MICROPROCESSOR WITH CLOCK AND OPTIONAL RAM

The MC6802 is a monolithic 8-bit microprocessor that contains all the registers and accumulators of the present MC6800 plus an internal clock oscillator and driver on the same chip. In addition, the MC6802 has 128 bytes of on-board RAM located at hex addresses $\$ 0000$ to $\$ 007 \mathrm{~F}$. The first 32 bytes of RAM, at hex addresses $\$ 0000$ to $\$ 001 \mathrm{~F}$, may be retained in a low power mode by utilizing $V_{C C}$ standby; thus, facilitating memory retention during a power-down situation.

The MC6802 is completely software compatible with the MC6800 as well as the entire M6800 family of parts. Hence, the MC6802 is expandable to 64 K words.

The MC6802NS is identical to the MC6802 without standby RAM feature. The MC6808 is identical to the MC6802 without on-board RAM.

- On-Chip Clock Circuit
- 128×8 Bit On-Chip RAM
- 32 Bytes of RAM are Retainable
- Software-Compatible with the MC6800
- Expandable to 64 K Words
- Standard TTL-Compatible Inputs and Outputs
- 8-Bit Word Size
- 16-Bit Memory Addressing
- Interrupt Capability

PART NUMBER DESIGNATION BY SPEED

This block diagram shows a typical cost effective microcomputer. The MPU is the center of the microcoputer system and is shown in a minimum system interfacing with a ROM combination chip. It is not intended that this system be limited to this function but that it be expandable with other parts in the M6800 Microcomputer family.

MC6802 MC6808 MC6808

PIN ASSIGNMENT

*Pin 35 must be tied to 5 V on the 6802NS
**Pin 36 must be tied to ground for the 6808

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage, , ${ }^{\text {a }}$,	VCC	-0.3 to +70	V
Input Voltage, \quad,	$V_{\text {in, }}$	-03 to +70	V
Operating Temperature Range	TTA	0 to +70	${ }^{2}$
Storage Temperature Range, , , , ,	T stg	-55 to +150	C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Average Thermal Resistance (Junction to Ambient)			
Plastic		100,	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic		$\theta_{J A}$	50,

This input contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit, Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level le.g., either VSS or VCCl .

POWER CONSIDERATIONS

The average chip-junction temperature, T_{J}, in ${ }^{\circ} \mathrm{C}$ can be obtained from:

$$
\begin{equation*}
T J=T_{A}+\left(P D^{\bullet} \theta J A\right) \tag{1}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& T_{A}=\text { Ambient Temperature, }{ }^{\circ} \mathrm{C} \\
& \theta \mathrm{JA}=\text { Package Thermal Resistance, Junction-to-Ambient, }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& P D=P I N T+P P O R T \\
& \text { PINT }=I C C \times V C C, \text { Watts } ~=~ C h i p ~ I n t e r n a l ~ P o w e r ~ \\
& \text { PPORT = Port Power Dissipation, Watts - User Determined }
\end{aligned}
$$

For most applications PPORT \&PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.
An approximate relationship between PD and TU (if $P P O R T$ is neglected) is:

$$
\begin{equation*}
P_{D}=K-\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations 1 and 2 for K gives:

$$
\begin{equation*}
K=P D \cdot\left(T A+273^{\circ} \mathrm{C}\right)+\theta J A^{\bullet} \cdot \mathrm{PD}^{2} \tag{3}
\end{equation*}
$$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring. P_{D} (at equilibrium) for a known TA. Using this value of K the values of $P D$ and $T J$ can be obtained by solving equations (1) and (2) iteratively for any value of T^{A}.

OPERATING TEMPERATURE RANGE

Device	Speed	Symbol	Value	Unit
$\begin{aligned} & \text { MC6802P,L } \\ & \text { MC6802CP,CL } \end{aligned}$	$\begin{aligned} & \text { (1.0 MHz) } \\ & (1.0 \mathrm{MHz}) \\ & \hline \end{aligned}$	TA	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
MC68A02P,L MC68A02CP,CL	$\begin{aligned} & \text { (1.5 MHz) } \\ & \text { (1.5 MHz) } \end{aligned}$	TA	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { MC68B02P,L } \\ & \text { MC68B02CP,CL } \end{aligned}$	$\begin{aligned} & (2.0 \mathrm{MHz}) \\ & (2.0 \mathrm{MHz}) \end{aligned}$	${ }^{1}$ A	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
MC6802NSP,L	$(1.0 \mathrm{MHz})$	TA	0 to +70	${ }^{\circ} \mathrm{C}$
MC6808P,L MC68A08P,L MC68B08P,L	$\begin{aligned} & \hline(1.0 \mathrm{MHz}) \\ & (1.5 \mathrm{MHz}) \\ & (2.0 \mathrm{MHz}) \\ & \hline \end{aligned}$	TA	$0 \text { to }+70$	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{Vdc} \pm 5 \%, V_{S S}=0, T_{A}=0\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

*In power-down mode, maximura powerdissipation is less than 42 mW .
\#Capacitances are periodically sampled rather than 100% tested.

CONTROL TIMING ${ }^{W} C C=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=T_{L}$ to T_{H}, unless otherwise noted)

+ ${ }^{\text {characteristics }}$	Symbol	MC6	$\begin{aligned} & \hline 02 \mathrm{NS}, \\ & 3808 \end{aligned}$	MC6	$\begin{aligned} & 3 \mathrm{~A} 02 \\ & 3 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 3 \mathrm{BO2} \\ & 3 \mathrm{BO} \end{aligned}$	Unit
		Min	Max	Min	Max	Min	Max	
Frequency of Operation	f_{0}	0.1	1.0	0.1	1.5	0.1	2.0	MHz
Crystâ Frequency	fxtal	1.0	4.0	1.0	6.0	1.0	8.0	MHz
External Oscillator Frequency	$4 \mathrm{xfo}_{0}$	0.4	4.0	0.4	6.0	0.4	8.0	MHz
Crystal Oscillator Start Up Time	trc	100	-	100	-	100	-	ms
Processor Controls (HALT, MR, RE, $\overline{\mathrm{RESET}}$, $\overline{\mathrm{R} \mathrm{C}}$ NMM)								
- Processor Control Setup Time	${ }^{\text {tPCS }}$	200	-	140	-	110	-	
Processor Control Rise and Fall Time (Does Not Apply to RESET)	${ }^{\mathrm{tPCR}}$, tpCf	-	100	-	100	-	100	ns

BUS TIMING CHARACTERISTICS

Ident. Number	Characteristic	Symbol	MC6802NSMC6802MC6808		$\begin{aligned} & \text { MC68A02 } \\ & \text { MC68A08 } \end{aligned}$		$\begin{aligned} & \text { MC68B02 } \\ & \text { MC68B08 } \end{aligned}$		Unit
			Min	Max	Min	Max	Min	Max	
1	Cycle Time	teyc	1.0	10	0.667	10	0.5	10	$\mu \mathrm{S}$
2	Pulse Width, E Low,	PWEL	450	5000	280	5000	210	5000	ns
3	Pulse Width, EHigh	PWEH	450	9500	280	9700	220	9700	ns
4	Clock Rise and Fall Time, , , , , , , , \%	$\mathrm{tr}_{\mathrm{r}, \mathrm{tf}}$	-	25	-	25.	-	20	ns
9	Address Hold Time	tAH	20	-	20	-	20		ns
12	Non-Muxed Address Valid Time to E (See Note 5)	tAV1	160	270	100	-	50		ns
17	Read Data Setup Time, , , , ,	tDSR	100	-	70	-	60	,	ns
18	Read Data Hold Time	tDHR	10	-	10		10	-	ns
19	Write Data Delay Time	todw	-	225	-	170	U	160	ns
21	Write Data Hold Time	tDHW	30	-	20		20	-	ns
29	Usable Access Time (See Note 4)	tACC	605	-	310	-	235	-	ns

FIGURE 2 - BUS TIMING

NOTES:

1. Voltage levels shown are $V_{L} \leq 0.4 \mathrm{~V}, V_{H} \geq 2.4 \mathrm{~V}$, unless otherwise specified.
2. Measurement points shown are 0.8 V and 20 V , unless otherwise noted.
3. All electricals shown for the MC6802 apply to the MC6802NS and MC6808, unless otherwise noted.
4. Usable access time is computed by $12+3+4-17$.

5月tprograms are not executed from on-board RAM, TAV1 applies. If programs are to be stored and executed from on-board RAM, TAV2 applies. For normal data storage in the on-board RAM, this extended delay does not apply. Programs cannot be executed from on-board RAM when using A and B parts (MC68A02, MC68A08, MC68B02, MC68B08) On-board RAM can be used for data storage with all parts.

FIGURE 3 - BUS TIMING TEST LOAD

FIGURE 4 - TYPICAL DATA BUS OUTPUT DELAY versus CAPACITIVE LOADING

FIGURE 5 - TYPICAL READ/WRITE, VMA AND ADDRESS OUTPUT DELAY versus CAPACITIVE LOADING

FIGURE 6 - EXPANDED BLOCK DIAGRAM

$V_{C C}=\operatorname{Pin} 8$
$V_{C C}=\operatorname{Pin} 35$ for MC6802NS
$V_{S S}=$ Pins 1, 21
$V_{S S}=\operatorname{Pin} 36$ for MC6808

MOTOROLA Semiconductor Products Inc.

MPU REGISTERS

A general block diagram of the MC6802 is shown in Figure 6. As shown, the number and configuration of the registers are the same as for the MC6800. The 128×8-bit RAM* has been added to the basic MPU. The first 32 bytes can be retained during power-up and power down conditions via the RE signal.

The MC6802NS is identical to the MC6802 except for the standby feature on the first 32 bytes of RAM. The standby feature does not exist on the MC6802NS and thus pin 35 must be tied to 5 V .

The MC6808 is identical to the MC6802 except for on board RAM. Since the MC6808 does not have on-board RAM pin 36 must be tied to ground allowing the processor to utilize up to 64 K bytes of external memory.

The MPU has three 16 -bit registers and three 8 -bit registers available for use by the programmer (Figure 7).

PROGRAM COUNTER

The program counter is a two byte (16-bit) register that points to the current program address.

STACK POINTER

The stack pointer is a two byte register that contains the address of the next available location in an external pushdown/pop up stack. This stack is normally a random access
read/write memory that may have any location (address) that is convenient In those applications that require storage of information in the stack when power is lost, the stack must be non-volatile.

INDEX REGISTER

The index register is a two byte register that is used to store data or a 16-bit memory address for the indexed mode of memory addressing.

ACCUMULATORS

The MPU contains two 8-bit accumulators that are used to hold operands and results from an arithmetic logic unit (ALU).

CONDITION CODE REGISTER

The condition code register indicates the results of an Arithmetic Logic Unit operation: Negative (N), Zero (Z), Overflow (V), Carry from bit 7 (C), and Half Carry from bit 3 (H). These bits of the Condition Code Register are used as testable conditions for the conditional branch instructions. Bit 4 is the interrupt mask bit (1). The unused bits of the Condition Code Register (b6 and b7) are ones.

Figure 8 shows the order of saving the microprocessor status within the stack.

[^0]FIGURE 7 - PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

FIGURE 8 - SAVING THE STATUS OF THE MICROPROCESSOR IN THE STACK

```
SP = Stack Pointer
\(\mathrm{CC}=\) Condition Codes (Also called the Processor Status Byte) \(A C C B=\) Accumulator \(B\) \(A C C A=\) Accumulator \(A\)
IXH = Index Register, Higher Order 8 Bits
\(1 \times L=\) Index Register, Lower Order 8 Bits
PCH = Program Counter, Higher Order 8 Bits
PCL = Program Counter, Lower Order 8 Bits
```


MPU SIGNAL DESCRIPTION

Proper operation of the MPU requires that certain control and timing signals be provided to accomplish specific functions and that other signal lines be monitored to determine the state of the processor. These control and timing signals. are similar to those of the MC6800 except that TSC, DBE, $\phi 1, \phi 2$ input, and two unused pins have been eliminated, and the following signal and timing lines have been added:

RAM Enable (RE)
Crystal Connections EXTAL and XTAL
Memory Ready (MR)
VCC Standby
Enable $\phi 2$ Output (E)
The following is a summary of the MPU signals:

ADDRESS BUS (A0-A15)

Sixteen pins are used for the address bus. The outputs are capable of driving one standard TTL load and 90 pF . These lines do not have three-state capability.

DATA BUS (DO-D7)

Eight pins are used for the data bus. It is bidirectional, transferring data to and from the memory and peripheral deviees, It also has three-state output buffers capable of driving one standard TTL load and 130 pF .
Data bus will be in the output mode when the internal RAM is accessed and RE will be high. This prohibits external data entering the MPU. It should be noted that the internal RAM is fully decoded from $\$ 0000$ to $\$ 007 \mathrm{~F}$. External RAM at $\$ 0000$ to $\$ 007 \mathrm{~F}$ must be disabled when internal RAM is accessed.

HALT

When this input is in the low state, all activity in the machine will be halted. This input is level sensitive. In the HALT mode, the machine will stop at the end of an instruc-
tion, bus available will be at a high state, valid memory address will be at a low state. The address bus will display the address of the next instruction.
To ensure single instruction operation, transition of the HALT line must occur tpCS before the falling edge of E and the HALT line must go high for one clock cycle.
HALT should be tied high if not used. This is good engineering design practice in general and necessary to ensure proper operation of the part.

READ/WRITE (R/ \bar{W})

This TTL-compatible output signals the peripherals and memory devices whether the MPU is in a read (high) or write (low) state. The normal standby state of this signal is read (high). When the processor is halted, it will be in the read state. This output is capable of driving one standard TTL load and 90 pF .

VALID MEMORY ADDRESS (VMA)

This output indicates to peripheral devices that there is a valid address on the address bus. In normal operation, this signal should be utilized for enabling peripheral interfaces such as the PIA and ACIA. This signal is not three-state. One standard TTL load and 90 pF may be directly driven by this active high signal.

BUS AVAILABLE (BA) - The bus available signal will normally be in the low state; when activated, it will go to the high state indicating that the microprocessor has stopped and that the address bus is available (but not in a three-state condition). This will occur if the HALT line is in the low state or the processor is in the WAIT state as a result of the execution of a WAIT instruction. At such time, all three-state output drivers will go to their off-state and other outputs to their normally inactive level. The processor is removed from the

WAIT state by the occurrence of a maskable (mask bit $1=0$) or nonmaskable interrupt. This output is capable of driving one standard TTL load and 30 pF .

INTERRUPT REQUEST (IRQ)

A low level on this input requests that an interrupt sequence be generated within the machine. The processor will wait until it completes the current instruction that is being excuted before it recognizes the request. At that time, if the interrupt mask bit in the condition code register is not set, the machine will begin an interrupt sequence. The index register, program counter, accumulators, and condition code register are stored away on the stack. Next the MPU will respond to the interrupt request by setting the interrupt mask bit high so that no further interrupts may occur. At the end of the cycle, a 16 -bit vectoring address which is located in memory locations SFFF8 and SFFF9 is loaded which causes the MPU to branch to an interrupt routine in memory.

The HALT line must be in the high state for interrupts to be serviced. Interrupts will be latched internally while HALT is low.

A nominal $3 \mathrm{k} \Omega$ pullup resistor to VCC should be used for wire-OR and optimum control of interrupts. TRQ may be tied directly to VCC if not used.

RESET

This input is used to reset and start the MPU from a power-down condition, resulting from a power failure or an initial startup of the processor. When this line is low, the MPU is inactive and the information in the registers will be lost. If a high level is detected on the input, this will signal the MPU to begin the restart sequence. This will start execu-
tion of a routine to initialize the processor from its reset condition, All the higher order address lines will be forced high. For the restart, the last two (\$FFFE, SFFFF) locations in memory will be used to load the program that is addressed by the program counter. During the restart routine, the interrupt mask bit is set and must be reset before the MPU can be interrupted by $\overline{R Q}$. Power-up and reset timing and powerdown sequences are shown in Figures 9 and 10, respectively.

RESET, when brought low, must be held low at least three clock cycles. This allows adequate time to respond internally to the reset. This is independent of the $t_{r c}$ power-up feset that is required.

When RESET is released it must go through the low-tohigh threshold without bouncing, oscillating, or otherwise causing an erroneous reset (less than three clock cycles). This may cause improper MPU opetation until the next valid reset.

NON-MASKABLE INTERRUPT (NMI)

A low-going edge on this input requests that a nonmaskable interrupt sequence be generated within the processor. As with the interrupt request signal, the processor will complete the current instruction that is being executed before it recognizes the NMI signal. The interrupt mask bit in the condition code register has no effect on $\overline{N M M}$.

The index register, program counter, accumulators, and condifion code registers are stored away on the stack. At the end of the cycle, a 16 -bit vectoring address which is located in memory locations \$FFFC and \$FFFD is loaded causing the MPU to branch to an interrupt service routine in memory.
A nominal $3 \mathrm{k} \Omega$ pullup resistor to $V_{C C}$ should be used for wire-OR and optimum control of interrupts. NMI may be tied

NOTE If option 1 is chosen, RESET and RE pins can be tied together:
directly to $V_{C C}$ if not used
Inputs $\overline{\mathrm{RO}}$ and $\overline{\mathrm{NMI}}$ are hardware interrupt lines that are sampled when E is high and will start the interrupt routine on a low E following the completion of an instruction.

Figure 11 is a flowchart describing the major decision paths and interrupt vectors of the microprocessor. Table 1 gives the memory map for interrupt vectors.

TABLE 1 - MEMORY MAP FOR INTERRUPT VECTORS

Vector		Description
MS	LS	Restart
\$FFFE	\$FFFF	R
\$FFFC	\$FFFD	Non-Maskable Interrupt
\$FFFA	\$FFFB	Software Interrupt
\$FFF8	\$FFF9	Interrupt Request

FIGURE 10 - POWER-DOWN SEQUENCE

FIGURE 12 - CRYSTAL SPECIFICATIONS

Y 1	C_{in}	$\mathrm{C}_{\text {out }}$
3.58 MHz	27 pF	27 pF
4 MHz	27 pF	27 pF
6 MHz	20 pF	20 pF
8 MHz	18 pF	18 pF

Nominal Crystal Parameters*

	3.58 MHz	4.0 MHz	6.0 MHz	8.0 MHz
R_{S}	60Ω	50Ω	$30-50 \Omega$	$20-40 \Omega$
C 0	3.5 pF	6.5 pF	46 pF	4.6 pF
Cl	0.015 pF	0.025 pF	0.010 .02 pF	$0.01-0.02 \mathrm{pF}$
O	$>40 \mathrm{~K}$	$>30 \mathrm{~K}$	$>20 \mathrm{~K}$	$>20 \mathrm{~K}$

*These are representative AT-cut parallel resonance crystal parameters only. Crystals of other types of cuts may also be used.

Figure 13 - SUGGESTED PC BOARD LAYOUT
Example of Board Design Using the Crystal Oscillator

FIGURE 14 - MEMORY READY SYNCHRONIZATION

FIGURE 15 - MR NEGATIVE SETUP TIME REQUIREMENT

> E Clock Streteh

The E clock will be stretched at end of E high of the cycle during which MR negative meets the tPCS setup time. The tPCS setup time is referenced to the fall of E . If the tPCS setup time is not met, E will be stretched at the end of the next E -high $1 / 2$ cycle. E will be stretched in integral multiples of $1 / 2$ cycles.

The E clock will resume normal operation at the end of the $1 / 2$ cycle during which MR assertion meets the tPCS setup time. The tpCS setup time is referenced to transitions of E were it not stretched. If tPCS setup time is not met, E will fall at the second possible transition time after MR is asserted. There is no direct means of determining when the tpCS references occur, unless the synchronizing circuit of Figure 14 is used.

RAM ENABLE (RE - MC6802 + MC6802NS ONLY)

A TTL-compatible RAM enable input controls the on-chip RAM of the MC6802. When placed in the high state, the onchip memory is enabled to respond to the MPU controls. In the low state, RAM is disabled. This pin may also be utilized to disable reading and writing the on-chip RAM during a power-down situation. RAM Enable must be low three cycles before VCC goes below $4.75 \vee$ during power-down. RAM enable must be tied low on the MC6808. RE should be tied to the correct high or low state if not used.

EXTAL AND XTAL

These inputs are used for the internal oscillator that may be crystal controlled. These connections are for a parallel resonant fundamental crystal (see Figure 12). (AT-cut.) A divide-by-four circuit has been added so a 4 MHz crystal may be used in lieu of a 1 MHz crystal for a more cost-effective system. An example of the crystal circuit layout is shown in Figure 13. Pin 39 may be driven externally by a TTL input signal four times the required E clock frequency. Pin 38 is to be grounded.

An RC network is not directly usable as a frequency source on pins 38 and 39. An RC network type TTL or CMOS oscillator will work well as long as the TTL or CMOS output drives the on-chip oscillator.

LC networks are not recommended to be used in place of the crystal.
If an external clock is used, it may not be halted for more than tPW ϕ L The MC6802, MC6808 and MC6802NS are dynamic parts except for the internal RAM, and require the external clock to retain information.

MEMORY READY (MR)

MR is a TTL-compatible input signal controlling the stret ching of E. Use of MR requires synchronization with the $4 \times f_{0}$ signal, as shown in Figure 14. When MR is high, Ewill be in normal operation. When MR is low, E will be stretohed integral numbers of half periods, thus allowing interface to slow memories. Memory Ready timing is shown in Figure 15.
MR should be tied high lconnected directly to Vccl if not used. This is necessary to ensure proper operation of the part. A maximum stretch is toyc.

ENABLE (E)

This pin supplies the clock for the MPU and the rest of the system. This is a single-phase, TTL-compatible clock. This clock may be conditiored by a memory read signal. This is equivalent to $\phi 2$ on the MC6800. This output is capable of driving one standard TTL load and 130 pF .

VCC STANDBY (MC6B02 ONLY)

This pin supplies the dc voltage to the first 32 bytes of RAM as well as the RAM Enable (RE) control logic. Thus, retention of data in this portion of the RAM on a power-up, power-down, or standby condition is guaranteed. Maximum current drain at $V_{S B}$ maximum is ISBB. For the MC6802NS this pin must be connected to $V \mathrm{CC}$.

MPU INSTRUCTION SET

The instruction set has 72 different instructions. Included are binary and decimal arithmetic, logical, shift, rotate, load, store, conditional or unconditional branch, interrupt and stack manipulation instructions (Tables 2 through 6). The instruction set is the same as that for the MC6800.

MPU ADDRESSING MODES

There are seven address modes that can be used by a programmer, with the addressing mode a function of both the type of instruction and the coding within the instruction. A summary of the addressing modes for a particular instruction can be found in Table 7 along with the associated instruction execution time that is given in machine cycles. With a bus frequency of 1 MHz , these times would be microseconds.

ACCUMULATOR (ACCX) ADDRESSING

In accumulator only addressing, either accumulator A or accumulator B is specified. These are one-byte instructions.

IMMEDIATE ADDRESSING

In immediate addressing, the operand is contained in the second byte of the instruction except LDS and LDX which have the operand in the second and third bytes of the instruction. The MPU addresses this location when it fetches the immediate instruction for execution. These are two- or three-byte instructions.

DIRECT ADDRESSING

In direct addressing, the address of the operand is contained in the second byte of the instruction. Direct addressing allows the user to directly address the lowest 256 bytes in the machine, i.e., locations zero through 255 . Enhanced execution times are achieved by storing data in these locations. In most configurations, it should be a random-access memory. These are two-byte instructions.

EXTENDED ADDRESSING

In extended addressing, the address contained in the second byte of the instruction is used as the higher eight bits of the address of the operand. The third byte of the instruction is used as the lower eight bits of the address for the operand. This is an absolute address in memory. These are three-byte instructions.

INDEXED ADDRESSING

In indexed addressing, the address contained in the second byte of the instruction is added to the index register's lowest eight bits in the MPU. The carry is then added to the higher order eight bits of the index register. This result is then used to address memory. The modified address is held in a temporary address register so there is no change to the index register. These are two-byte instructions.

IMPLIED ADDRESSING

In the implied addressing mode, the instruction gives the address (i.e., stack pointer, index register, etc.). These are one-byte instructions.

RELATIVE ADDRESSING

In relative addressing, the address contained in the second
byte of the instruction is added to the program counter's lowest eight bits plus two. The carry or borrow is then added to the high eight bits. This allows the user to address data within a range of -125 to +129 bytes of the present instruction. These are two-byte instructions.

TABLE 2 - MICROPROCESSOR INSTRUCTION SET - ALPHABETIC SEQUENCE

ABA	Add Accumulators	CLR	Clear	PUL	ull Data
ADC	Add with Carry	CLV	Clear Overflow		
ADD	Add	CMP	Compare	ROL	Rotate Left
AND	Logical And	COM	Complement	ROR	Rotate Right
ASL	Arithmetic Shift Left	CPX	Compare Index Register	RTI	Relurr from Interrupt
ASR	Arithmetic Shift Right	DAA	Decimal Adjust	RTS	Return from Subroutine
BCC	Branch if Carry Clear	DEC	Decimal Adjust Decrement	SBA	Subtract Accumulators
BCS	Branch if Carry Set	DES	Decrement Stack Pointer		Subtract with Carry
BEQ	Branch if Equal to Zero	DEX	Decrement Index Register	SEC	Set Carry
BGE	Branch if Greater or Equal Zero		Exclusive OR	SEI	Set Interrupt Mask
BGT	Branch if Greater than Zero	EOR	Exclusive OR	SEV	Set Overilow
BHI	Branch if Higher	INC	Increment	STA	Store Accumulator
BIT	Bit Test	INS		STS	Store Stack Register
BLE	Branch if Less or Equal	INX	Increment Index Reg	STX	Store Index Register
BLS	Branch if Lower or Same			SUB	Subtract
BLT	Branch if Less than Zero	JMP	Jump	SWI	Software Interrupt
BMI	Branch if Minus	JSR	Jump to Subroutine	TAB	Transfer Accumulators
BNE	Branch if Not Equal to Zero	LDA	Load Accumulator	TAP	Transfer Accumulators to Condition Code Reg.
BPL	Branch if Plus	LDS	Load Stack Pointer	TBA	Transfer Accumulators
BRA	Branch Always	LDX	Load Index Register	TPA	Transfer Condition Code Reg. to Accumulator
BSR	Branch to Subroutine	LSR	Logical Shift Right	TST	Test
BVC	Branch if Overflow Clear			TSX	Transfer Stack Pointer to Index Register
BVS	Branch if Overflow Set		No Operation	TXS	Transfer Index Register to Stack Pointer
$\begin{aligned} & \text { CBA } \\ & \text { CLC } \\ & \text { CLI } \end{aligned}$	Compare Accumulators Clear Carry Clear Interrupt Mask	ORA	Inclusive OR Accumulator	WAI	Wait for Interrupt

TABLE 3 - ACCUMULATOR AND MEMORY INSTRUCTIONS

[^1]CONDITION CODE SYMBOLS
H Half-cary from bit 3 ;
Interrupt mask
Negalive (sign bit)
Zero (byte)
Overllow, 2's complement
Carry from bit 7
Reset Always
Set Always:
Test and set if trie, cleared otherwise

- Not Affected

TABLE 4 - INDEX REGISTER AND STACK MANIPULATION INSTRUCTIONS

POINTER OPERATIONS	MNEMONIC	IMMED			DIRECT			INDEX			EXTND			IMPLIED			BOOLEAN/ARITHMETIC OPERATION							
		OP	\sim	\pm	OP	\sim	$=$	DP	\sim	$=$	OP	\sim	$=$	OP	\sim	$=$		H	1	N	2		v	C
Compare Index Heg.	CPX	8 C	3	3	9C	4	2	AC	6	2	EC	5	3				$X_{H}-M, X_{L}-(M+1)$	-	-					-
Decrement Index $\mathrm{Reg}^{\text {g }}$	DEX													09	4	1	$x^{+1}-1 \rightarrow x^{\text {a }}$	-	-	-				-
Decrement Stack Pntr	DES													34	4	1	SP-1 ${ }^{\text {P }}$ S P	-	-					-
Increment Index Reg	INX													08	4	1	$x+1 \rightarrow x$	-						-
Increment Stack Potr	INS													31	4	1	SP $+1 \rightarrow \mathrm{SP}$	-		-				-
Load Index Reg	LDX	CE	3	3	DE	4	2	EE	6	2	FE	5	3				$m \rightarrow X_{H}(m+1) \rightarrow x_{L}$			(9)			R	-
Load Stack Pntr	LDS	8 E	3	3.	9 E	4	2	AE	6	2	BE	5	3					-		(9)			R	-
Store Index Reg	STX				DF	5	2	EF	7	2	FF	6	3				$X_{H} \cdots M, X_{L} \rightarrow(M+1)$	-		(9)			R	-
Store Stack Pntr	STS				9 F	5	2	AF	7	2	BF	6	3				$S P_{H} \rightarrow M, S P_{L} \rightarrow(M+1)$	-		(9)			R	-
Indx Reg \rightarrow Stack Pritr	TXS													35	4	1	$\mathrm{X}-1 \rightarrow \mathrm{SP} \quad$ -	-	-	-			-	-
Stack Pntr \rightarrow Indx Reg	TSX													30	4	1	SP + $1 \rightarrow \mathrm{X}$	-		-			-	

TABLE 5 - JUMP AND BRANCH INSTRUCTIONS

OPERATIONS	mnemonic	relative			imatex			ExtNo			IMPLIED				BRANCH TEST	cond. Code reg.										
						5	4				2	1	0													
		0 P	-	\#				op	\sim	\#				OP		\sim	\#	OP	\sim	$\#$		H	1	z	\checkmark	c
Branch Always	BRA	20	4	2											None	-		-	-	\bullet						
Branch If Carry Clear	8cc	24	4	2											$\mathrm{c}=0$	-	-	-	-	-						
Branch If Carry Set	BCS	25	4	2								-			$\mathrm{c}=1$	-	-	-	-	-						
Branch If $=$ Zero	beg	27	4	2								-			Z $=1$	-	-	-	-	-						
Branch If \geqslant Zero	bge	2 C	4	2											$N \oplus \mathrm{~V}=0$	-	-	-	-	-						
Branch If $>$ Zero	bGt	2 E	4	2											$\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=0$	-	-	-	-	-						
Branch If Higher	BHI	22	4	2											$\mathrm{C}+\mathrm{z}=0$	-	-	-	-	-						
Branch If \leqslant Zero	bLE	2 F	4	2											$z+(N \oplus V)=1$	-	-	-	-	-						
Branch If Lower Or Same	BLS	23	4	2			*								$c+z=1$	-	-	-	-	-						
Branch If $<$ Zero	blt	20	4												$N \oplus\left(\begin{array}{l}\text { c }\end{array}\right.$	-		-	-	-						
Branch If Mirus	BMI	2 B	4	2											$\mathrm{N}=1$	-	-	-	-	-						
Branch If Not Equal Zero	bne	26	4	2											$z=0$	-			-	-						
Branch If Overflow Clear	bVC	28	4			-									$v=0$	-		-	-	-						
Branch If Overitow Set	BVS	29	4	2	-	b									$v=1$	-	-	-	-	-						
Branch if Plus	BPL	2 A													$N=0$	-	-	-	-	-						
Branch To Subroutine	BSR			2												-	-	-	-	-						
Jump	JMP.		=	*	6 E	4	2	$T E$	3	3					See Special Operations		-	-	-	-						
Jump To Subroutine	JSR		2		AD	8	2	Bо	9	3					(Figure 16)				-	-						
No Operation	NOP											2	1		Advances Prog. Contr. Only			-		-						
Return Fram Interrupl											3 B	10	1													
Return From Subroutine	RIS										39	5	1							-						
Soltware Interrupt	swn										3 F	12	1		See Special Uperations	-	-	-	-	-						
Wait for Interrupt	wal											9			(Figure 16)			-	-							

SPECIAL OPERATIONS JSR, JUMP TO SUBROUTINE:

BSR, BAANCH TO SUBROUTTINE:

$$
\begin{aligned}
& n+2 \text { Formed From }[n+2]_{H} \text { and }[n+2]_{L}
\end{aligned}
$$

JMP, JUMP

RTS, RETURN FROM SUBROUTINE:

RTI, RETURN FROM INTERRUPT:

TABLE 6 - CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

OPERATIONS	MNEMONIC	IMPLIED.									
					BOOLEAN OPERATION	5	4	3	2	1	0
		OP	\sim	$=$		H	1	N	2	v	C
Clear Carry	CLC	OC.	2	1	$0 \sim \mathrm{C}$		\bullet	\bullet	\bullet	-	R
Clear Interrupt Mask	CL	OE	2	1	, 0-1	\bullet	R	-	\bullet	-	\bullet
Clear Overflow	CLV	OA	2	1	$0 \rightarrow \mathrm{~V}$	\bullet	-	\bullet	-	R	\bullet
Sat Carry	SEC	0 O	2	1	$1-\mathrm{C}$	-	-	-	-	-	S
Set Interrupt Mask	SEI.	0 F	2	1	$1 \rightarrow 1$	\bullet	S	-	\bullet	\bullet	\bullet
Set Overflow	SEV	OB	2	1	$1 \rightarrow \mathrm{~V}$	\bullet	-	-	\bullet	S	\bullet
Acmitr A \rightarrow CCR	TAP	06	2	1	$A \rightarrow C C R$						
$C C R \rightarrow$ Acmltr A	TPA	07	2	1	$\mathrm{CCR} \rightarrow \mathrm{A}$	-	\bullet	-	\bullet	\bullet	-

CONDITION CODE REGISTER NOTES: (Bit set if test is true and cleared otherwise)

MOTOROLA Semiconductor Products Inc.
(Times in Machine Cycle)
 (Dual Operand)

NOTE: Interrupt time is 12 cycles from the end of the instruction being executed, except following a WAl instruction. Then it is 4 cycles.

SUMMARY OF CYCLE-BY-CYCLE OPERATION

Table 8 provides a detailed description of the information present on the address bus, data bus, valid memory address line (VMA), and the read/write line (R/W) during each cycle for each instruction:
This information is useful in comparing actual with expected results during debug of both software and hardware
as the control program is executed. The information is categorized in groups according to addressing modes and number of cycies per instruction. (In general, instructions with the same addressing mode and number of cycles execute in the same manner; exceptions are indicated in the table.)

TABLE 8 - OPERATIONS SUMMARY

Address Mode and Instructions	Cycles	Cycle	VMA				

ADC EOR ADD LDA AND ORA BIT, SBC CMP SUB	2	1	1	Op Code Address Op Code Address +1	$\frac{1}{1}$	Op Code Operand Data
$\begin{aligned} & \text { CPX } \\ & \text { LDS } \end{aligned}$	3	1 2 3	1	Op Code Address Op Code Address + 1 Op Code Address +2	1	Op Code Operand Data (High Order Byte) Operand Data (Low Order Byte)

DIRECT

TABLE 8 - OPERATIONS SUMMARY (CONCLUDED)

Address Mode and Instructions	Cycles	Cycle \#	VMA Line	Address Bus	R / \bar{W} Line	Data Bus
INHERENT (Continued)						
WAI	9	1 2 3 4 5 6 7 8 9	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address +1 Stack. Pointer Stack Pointer - 1 Stack Pointer - 2 Stack Pointer - 3 Stack Pointer - 4 Stack Pointer - 5 Stack Pointer - 6	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Return Address (Low Order Byte) Return Address (High Order Byte) Index Register (Low Order Byte) Index Register (High Order Byte) Contents of Accumulator A Contents of Accumulator B Contents of Cond. Code Register
RTI	10	1 2 3 4 5 6 7 8 9 10		Op Code Address Op Code Address + 1 Stack Pointer Stack Pointer + 1 Stack Pointer +2 Stack Pointer +3 Stack Pointer +4 Stack Pointer +5 Stack Pointer +6 Stack Pointer +7		Op Code Irrelevant Data (Note 2) Irrelevant Data (Note 1) Contents of Cond. Code Register from Stack Contents of Accumulator B from Stack Contents of Accumulator A from Stack Index Register from Stack (High Order Byte) Index Register from Stack (Low Order Byte) Next Instruction Address from Stack (High Order Byte) Next Instruction Address from Stack (Low Order Byte)
SWI	12	1 2 3 4 5 6 7 8 92 10 11	1 1 1 1 1 1 1 1 1 0 1	Op Code Address Op Code Address +1 Stack Pointer Stack Pointer- 1 Stack Pointer - 2 Stack Pointer - 3 Stack Pointer - 4 Stack Pointer - 5 Stack Pointer - 6 Stack Pointer - 7 Vector Address FFFA (Hex) Vector Address FFFB (Hex)	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Op Code Irrelevant Data (Note 1) Return Address (Low Order Byte) Return Address (High Order Byte) Index Register (Low Order Byte) Index Register (High Order Byte) Contents of Accumulator A Cantents of Accumulator B Contents of Cond. Code Register Irrelevant Data (Note 1) Address of Subroutine (High Order Byte) Address of Subroutine (Low Order Byte)

NOTES:

1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high-impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
2. Data is ignored by the MPU.
3. For TST, VMA $=0$ and Operand data does not change.
4. MS Byte of Address Bus = MS Byte of Address of BSR instruction and LS Byte of Address Bus = LS Byte of Sub-Routine Address.

TABLE 8 - OPERATIONS SUMMARY (CONTINUED)

Address Mode and Instructions	Cycles	Cycle \#	VMA Line	Address Bus	$\begin{gathered} R / W \\ L \text { ine } \end{gathered}$	Data Bus
EXTENDED (Continued)						
STS STX	6	1 2 2 3 4 4 5 6	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Op Code Address +2 Address of Operand Address of Operand Address of Operand +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address of Operand (High Order Byte) Address of Operand (Low Order Byte) Irrelevant Data (Note 1) Operand Data (High Order Byte) Operand Data (Low Order Byte)
JSR		1 2 3 3 4 5 6 7 8 9	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{gathered}$	Op Code Address Op Code Address + 1 Op Code Address +2 Subroutine Starting Address Stack Pointer Stack Pointer - 1 Stack Pointer-2 Op Code Address + 2 Op Code Address +2	1	Op Code Address of Subroutine (High Order Byte) Address of Subroutine (Low Order Byte) Op Code of Next Instruction Return Address (Low Order Byte) Return Address (High Order Byte) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Address of Subroutine (Low Order Byte)

INHERENT

	2	$\frac{1}{2}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1		Op Code Op Code of Next Instruction
DES DEX INS INX	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	1 1 0 0	Op Code Address Op Code Address +1 Previous Register Contents New Register Contents	$\frac{1}{1}$	Op Code Op Code of Next Instruction Irretevant Data (Note 1) Irrelevant Data (Note 1)
PSH	4	1 2 3 3 4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Op Code Address Op Code Address $t 1$ Stack Pointer Stack Pöinter - 1	1	Op Code Op Code of Next Instruction Accumulator Data Accumulator Data
PUL	4	1. 2 3 4.	$\left\lvert\, \begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}\right.$	Op Code Address Op Code Address +1 Stack Pointer Stack Pointer + 1	1	Op Code Op Code of Next Instruction Irrelevant Data (Note 1) Operand Däta from Stack
$T S X$		1 -2 3 3 4	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Stack Pointer New Index Register	$\frac{1}{1}$	Op Code Op Code of Next Instruction Irrelevant Data (Note 1) Irrelevant Data (Note 1)
TXS	4	$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \end{gathered}$	1 1 1 0 0	Op Code Address Op Code Address +1 Index Register New Stack Pointer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Irrelevant Data Irrelevant Data
RTS	5		1 1 0 1 1 1	Op Code Address Op Code Address +1 Stack Pointer Stack Pointer + 1 Stack Pointer +2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Irrelevant Data (Note 2) Irrelevant Data (Note 1) Address of Next Instruction (High Order Bute) Address of Next Instruction (Low Order Byte)

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arișing out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

Address Mode and Instructions	Cycles	Cycle \#	VMA Line	Address Bus	B / w Line	Data Bus

STA	6	1 2 2 3 4 5 6	1 1 0 0 0 1 1.	Op Code Address Op Code Address +1 Index Register Index Register Plus Offset (w/o Carry) Index Register Plus Offset Index Register Plus Offset	$\begin{aligned} & 1 . \\ & 1 . \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Op Code Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Operand Data
ASL LSR ASR NEG CLR ROL COM ROR DEC TST INC T	7	1 2 3 4 4 5 6 7	1 1 0 0 1 0 0 $1 / 0$ (Note $3)$	Op Code Address Op Code Address +1 Index Register Index Register Plus Offset (w/o Carry) IndexRegister Plus Offset Index Register Plus Offset Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1) Current Operand Data Irrelevant Data Note 1) New Operand Data (Note 3)
$\begin{aligned} & \text { STS } \\ & \text { STX } \end{aligned}$	7	1 2 3 4 5 6 7	1 1 0 0 0 0 1 1	Op Code Address Op Code Address +1 Index Register Index Register Plus Offset (w/o Carry) Index Register Plus Offset Index. Register Plus Offset Index Register Plús Offset + 1	1 1 1 1 1 0 0	Op Code Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Operand Data (High Order Byte) Operand Data (Low Order Byte)
JSR	8	1 2 2 3 4 5 6 7 7 8	$\left(\begin{array}{c}1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	Op Code Address Op Code Address +1 Index Register Stack Pointer Stack Pointer - 1 Stack Pointer -2 Index Fegister Index Reglster Plus Offset (w/o Carry)	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Offset Irrelevant Data (Note 1) Return Address (Low Order Byte) Return Address (High Order Byte) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Irrelevant Data (Note 1)

[^0]: *If programs are not executed from on-board RAM, TAV1 applies. If programs are to be stored and executed from on-board RAM, TAV2 applies. For normal data storage in the on-board RAM, this extended delay does not apply. Programs cannot be executed from on-board RAM when using A and B parts (MC68A02, MC68A08, MC68B02, and MC68B08). On-board RAM can be used for data storage with all parts.

[^1]: OP Operation Code (Hexadecimal)
 Number of MPU Cycles:
 $=$ Number of Program Bytes
 Arithmetic Plus,
 Arithmetic Minusi
 Boolear AND
 MSP Contents of memory location pointed to be Slack Pointer,
 Note - Accumulator addressing mode instruclions are ineluded in the column for IMPLIED addressing

 ## LEGEND:

