125°C
Figure 12. Supply Current vs. Load Current, VOUT = 1 V
0
2
4
6
8
10
–40 –25 –10 5 20 35 50 65 80 95 110 125
06322-013
LINE REGULATION (ppm/V)
TEMPERATURE (°C)
V
IN
= 2V TO 18V
Figure 13. Line Regulation vs. Temperature, VOUT = 1 V
ADR130 Data Sheet
Rev. B | Page 8 of 16
0
0.01
0.02
0.03
0.04
0.05
–40 –25 –10 5 20 35 50 65 80 95 110 125
06322-014
LOAD REGULATION–SOURCE (mV/mA)
TEMPERATURE (°C)
Figure 14. Load Regulation (Source) vs. Temperature, VOUT = 0.5 V
–40 –25 –10 5 20 35 50 65 80 95 110 125
06322-015
LOAD REGULATION–SINK (mV/mA)
TEMPERATURE (°C)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Figure 15. Load Regulation (Sink) vs. Temperature, VOUT = 0.5 V
06322-016
C
IN
= C
OUT
= 0.1µF
2µV/DI
V
TIME (1s/DIV)
CH1 PEAK-TO-PEAK 3.16µV
Figure 16. 0.1 Hz to 10 Hz Noise, VOUT = 0.5 V
0
0.02
0.04
0.06
0.08
0.01
0.03
0.05
0.07
–40 –25 –10 5 20 35 50 65 80 95 110 125
06322-017
LOAD REGULATION–SOURCE (mV/mA)
TEMPERATURE (°C)
Figure 17. Load Regulation (Source) vs. Temperature, VOUT = 1 V
–40 –25 –10 5 20 35 50 65 80 95 110 125
06322-018
LOAD REGULATION–SINK (mV/mA)
TEMPERATURE (°C)
0
0.2
0.4
0.6
0.8
2.0
1.0
1.2
1.4
1.6
1.8
Figure 18. Load Regulation (Sink) vs. Temperature, VOUT = 1 V
06322-019
C
IN
= C
OUT
= 0.1µF
2µV/DI
V
TIME (1s/DIV)
CH1 PEAK-TO-PEAK 5.72µV
Figure 19. 0.1 Hz to 10 Hz Noise, VOUT = 1 V
Data Sheet ADR130
Rev. B | Page 9 of 16
06322-020
C
IN
= C
OUT
= 0.1µF
50µV/DI
V
TIME (1s/DIV)
CH1 PEAK-TO-PEAK 172µV
Figure 20. 10 Hz to 10 kHz Noise, VOUT = 0.5 V
06322-021
V
IN
= 1V/DIV
TIME (40µs/DIV)
V
OUT
200mV/DIV
C
IN
= C
OUT
= 0.1µF
Figure 21. Turn-On Response, VOUT = 0.5 V
06322-022
VIN = 1V/DIV
CIN = COUT = 0.1µF
TIME (10ms/DIV)
VOUT = 200mV/DIV
Figure 22. Turn-Off Response, VOUT = 0.5 V
06322-023
C
IN
= C
OUT
= 0.1µF
TIME (1s/DIV)
50µV/DI
V
PEAK-TO-PEAK
291µV
Figure 23. 10 Hz to 10 kHz Noise, VOUT = 1 V
06322-024
VIN = 1V/DIV
VOUT = 500mV/DIV
TIME (40µs/DIV)
CIN = COUT = 0.1µF
Figure 24. Turn-On Response, VOUT = 1 V
06322-025
VIN = 1V/DIV
VOUT = 500mV/DIV
TIME (400µs/DIV)
CIN = COUT = 0.1µF
Figure 25. Turn-Off Response, VOUT = 1 V
ADR130 Data Sheet
Rev. B | Page 10 of 16
V
IN
= 1V/DIV
V
OUT
= 20mV/DIV
06322-026
TIME (100µs/DIV)
C
IN
= C
OUT
= 0.1µF
Figure 26. Line Transient Response, VOUT = 0.5 V
V
LOAD
= 0.5V/DIV
C
IN
= C
OUT
= 0.1µF
R
LOAD
= 125
TIME (40µs/DIV)
V
OUT
= 20mV/DIV
06322-027
I
LOAD
= 0mA
I
LOAD
= 4mA
Figure 27. Load Transient Response (Source), VOUT = 0.5 V
V
LOAD
= 200mV/DIV
C
IN
= C
OUT
= 0.1µF
R
LOAD
= 125
V
OUT
= 100mV/DIV
06322-028
I
LOAD
= 2mA
I
LOAD
= 0mA
TIME (40µs/DIV)
Figure 28. Load Transient Response (Sink), VOUT = 0.5 V
V
IN
= 1V/DIV
C
IN
= C
OUT
= 0.1µF
V
OUT
= 20mV/DIV
06322-029
TIME (100µs/DIV)
Figure 29. Line Transient Response, VOUT = 1 V
V
LOAD
= 1V/DIV
C
IN
= C
OUT
= 0.1µF
R
LOAD
= 250
V
OUT
= 20mV/DIV
06322-030
I
LOAD
= 0mA
I
LOAD
= 4mA
TIME (40µs/DIV)
Figure 30. Load Transient Response (Source), VOUT = 1 V
V
LOAD
= 500mV/DIV
C
IN
= C
OUT
= 0.1µF
R
LOAD
= 250
V
OUT
= 100mV/DIV
06322-031
I
LOAD
= 2mA
I
LOAD
= 0mA
TIME (40µs/DIV)
Figure 31. Load Transient Response (Sink), VOUT = 1 V
Data Sheet ADR130
Rev. B | Page 11 of 16
TERMINOLOGY
Temperature Coefficient
Temperature coefficient is the change of output voltage with
respect to the operating temperature change normalized by the
output voltage at 25°C. This parameter is expressed in ppm/°C
and is determined by
[]
() ()
()
()
6
10
C25
Cppm/ ×
×°
=°
12
O
1
O
2
O
OTTV
TVTV
TCV
where:
VO (25°C) = VO at 25°C.
VO (T1) = VO at Temperature 1.
VO (T2) = VO at Temperature 2.
Line Regulation
Line regulation is the change in the output due to a specified
change in input voltage. This parameter accounts for the effects
of self-heating. Line regulation is expressed in either %/V,
ppm/V, or μV/ΔVIN.
Load Regulation
Load regulation is the change in output voltage due to a
specified change in load current. This parameter accounts for
the effects of self-heating. Load regulation is expressed in either
mV/mA, ppm/mA, or dc output resistance (Ω).
Long-Term Stability
Long-term stability is the typical shift of output voltage at 25°C
on a sample of parts subjected to a test of 1000 hours at 25°C.
(
)
(
)
1
O
0
OO tVtVV
=
Δ
[]
(
)
()
()
6
10ppm ×
=Δ
0
O
1
O
0
O
OtV
tVtV
V
where:
VO (t0) = VO at 25°C at Time 0.
VO (t1) = VO at 25°C after 1000 hours operating at 25°C.
Thermal Hysteresis
Thermal hysteresis is the change of output voltage after the
device is cycled through temperatures from +25°C to −40°C to
+125°C, then back to +25°C. This is a typical value from a
sample of parts put through such a cycle.
where:
VO (25°C) = VO at 25°C.
VOTC = VO at 25°C after temperature cycle from +25°C to −40°C
to +125°C, then back to +25°C.
ADR130 Data Sheet
Rev. B | Page 12 of 16
THEORY OF OPERATION
The ADR130 sub-band gap reference is the high performance
solution for low supply voltage and low power applications. The
uniqueness of this product lies in its architecture.
POWER DISSIPATION CONSIDERATIONS
The ADR130 is capable of delivering load currents to 4 mA
with an input range from 3.0 V to 18 V. When this device is
used in applications with large input voltages, care must be
taken to avoid exceeding the specified maximum power
dissipation or junction temperature, because this results in
premature device failure.
Use the following formula to calculate the maximum junction
temperature or dissipation:
JA
A
J
Dθ
TT
P
=
where:
TJ is the junction temperature.
TA is the ambient temperature.
PD is the device power dissipation.
θJA is the device package thermal resistance.
INPUT CAPACITOR
Input capacitors are not required on the ADR130. There is no
limit for the value of the capacitor used on the input, but a 1 μF
to 10 μF capacitor on the input improves transient response in
applications where there is a sudden supply change. An additional
0.1 μF capacitor in parallel also helps reduce noise from the supply.
OUTPUT CAPACITOR
The ADR130 requires a small 0.1 μF output capacitor for stability.
Additional 0.1 μF to 1 μF capacitance in parallel can improve
load transient response. This acts as a source of stored energy
for a sudden increase in load current. The only parameter that
is affected by the additional capacitance is turn-on time.
Data Sheet ADR130
Rev. B | Page 13 of 16
APPLICATION NOTES
BASIC VOLTAGE REFERENCE CONNECTION
The circuits in Figure 32 and Figure 33 illustrate the basic
configuration for the ADR130 voltage reference.
1
2
3
6
5
4
NC
GND
V
IN
V
OUT
SET
NC
INPUT OUTPUT
ADR130
0.1µF
0.1µF
06322-032
Figure 32. Basic Configuration, VOUT = 0.5 V
1
2
3
6
5
4
NC
GND
V
IN
V
OUT
SET
NC
INPUT OUTPUT
ADR130
0.1µF
0.1µF
06322-033
Figure 33. Basic Configuration, VOUT = 1 V
STACKING REFERENCE ICs FOR ARBITRARY
OUTPUTS
Some applications may require two reference voltage sources
that are a combined sum of the standard outputs. Figure 34 and
Figure 35 show how these stacked output references can be
implemented.
1
2
3
6
5
4
NC
GND
V
IN
V
OUT
SET
NC
0.1µF
06322-034
1
2
3
6
5
4
NC
GND
V
IN
V
OUT
SET
NC
INPUT
V
OUT1
V
OUT2
U1
ADR130
U2
ADR130
0.1µF
0.1µF
0.1µF
Figure 34. Stacking References with ADR130, VOUT1 = 1.0 V, VOUT2 = 2.0 V
1
2
3
6
5
4
NC
GND
VIN VOUT
SET
NC
0.1µF
06322-035
1
2
3
6
5
4
NC
GND
VIN VOUT
SET
NC
INPUT
VOUT1
VOUT2
U1
ADR130
U2
ADR130
0.1µF
0.1µF
0.1µF
Figure 35. Stacking References with ADR130, VOUT1 = 0.5 V. VOUT2 = 1.5 V
Two reference ICs are used and fed from an unregulated input,
VIN. The outputs of the individual ICs that are connected in
series provide two output voltages, VOUT1 and VOUT2. VOUT1 is the
terminal voltage of U1, and VOUT2 is the sum of this voltage and
the terminal voltage of U2. U1 and U2 are chosen for the two
voltages that supply the required outputs (see Table 5). For
example, if U1 is set to have an output of 1 V or 0.5 V, the user
can stack on top of U2 to get an output of 2 V or 1.5 V.
Table 5. Required Outputs
U1/U2 Comments VOUT1 V
OUT2
ADR130/ADR130 See Figure 34 1 V 2 V
ADR130/ADR130 See Figure 35 0.5 V 1.5 V
ADR130 Data Sheet
Rev. B | Page 14 of 16
PRECISION CURRENT SOURCE
In low power applications, the need can arise for a precision
current source that can operate on low supply voltages. The
ADR130 can be configured as a precision current source (see
Figure 36). The circuit configuration shown is a floating current
source with a grounded load. The reference output voltage is
bootstrapped across RSET, which sets the output current into the
load. With this configuration, circuit precision is maintained for
load currents ranging from the reference supply current,
typically 85 μA, to approximately 4 mA.
1
2
3
6
5
4
NC
GND
V
IN
V
OUT
SET
NC
ADR130
06322-037
R
SET
V
IN
P1
R
L
Figure 36. ADR130 as a Precision Current Source
Data Sheet ADR130
Rev. B | Page 15 of 16
OUTLINE DIMENSIONS
102808-A
*COMPLIANT TO JEDEC STANDARDS MO-193-AA WITH
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
13
45
2
6
2.90 BSC
1.60 BSC 2.80 BSC
1.90
BSC
0.95 BSC
0.10 MAX
*1.00 MAX
PIN 1
INDICATOR
*0.90
0.87
0.84
0.60
0.45
0.30
0.50
0.30
0.20
0.08
SEATING
PLANE
Figure 37. 6-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-6)
Dimensions shown in millimeters
ORDERING GUIDE
Model1
Temperature
Coefficient (ppm/°C) Temperature Range Package Description
Package
Option Branding
Ordering
Quantity
ADR130AUJZ-REEL7 50 −40°C to +125°C 6-Lead TSOT UJ-6 R0W 3,000
ADR130AUJZ-R2 50 −40°C to +125°C 6-Lead TSOT UJ-6 R0W 250
ADR130BUJZ-REEL7 25 −40°C to +125°C 6-Lead TSOT UJ-6 R0X 3,000
ADR130BUJZ-R2 25 −40°C to +125°C 6-Lead TSOT UJ-6 R0X 250
1 Z = RoHS Compliant Part.
ADR130 Data Sheet
Rev. B | Page 16 of 16
NOTES
©2006–2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D06322-0-11/11(B)