Chapter 7
 Component Data and References

Component Data

None of us has the time or space to collect all the literature available on the many different commercially available manufactured components. Even if we did, the task of keeping track of new and obsolete devices would surely be formidable. Fortunately, amateurs tend to use a limited number of component types. This section, by Douglas Heacock, AAØMS, provides information on the components most often used by the Amateur Radio experimenter.

COMPONENT VALUES

Throughout this Handbook, resistors and small-value capacitors are specified in terms of a system of "pre-ferred values." This system allows manufacturers to supply these components in a standard set of values, which, when considered along with component tolerances, satisfy the vast majority of circuit requirements.

The preferred values are based on a roughly logarithmic scale of numbers between 1 and 10 . One decade of these values for three common tolerance ratings is shown in Table 7.1.

Table 7.1 represents the two significant digits in a resistor or capacitor value. Multiply these numbers by multiples of ten to get other standard values. For example, $22 \mathrm{pF}, 2.2 \mu \mathrm{~F}, 220 \mu \mathrm{~F}$, and $2200 \mu \mathrm{~F}$ are all standard capacitance values, available in all three tolerances. Standard resistor values include $3.9 \Omega, 390 \Omega, 39000 \Omega$ and 3.9 $\mathrm{M} \Omega$ in $\pm 5 \%$ and $\pm 10 \%$ tolerances. All standard resistance values, from less than 1Ω to about $5 \mathrm{M} \Omega$ are based on this table.

Each value is greater than the next smaller value by a multiplier factor that depends on the 1 tolerance. For $\pm 5 \%$
devices, each value is approximately 1.1 times the next lower one. For $\pm 10 \%$ devices, the multiplier is 1.21 , and for $\pm 20 \%$ devices, the multiplier is 1.47 . The resultant values are rounded to make up the series.
Tolerance refers to a range of acceptable values above and below the specified component value. For example, a $4700-\Omega$ resistor rated for $\pm 20 \%$ tolerance can have an actual value anywhere between 3760Ω and 5640Ω. You may always substitute a

Table 7.1

Standard Values for Resistors and

 Capacitors| $\pm 5 \%$ | $\pm 10 \%$ | $\pm 20 \%$ |
| :---: | :---: | :---: |
| 1.0 | 1.0 | 1.0 |
| 1.1 | | |
| 1.2 | 1.2 | |
| 1.3 | | |
| 1.5 | 1.5 | 1.5 |
| 1.6 | | |
| 1.8 | 1.8 | |
| 2.0 | | |
| 2.2 | 2.2 | 2.2 |
| 2.4 | | |
| 2.7 | 2.7 | |
| 3.0 | | |
| 3.3 | 3.3 | 3.3 |
| 3.6 | | |
| 3.9 | 3.9 | |
| 4.3 | | |
| 4.7 | 4.7 | 4.7 |
| 5.1 | | |
| 5.6 | 5.6 | |
| 6.2 | | |
| 6.8 | 6.8 | 6.8 |
| 7.5 | | |
| 8.2 | 8.2 | |
| 9.1 | | 10.0 |
| 10.0 | 10.0 | |

closer-tolerance device for one with a wider tolerance. For projects in this Handbook, assume a 10% tolerance if none is specified.

COMPONENT MARKINGS

The values, tolerances or types of most small components are typically marked with a color code or an alphanumeric code according to standards agreed upon by component manufacturers. The Electronic Industries Alliance (EIA) is a US agency that sets standards for electronic components, testing procedures, performance and device markings. The EIA cooperates with other standards agencies such as the International Electrotechnical Commission (IEC), a worldwide standards agency. You can often find published EIA standards in the engineering library of a college or university.

The standard EIA color code is used to identify a variety of electronic components. Most resistors are marked with color bands according to the code, shown in Table 7.2. Some types of capacitors and inductors are also marked using this color code.

Resistor Markings

Carbon-composition, carbon-film, and metal-film resistors are typically manufactured in roughly cylindrical cases with axial leads. They are marked with color bands as shown in Fig 7.1 with the color codes detailed in Table 7.2. The markings in Fig 7.1A are typically used for $2 \%, 5 \%$ and 10% tolerance resistors. There are four bands, with the fourth band spaced widely from the first three. The first two bands

Table 7.2 Resistor Color Codes

Color	Significant Figure	Decimal Multiplier	Tolerance (\%)
Black	0	1	
Brown	1	10	1
Red	2	100	2
Orange	3	1,000	
Yellow	4	10,000	
Green	5	100,000	0.5
Blue	6	$1,000,000$	0.25
Violet	7	$10,000,000$	0.1
Gray	8	$100,000,000$	0.05
White	9	$1,000,000,000$	
Gold		0.1	5
Silver		0.01	10
No color			20

Fig 7.2—Typical resistor sizes.
represent the two significant digits of the component value, the third band represents the multiplier, and the fourth band represents the tolerance. If the fourth (tolerance) band is not present, the tolerance is $\pm 20 \%$. For example, if a resistor of the type shown in Fig 7.1A is marked with the bands red, red, orange and silver, the significant figures are 2 and 2, the multiplier is 1000 , and the tolerance is $\pm 10 \%$. The device is a $22,000-\Omega, \pm 10 \%$ unit.

Precision resistors $(0.1 \%, 0.25 \%, 0.5 \%$ and 1% tolerance) are marked with five bands, as shown in Fig 7.1B. Note that the fifth band is spaced widely from the first four bands. For example, if a resistor of the type shown in Fig 7.1A is marked with the bands red, red, orange, black and brown, the significant figures are 2,2 and 3 , the multiplier is 1 , and the tolerance is $\pm 1 \%$. The device is a $223-\Omega, \pm 1 \%$ unit.

Some military (mil-spec) resistors (Fig 7.1C) are marked with a fifth band that represents reliability information. On these resistors, the fifth band is spaced closely with the first four and represents the percentage of resistance change per 1000 hours of operation: brown $=1 \%$; red $=0.1 \%$; orange $=0.01 \%$; and yellow $=0.001 \%$.

Some resistors are made with radial leads (Fig 7.1D) and are marked with a color code in a slightly different scheme. For example, a resistor as shown in Fig 7.1D is marked as follows: body $(\mathrm{A})=$ blue; end $(\mathrm{B})=$ gray; dot $(C)=$ red; end $(D)=$ gold. The significant figures are 6 and 8 , the multiplier is 100, and the tolerance is $\pm 5 \% ; 6800 \Omega$ with $\pm 5 \%$ tolerance.

Resistor Power Ratings

Carbon-film and metal-film are the most commonly available resistors today, having largely replaced the less-stable carboncomposition resistors. Carbon-film and metal-film resistors are available in standard
power ratings of $1 / 6,1 / 4,1 / 2,1$ and 2 W and generally have tolerances of 5% or better. Carbon-composition resistors are available in $1 / 10,1 / 8,1 / 4,1 / 2,1$ and 2 W ratings, but are harder to find. The $1 / 4,1 / 2,1$ and $2-\mathrm{W}$ resistor

Fig 7.1 - Color codes for fixed resistors. See Table 7.2 and text for more information on identifying the resistor values.
packages are drawn to scale in Fig 7.2. Carbon- and metal-film resistors are typically slightly smaller than carboncomposition units of the same power rating. Film resistors can usually be identified by a glossy enamel coating and an hourglass profile.

Capacitor Markings

A variety of systems for capacitor markings are in use. Some use color bands, some use combinations of numbers and letters. Capacitors may be marked with their value, tolerance, temperature characteristics, voltage ratings or some subset of these specifications. Fig 7.3 shows several popular capacitor marking systems.

In addition to the value, ceramic disk capacitors may be marked with an alphanumeric code signifying temperature characteristics. Table 7.3 explains the EIA code for ceramic-disk capacitor temperature characteristics. The code is made up of one character from each column in the table. For example, a capacitor marked Z 5 U is suitable for use between +10 and $+85^{\circ} \mathrm{C}$, with a maximum change in capacitance of -56% or $+22 \%$.

Capacitors with highly predictable temperature coefficients of capacitance are sometimes used in oscillators that must be frequency stable with temperature. If an application called for a temperature coefficient of $-750 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (N750), a capacitor marked U2J would be suitable. The older industry code for these ratings is being replaced with the EIA code shown in Table 7.4. NP0 (that is, N-P-zero) means "negative, positive, zero." It is a characteristic often specified for RF circuits requiring temperature stability, such as VFOs. A capacitor of the proper value marked C0G is a suitable replacement for an NP0 unit.

Color Code for Ceramic Capacitors					
			Capacitance Tolerance		
	Significant	Decimal Multi-	More than 10 pF	Less than 10 pF	Temp. Coeff. ppm/
Color	Figure	plier	(in \%)	(in pF)	deg. C
Black	0	1	± 20	2.0	0
Brown	1	10	± 1		- 30
Red	2	100	± 2		- 80
Orange	3	1000			-150
Yellow	4				-220
Green	5		± 5	0.5	-330
Blue	6				-470
Violet	7				-750
Gray	8	0.01		0.25	30
White	9	0.1	± 10	1.0	500

(A)

Multiplier	
Number	Multiply By
0	NONE
1	10
2	100
3	1000
4	10,000

Ceramic Capacitors
(E)

Capacitance in pF. First two digits significant figures, third digit indicates zeros. Letter R , when used, indicates the decimal point when three-significant-figure values are required. (Value shown is 561.0 pF.)

HBK05_07-003

EIA or MIL Designation for Mica Capacitors
(G)

(D)

(F)

Letter Designator	"Characteristic" Max Capacitance Drift	"Characteristic" Max Range of Temp Coeff (ppm / deg. C)	MIL Voltage Rating (V)	Capactitance Tolerance (Percent)
A	-	-	100	-
B	Not Specified	Not Specified	250	-
C	$\pm(0.5 \%+0.1 \mathrm{pF})$	± 200	300	-
D	$\pm(0.3 \%+0.1 \mathrm{pF})$	± 100	500	-
E	$\pm(0.1 \%+0.1 \mathrm{pF})$	-20 to +100	600	-
F	$\pm(0.05 \%+0.1 \mathrm{pF})$	0 to +70	1000	± 1
G	-	-	1200	± 2
H	-	-	1500	-
J	-	-	2000	± 5
K	-	-	2500	± 10
L	-	-	3000	-
M	-	4000	± 20	
MIL voltage ratings for other letter designators: $\mathrm{N}=5000 \mathrm{~V}, \mathrm{P}=6000 \mathrm{~V}, \mathrm{Q}=8000$				
V, R=10,000 V, S-12,000 V, T=15,000 V, U=20,000 V, V=25,000 V, W=30,000				
V, X=35,000 V.				

Fig 7.3-Capacitors can be identified by color codes and markings. Shown here are identifying markings found on many common capacitor types.

Some capacitors, such as dipped silvermica units, have a letter designating the capacitance tolerance. These letters are deciphered in Table 7.5.

Surface-Mount Resistor and Capacitor Markings

Many different types of electronic components, both active and passive, are now available in surface-mount packages. These are commonly known as chip resistors and capacitors. The very small size of these components leaves little space for marking with conventional codes, so brief alphanumeric codes are used to convey the most information in the smallest possible space.

Surface-mount resistors are typically marked with a three- or four-digit value code and a character indicating tolerance. The nominal resistance, expressed in ohms, is identified by three digits for 2% (and greater) tolerance devices. The first two digits represent the significant figures; the last digit specifies the multiplier as the exponent of ten. (It may be easier to remember the multiplier as the number of zeros you must add to the significant figures.) For values less than 100Ω, the letter R is substituted for one of the significant digits and represents a decimal point. Here are some examples:

Resistor

Code	Value
101	10 and 1 zero $=100 \Omega$
224	22 and 4 zeros $=220,000 \Omega$
1R0	1.0 and no zeros $=1 \Omega$
22R	22.0 and no zeros $=22 \Omega$
R10	0.1 and no zeros $=0.1 \Omega$

If the tolerance of the unit is narrower than $\pm 2 \%$, the code used is a four-digit code where the first three digits are the significant figures and the last is the multiplier. The letter R is used in the same way to represent a decimal point. For example, 1001 indicates a $1000-\Omega$ unit, and 22 R0 indicates a $22-\Omega$ unit. The tolerance rating for a surface-mount resistor is expressed with a single character at the end of the numeric value code in Table 7.6.

Surface-mount capacitors are marked with a two-character code consisting of a letter indicating the significant digits (see Table 7.7) and a number indicating the multiplier (see Table 7.8). The code represents the capacitance in picofarads. For example, a chip capacitor marked "A4" would have a capacitance of $10,000 \mathrm{pF}$, or $0.01 \mu \mathrm{~F}$. A unit marked "N1" would be a $33-\mathrm{pF}$ capacitor. If there is sufficient space on the device package, a tolerance code may be included (see Fig 7.3E for tolerance codes). Surface-mount capacitors

Table 7.3

EIA Temperature Characteristic Codes for Ceramic Disc Capacitors

Minimum temperature	Maximum temperature	Maximum capacitance change over temperature range
$\mathrm{X}-55^{\circ} \mathrm{C}$	$2+45^{\circ} \mathrm{C}$	$\mathrm{A} \pm 1.0 \%$
$\mathrm{Y}-30^{\circ} \mathrm{C}$	$4+65^{\circ} \mathrm{C}$	$\mathrm{B} \pm 1.5 \%$
$\mathrm{Z}+10^{\circ} \mathrm{C}$	$5+85^{\circ} \mathrm{C}$	$\mathrm{C} \pm 2.2 \%$
	$6+105^{\circ} \mathrm{C}$	$\mathrm{D} \pm 3.3 \%$
	$7+125^{\circ} \mathrm{C}$	$\mathrm{E} \pm 4.7 \%$
	F $\pm 7.5 \%$	
	P $\pm 10 \%$	
	R $\pm 15 \%$	
	S $\pm 22 \%$	
	T $-33 \%,+22 \%$	
	U $-56 \%,+22 \%$	
	V $-82 \%,+22 \%$	

Table 7.4

EIA Capacitor TemperatureCoefficient Codes

Industry	EIA
NP0	C0G
N033	S1G
N075	U1G
N150	P2G
N220	R2G
Industry	EIA
N330	S2H
N470	U2J
N1500	P3K
N2200	R3L

Table 7.5	
EIA Capacitor	
Tolerance Codes	
Code	Tolerance
C	$\pm \neq 1 / \mathrm{pF}$
D	$\pm 1 / \mathrm{pF}$
F	$\pm 1 \mathrm{pF}$ or $\pm 1 \%$
G	$\pm 2 \mathrm{pF}$ or $\pm 2 \%$
J	$\pm 5 \%$
K	$\pm 10 \%$
L	$\pm 15 \%$
M	$\pm 20 \%$
N	$\pm 30 \%$
P or GMV*	$-0 \%,+100 \%$
W	$-20 \%,+40 \%$
Y	$-20 \%,+50 \%$
Z	$-20 \%,+80 \%$
*GMV $=$ guaranteed minimum value.	

can be very small; you may need a magnifying glass to read the markings.

INDUCTORS AND CORE MATERIALS

Inductors, both fixed and variable, are

Table 7.6
SMT Resistor Tolerance Codes

Letter	Tolerance
D	$\pm 0.5 \%$
F	$\pm 1.0 \%$
G	$\pm 2.0 \%$
J	$\pm 5.0 \%$

Table 7.7
SMT Capacitor Significant Figures Code

Character	Significant Figures	Character	Significant Figures
A	1.0	T	5.1
B	1.1	U	5.6
C	1.2	V	6.2
D	1.3	W	6.8
E	1.5	X	7.5
F	1.6	Y	8.2
G	1.8	Z	9.1
H	2.0	a	2.5
J	2.2	b	3.5
K	2.4	d	4.0
L	2.7	e	4.5
M	3.0	f	5.0
N	3.3	m	6.0
P	3.6	n	7.0
Q	3.9	t	8.0
R	4.3	y	9.0
S	4.7		

Table 7.8
SMT Capacitor Multiplier Codes

Numeric	Decimal Character
Multiplier	

7.4 Chapter 7

Table 7.9

Powdered-Iron Toroidal Cores: Magnetic Properties

Inductance and Turns Formula

The turns required for a given inductance or inductance for a given number of turns can be calculated from:

$$
N=100 \sqrt{\frac{L}{A_{L}}} \quad L=A_{L}\left(\frac{N^{2}}{10,000}\right)
$$

where $\mathrm{N}=$ number of turns; $\mathrm{L}=$ desired inductance $(\mu \mathrm{H})$; $\mathrm{A}_{\mathrm{L}}=$ inductance index ($\mu \mathrm{H}$ per 100 turns).*

AL Values		Mix									
Size	26**	3	15	1	2	7	6	10	12	17	0
T-12	na	60	50	48	20	18	17	12	7.5	7.5	3.0
T-16	145	61	55	44	22	na	19	13	8.0	8.0	3.0
T-20	180	76	65	52	27	24	22	16	10.0	10.0	3.5
T-25	235	100	85	70	34	29	27	19	12.0	12.0	4.5
T-30	325	140	93	85	43	37	36	25	16.0	16.0	6.0
T-37	275	120	90	80	40	32	30	25	15.0	15.0	4.9
T-44	360	180	160	105	52	46	42	33	18.5	18.5	6.5
T-50	320	175	135	100	49	43	40	31	18.0	18.0	6.4
T-68	420	195	180	115	57	52	47	32	21.0	21.0	7.5
T-80	450	180	170	115	55	50	45	32	22.0	22.0	8.5
T-94	590	248	200	160	84	na	70	58	32.0	na	10.6
T-106	900	450	345	325	135	133	116	na	na	na	19.0
T-130	785	350	250	200	110	103	96	na	na	na	15.0
T-157	870	420	360	320	140	na	115	na	na	na	na
T-184	1640	720	na	500	240	na	195	na	na	na	na
T-200	895	425	na	250	120	105	100	na	na	na	na

*The units of $A L$ ($\mu \mathrm{H}$ per 100 turns) are an industry standard; however, to get a correct result use AL only in the formula above.
**Mix-26 is similar to the older Mix-41, but can provide an extended frequency range.

Magnetic Properties Iron Powder Cores

Mix	Color	Material	μ	Temp stability (ppm/ ${ }^{\circ} \mathrm{C}$)	$f(\mathrm{MHz})$	Notes
26	Yellow/white	Hydrogen reduced	75	825	dc - 1	Used for EMI filters and dc chokes
3	Gray	Carbonyl HP	35	370	0.05-0.50	Excellent stability, good Q for lower frequencies
15	Red/white	Carbonyl GS6	25	190	0.10-2	Excellent stability, good Q
1	Blue	Carbonyl C	20	280	0.50-5	Similar to Mix-3, but better stability
2	Red	Carbonyl E	10	95	2-30	High Q material
7	White	Carbonyl TH	9	30	3-35	Similar to Mix-2 and Mix-6, but better temperature stability
6	Yellow	Carbonyl SF	8	35	10-50	Very good Q and temp. stability for $20-50 \mathrm{MHz}$
10	Black	Powdered iron W	6	150	30-100	Good Q and stability for 40-100 MHz
12	Green/white	Synthetic oxide	4	170	50-200	Good Q, moderate temperature stability
17	Blue/yellow	Carbonyl	4	50	40-180	Similar to Mix-12, better temperature stability, Q drops about 10% above 50 MHz , 20% above 100 MHz
0	Tan	phenolic	1	0	100-300	Inductance may vary greatly with winding technique

Courtesy of Amidon Assoc and Micrometals
Note: Color codes hold only for cores manufactured by Micrometals, which makes the cores sold by most Amateur Radio distributors.
available in a wide variety of types and packages, and many offer few clues as to their values. Some coils and chokes are marked with the EIA color code shown in Table 7.2. See Fig 7.4 for another marking system for tubular encapsulated RF chokes.

Most powdered-iron toroid cores that we amateurs use are manufactured by Micrometals, who uses paint to identify the material used in the core. The Micrometals color code is part of Table 7.9. Table 7.10 gives the physical characteristics of pow-dered-iron toroids. Ferrite cores are not typically painted, so identification is more

Fig 7.4-Color coding for tubular encapsulated RF chokes. At A, an example of the coding for an $8.2-\mu \mathrm{H}$ choke is given. At B , the color bands for a $330-\mu \mathrm{H}$ inductor are illustrated. The color code is given in Table 7.2.

Table 7.10

Powdered-Iron Toroidal Cores: Dimensions

Red E Cores- $\mathbf{5 0 0} \mathbf{k H z}$ to $\mathbf{3 0} \mathbf{~ M H z}(\boldsymbol{\mu}=\mathbf{1 0})$			
No.	$O D$ (in)	$I D$ (in)	H (in)
T-200-2	2.00	1.25	0.55
T-94-2	0.94	0.56	0.31
T-80-2	0.80	0.50	0.25
T-68-2	0.68	0.37	0.19
T-50-2	0.50	0.30	0.19
T-37-2	0.37	0.21	0.12
T-25-2	0.25	0.12	0.09
T-12-2	0.125	0.06	0.05

Black W Cores- $\mathbf{3 0} \mathbf{M H z}$ to $\mathbf{2 0 0} \mathbf{M H z}(\mu=\mathbf{6})$			
No.	OD (In)	ID (In)	\mathbf{H} (In)
T-50-10	0.50	0.30	0.19
T-37-10	0.37	0.21	0.12
T-25-10	0.25	0.12	0.09
T-12-10	0.125	0.06	0.05

Yellow SF Cores-10 MHz to $90 \mathrm{MHz}(\mu=8)$			
No.	$O D$ (In)	ID (In)	H (In)
T-94-6	0.94	0.56	0.31
T-80-6	0.80	0.50	0.25
T-68-6	0.68	0.37	0.19
T-50-6	0.50	0.30	0.19
T-26-6	0.25	0.12	0.09
T-12-6	0.125	0.06	0.05

Number of Turns vs Wire Size and Core Size

Approximate maximum number of turns-single layer wound-enameled wire.

Wire Size	$T-200$	$T-130$	$T-106$	$T-94$	$T-80$	$T-68$	$T-50$	$T-37$	$T-25$	$T-12$
10	33	20	12	12	10	6	4	1		
12	43	25	16	16	14	9	6	3		
14	54	32	21	21	18	13	8	5	1	
16	69	41	28	28	24	17	13	7	2	
18	88	53	37	37	32	23	18	10	4	1
20	111	67	47	47	41	29	23	14	6	1
22	140	86	60	60	53	38	30	19	9	2
24	177	109	77	77	67	49	39	25	13	4
26	223	137	97	97	85	63	50	33	17	7
28	281	173	123	123	108	80	64	42	23	9
30	355	217	154	154	136	101	81	54	29	13
32	439	272	194	194	171	127	103	68	38	17
34	557	346	247	247	218	162	132	88	49	23
36	683	424	304	304	268	199	162	108	62	30
38	875	544	389	389	344	256	209	140	80	39
40	1103	687	492	492	434	324	264	178	102	51

Actual number of turns may differ from above figures according to winding techniques, especially when using the larger size wires. Chart prepared by Michel J. Gordon, Jr, WB9FHC.
Courtesy of Amidon Assoc.
difficult. See Table 7.11 for information about ferrite cores.

TRANSFORMERS

Many transformers, including power transformers, IF transformers and audio transformers, are made to be installed on PC boards, and have terminals designed for that purpose. Some transformers are manufactured with wire leads that are color-coded to identify each connection.

When colored wire leads are present, the color codes in Tables 7.12, 7.13 and 7.14 usually apply.
In addition, many miniature IF transformers are tuned with slugs that are color-coded to signify their application. Table 7.15 lists application vs slug color.

SEMICONDUCTORS

Most semiconductor devices are clearly marked with the part number and in some

Fig 7.5-Color coding for semi-conductor diodes. At A, the cathode is identified by the double-width first band. At B, the bands are grouped toward the cathode. Two-figure designations are signified by a black first band. The color code is given in Table 7.2. The suffix-letter code is A-Brown, B-red, C-orange, D-yellow, E-green, F-blue. The 1 N prefix is understood.
cases, a manufacturer's date code as well. Identification of semiconductors can be difficult, however, when the parts are "house-marked" (marked with codes used by an equipment manufacturer instead of the standard part numbers). In such cases, it is often possible to find the standard equivalent or a suitable replacement by using one of the semiconductor cross-reference directories available from various replacement-parts distributors. If you look up the house number and find the recommended replacement part, you can often find other standard parts that are replaced by that same part.

Diodes

Most diodes are marked with a part number and some means of identifying which lead is the cathode. Some diodes are marked with a color-band code (see Fig 7.5). Important diode parameters include maximum forward current, maximum peak inverse voltage (PIV) and the power-handling capacity.

Transistors

Some important parameters for transistor selection are voltage and current limits, power-handling capability, beta or gain characteristics and useful frequency range. The case style may also be an issue; some transistors are available in several different case styles.

Integrated Circuits

Integrated circuits (ICs) come in a variety of packages, including transistor-like metal cans, dual and single in-line pack-

7.6 Chapter 7

Table 7.11
Ferrite Toroids: A_{L} Chart (mH per 1000 turns) Enameled Wire

Core	63/67-Mix	61-Mix	43-Mix	77 (72)-Mix	$J(75)$-Mix
Size	$\mu=40$	$m=125$	$\mu=850$	$\mu=2000$	$\mu=5000$
FT-23	7.9	24.8	188.0	396	980
FT-37	19.7	55.3	420.0	884	2196
FT-50	22.0	68.0	523.0	1100	2715
FT-82	22.4	73.3	557.0	1170	NA
FT-114	25.4	79.3	603.0	1270	3170

Number of turns $=1000 \sqrt{\text { desired } \mathrm{L}(\mathrm{mH}) \div A_{\mathrm{L}} \text { value (above) }}$

Ferrite Magnetic Properties

Property	Unit	63/67-Mix	61-Mix	43-Mix	77 (72)-Mix	J (75)-Mix
Initial perm.	(μ_{i})	40	125	850	2000	5000
Max. perm.		125	450	3000	6000	8000
Saturation flux density @ 10 oer	Gauss	1850	2350	2750	4600	3900
Residual flux density	Gauss	750	1200	1200	1150	1250
Curie temp.	${ }^{\circ} \mathrm{C}$	450	350	130	200	140
Vol. resistivity	ohm/cm	1×10^{8}	1×10^{8}	1×10^{5}	1×10^{2}	5×10^{2}
Resonant circuit frequency	MHz	15-25	0.2-10	0.01-1	0.001-1	0.001-1
Specific gravity		4.7	4.7	4.5	4.8	4.8
Loss	$\frac{1}{\mu_{\mathrm{i}} \mathrm{Q}}$	110×10^{-6}	32×10^{-6}	120×10^{-6}	4.5×10^{-6}	15×10^{-6}
factor		@ 25 MHz	@ 2.5 MHz	@1 MHz	@ 0.1 MHz	@ 0.1 MHz
Coercive force	Oer	2.40	1.60	0.30	0.22	0.16
Temp. Coef. of initial perm.	$\begin{aligned} & \% /{ }^{\circ} \mathrm{C} \\ & \left(20^{\circ}-70^{\circ}\right) \end{aligned}$	0.10	0.15	1.0	0.60	0.90

Ferrite Toroids-Physical Properties

Core								
Size	$O D$	$I D$	Height	A_{e}	I_{e}	V_{e}	A_{S}	A_{W}
FT-23	0.230	0.120	0.060	0.00330	0.529	0.00174	0.1264	0.01121
FT-37	0.375	0.187	0.125	0.01175	0.846	0.00994	0.3860	0.02750
FT-50	0.500	0.281	0.188	0.02060	1.190	0.02450	0.7300	0.06200
FT-82	0.825	0.520	0.250	0.03810	2.070	0.07890	1.7000	0.21200
FT-114	1.142	0.750	0.295	0.05810	2.920	0.16950	2.9200	0.43900

OD-Outer diameter (inches)
ID-Inner diameter (inches)
Height (inches)
A_{w}-Total window area (in) ${ }^{2}$
A_{e}-Effective magnetic cross-sectional area (in) ${ }^{2}$
I_{e}-Effective magnetic path length (inches)
V_{e} - Effective magnetic volume (in) ${ }^{3}$
A_{S}-Surface area exposed for cooling (in) ${ }^{2}$
Courtesy of Amidon Assoc.

Table 7.12
Power-Transformer Wiring Color Codes

Non-tapped primary leads:	Black
Tapped primary leads:	Common: Black
	Tap: Black/yellow striped
	Finish: Black/red striped
High-voltage plate winding:	Red
Center tap:	Red/yellow striped
Rectifier filament winding:	Yellow
Center tap:	Yellow/blue striped
Filament winding 1:	Green
Center tap:	Green/yellow striped
Filament winding 2:	Brown
Center tap:	Brown/yellow striped
Filament winding 3:	Slate
Center tap:	Slate/yellow striped

Table 7.13

IF Transformer Wiring Color Codes	
Plate lead:	Blue
B+ lead:	Red
Grid (or diode) lead:	Green
Grid (or diode) return:	Black
Note: If the secondary of the IF transformer is	
center-tapped, the second diode plate lead is green-and-black striped, and black is used for the center-tap lead.	

Table 7.14
IF Transformer Slug Color Codes

Frequency	Application	Slug color
455 kHz	1st IF	Yellow
	2nd IF	White
	3rd IF	Black
Osc tuning	Red	
10.7 MHz	1st IF	
	2nd or 3rd IF	Green Orange, Brown or Black

Note: These markings also apply to line-togrid and tube-to-line transformers.
ages (DIPs and SIPs), flat-packs and sur-face-mount packages. Most are marked with a part number and a four-digit manufacturer's date code indicating the year (first two digits) and week (last two digits) that the component was made. ICs are frequently house-marked, and the cross-reference directories mentioned above can be helpful in identification and replacement.

Another very useful reference tool for working with ICs is IC Master, a master selection guide that organizes ICs by type, function and certain key parameters. A part number index is included, along with application notes and manufacturer's information for millions of devices. See www.icmaster.com.
IC part numbers usually contain a few digits that identify the circuit die or

Table 7.16
Copper Wire Specifications
Bare and Enamel-Coated Wire

Wire	Diam	Area	Enamel Wire Coating			Feet per	Ohms per	Current Carrying Capacity Continuous Duty ${ }^{3}$			Nearest	
						at			Conduit			
Size			Turns	Linear i	ch^{2}		Pound	1000 ft	700 CM	Open		SWG
(AWG)	(Mils)	(CM ${ }^{1}$)	Single	Heavy	Triple	Bare	$25^{\circ} \mathrm{C}$	per Amp 4	air	bundles	No.	
1	289.3	83694.49				3.948	0.1239	119.564			1	
2	257.6	66357.76				4.978	0.1563	94.797			2	
3	229.4	52624.36				6.277	0.1971	75.178			4	
4	204.3	41738.49				7.918	0.2485	59.626			5	
5	181.9	33087.61				9.98	0.3134	47.268			6	
6	162.0	26244.00				12.59	0.3952	37.491			7	
7	144.3	20822.49				15.87	0.4981	29.746			8	
8	128.5	16512.25				20.01	0.6281	23.589			9	
9	114.4	13087.36				25.24	0.7925	18.696			11	
10	101.9	10383.61				31.82	0.9987	14.834			12	
11	90.7	8226.49				40.16	1.2610	11.752			13	
12	80.8	6528.64				50.61	1.5880	9.327			13	
13	72.0	5184.00				63.73	2.0010	7.406			15	
14	64.1	4108.81	15.2	14.8	14.5	80.39	2.5240	5.870	32	17	15	
15	57.1	3260.41	17.0	16.6	16.2	101.32	3.1810	4.658			16	
16	50.8	2580.64	19.1	18.6	18.1	128	4.0180	3.687	22	13	17	
17	45.3	2052.09	21.4	20.7	20.2	161	5.0540	2.932			18	
18	40.3	1624.09	23.9	23.2	22.5	203.5	6.3860	2.320	16	10	19	
19	35.9	1288.81	26.8	25.9	25.1	256.4	8.0460	1.841			20	
20	32.0	1024.00	29.9	28.9	27.9	322.7	10.1280	1.463	11	7.5	21	
21	28.5	812.25	33.6	32.4	31.3	406.7	12.7700	1.160			22	
22	25.3	640.09	37.6	36.2	34.7	516.3	16.2000	0.914		5	22	
23	22.6	510.76	42.0	40.3	38.6	646.8	20.3000	0.730			24	
24	20.1	404.01	46.9	45.0	42.9	817.7	25.6700	0.577			24	
25	17.9	320.41	52.6	50.3	47.8	1031	32.3700	0.458			26	
26	15.9	252.81	58.8	56.2	53.2	1307	41.0200	0.361			27	
27	14.2	201.64	65.8	62.5	59.2	1639	51.4400	0.288			28	
28	12.6	158.76	73.5	69.4	65.8	2081	65.3100	0.227			29	
29	11.3	127.69	82.0	76.9	72.5	2587	81.2100	0.182			31	
30	10.0	100.00	91.7	86.2	80.6	3306	103.7100	0.143			33	
31	8.9	79.21	103.1	95.2		4170	130.9000	0.113			34	
32	8.0	64.00	113.6	105.3		5163	162.0000	0.091			35	
33	7.1	50.41	128.2	117.6		6553	205.7000	0.072			36	
34	6.3	39.69	142.9	133.3		8326	261.3000	0.057			37	
35	5.6	31.36	161.3	149.3		10537	330.7000	0.045			38	
36	5.0	25.00	178.6	166.7		13212	414.8000	0.036			39	
37	4.5	20.25	200.0	181.8		16319	512.1000	0.029			40	
38	4.0	16.00	222.2	204.1		20644	648.2000	0.023				
39	3.5	12.25	256.4	232.6		26969	846.6000	0.018				
40	3.1	9.61	285.7	263.2		34364	1079.2000	0.014				
41	2.8	7.84	322.6	294.1		42123	1323.0000	0.011				
42	2.5	6.25	357.1	333.3		52854	1659.0000	0.009				
43	2.2	4.84	400.0	370.4		68259	2143.0000	0.007				
44	2.0	4.00	454.5	400.0		82645	2593.0000	0.006				
45	1.8	3.10	526.3	465.1		106600	3348.0000	0.004				
46	1.6	2.46	588.2	512.8		134000	4207.0000	0.004				

Teflon Coated, Stranded Wire
(As supplied by Belden Wire and Cable)
Turns per Linear inch ${ }^{2}$
UL Style No.

Size	Strands 5	1180	1213	1371
16	19×29	11.2		
18	19×30	12.7		
20	7×28	14.7	17.2	
20	19×32	14.7	17.2	
22	19×34	16.7	20.0	23.8
22	7×30	16.7	20.0	23.8
24	19×36	18.5	22.7	27.8
24	7×32		22.7	27.8
26	7×34		25.6	32.3
28	7×36		28.6	3.0
30	7×38		31.3	41.7
32	7×40			47.6

Notes

${ }^{1}$ A circular mil (CM) is a unit of area equal to that of a one-mil-diameter circle ($\pi / 4$ square mils). The CM area of a wire is the square of the mil diameter. ${ }^{2}$ Figures given are approximate only; insulation thickness varies with manufacturer.
${ }^{3}$ Maximum wire temperature of $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$ with a maximum ambient temperature of $13^{\circ} \mathrm{F}\left(57^{\circ} \mathrm{C}\right)$ as specified by the manufacturer. The National Electrical Code or local building codes may differ.
${ }^{4} 700$ CM per ampere is a satisfactory design figure for small transformers, but values from 500 to 1000 CM are commonly used. The National Electrical Code or local building codes may differ.
${ }^{5}$ Stranded wire construction is given as "count" × "strand size" (AWG).

Table 7.17
Color Code for Hookup Wire
Wire Color Type of Circuit
Black Grounds, grounded elements and returns
Brown Heaters or filaments, off ground
Red Power Supply B plus
Orange \quad Screen grids and base 2 of transistors
Yellow Cathodes and transistor emitters
Green Control grids, diode plates, and base 1 of transistors
Blue Plates and transistor collectors
Violet Power supply, minus leads
Gray Ac power line leads
White Bias supply, B or C minus, AGC
Note: Wires with tracers are coded in the same manner as solid-color wires, allowing additional circuit identification over solid-color wiring. The body of the wire is white and the color band spirals around the wire lead. When more than one color band is used, the widest band represents the first color.

Table 7.18

Aluminum Alloy Characteristics

Common Alloy Numbers	
Type	Characteristic
2024	Good formability, high strength
5052	Excellent surface finish, excellent corrosion resistance, normally not heat treatable for high strength
6061	Good machinability, good weldability, can be brittle at high tempers
7075	Good formability, high strength
General Uses	
Type	Uses
2024-T3	Chassis boxes, antennas, anything that will be bent or flexed repeatedly
7075-T3	
6061-T6	Mounting plates, welded assemblies or machined parts
Common Tempers	
Type	Characteristics
T0	Special soft condition
T3	Hard
T6	Very hard, possibly brittle
TXXX	Three digit tempers-usually specialized highstrength heat treatments, similar to T6

which may prevent lines from reaching the "high" condition. Fanout tells how many inputs a device can drive. The fanout of a replacement should be equal to, or greater than, that required in the circuit. Operating speed and propagation delay are also significant. Choose a replacement IC that operates at or above the circuit clock speed. (Be careful: Increased speed can increase EMI and cause other problems.) Some circuits may not function if the propagation delay varies much from the specified part. Look at the Electrical Signals and Components chapter for details of how these operating characteristics relate to circuit performance.

Analog ICs have similar characteristics. Input and output capacities are often defined as how much current an analog IC can "sink" (accept at an input) or "source" (pass to a load). A replacement should be able to source or sink at least as much current as the device it replaces. Analog speed is sometimes listed as bandwidth (as in discrete-component circuits) or slew rate (common in op amps). Each of these quantities should meet or exceed that of the replaced component.

Some ICs are available in different operating temperature ranges. Op amps , for example, are commonly available in three standard ranges:

- Commercial: $\quad 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Industrial: $\quad-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Military: $\quad-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

In some cases, part numbers reflect the temperature ratings. For example, an LM301A op amp is rated for the commercial temperature range; an LM201A op amp for the industrial range and an LM101A for the military range.

When necessary, you can add interface circuits or buffer amplifiers that improve the input and output capabilities of replacement ICs, but auxiliary circuits cannot improve basic device ratings, such as speed or bandwidth.

OTHER SOURCES OF COMPONENT DATA

There are many sources you can consult for detailed component data. These days, the best source of component information and data sheets is the Internet. Most manufacturers maintain extensive Web sites with information and data on their products. Distributors such as Digi-Key and Mouser include links to useful information in their online catalogs as well.
Some manufacturers publish data books for the components they make, and parts catalogs themselves are often good sources

Table 7.19
Crystal Holders

Note: Solder Seal, Cold Weld, and Resistance Weld sealing methods are commonly available. All dimensions are in inches

* Note: HC17/U pin spacing and diameter is equivalent to the older FT-243 (32 pF) holder.

PIN	CONNECTION
1	No Connection
2	Crystal
3	Ground
4	Crystal

HC 35 (TO-5)

$$
\begin{array}{l|l}
\text { PIN } & \text { CONNECTION } \\
\hline 1 & \text { No Connection } \\
2 & \text { Crystal } \\
3 & \text { Ground } \\
4 & \text { Crystal }
\end{array}
$$

HC 40 (TL-90)

HC 47 (TL-31)
нвк05_07-06

* Note: HC17/U pin spacing and diameter is equivalent to the older FT-243 (32 pF) holder.
of component data.

THE ARRL TECHNICAL INFORMATION SERVICE (TIS)

The ARRL answers questions of a technical nature for ARRL members and nonmembers alike through the Technical Information Service. Questions may be submitted via email (tis@arrl.org); fax (860-594-0259); or
mail (TIS, ARRL, 225 Main St, Newington, CT 06111). The TIS also maintains a home page on ARRL Web site: www.arrl.org/tis. This site contains links to detailed, commonly needed information in many technical areas.

The TISfind search engine contains over 2000 providers of products, services and information of interest to radio amateurs.

Before contacting TIS for the address of someone who can repair your radio, or sells antennas, or has old manuals or schematics, look in TISfind. This valuable software is included on the Handbook CD-ROM bundled with this book or online at www.arrl.org/tis/tisfind.html.

Table 7.20
Miniature Lamp Guide

Type	Bulb	Base	V	A	Life	Type	Bulb	Base	V	A	Life
PR2	B-31/2	FSCMN	2.38	0.500	15	82	G-6	BDC	6.50	1.020	500
PR3	B-31/2	FSCMN	3.57	0.500	15	85	T-13/4	WSMN	28.00	0.040	7K
PR4	B-31/2	FSCMN	2.33	0.270	10	86	T-13/4	WSMN	6.30	0.200	20K
PR6	B-31/2	FSCMN	2.47	0.300	30	88	S-8	BDC	6.80	1.910	300
PR7	B-31/2	FSCMN	3.70	0.300	30	93	S-8	BSC	12.80	1.040	700
PR12	B-31/2	FSCMN	5.95	0.500	15	112	TL-3	SMN	1.20	0.220	5
PR13	B-31/2	FSCMN	4.75	0.500	15	130	G-31/2	BMN	6.30	0.150	5K
10	G-31/2	MTP	2.50	0.500	3K	131	G-31/2	SMN	1.30	0.100	50
12	G-31/2	MTP	6.30	0.150	5K	158	T-31/4	W	14.00	0.240	500
13	G-31/2	SMN	3.70	0.300	15	159	T-31/4	W	6.30	0.150	5K
14	G-31/2	SMN	2.47	0.300	15	161	T-31/4	W	14.00	0.190	4K
19	G-31/2	MTP	14.4	0.100	1K	168	T-31/4	W	14.00	0.350	1.5K
27	G-41/2	SMN	4.90	0.300	30	219	G-31/2	BMN	6.30	0.250	5 K
37	T-13/4	WSMN	14.00	0.090	1.5K	222	TL-3	SMN	2.25	0.250	0.5
40	T-31/4	SMN	6.30	0.150	3 K	239	T-31/4	BMN	6.30	0.360	5K
43	T-31/4	BMN	2.50	0.500	3K	240	T-31/4	BMN	6.30	0.360	5K
44	T-31/4	BMN	6.30	0.250	3K	259	T-31/4	W	6.30	0.250	5K
45	T-31/4	BMN	3.20	0.350	3K	268	T-13/4	FSCMD	2.50	0.350	10K
46	T-31/4	SMN	6.30	0.250	3 K	305	S-8	BSC	28.00	0.510	300
47	T-31/4	BMN	6.30	0.150	3K	307	S-8	BSC	28.00	0.670	300
48	T-31/4	SMN	2.00	0.060	1K	308	S-8	BDC	28.00	0.670	300
49	T-31/4	BMN	2.00	0.060	1K	313	T-31/4	BMN	28.00	0.170	500
50	G-31/2	SMN	7.50	0.220	1K	323	T-11/4	SPTHD	3.00	0.190	350
51	G-31/2	BMN	7.50	0.220	1K	327	T-13/4	FSCMD	28.00	0.040	4 K
52	G-31/2	SMN	14.40	0.100	1 K	$327 A S 15$	T-13/4	FSCMD	28.00	0.040	4K
53	G-31/2	BMN	14.40	0.120	1 K	328	T-13/4	FSCMD	6.00	0.200	1K
55	G-41/2	BMN	7.00	0.410	500	330	T-13/4	FSCMD	14.00	0.080	1.5K
57	G-41/2	BMN	14.00	0.240	500	331	T-13/4	FSCMD	1.35	0.060	3 K
63	G-6	BSC	7.00	0.630	1K	334	T-13/4	GMD	28.00	0.040	4 K
73	T-13/4	WSMN	14.00	0.080	15K	335	T-13/4	SMD	28.00	0.040	4 K
74	T-13/4	WSMN	14.00	0.100	500	336	T-13/4	GMD	14.00	0.080	1.5K

Type	Bulb	Base	v	A	Life	Type	Bulb	Base	V	A	Life
337	T-13/4	GMD	6.00	0.200	1 K	1866	T-31/4	BMN	6.30	0.250	5K
338	T-13/4	FSCMD	2.70	0.060	6 K	1869	T-13/4	WT	10.00	0.014	50K
342	T-13/4	SMD	6.00	0.040	10K	1891	T-31/4	BMN	14.00	0.240	500
344	T-13/4	FSCMD	10.00	0.014	50K	1892	T-31/4	BMN	14.40	0.120	1K
345	T-13/4	FSCMD	6.00	0.040	10K	1893	T-31/4	BMN	14.00	0.330	7.5 K
346	T-13/4	GMD	18.00	0.040	10K	1895	G-41/2	BMN	14.00	0.270	2 K
349	T-13/4	FSCMD	6.30	0.200	5K	2102	T-13/4	WT	18.00	0.040	10K
370	T-13/4	FSCMD	18.00	0.040	10K	2107	T-13/4	WT	10.00	0.040	5K
373	T-13/4	SMD	14.00	0.080	1.5K	2158	T-13/4	WT	3.00	0.015	10K
375	T-13/4	FSCMD	3.00	0.015	10K	2162	T-13/4	WT	14.00	0.100	10K
376	T-13/4	FSCMD	28.00	0.060	25K	2169	T-13/4	WT	2.50	0.350	20K
380	T-13/4	FSCMD	6.30	0.040	20K	2180	T-13/4	WT	6.30	0.040	20K
381	T-13/4	FSCMD	6.30	0.200	20K	2181	T-13/4	WT	6.30	0.200	20K
382	T-13/4	FSCMD	14.00	0.080	15K	2182	T-13/4	WT	14.00	0.080	40K
385	T-13/4	FSCMD	28.00	0.040	10K	2187	T-13/4	WT	28.00	0.040	7K
386	T-13/4	GMD	14.00	0.080	15K	2304	T-13/4	BP	3.00	0.300	1.5K
387	T-13/4	FSCMD	28.00	0.040	7K	2307	T-13/4	BP	6.30	0.200	5K
388	T-13/4	GMD	28.00	0.040	7K	2314	T-13/4	BP	28.00	0.050	1K
397	T-13/4	GMD	10.00	0.040	5 K	2316	T-13/4	BP	18.00	0.040	10K
398	T-13/4	GMD	6.30	0.200	5 K	2324	T-13/4	BP	28.00	0.040	4K
399	T-13/4	SMD	28.00	0.040	7K	2335	T-13/4	BP	14.00	0.080	15K
502	G-41/2	SMN	5.10	0.150	100	2337	T-13/4	BP	6.30	0.200	20K
555	T-31/4	W	6.30	0.250	3 K	2342	T-13/4	BP	28.00	0.040	25K
656	T-31/4	W	28.00	0.060	2.5 K	3149	T-13/4	BP	5.00	0.060	5K
680AS15	T-1	WT	5.00	0.060	60K	6803AS25	T-3/4	WT	5.00	0.060	60K
682AS15	T-1	FSMD	5.00	0.060	60K	6833AS15	T-3/4	WT	5.00	0.060	25K
683AS15	T-1	WT	5.00	0.060	25K	6838	T-1	WT	28.00	0.024	4K
685AS15	T-1	FSMD	5.00	0.060	25K	6839	T-1	FSMD	28.00	0.024	4K
715AS15	T-1	WT	5.00	0.115	40K	7001	T-13/4	BP	24.00	0.050	2 K
715AS25	T-1	WT	5.00	0.115	40K	7003	T-13/4	BP	24.00	0.050	2K
718AS25	T-1	FSMD	5.00	0.115	40K	$7153 A S 15$	T-3/4	WT	5.00	0.115	40K
755	T-31/4	BMN	6.30	0.150	20K	7265	T-1	BP	5.00	0.060	5K
756	T-31/4	BMN	14.00	0.080	15K	7327	T-13/4	BP	28.00	0.040	4K
757	T-31/4	BMN	28.00	0.080	7.5K	7328	T-13/4	BP	6.00	0.200	1K
1034	S-8	BIDC	14.00	0.590	5 K	7330	T-13/4	BP	14.00	0.080	1.5K
1073	S-8	BSC	12.80	1.800	200	7344	T-13/4	BP	10.00	0.014	50K
1130	S-8	BDC	6.40	2.630	200	7349	T-13/4	BP	6.30	0.200	5K
1133	RP-11	BSC	6.20	3.910	200	7361	T-13/4	BP	5.00	0.060	25K
1141	S-8	BSC	12.80	1.440	1 K	7362	T-13/4	BP	5.00	0.115	40K
1143	RP-11	BSC	12.50	1.980	400	7367	T-13/4	BP	10.00	0.040	5K
1184	RP-11	BDC	5.50	6.250	100	7370	T-13/4	BP	18.00	0.040	10K
1251	G-6	BSC	28.00	0.230	2K	7371	T-13/4	BP	12.00	0.040	10K
1445	G-31/2	BMN	14.40	0.130	2 K	7373	T-13/4	BP	14.00	0.100	10K
1487	T-31/4	SMN	14.00	0.200	3K	7374	T-13/4	BP	28.00	0.040	10K
1488	T-31/4	BMN	14.00	0.150	200	7375	T-13/4	BP	3.00	0.015	10K
1490	T-31/4	BMN	3.20	0.160	3K	7376	T-13/4	BP	28.00	0.065	10K
1493	S-8	BDC	6.50	2.750	100	7377	T-13/4	BP	6.30	0.075	1K
1619	S-8	BSC	6.70	1.900	500	7380	T-13/4	BP	6.30	0.040	30K
1630	S-8	PFDC	6.50	2.750	100	7381	T-13/4	BP	6.30	0.200	20K
1691	S-8	BSC	28.00	0.610	1K	7382	T-13/4	BP	14.00	0.080	15K
1705	T-13/4	WT	14.00	0.080	1.5 K	7387	T-13/4	BP	28.00	0.040	7K
1728	T-13/4	WT	1.35	0.060	3K	7410	T-13/4	BP	14.00	0.080	15K
1730	T-13/4	WT	6.00	0.040	20K	7839	T-1	BP	28.00	0.025	4K
1738	T-13/4	WT	2.70	0.060	6K	7876	T-13/4	BP	28.00	0.060	25K
1762	T-13/4	WT	28.00	0.040	4 K	7931	T-13/4	BP	1.35	0.060	3K
1764	T-13/4	WT	28.00	0.040	4 K	7945	T-13/4	BP	6.00	0.040	20K
1767	T-13/4	SMD	2.50	0.200	500	7968	T-13/4	BP	2.50	0.200	500
1768	T-13/4	SMD	6.00	0.200	1 K	8099	T-1	BP	18.00	0.020	16K
1775	T-13/4	SMD	6.30	0.075	1 K	8362	T-13/4	SMD	14.00	0.080	15K
1813	T-31/4	BMN	14.40	0.100	1K	8369	T-13/4	SMD	28.00	0.065	10K
1815	T-31/4	BMN	14.00	0.200	3 K						
1816	T-31/4	BMN	13.00	0.330	1K						
1818	T-31/4	BMN	24.00	0.170	250						
1819	T-31/4	BMN	28.00	0.040	2.5 K						
1820	T-31/4	BMN	28.00	0.100	1 K						
1821	T-31/4	SMN	28.00	0.170	500						
1822	T-31/4	BMN	36.00	0.100	1K						
1828	T-31/4	BMN	37.50	0.050	3 K						
1829	T-31/4	BMN	28.00	0.070	1 K						
1835	T-31/4	BMN	55.00	0.050	5K						
1847	T-31/4	BMN	6.30	0.150	5 K						
1850	T-31/4	BMN	5.00	0.090	1.5K						
1864	T-31/4	BMN	28.00	0.170	1.5K						

Standard Line-Voltage Lamps

Type	V	W	Bulb	Base
10C7DC	115-125	10	C-7	BDC
3S6	120, 125	3	S-6	SC
6S6	$\begin{array}{r} 30,48, \\ 115,120,125, \\ 130,135,145, \\ 155 \end{array}$	6	S-6	SC
6S6/R	115-125	6	S-6 (red)	SC
6S6/W	115-125	6	S-6 (white)	SC
6T4-1/2	120, 130	6	T-41/2	SC
7 C 7	115-125	7	C-7	SC
7C7/W	115-125	7	$\mathrm{C}-7$ (white)	SC
10C7	115-125	10	C-7	SC
$10 \mathrm{S6}$	120	10	S-6	SC
10S6/10	220, 230, 250	10	S-6	SC
6S6DC	$\begin{gathered} 30,120, \\ 125,145 \end{gathered}$	6	S-6	BDC
10S6/10DC	- 230, 250	10	S-6	BDC
40S11 N	115-125	40	S-11	SI
120MB	120	3	T-21/2	BMN
120MB/6	120	6	T-21/2	BMN
120PSB	120	3	T-2	SL
120PS	120	3	T-2	WT
120PS/6	120	6	T-21/2	WT

Indicator Lamps
Each has a T-2 bulb and a slide base.

Type	V	A	Life
6PSB	6.00	0.140	20 K
12PSB	12.00	0.170	12 K
24PSB	24.00	0.073	10 K
28PSB	28.00	0.040	5 K
48PSB	48.00	0.050	10 K
60PSB	60.00	0.050	7.5 K
120PSB	120.00	0.025	7.5 K

Neon Glow Lamps

Operating circuit voltage 105-125
Breakdown Voltage

Breakdown Voltage						
Type	AC	$D C$	Bulb	Base	W	External Resistance
NE-2	65	90	T-2	WT	1/12	150k
NE-2A	65	90	T-2	WT	1/15	100k
NE-2D	65	90	T-2	FSCMD	1/12	100k
NE-2E	65	90	T-2	WT	1/12	100k
NE-2H	95	135	T-2	WT	1/4	30k
NE-2J	95	135	T-2	FSCMD	$1 / 4$	30k
NE-2V	65	90	T-2	WT	$1 / 2$	100k
NE-45	65	90	T-41/2	SC	1/4	None
NE-51	65	90	T-31/4	BMN	$1 / 25$	220k
NE-51H	95	135	T-31/4	BMN	$1 / 7$	47k
NE-84	95	135	T-2	SL	$1 / 4$	30k
NE-120PSB	95	95	T-2	SL	$1 / 4$	None

Table 7.21
Metal-Oxide Varistor (MOV) Transient Suppressors
Listed by voltage

			Maximum Applied Voltage	Maximum Energy (Joules)	Maximum Peak Current (A)	Maximum	Maximum Vawistor
(W)							

†tECG and NTE numbers for these parts are identical, except for the prefix. Add the "ECG" or "NTE" prefix to the numbers shown for the complete part number.

Table 7.22
Voltage-Variable Capacitance Diodes ${ }^{\dagger}$
Listed numerically by device

	Nominal Capacitance								
	pF	Capacitance	Q			pF	Capacitance	Q	
	$\pm 10 \%$ @	Ratio	@ 4.0 V			$\pm 10 \%$ @	Ratio	@ 4.0 V	
	$V_{R}=4.0 \mathrm{~V}$	2-30 V	50 MHz	Case		$V_{R}=4.0 \mathrm{~V}$	2-30 V	50 MHz	Case
Device	$f=1.0 \mathrm{MHz}$	Min.	Min.	Style	Device	$f=1.0 \mathrm{MHz}$	Min.	Min.	Style
1N5441A	6.8	2.5	450		1N5471A	39	2.9	450	
1N5442A	8.2	2.5	450		1N5472A	47	2.9	400	
1N5443A	10	2.6	400	DO-7	1N5473A	56	2.9	300	DO-7
1N5444A	12	2.6	400		1N5474A	68	2.9	250	
1N5445A	15	2.6	450		1N5475A	82	2.9	225	
1N5446A	18	2.6	350		1N5476A	100	2.9	200	
1N5447A	20	2.6	350		MV2101	6.8	2.5	450	TO-92
1N5448A	22	2.6	350	DO-7	MV2102	8.2	2.5	450	
1N5449A	27	2.6	350		MV2103	10	2.0	400	
1N5450A	33	2.6	350		MV2104	12	2.5	400	
1N5451A	39	2.6	300		MV2105	15	2.5	400	
1N5452A	47	2.6	250		MV2106	18	2.5	350	TO-92
1N5453A	56	2.6	200	DO-7	MV2107	22	2.5	350	
1N5454A	68	2.7	175		MV2108	27	2.5	300	
1N5455A	82	2.7	175		MV2109	33	2.5	200	
1N5456A	100	2.7	175		MV2110	39	2.5	150	
1N5461A	6.8	2.7	600		MV2111	47	2.5	150	TO-92
1N5462A	8.2	2.8	600		MV2112	56	2.6	150	
1N5463A	10	2.8	550	DO-7	MV2113	68	2.6	150	
1N5464A	12	2.8	550		MV2114	82	2.6	100	
1N5465A	15	2.8	550		MV2115	100	2.6	100	
1N5466A	18	2.8	500						
1N5467A	20	2.9	500		${ }^{\dagger}$ For pack	shape, size an	pin-connection	formation	
1N5468A	22	2.9	500	DO-7	manufac	ers' data sheet	pin-connection		
1N5469A	27	2.9	500						
1N5470A	33	2.9	500						

Table 7.23

Zener Diodes

7.16 Chapter 7

Table 7.24

Semiconductor Diode Specifications ${ }^{\dagger}$

Listed numerically by device

Device	Type	Material	Peak Inverse Voltage, PIV (V)	Average Rectified Current Forward (Reverse) $I_{O}(A)\left(I_{R}(A)\right)$	Peak Surge Current, I I ${ }_{\text {FSM }}$ $1 s @ 25^{\circ} \mathrm{C}$ (A)	Average Forward Voltage, V_{F} (V)
1N34	Signal	Ge	60	$8.5 \mathrm{~m}(15.0 \mu)$		1.0
1N34A	Signal	Ge	60	$5.0 \mathrm{~m}(30.0 \mu)$		1.0
1N67A	Signal	Ge	100	$4.0 \mathrm{~m}(5.0 \mu)$		1.0
1N191	Signal	Ge	90	15.0 m		1.0
1N270	Signal	Ge	80	0.2 (100 μ)		1.0
1 N914	Fast Switch	Si	75	75.0 m (25.0 n)	0.5	1.0
1N1183	RFR	Si	50	40 (5 m)	800	1.1
1N1184	RFR	Si	100	40 (5 m)	800	1.1
1N2071	RFR	Si	600	0.75 (10.0 μ)		0.6
1N3666	Signal	Ge	80	$0.2(25.0 \mu)$		1.0
1N4001	RFR	Si	50	1.0 (0.03 m)		1.1
1N4002	RFR	Si	100	1.0 (0.03 m)		1.1
1N4003	RFR	Si	200	1.0 (0.03 m)		1.1
1N4004	RFR	Si	400	1.0 (0.03 m)		1.1
1N4005	RFR	Si	600	1.0 (0.03 m)		1.1
1N4006	RFR	Si	800	1.0 (0.03 m)		1.1
1N4007	RFR	Si	1000	1.0 (0.03 m)		1.1
1N4148	Signal	Si	75	10.0 m (25.0 n)		1.0
1N4149	Signal	Si	75	10.0 m (25.0 n)		1.0
1N4152	Fast Switch	Si	40	20.0 m (0.05 μ)		0.8
1N4445	Signal	Si	100	0.1 (50.0 n)		1.0
1N5400	RFR	Si	50	3.0 (500 μ)	200	
1N5401	RFR	Si	100	3.0 (500 μ)	200	
1N5402	RFR	Si	200	3.0 (500 μ)	200	
1N5403	RFR	Si	300	3.0 (500 μ)	200	
1N5404	RFR	Si	400	3.0 (500 μ)	200	
1N5405	RFR	Si	500	3.0 (500 μ)	200	
1N5406	RFR	Si	600	3.0 (500 μ)	200	
1N5408	RFR	Si	1000	3.0 (500 μ)	200	
1N5711	Schottky	Si	70	1 m (200 n)	15 m	0.41 @ 1 mA
1 N5767	Signal	Si		$0.1(1.0 \mu)$		1.0
1N5817	Schottky	Si	20	1.0 (1 m)	25	0.75
1N5819	Schottky	Si	40	1.0 (1 m)	25	0.9
1N5821	Schottky	Si	30	3.0		
ECG5863	RFR	Si	600	6	150	0.9
1N6263	Schottky	Si	70	15 m	50 m	0.41 @ 1 mA
5082-2835	Schottky	Si	8	1 m (100 n)	10 m	0.34 @ 1 mA

Si = Silicon; Ge = Germanium; RFR = rectifier, fast recovery.
${ }^{\dagger}$ For package shape, size and pin-connection information see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Table 7.25
Suggested Small-Signal FETs

Notes:
${ }^{125} 5^{\circ} \mathrm{C}$.
For package shape, size and pin-connection information, see manufacturers' data sheets.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Table 7.26
Low-Noise Transistors

Device	NF (dB)	$F(M H z)$	$f_{T}(G H z)$	$I_{C}(m A)$	Gain (dB)	$F(M H z)$	$V_{(B R) C E O}(V)$	$I_{C}(m A)$	$P_{T}(m W)$	Case
MRF904	1.5	450	4	15	16	450	15	30	200	TO-206AF
MRF571	1.5	1000	8	50	12	1000	10	70	1000	Macro-X
MRF2369	1.5	1000	6	40	12	1000	15	70	750	Macro-X
MPS911	1.7	500	7	30	16.5	500	12	40	625	TO-226AA
MRF581A	1.8	500	5	75	15.5	500	15	200	2500	Macro-X
BFR91	1.9	500	5	30	16	500	12	35	180	Macro-T
BFR96	2	500	4.5	50	14.5	500	15	100	500	Macro-T
MPS571	2	500	6	50	14	500	10	80	625	TO-226AA
MRF581	2	500	5	75	15.5	500	18	200	2500	Macro-X
MRF901	2	1000	4.5	15	12	1000	15	30	375	Macro-X
MRF941	2.1	2000	8	15	12.5	2000	10	15	400	Macro-X
MRF951	2.1	2000	7.5	30	12.5	2000	10	100	1000	Macro-X
BFR90	2.4	500	5	14	18	500	15	30	180	Macro-T
MPS901	2.4	900	4.5	15	12	900	15	30	300	TO-226AA
MRF1001A	2.5	300	3	90	13.5	300	20	200	3000	TO-205AD
2N5031	2.5	450	1.6	5	14	450	10	20	200	TO-206AF
MRF4239A	2.5	500	5	90	14	500	12	400	3000	TO-205AD
BFW92A	2.7	500	4.5	10	16	500	15	35	180	Macro-T
MRF521*	2.8	1000	4.2	-50	11	1000	-10	-70	750	Macro-X
2N5109	3	200	1.5	50	11	216	20	400	2500	TO-205AD
2N4957*	3	450	1.6	-2	12	450	-30	-30	200	TO-206AF
MM4049*	3	500	5	-20	11.5	500	-10	-30	200	TO-206AF
2N5943	3.4	200	1.5	50	11.4	200	30	400	3500	TO-205AD
MRF586	4	500	1.5	90	9	500	17	200	2500	TO-205AD
2N5179	4.5	200	1.4	10	15	200	12	50	200	TO-206AF
2N2857	4.5	450	1.6	8	12.5	450	15	40	200	TO-206AF
2N6304	4.5	450	1.8	10	15	450	15	50	200	TO-206AF
MPS536*	4.5	500	5	-20	4.5	500	-10	-30	625	TO-226AA
MRF536*	4.5	1000	6	-20	10	1000	-10	-30	300	Macro-X

*denotes a PNP device

Complementary devices	
NPN	PNP
2N2857	$2 N 4957$
MRF904	MM4049
MRF571	MRF521

For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers and manufacturers offer data sheets on their Web sites.

TO-226AA

TO-206AF
TO-206AF

Macro-X (Top)

Table 7.27
Monolithic Amplifiers (50 Ω)
Mini-Circuits Labs MMICs

Device	Freq Range (MHz)	$\begin{aligned} & \text { Gain (dB) at } \\ & 1000 \mathrm{MHz} \end{aligned}$	Output Level 1 dB Comp (dBm)	$N F(d B)$	$I_{\text {max }}(m A)$	$P_{\text {max }}(m W)$
ERA-1	dc - 8000	12.1	+12.0	4.3	75	330
ERA-2	dc - 6000	15.8	+13.0	4.0	75	330
ERA-3	dc - 3000	21.0	+12.5	3.5	75	330
ERA-4	dc - 4000	14.0	+17.3	4.2	120	650
ERA-5	dc - 4000	19.5	+18.4	4.3	120	650
ERA-6	dc - 4000	12.5	+17.9	4.5	12	650
GAL-1	dc - 8000	12.5	+12.2	4.5	55	225
GAL-2	dc - 8000	15.8	+12.9	4.6	55	225
GAL-3	dc - 8000	21.1	+12.5	3.5	55	225
GAL-4	dc - 8000	14.1	+17.5	4.0	85	475
GAL-5	dc - 8000	19.4	+18.0	3.5	85	475
GAL-6	dc - 8000	12.2	+18.2	4.5	85	475
GAL-21	dc - 8000	13.9	+12.6	4.0	55	225
GAL-33	dc - 8000	18.7	+13.4	3.9	55	265
GAL-51	dc - 8000	17.5	+18.0	3.5	85	475
HELA-10B	50-1000	12.0	+30.0	3.5	525	7150
HELA-10D	8-300	11.0	+30.0	3.5	525	7150
MAR-1	dc - 1000	15.5	+1.5	5.5	40	200
MAR-2	dc - 2000	12.0	+4.5	6.5	60	325
MAR-3	dc - 2000	12.0	+10.0	6.0	70	400
MAR-4	dc - 1000	8.0	+12.5	6.5	85	500
MAR-6	dc - 2000	16.0	+2.0	3.0	50	200
MAR-7	dc - 2000	12.5	+5.5	5.0	60	275
MAR-8	dc - 1000	22.5	+12.5	3.3	65	500
MAV-1	dc - 1000	15.0	+1.5	5.5	40	200
MAV-2	dc - 1500	11.0	+4.5	6.5	60	325
MAV-3	dc - 1500	11.0	+10.0	6.0	70	400
MAV-4	dc - 1000	7.5	+11.5	7.0	85	500
MAV-11	dc - 1000	10.5	+17.5	3.6	80	550
RAM-1	dc - 1000	15.5	+1.5	5.5	40	200
RAM-2	dc - 2000	11.8	+4.5	6.5	60	325
RAM-3	dc - 2000	12.0	+10.0	6.0	80	425
RAM-4	dc - 1000	8.0	+12.5	6.5	100	540
RAM-6	dc - 2000	16.0	+2.0	2.8	50	200
RAM-7	dc - 2000	12.5	+5.5	4.5	60	275
RAM-8	dc - 1000	23.0	+12.5	3.0	65	420
VAM-3	dc - 2000	11.0	+9.0	6.0	60	240
VAM-6	dc - 2000	15.0	+2.0	3.0	40	125
VAM-7	dc - 2000	12.0	+5.5	5.0	50	175
VNA-25	500-2500	18.0	+18.2	5.5	105	1000

Mini-circuits Labs Web site: www.minicircuits.com/.

Avago Technologies MMICs

Device	Freq Range (MHz)	Typical Gain (dB)	Output Level 1 dB Comp (dBm)	$N F(d B)$	$I_{\text {max }}(m A)$	$\begin{aligned} & P_{\max } \\ & (m W) \end{aligned}$
MGA-725M4	100-6000	17.6	+13.1	1.2	80	250
MGA-86576	1.5-8000	23.0	+6.3	2.0	16	-
MSA-02xx	dc - 2800	12.5	+4.5	6.5	60	325
MSA-03xx	dc - 2800	12.5	+10.0	6.0	80	425
MSA-04xx	dc - 4000	8.3	+11.5	7.0	85	500
MSA-05xx	dc- 2800	7.0	+19.0	6.5	135	1.5
MSA-06xx	dc - 800	19.5	+2.0	3.0	50	200
MSA-07xx	dc - 2500	13.0	+5.5	4.5	50	175
MSA-08xx	dc - 6000	32.5	+12.5	3.0	65	500
MSA-09xx	dc - 6000	7.2	+10.5	6.2	65	500
MSA-11xx	50-1300	12.0	+17.5	3.6	80	550

Avago Web site: www.avagotech.com.

Motorola Hybrid Amplifiers (50 Ω)

Device type	Freq Range (MHz)	Gain (dB) $\min / t y p$	Supply Voltage (V)	Output Level, 1 dB Comp (dBm)	$\begin{aligned} & N F \text { at } 250 \mathrm{MHz} \\ & \text { (dB) } \end{aligned}$
MWA110	0.1-400	13/14	2.9	-2.5	4.0
MWA120	0.1-400	13/14	5	+8.2	5.5
MWA130	0.1-400	13/14	5.5	+18.0	7.0
MWA131	0.1-400	13/14	5.5	+20.0	5.0
MWA210	0.1-600	9/10	1.75	+1.5	6.0
MWA220	0.1-600	9/10	3.2	+10.5	6.5
MWA230	0.1-600	9/10	4.4	+18.5	7.5
MWA310	0.1-1000	7/8	1.6	+3.5	6.5
MWA320	0.1-1000	7/8	2.9	+11.5	6.7
MWA330	0.1-1000	na/6.2	4	+15.2	9.0

Note: Motorola no longer manufactures these modules but they may be available from distributors.

Table 7.28

General-Purpose Transistors

Listed numerically by device

Table 7.29
RF Power Amplifier Modules
Listed by frequency

Device	Supply (V)	Frequency Range (MHz)	Output Power (W)	Power Gain (dB)	Package ${ }^{\dagger}$	Mfr/ Notes
M57735	17	50-54	14	21	H3C	MI; SSB mobile
M57719N	17	142-163	14	18.4	H2	MI; FM mobile
S-AV17	16	144-148	60	21.7	5-53L	T, FM mobile
S-AV7	16	144-148	28	21.4	5-53H	T, FM mobile
MHW607-1	7.5	136-150	7	38.4	301K-02/3	MO; class C
BGY35	12.5	132-156	18	20.8	SOT132B	P
M67712	17	220-225	25	20	H3B	MI; SSB mobile
M57774	17	220-225	25	20	H2	MI; FM mobile
MHW720-1	12.5	400-440	20	21	700-04/1	MO; class C
MHW720-2	12.5	440-470	20	21	700-04/1	MO; class C
M57789	17	890-915	12	33.8	H3B	MI
MHW912	12.5	880-915	12	40.8	301R-01/1	MO; class AB
MHW820-3	12.5	870-950	18	17.1	301G-03/1	MO; class C

Manufacturer codes: $\mathrm{MO}=$ Motorola; $\mathrm{MI}=$ Mitsubishi; $\mathrm{P}=$ Philips; $\mathrm{T}=$ Toshiba .
${ }^{\dagger}$ For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Table 7.30
General Purpose Silicon Power Transistors
TO-220 Case, Pin 1=Base, Pin 2, Case = Collector; Pin 3 = Emitter TO-204 Case (TO-3), Pin 1=Base, Pin $2=$ Emitter, Case = Collector;

NPN PNP	$\begin{aligned} & I^{\prime} C \\ & \operatorname{Max}(A) \end{aligned}$	$\begin{aligned} & V_{C E O} \\ & \operatorname{Max}(V) \end{aligned}$	$h_{\text {FE }}$ Min	F_{T} (MHz)	Power Dissipation (W)	$\begin{aligned} & \text { NPN } \quad \text { PNP } \\ & \text { tion } \end{aligned}$	${ }^{\prime} C$	$V_{\text {CEO }}$		F_{T}	Power Dissipa-
D44C8	4	60	100/220	50	30	2N3055A	May (A)	M ${ }_{80}$ (V)		(0.8Hz)	146
D45C8	4	60	40/120	50	30	2N3055	15	60	20/70	2.5	115
TIP29	1	40	15/75	3	30	MJ2955	15	60	20/70	2.5	115
TIP30	1	40	15/75	3	30	2N6545	8	400	7/35	6	125
TIP29A	1	50	15/75	3	30	2N5039	20	75	20/100	-	140
TIP30A	1	60	15/75	3	30	2N3771	30	40	15	0.2	150
TIP29B	1	80	15/75	3	30	2N3789	10	60	15	4	150
TIP29C	1	100	15/75	3	30	2N3715	10	60	30	4	150
TIP30C	1	100	15/75	3	30	2N3791	10	60	30	4	150
TIP47	1	250	30/150	10	40	2N5875	10	60	20/100	4	150
TIP48	1	300	30/150	10	40	2N3790	10	80	15	4	150
TIP49	1	350	30/150	10	40	2N3716	10	80	30	4	150
TIP50	1	400	30/150	10	40	2N3792	10	80	30	4	150
TIP110*	2	60	500	> 5	50	2N3773	16	140	15/60	4	150
TIP115 *	2	60	500	> 5	50	2N6284	20	100	750/18K	-	160
TIP116	2	80	500	25	50	2N6287	20	100	750/18K	-	160
TIP31	3	40	25	3	40	2N5881	15	60	20/100	4	160
TIP32	3	40	25	3	40	2N5880	15	80	20/100	4	160
TIP31A	3	60	25	3	40	2N6249	15	200	10/50	2.5	175
TIP32A	3	60	25	3	40	2N6250	15	275	8/50	2.5	175
TIP31B	3	80	25	3	40	2N6546	15	300	6/30	6-28	175
TIP32B	3	80	25	3	40	2N6251	15	350	6/50	2.5	175
TIP31C	3	100	25	3	40	2N5630	16	120	20/80	1	200
TIP32C	3	100	25	3	40	2N5301	30	40	15/60	2	200
2N6124	4	45	25/100	2.5	40	2N5303	20	80	15/60	2	200
2N6122	4	60	25/100	2.5	40	2N5885	25	60	20/100	4	200
MJE1300	4	300	6/30	4	60	2N5302	30	60	15/60	2	200
TIP120*	5	60	1000	> 5	65	2N4399	30	60	15/60	4	200
TIP125 *	5	60	1000	>10	65	2N5886	25	80	20/100	4	200
TIP42	6	40	15/75	3	65	2N5884	25	80	20/100	4	200
TIP41A	6	60	15/75	3	65	MJ802	30	100	25/100		200
TIP41B	6	80	15/75	3	65	MJ4502	30	100	25/100	2	200
2N6290	7	50	30/150	4	40	MJ15003	20	140	25/150	2	250
2N6109		50	30/150	4	40	MJI5004	20	140	25/150	2	250
2N6292	7	70	30/150	4	40	MJ15024	25	250	15/60	4	250
2N6107	7	70	30/150	4	40						
MJE3055T	10	50	20/70	2	75	= Compl	imentary p	pairs			
MJE2955T	10	60	20/70	2	75	* = Darlington tran	sistor				
2N6486	15	40	20/150	5	75						
2N6488	15	80	20/150	5	75						
TIP140*	10	60	500	> 5	125						
TIP145 *	10	60	600	> 10	125						

Useful URLs for finding transistor/IC data sheets:

1. General-purpose substitution URL: www.nteinc.com
2. Philips semiconductors: www.semiconductors.philips.com
3. Mitsubishi: www.mitsubishichips.com
4. Motorola: www.freescale.com
5. STMicroelectronics: www.st.com
6. Toshiba: www.semicon.toshiba.co.jp/eng

Table 7.31
RF Power Transistors

Device	Outpu Power (W)	Input Power (W)	Gain (dB)	Typ Supply Voltage (V)	Case	Mfr
2SC2932	6		7.8	12.5	T-31 B	MI
SD1398	6	0.6	10	24	M142	ST
2SC2933	14	3	6.7	12.5	T-31 B	MI
SD1400-03	14	1.6	9.5	24	M118	ST
MRF873	15	3	7	12.5	319-06/2	MO
SD1495-03	30	6	7	24	M142	ST
SD1424	30	5.3	7.5	24	M156	ST
MRF897	30	3	10	24	395B-01/1	MO
MRF847	45	16	4.5	12.5	319-06/1	MO
BLV101A	50		8.5	26	SOT273	PH
SD1496-03	55	10	7.4	24	M142	ST
MRF898	60	12	7	24	333A-02/1	MO
MRF880	90	12.7	8.5	26	375A-01/1	MO
MRF899	150	24	8	26	375A-01/1	MO

Manufacturer codes:

MI = Mitsubishi; MO = Motorola; PH Philips;
ST = STMicroelectronics
There is a bewildering variety of package types, sizes and pin-out connections. (For example, for the 137 different transistors in this table there are 54 different packages.) See the data sheets on each manufacturer's Web pages for details.

Mitsubishi: www.mitsubishichips.com
Motorola: www.freescale.com
Philips semiconductors: www.semiconductors.philips.com STMicroelectronics: www.st.com

Table 7.32
RF Power Transistors Recommended for New Designs

Device	Output Power (W)	Type	Gain $(d B)$	Typ Sup Voltage (V)	Case	Mfr	Device	Output Power (W)	Type	$\begin{aligned} & \text { Gain } \\ & (d B) \end{aligned}$	Typ Sup Voltage (V)	Case	Mf
1.5 to $\mathbf{3 0} \mathrm{MHz}$, HF SSB/CW							VHF to 470 MHz						
MRF171A	30	MOS	20	28	211-07/2	MO	BLT50	1.2	BJT	10	7.5	SOT223	PH
BLF145	30	MOS	24	28	SOT123A	PH	SD2900	5	MOS	13.5	28	M113	ST
MRF148A	30	MOS	18	50	211-07/2	MO	SD1433	10	BJT	7	12.5	M122	ST
SD2918	30	MOS	18	50	M113	ST	SD2902	15	MOS	12.5	28	M113	ST
SD1405	75	BJT	13	12.5	M174	ST	SD2904	30	MOS	10	28	M113	ST
SD1733	75	BJT	14	50	M135	ST	SD2903	30	MOS	13	28	M229	ST
SD1487	100	BJT	11	12.5	M174	ST	SD1488	38	BJT	5.8	12.5	M111	ST
SD1407	125	BJT	15	28	M174	ST	SD1434	45	BJT	5	12.5	M111	ST
SD1729	130	BJT	12	28	M174	ST	MRF392	125	BJT	8	28	744A-01/1	MO
BLF147	150	MOS	17	28	SOT121B	PH	SD2921	150	MOS	12.5	50	M174	ST
BLF177	150	MOS	20	50	SOT121B	PH	VHF to 512 MHz						
BLF175	150	MOS	24	50	SOT123A	PH							
SD1726	150	BJT	14	50	M174	ST	BLF521	2	MOS	10	12.5	SOT172D	PH
SD1727	150	BJT	14	50	M164	ST	MRF158	2	MOS	17.5	28	305A-01/2	MO
MRF150	150	MOS	17	50	211-07/2	MO	MRF160		MOS	17	28	249-06/3	MO
SD1411	200	BJT	16	40	M153	ST	BLF542	5	MOS	13	28	SOT171A	PH
SD1730	220	BJT	12	28	M174	ST	VLF544	20	MOS	11	28	SOT171A	PH
SD1731	220	BJT	13	50	M174	ST	MRF166C	20	MOS	16	28	319-07/3	MO
SD1728	250	BJT	14.5	50	M177	ST	MRF166W	40	MOS	14	28	412-01/1	MO
SD2923	300	MOS	16	50	M177	ST	BLF546	80	MOS	11	28	SOT268A	PH
SD2933	300	MOS	18	50	M177	ST	MRF393	100	BJT	7.5	28	744A-01/1	MO
MRF154	600	MOS	17	50	368-03/2	MO	MRF275L	100	MOS	8.8	28	333-04/2	MO
50 to 175 MHz							BLF548	150	MOS	10	28	SOT262A	PH
							MRF275G	150	MOS	10	28	375-04/2	MO
BLF202	2	MOS	10	12.5	SOT409A	PH	UHF to 960 MHz						
BLF242	5	MOS	13	28	SOT123A	PH							
SD1274	30	BJT	10	13.6	M135	ST	BLT70	0.6	BJT	6	4.8	SOT223	PH
BLF245	30	MOS	13	28	SOT123	PH	BLT80	0.6	BJT	6	7.5	SOT223	PH
SD1275	40	BJT	9	13.6	M135	ST	BLT71/8	1.2	BJT	6	4.8	SOT223	PH
BLF246B	60	MOS	14	28	SOT161A	PH	BLT81	1.2	BJT	6	7.5	SOT223	PH
SD1477	100	BJT	6	12.5	M111	ST	BLF1043	10	MOS	16	26	SOT538A	PH
SD1480	100	BJT	9.2	28	M111	ST	BLF1046	45	MOS	14	26	SOT467C	PH
SD2921	150	MOS	12.5	50	M174	ST	BLF1047	70	MOS	14	26	SOT541A	PH
MRF141	150	MOS	13	28	211-11/2	MO	BLF1048	90	MOS	14	26	SOT502A	PH
MRF151	150	MOS	13	50	211-11/2	MO							
SD2931	150	MOS	14	50	M174	ST	Notes: Manufacturer codes: $\mathrm{MI}=$ Mitsubishi; $\mathrm{MO}=$ Motorola; PH = Philips; ST = STMicroelectronics						
BLF248	300	MOS	10	28	SOT262	PH							
SD2932	300	MOS	15	50	M244	ST							
VHF to 220 MHz							There is a bewildering variety of package types, sizes and pinout connections. (For example, for the 71 different transistors in						
MRF134	5	MOS	10.6	28	211-07/2	MO							
MRF136	15	MOS	16	28	211-07/2	MO	this table there are 35 different packages.) See the data sheets on each manufacturer's Web pages for details.						
MRF173	80	MOS	13	28	211-11/2	MO							
MRF174	125	MOS	11.8	28	211-11/2	MO	Mitsubishi: www.mitsubishichips.com Motorola: www.freescale.com Philips semiconductors: www.semiconductors.philips.com STMicroelectronics: www.st.com						
BLF278	250	MOS	14	50	SOT261A1	PH							

Table 7.33
Power FETs

Device	Type	$V D S S$ min (V)	RDS(on) max (Ω)	ID max (A)	PD max (W)	Caset	Mfr
BS250P	P-channel	45	14	0.23	0.7	E-line	Z
IRFZ30	N -channel	50	0.050	30	75	TO-220	IR
MTP50N05E	N -channel	50	0.028	25	150	TO-220AB	M
IRFZ42	N -channel	50	0.035	50	150	TO-220	IR
2N7000	N -channel	60	5	0.20	0.4	E-line	Z
VN10LP	N -channel	60	7.5	0.27	0.625	E-line	Z
VN10KM	N -channel	60	5	0.3	1	TO-237	S
ZVN2106B	N -channel	60	2	1.2	5	TO-39	Z
IRF511	N -channel	60	0.6	2.5	20	TO-220AB	M
MTP2955E	P-channel	60	0.3	6	25	TO-220AB	M
IRF531	N -channel	60	0.180	14	75	TO-220AB	M
MTP23P06	P-channel	60	0.12	11.5	125	TO-220AB	M
IRFZ44	N -channel	60	0.028	50	150	TO-220	IR
IRF531	N -channel	80	0.160	14	79	TO-220	IR
ZVP3310A	P-channel	100	20	0.14	0.625	E-line	Z
ZVN2110B	N -channel	100	4	0.85	5	TO-39	Z
ZVP3310B	P-channel	100	20	0.3	5	TO-39	Z
IRF510	N -channel	100	0.6	2	20	TO-220AB	M
IRF520	N -channel	100	0.27	5	40	TO-220AB	M
IRF150	N -channel	100	0.055	40	150	TO-204AE	M
IRFP150	N -channel	100	0.055	40	180	TO-247	IR
ZVP1320A	P-channel	200	80	0.02	0.625	E-line	Z
ZVN0120B	N-channel	200	16	0.42	5	TO-39	Z
ZVP1320B	P-channel	200	80	0.1	5	TO-39	Z
IRF620	N-channel	200	0.800	5	40	TO-220AB	M
MTP6P20E	P-channel	200	1	3	75	TO-220AB	M
IRF220	N -channel	200	0.400	8	75	TO-220AB	M
IRF640	N -channel	200	0.18	10	125	TO-220AB	M

Manufacturers: $I R=$ International Rectifier; $M=$ Motorola; $S=$ Siliconix; $Z=$ Zetex.
${ }^{\dagger}$ For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Table 7.34

Logic IC Families

				Power						
	Propagation Delay for $C_{L}=50$ pF Max Clock			Dissipation	Output					
	(ns)		Frequency	@ 1 MHz	@ 0.5 V	Current	Threshold	Supply	Voltage	
Type	Typ	Max	(MHz)	(mW/gate)	$\max (m A)$	(Max mA)	Voltage (V)	Min	Typ	Max
CMOS										
74AC	3	5.1	125	0.5	24	0	V+/2	2	5 or 3.3	6
74ACT	3	5.1	125	0.5	24	0	1.4	4.5	5	5.5
74HC	9	18	30	0.5	8	0	V+/2	2	5	6
74HCT	9	18	30	0.5	8	0	1.4	4.5	5	5.5
$\begin{gathered} 4000 \mathrm{~B} / 74 \mathrm{C} \\ (10 \mathrm{~V}) \end{gathered}$	30	60	5	1.2	1.3	0	$\mathrm{V}+$ /2	3	5-15	18
$\begin{aligned} & 4000 \mathrm{~B} / 74 \mathrm{C} \\ & (5 \mathrm{~V}) \end{aligned}$	50	90	2	3.3	0.5	0	$\mathrm{V}+$ /2	3	5-15	18
TTL										
74AS	2	4.5	105	8	20	0.5	1.5	4.5	5	5.5
74F	3.5	5	100	5.4	20	0.6	1.6	4.75	5	5.25
74ALS	4	11	34	1.3	8	0.1	1.4	4.5	5	5.5
74LS	10	15	25	2	8	0.4	1.1	4.75	5	5.25
ECL										
ECL III	1.0	1.5	500	60	-	-	-1.3	-5.19	-5.2	-5.21
ECL 100K	0.75	1.0	350	40	-	-	-1.32	-4.2	-4.5	-5.2
ECL100KH	1.0	1.5	250	25	-	-	-1.29	-4.9	-5.2	-5.5
ECL 10K	2.0	2.9	125	25	-	-	-1.3	-5.19	-5.2	-5.21
GaAs										
10G	0.3	0.32	2700	125	-	-	-1.3	-3.3	-3.4	-3.5
10G	0.3	0.32	2700	125	-	-	-1.3	-5.1	-5.2	-5.5

[^0]Table 7.35
Three-Terminal Voltage Regulators

Listed numerically by device									
Device	Description	Package	Voltage	Current (Amps)	Device	Description	Package	Voltage	Current (Amps)
317	Adj Pos	TO-205	+1.2 to +37	0.5	78TXX		TO-204		3.0
317	Adj Pos	TO-204,TO-220	+1.2 to +37	1.5	79XX	Fixed Neg	TO-204,TO-220	Note 1	1.0
317L	Low Current Adj Pos	TO-205,TO-92	+1.2 to +37	0.1	$\begin{aligned} & \text { 79LXX } \\ & \text { 79MXX } \end{aligned}$		$\begin{aligned} & \text { TO-205,TO-92 } \\ & \text { TO-220 } \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$
317M	Med Current Adj Pos	TO-220	+1.2 to +37	0.5	Note 1-XX indicates the regulated voltage; this value may be anywhere from 1.2 V to 35 V . A 7815 is a positive $15-\mathrm{V}$ regulator, and a 7924 is a negative $24-\mathrm{V}$ regulator.				
338	Adj Pos	TO-3	+1.2 to +32	5.0					
350	High Current Adj Pos	TO-204,TO-220	+1.2 to +33	3.0					
337	Adj Neg	TO-205	-1.2 to -37	0.5	The regulator package may be denoted by an additional suffix, according to the following:				
337	Adj Neg	TO-204,TO-220	-1.2 to -37	1.5	Package Suffix				
337M	Med Current	TO-220	-1.2 to -37	0.5					
	Adj Neg				$\begin{aligned} & \text { TO-204 (TO-3) } \\ & \text { TO-220 } \end{aligned}$				
309		TO-205	+5	0.2					
309		TO-204	+5	1.0	TO-205 (TO-39) H, G				
323		TO-204,TO-220	+5	3.0	TO-92 P, Z				
140-XX	Fixed Pos	TO-204,TO-220	Note 1	1.0	For example, a 7812 K is a positive $12-\mathrm{V}$ regulator in a TO-204 package. An LM340T-5 is a positive $5-\mathrm{V}$ regulator in a TO-220 package. In addition, different manufacturers use different prefixes. An LM7805 is equivalent to a mA7805 or MC7805.				
340-XX		TO-204,TO-220		1.0					
78XX		TO-204,TO-220		1.0					
78LXX		TO-205,TO-92		0.1					

Note 1-XX indicates the regulated voltage; this value may be anywhere from 1.2 V to 35 V . A 7815 is a positive $15-\mathrm{V}$ regulator, and a 7924 is a negative $24-\mathrm{V}$ regulator.

The regulator package may be denoted by an additional suffix, according to the following:

Package

TO-204 (TO-3)
TO-220
TO-205 (TO-39)
$\begin{array}{ll}\text { TO-92 } & \mathrm{H}, \mathrm{G} \\ \mathrm{P}, \mathrm{Z}\end{array}$
For example, a 7812 K is a positive $12-\mathrm{V}$ regulator in a TO-204 package. An LM340T-5 is a positive 5-V regulator in a TO-220 package. In addition, different manufacturers use different prefixes An LM7805 is equivalent to a mA7805 or MC7805.

78XX
78LXX
78MXX

Center Lead is Connected to the Heat Sink

H, G Suffix
TO-205 Package

Table 7.36
Op Amp ICs
Listed by device number

					Max	Min dc	Min	Min Small-	Min	
			Max	Min Input	Offset	Open-	Output	Signal	Slew	
		Freq	Supply*	Resistance	Voltage	Loop	Current	Bandwidth	Rate	
Device	Type	Comp	(V)	(MS)	(mV)	Gain (dB)	(mA)	(MHz)	($V / \mu s$)	Notes
101A	Bipolar	ext	44	1.5	3.0	79	15	1.0	0.5	General purpose
108	Bipolar	ext	40	30	2.0	100	5	1.0		
124	Bipolar	int	32		5.0	100	5	1.0		Quad op amp, low power
148	Bipolar	int	44	0.8	5.0	90	10	1.0	0.5	Quad 741
158	Bipolar	int	32		5.0	100	5	1.0		Dual op amp, low power
301	Bipolar	ext	36	0.5	7.5	88	5	1.0	10	Bandwidth extendable with external components
324	Bipolar	int	32		7.0	100	10	1.0		Quad op amp, single supply
347	BiFET	ext	36	106	5.0	100	30	4	13	Quad, high speed
351	BiFET	ext	36	106	5.0	100	20	4	13	
353	BiFET	ext	36	106	5.0	100	15	4	13	
355	BiFET	ext	44	106	10.0	100	25	2.5	5	
355B	BiFET	ext	44	106	5.0	100	25	2.5	5	
356A	BiFET	ext	36	106	2.0	100	25	4.5	12	
356B	BiFET	ext	44	106	5.0	100	25	5.0	12	
357	BiFET	ext	36	106	10.0	100	25	20.0	50	
357B	BiFET	ext	36	106	5.0	100	25	20.0	30	
358	Bipolar	int	32		7.0	100	10	1.0		Dual op amp, single supply
411	BiFET	ext	36	106	2.0	100	20	4.0	15	Low offset, low drift
709	Bipolar	ext	36	0.05	7.5	84	5	0.3	0.15	
741	Bipolar	int	36	0.3	6.0	88	5	0.4	0.2	
741S	Bipolar	int	36	0.3	6.0	86	5	1.0	3	Improved 741 for AF
1436	Bipolar	int	68	10	5.0	100	17	1.0	2.0	High-voltage
1437	Bipolar	ext	36	0.050	7.5	90		1.0	0.25	Matched, dual 1709
1439	Bipolar	ext	36	0.100	7.5	100		1.0	34	
1456	Bipolar	int	44	3.0	10.0	100	9.0	1.0	2.5	Dual 1741
1458	Bipolar	int	36	0.3	6.0	100	20.0	0.5	3.0	
1458 S	Bipolar	int	36	0.3	6.0	86	5.0	0.5	3.0	Improved 1458 for AF
1709	Bipolar	ext	36	0.040	6.0	80	10.0	1.0		
1741	Bipolar	int	36	0.3	5.0	100	20.0	1.0	0.5	
1747	Bipolar	int	44	0.3	5.0	100	25.0	1.0	0.5	Dual 1741
1748	Bipolar	ext	44	0.3	6.0	100	25.0	1.0	0.8	Non-comp-ensated 1741
1776	Bipolar	int	36	50	5.0	110	5.0		0.35	Micro power, programmable
3140	BiFET	int	36	1.5×106	2.0	86	1	3.7	9	Strobable output
3403	Bipolar	int	36	0.3	10.0	80		1.0	0.6	Quad, low power
3405	Bipolar	ext	36		10.0	86	10	1.0	0.6	Dual op amp and dual comparator
3458	Bipolar	int	36	0.3	10.0	86	10	1.0	0.6	Dual, low power

LT1001 Precision op amp, low offset voltage ($15 \mu \mathrm{~V}$ max), low drift $\left(0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ max), low noise ($0.3 \mu \mathrm{~V}$ p-p)
LT1007
LT1007 Extremely low noise ($0.06 \mu \mathrm{~V}$ p-p), very high gain (20×10^{6} into $2 \mathrm{k} \Omega$ load)
LT1360

NE5514	Bipolar	int	± 16	100	1		10	3	0.6	
NE5532	Bipolar	int	± 20	0.03	4	47	10	10	9	Low noise
OP-27A	Bipolar	ext	44	1.5	0.025	115		5.0	1.7	Ultra-low noise, high speed
OP-37A	Bipolar	ext	44	1.5	0.025	115		45.0	11.0	
TL-071	BiFET	int	36	10^{6}	6.0	91		4.0	13.0	Low noise
TL-081	BiFET	int	36	10^{6}	6.0	88		4.0	8.0	
TL-082	BiFET	int	36	10^{6}	15.0	99		4.0	8.0	Low noise
TL-084	BiFET	int	36	10^{6}	15.0	88		4.0	8.0	Quad, high-performance AF
TLC27M2	CMOS	int	18	10^{6}	10	44		0.6	0.6	Low noise
TLC27M4	CMOS	int	18	10^{6}	10	44		0.6	0.6	Low noise

*From -V to +V terminals

Top Views

84 CN
Table 7.37
Triode Transmitting Tubes
The full 1988 Handbook table of power tube specifications and base diagrams can be viewed in pdf format on the ARRLWeb at www.arrl.org/notes/1921/pwrtubes.pdf. 5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
 $\stackrel{1}{n}$ in in OOOLOO O n 응 웅 810 읏 09ع 1500
1520
${ }^{1}$ Service Class Abbreviations:
$A B_{2} G D=A B_{2}$ linear with $50-\Omega$
passive grid circuit.
$B=$ Class- push-pull
$C P=$ Class-C plate-modulated
phone

CT=Class-C telegraph GG=Grounded-grid (grid and screen connected together) ${ }^{2}$ Maximum signal value
${ }^{3}$ Peak grid-grid volts
${ }^{4}$ Forced-air cooling required.
${ }^{5}$ Two tubes triode-connected, G2 to G1 through $20 \mathrm{k} \Omega$ to G 2 . ${ }^{6}$ Typical operation at 175 MHz . ${ }^{7} \pm 1.5 \mathrm{~V}$.
8 Values are for two tubes.
${ }^{9}$ Single tone.
${ }^{10} 24-\Omega$ cathode resistance. ${ }^{11}$ Base same as 4CX250B. Socket is Russian SK2A. ${ }^{12}$ Socket is Russian SK1A. ${ }^{13}$ Socket is Russian SK3A.

$$
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
$$

M N N N
иәə»๐S

$$
\begin{array}{ll}
\stackrel{1}{n} \text { 아 } \\
\text { ले }
\end{array}
$$

$$
\begin{array}{lll}
\text { 으N } & \text { O } & \text { O } \\
\hline
\end{array}
$$

옹ㅇ N N్ల
Table 7.38
Tetrode and Pentode Transmitting Tubes

$$
\begin{array}{ll}
{ }^{2} & \mathrm{AB}_{2} \mathrm{GD} 2200 \\
\hline \mathrm{CT} & 3000 \\
\mathrm{CT} & 3000 \\
\mathrm{CP} & \\
\mathrm{AB}_{2} & 4000 \\
\mathrm{GG} & 3000
\end{array}
$$

4CX1500B 1500	3000	12	400	110	6.0	10.0	81.5	0.02	11.8	-	AB_{1}	2750
4CX1600B 1600	3300	20	350	250	12.6	4.4	86	0.15	12	See ${ }^{13}$	${ }^{\text {B }}$	2400

Table 7.39
TV Deflection Tubes
Output
© ©

 OU む

$\overleftarrow{む}$
$\stackrel{0}{0}$

 0000000
 0
$\widetilde{0}$
0
0 00

 ○每 ○毎 엉 어엉 어엉 성

 ィәцеә
 Transcond．
μ Mho μ Mho

$$
\begin{aligned}
& \text { Plate Screen } \\
& \text { Diss. }
\end{aligned}
$$

 \square| 6JE6 | 30 |
| :--- | :--- |
| 6JM6 | 17.5 |
| 6JN6 | 17.5 |
| 6JS6C | 30 |
| 6KD6 | 33 |
| 6LB6 | 30 |

$$
\begin{array}{llll}
\text { 6JM6 } & 17.5 & 3.5 & 7.3 \mathrm{k}
\end{array}
$$

$$
\begin{array}{llll}
\hline \text { 6JN6 } & 17.5 & 3.5 & 7.3 \mathrm{k}
\end{array}
$$

$$
\begin{array}{llll}
\text { 6JN6 } & 17.5 & 3.5 & 7.3 \mathrm{k} \\
\text { 6JS6C } & 30 & 5.5 & - \\
\hline
\end{array}
$$

$$
\begin{array}{llll}
6 K D 6 & 33 & 5 & 14 k
\end{array}
$$

$$
11.5 \mathrm{k}
$$

$$
14 \mathrm{k}
$$

N゚ค เ ก \wedge

$$
\stackrel{\infty}{0} \underset{\sim}{s}
$$

Table 7.40

EIA Vacuum-Tube Base Diagrams

FIG 3

3G

5AW

8JX

12FK

5AZ

5BA

5BK

6AM

12FJ

9NM

9QL

9QU

FIG 11

12FB

12FY

12GJ

12GW

12HL
FIG 41

Base diagrams correspond to the codes in "Base" columns of
the tube-data tables. Bottom views are shown throughout.
Base connections are abbreviated as follows:

BS - Base sleeve	NC - No connection
F - Filament	P - Plate
G - Grid	$\mathrm{P}_{\text {BF }}$ - Beam plates
H - Heater	S - Shell
IC - Internal connection	K - Cathode

HBK05_07-14

[^1]
Table 7.41

Properties of Common Thermoplastics

Polyvinyl Chloride (PVC)

Advantages:

- Can be compounded with plasticizers, filters, stabilizers, lubricants and impact modifiers to produce a wide range of physical properties
- Can be pigmented to almost any color
- Rigid PVC has good corrosion and stain resistance, thermal \& electrical insulation, and weatherability
Disadvantages:
- Base resin can be attacked by aromatic solvents, ketones, aldehydes, naphthalenes, and some chloride, acetate, and acrylate esters
- Should not be used above 140°

Applications:

- Conduit
- Conduit boxes
- Housings
- Pipe
- Wire and cable insulation

Polystyrene

Advantages.

- Low cost
- Moderate strength
- Electrical properties only slightly affected by temperature and humidity
- Sparkling clarity
- Impact strength is increased by blending with rubbers, such as polybutadiene
Disadvantages:
- Brittle
- Low heat resistance

Applications:

- Capacitors
- Light shields
- Knobs

Polyphenylene Sulfide (PPS)

Advantages:

- Excellent dimensional stability
- Strong
- High-temperature stability
- Chemical resistant
- Inherently completely flame retardant
- Completely transparent to microwave radiation

Applications:

- R3-R5 have various glass-fiber levels that are suitable for applications demanding high mechanical and impact strength as well as good dielectric properties
- R8 and R10 are suitable for high arc-resistance applications
- R9-901 is suitable for encapsulation of electronic devices

Polypropylene

Advantages:

- Low density
- Good balance of thermal, chemical, and electrical properties
- Moderate strength (increases significantly with glass-fiber reinforcement)
Disadvantages:
- Electrical properties affected to varying degrees by temperature (as temperature goes up, dielectric strength increases and volume resistivity decreases)
- Inherently unstable in presence of oxidative and UV radiation

Applications:

- Automotive battery cases
- Blower housings
- Fan blades
- Insulators
- Lamp housings
- Support for current-carrying electrical components
- TV yokes

Polyethylene (PE)

Advantages: Low Density PE

- Good toughness
- Excellent chemical resistance
- Excellent coefficient of friction
- Near zero moisture absorption
- Easy to process
- Relatively low heat resistance

Disadvantages:

- Susceptible to environmental and some chemical stress cracking
- Wetting agents (such as detergents) accelerate stress cracking

Advantages: High Density PE

- Same as above, plus increased rigidity and tensile strength

Advantages: Ultra-High Molecular Weight PE

- Outstanding abrasion resistance
- Low coefficient of friction
- High impact strength
- Excellent chemical resistance
- Material does not break in impact strength tests using standard notched specimens
Applications:
- Bearings
- Components requiring maximum abrasion resistance, impact strength, and low coefficient of friction

Phenolic

Advantages:

- Low cost
- Superior heat resistance
- High heat-deflection temperatures
- Good electrical properties
- Good flame resistance
- Excellent moldability
- Excellent dimensional stability
- Good water and chemical resistance

Applications:

- Commutators and housings for small motors
- Heavy duty electrical components
- Rotary-switch wafers
- Insulating spacers

Nylon

Advantages:

- Excellent fatigue resistance
- Low coefficient of friction
- Toughness as a function of degree of crystalinity
- Resists many fuels and chemicals
- Good creep- and cold-flow resistance as compared to less rigid thermoplastics
- Resists repeated impacts

Disadvantages:

- All nylons absorb moisture
- Nylons that have not been compounded with a UV stabilizer are sensitive to UV light, and thus not suitable for extended outdoor use

Applications:

- Bearings
- Housings and tubing
- Rope
- Wire coatings
- Wire connectors
- Wear plates

Table 7.42

Coaxial Cable End Connectors

UHF Connectors

Military No.	Style	Cable RG- or Description
PL-259	Str (m)	$\begin{aligned} & 8,9,11,13,63,87,149,213,214,216, \\ & 225 \end{aligned}$
UG-111	Str (m)	59, 62, 71, 140, 210
SO-239	Pnl (f)	Std, mica/phenolic insulation
UG-266	Blkhd (f)	Rear mount, pressurized, copolymer of styrene ins.
Adapters		
PL-258	Str (f/f)	Polystyrene ins.
UG-224,363	Blkhd (f/f)	Polystyrene ins.
UG-646	Ang (f / m)	Polystyrene ins.
M-359A	Ang (m/f)	Polystyrene ins.
M-358	T (f/m/f)	Polystyrene ins.
Reducers		
UG-175 UG-176		55, 58, 141, 142 (except 55A)
UG-176		59, 62, 71, 140, 210

BNC Connectors

Military No.	Style	Cable RG-	Notes
UG-88C	Str (m)	$\begin{aligned} & 55,58,141,142 \\ & 223,400 \end{aligned}$	
Military No.	Style	Cable RG-	Notes
UG-959	Str (m)	8, 9	
UG-260,A	Str (m)	59, 62, 71, 140, 210	Rexolite ins.
UG-262	Pnl (f)	59, 62, 71, 140, 210	Rexolite ins.
UG-262A	Pnl (f)	59, 62, 71, 140, 210	nwx, Rexolite ins.
UG-291	Pnl (f)	$\begin{aligned} & 55,58,141,142,223, \\ & 400 \end{aligned}$	
UG-291A	Pnl (f)	$\begin{aligned} & 55,58,141,142,223, \\ & 400 \end{aligned}$	nwx
UG-624	Blkhd (f)	59, 62, 71, 140, 210	Front mount Rexolite ins.
UG-1094A	Blkhd		Standard
UG-625B UG-625	Recepta		

BNC Adapters

Military No.	Style	Notes
UG-491,A	Str $(\mathrm{m} / \mathrm{m})$	
UG-491B	Str $(\mathrm{m} / \mathrm{m})$	Berylium, outer contact
UG-914	Str $(\mathrm{f} / \mathrm{f})$	
UG-306	Ang $(\mathrm{f} / \mathrm{m})$	
UG-306A,B	Ang $(\mathrm{f} / \mathrm{m})$	Berylium outer contact
UG-414,A	Pnl $(\mathrm{f} / \mathrm{f})$	\# 3-56 tapped flange holes
UG-306	Ang $(\mathrm{f} / \mathrm{m})$	
UG-306A,B	Ang $(\mathrm{f} / \mathrm{m})$	Berylium outer contact
UG-274,	T $(\mathrm{f} / \mathrm{m} / \mathrm{f})$	
UG-274A,B	T $(\mathrm{f} / \mathrm{m} / \mathrm{f})$	Berylium outer contact

Family Characteristics:

$Z=50 \Omega$. Frequency range: $0-4 \mathrm{GHz}$ w/low reflection; usable to 11 GHz . Voltage rating: 500 V P-P. Dielectric withstanding voltage 500 V RMS. SWR: $1.3 \mathrm{max} 0-4 \mathrm{GHz}$. RF leakage -55 dB $\min @ 3 \mathrm{GHz}$. Insertion loss: $0.2 \mathrm{~dB} \max @ 3 \mathrm{GHz}$. Temperature limits: TFE: -67° to $390^{\circ} \mathrm{F}\left(-55^{\circ}\right.$ to $\left.199^{\circ} \mathrm{C}\right)$; Rexolite insulators: -67° to $185^{\circ} \mathrm{F}\left(-55^{\circ}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$. "Nwx" = not weatherproof.

HN Connectors

Military No.	Style	Cable RG-	Notes
UG-59A	Str (m) $8,9,213,214$		
UG-1214	Str (f) $8,9,87,213$,	Captivated contact	
UG-60A	Str (f)	$8,9,213,225$	
UG-1215	Pnl (f) $8,9,87,213$,	Copolymer of styrene ins.	
		Captivated contact	
UG-560	Pnl (f)		
UG-496	Pnl (f)		
UG-212C	Ang (f/m)	Berylium outer contact	

Family Characteristics:
Connector Styles: Str = straight; Pnl = panel; Ang = Angle; Blkhd $=$ bulkhead. $Z=50 \Omega$. Frequency range $=0-4 \mathrm{GHz}$. Maximum voltage rating $=1500 \mathrm{~V}$ P-P. Dielectric withstanding voltage $=$ 5000 V RMS SWR $=1.3$. All HN series are weatherproof. Temperature limits: TFE: -67° to $390^{\circ} \mathrm{F}\left(-55^{\circ}\right.$ to $199^{\circ} \mathrm{C}$); copolymer of styrene: -67° to $185^{\circ} \mathrm{F}\left(-55^{\circ}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$.

Cross-Family Adapters

Families	Description	Military No.
HN to BNC	HN-m/BNC-f	UG-309
N to BNC	N-m/BNC-f	UG-201,A
	N-f/BNC-m	UG-349,A
	N-m/BNC-m	UG-1034
N to UHF	N-m/UHF-f	UG-146
	N-f/UHF-m	UG-83,B
	N-m/UHF-m	UG-318
UHF to BNC	UHF-m/BNC-f	UG-273
	UHF-f/BNC-m	UG-255

References

Table 7.43

US Customary Units

Linear Units

12 inches (in) = 1 foot (ft)
36 inches $=3$ feet $=1$ yard (yd)
$1 \mathrm{rod}=5^{1 / 2}$ yards $=16^{1 / 2}$ feet
1 statute mile = 1760 yards $=5280$ feet
1 nautical mile $=6076.11549$ feet

Area

$$
\begin{aligned}
& 1 \mathrm{ft}^{2}=144 \mathrm{in}^{2} \\
& 1 \mathrm{yd}^{2}=9 \mathrm{ft}^{2}=1296 \mathrm{in}^{2} \\
& 1 \mathrm{rod}^{2}=301 / 4 \mathrm{yd}^{2} \\
& 1 \mathrm{acre}^{2}=4840 \mathrm{yd}^{2}=43,560 \mathrm{ft}^{2} \\
& 1 \mathrm{acre}=160 \mathrm{rod}^{2} \\
& 1 \mathrm{mile}^{2}=640 \text { acres }
\end{aligned}
$$

Volume

$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}$
$1 \mathrm{yd}^{3}=27 \mathrm{ft}^{3}$

Liquid Volume Measure

1 fluid ounce (fl oz) $=8$ fluid drams $=1.804$ in
1 pint (pt) $=16 \mathrm{fl} \mathrm{oz}$
1 quart $(\mathrm{qt})=2 \mathrm{pt}=32 \mathrm{fl} \mathrm{oz}=573 / 4 \mathrm{in}^{3}$
1 gallon (gal) $=4 \mathrm{qt}=231 \mathrm{in}^{3}$
1 barrel = $31^{11 / 2}$ gal

Dry Volume Measure

1 quart (qt) $=2$ pints $(p t)=67.2 \mathrm{in}^{3}$
1 peck = 8 qt
1 bushel $=4$ pecks $=2150.42$ in 3

Avoirdupois Weight

1 dram (dr) = 27.343 grains (gr) or (gr a)
1 ounce (oz) $=437.5 \mathrm{gr}$
1 pound (lb) = $16 \mathrm{oz}=7000 \mathrm{gr}$
1 short ton $=2000 \mathrm{lb}, 1$ long ton $=2240 \mathrm{lb}$

Troy Weight

1 grain troy (grt t) $=1$ grain avoirdupois
1 pennyweight (dwt) or (pwt) $=24 \mathrm{grt}$
1 ounce troy (oz t) $=480$ grains
$1 \mathrm{lbt}=12 \mathrm{ozt}=5760$ grains

Apothecaries' Weight

1 grain apothecaries' (gr ap)
$=1 \mathrm{grt}=1 \mathrm{gr}$
1 dram ap (dr ap) $=60 \mathrm{gr}$
$1 \mathrm{oz} \mathrm{ap}=1 \mathrm{ozt}=8 \mathrm{drap}=480 \mathrm{gr}$
$1 \mathrm{lb} \mathrm{ap}=1 \mathrm{lb} \mathrm{t}=12 \mathrm{oz} \mathrm{ap}=5760 \mathrm{gr}$

Conversion

Metric Unit $=$ Metric Unit \times US Unit
(Length)

mm	25.4	inch
cm	2.54	inch
cm	30.48	foot
m	0.3048	foot
m	0.9144	yard
km	1.609	mile
km	1.852	nautical mile
(Area)		
mm^{2}	645.16	inch2
cm^{2}	6.4516	in 2
$\mathrm{~cm}^{2}$	929.03	ft^{2}
$\mathrm{~m}^{2}$	0.0929	ft^{2}
$\mathrm{~cm}^{2}$	8361.3	yd^{2}
$\mathrm{~m}^{2}$	0.83613	yd^{2}
$\mathrm{~m}^{2}$	4047	acre^{2}
$\mathrm{~km}^{2}$	2.59	mi^{2}

(Mass)	(Avoirdupois	Weight)
grams	0.0648	grains
g	28.349	oz
g	453.59	lb
kg	0.45359	lb
tonne	0.907	short ton
tonne	1.016	long ton

(Volume)

mm^{3}	16387.064	in^{3}
$\mathrm{~cm}^{3}$	16.387	in^{3}
$\mathrm{~m}^{3}$	0.028316	ft^{3}
$\mathrm{~m}^{3}$	0.764555	yd^{3}

16.387 in ${ }^{3}$
29.57 fl oz
473 pint
946.333 quart
$28.32 \mathrm{ft}^{3}$
0.9463 quart
3.785 gallon
1.101 dry quart
8.809 peck
35.238 bushel
(Troy Weight)
373.248 lb t

(Mass)	(Apothecaries' Weight)	
g	3.387	dr ap
g	31.103	oz ap
g	373.248	lb ap

Multiply \longrightarrow
Metric Unit $=$ Conversion Factor \times US Customary Unit

\longleftarrow Divide

Metric Unit \div Conversion Factor $=$ US Customary Unit

Table 7.44
International System of Units (SI)—Metric Units

Prefix	Symbol	___Multiplication Factor-		
exe	E	10^{18}	=	1,000,000 000,000,000,000
peta	P	1015	=	1,000 000,000,000,000
tera	T	10^{12}	=	1,000,000,000,000
giga	G	10^{9}	=	1,000,000,000
mega	M	10^{6}	=	1,000,000
kilo	k	10^{3}	=	1,000
hecto	h	10^{2}	=	100
deca	da	10^{1}	=	10
(unit)		10^{0}	=	1
deci	d	10^{-1}	=	0.1
centi	c	10-2	=	0.01
milli	m	10-3	=	0.001
micro	μ	10^{-6}	=	0.000001
nano	n	10^{-9}	=	0.000000001
pico	p	10-12	$=$	0.000000000001
femto	f	10-15	$=$	0.000000000000001
atto	a	10^{-18}	$=$	0.000000000000000001

Linear
1 meter $(m)=100$ centimeters $(\mathrm{cm})=1000$ millimeters (mm)

Area

$1 \mathrm{~m}^{2}=1 \times 10^{4} \mathrm{~cm}^{2}=1 \times 10^{6} \mathrm{~mm}^{2}$

Volume

$1 \mathrm{~m}^{3}=1 \times 10^{6} \mathrm{~cm}^{3}=1 \times 10^{9} \mathrm{~mm}^{3}$
1 liter $(I)=1000 \mathrm{~cm}^{3}=1 \times 10^{6} \mathrm{~mm}^{3}$

Mass

1 kilogram (kg) = 1000 grams (g)
(Approximately the mass of 1 liter of water)
1 metric ton (or tonne) $=1000 \mathrm{~kg}$

Table 7.45

Abbreviations List

A

a—atto (prefix for 10^{-18})
A-ampere (unit of electrical current)
ac-alternating current
ACC—Affiliated Club Coordinator
ACSSB—amplitude-compandored single sideband
A/D—analog-to-digital
ADC—analog-to-digital converter
AF-audio frequency
AFC-automatic frequency control
AFSK—audio frequency-shift keying
AGC-automatic gain control
Ah-ampere hour
ALC-automatic level control
AM-amplitude modulation
AMRAD-Amateur Radio Research and
Development Corporation
AMSAT—Radio Amateur Satellite Corporation

AMTOR—Amateur Teleprinting Over Radio
ANT-antenna
ARA-Amateur Radio Association
ARC-Amateur Radio Club
ARES—Amateur Radio Emergency Service
ARQ—Automatic repeat request
ARRL-American Radio Relay League
ARS—Amateur Radio Society (station)
ASCII-American National Standard
Code for Information Interchange
ATV-amateur television
AVC-automatic volume control
AWG-American wire gauge
az-el—azimuth-elevation
B
B—bel; blower; susceptance; flux density, (inductors)
balun-balanced to unbalanced (transformer)
BC-broadcast
BCD—binary coded decimal
BCl —broadcast interference
Bd-baud (bids in single-channel binary data transmission)
BER-bit error rate
BFO—beat-frequency oscillator
bit-binary digit
bit/s—bits per second
BM-Bulletin Manager
BPF-band-pass filter
BPL—Brass Pounders League
BPL—Broadband over Power Line
BT-battery
BW—bandwidth
Bytes-Bytes

C

c-centi (prefix for 10^{-2})
C-coulomb (quantity of electric charge); capacitor
CAC-Contest Advisory Committee
CATVI—cable television interference
CB-Citizens Band (radio)
CBBS-computer bulletin-board service
CBMS-computer-based message system
CCITT-International Telegraph and
Telephone Consultative Committee
CCTV-closed-circuit television
CCW-coherent CW
ccw-counterclockwise
CD-civil defense
cm-centimeter
CMOS-complementary-symmetry metal-oxide semiconductor
coax-coaxial cable
COR-carrier-operated relay
CP-code proficiency (award)
CPU—central processing unit
CRT-cathode ray tube
CT—center tap
CTCSS-continuous tone-coded squelch system
cw-clockwise
CW-continuous wave

D

d—deci (prefix for 10-1)
D-diode
da-deca (prefix for 10)
D/A—digital-to-analog
DAC-digital-to-analog converter
dB-decibel (0.1 bel)
dBi -decibels above (or below) isotropic antenna
dBm -decibels above (or below) 1 milliwatt
DBM—double balanced mixer
dBV—decibels above/below 1 V
(in video, relative to 1 V P-P)
dBW—decibels above/below 1 W
dc-direct current
D-C-direct conversion
DDS—direct digital synthesis
DEC—District Emergency Coordinator
deg-degree
DET-detector
DF-direction finding; direction finder
DIP-dual in-line package
DMM-digital multimeter
DPDT—double-pole double-throw (switch)
DPSK—differential phase-shift keying
DPST—double-pole single-throw (switch)
DS-direct sequence (spread spectrum); display
DSB-double sideband
DSP—digital signal processing
DTMF-dual-tone multifrequency
DVM—digital voltmeter
DX—long distance; duplex
DXAC—DX Advisory Committee
DXCC—DX Century Club

E
e—base of natural logarithms (2.71828)
E-voltage
EA-ARRL Educational Advisor
EC-Emergency Coordinator
ECL—emitter-coupled logic
EHF-extremely high frequency ($30-300 \mathrm{GHz}$)
EIA-Electronic Industries Alliance
EIRP—effective isotropic radiated power
ELF-extremely low frequency
ELT-emergency locator transmitter
EMC-electromagnetic compatibility
EME-earth-moon-earth (moonbounce)
EMF-electromotive force
EMI-electromagnetic interference
EMP-electromagnetic pulse
EOC-emergency operations center
EPROM—erasable programmable read only memory

F

f -femto (prefix for 10^{-15}); frequency
F-farad (capacitance unit); fuse
fax-facsimile
FCC-Federal Communications
Commission
FD-Field Day
FEMA-Federal Emergency Management Agency
FET-field-effect transistor
FFT-fast Fourier transform
FL-filter
FM-frequency modulation
FMTV-frequency-modulated television
FSK-frequency-shift keying
FSTV-fast-scan (real-time) television
ft -foot (unit of length)

G

g-gram (unit of mass)
G-giga (prefix for 10^{9}); conductance
GaAs-gallium arsenide
GB-gigabytes
GDO-grid- or gate-dip oscillator
GHz—gigahertz ($10^{9} \mathrm{~Hz}$)
GND-ground

H

h—hecto (prefix for 10^{2})
H -henry (unit of inductance)
HF -high frequency ($3-30 \mathrm{MHz}$)
HFO-high-frequency oscillator;
heterodyne frequency oscillator
HPF-highest probable frequency; high-pass filter
Hz -hertz (unit of frequency,
1 cycle/s)

I

I-current, indicating lamp
IARU—International Amateur Radio Union
IC-integrated circuit
ID—identification; inside diameter
IEEE-Institute of Electrical and Electronics Engineers
IF-intermediate frequency

IMD—intermodulation distortion
in.-inch (unit of length)
in./s-inch per second (unit of velocity)
I/O—input/output
IRC-international reply coupon
ISB—independent sideband
ITF-Interference Task Force
ITU-International Telecommunication Union
ITU-T-ITU Telecommunication Standardization Bureau

J-K

j-operator for complex notation, as for reactive component of an impedance
(+j inductive; $-j$ capacitive)
J—joule ($\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}$) (energy or work unit); jack
JFET-junction field-effect transistor
k—kilo (prefix for 103); Boltzmann's constant ($1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$)
K—kelvin (used without degree symbol) absolute temperature
scale; relay
kB—kilobytes
kBd-1000 bauds
kbit-1024 bits
kbit/s-1024 bits per second
kbyte-1024 bytes
kg—kilogram
kHz-kilohertz
km—kilometer
kV—kilovolt
kW—kilowatt
k Ω-kilohm

L

- -liter (liquid volume)

L—lambert; inductor
lb-pound (force unit)
LC-inductance-capacitance
LCD-liquid crystal display
LED-light-emitting diode
LF-low frequency ($30-300 \mathrm{kHz}$)
LHC-left-hand circular (polarization)
LO—local oscillator; Leadership Official
LP—log periodic
LS—loudspeaker
Isb-least significant bit
LSB-lower sideband
LSI-large-scale integration
LUF-lowest usable frequency

M

m—meter (length); milli (prefix for 10^{-3})
M—mega (prefix for 10^{6}); meter (instrument)
mA-milliampere
mAh—milliampere hour
MB-megabytes
MCP—multimode communications processor
MDS—Multipoint Distribution Service; minimum discernible (or detectable) signal
MF-medium frequency ($300-3000 \mathrm{kHz}$)
mH -millihenry
MHz -megahertz
mi-mile, statute (unit of length)
mi / h (MPH)—mile per hour
mi / s-mile per second
mic-microphone
min-minute (time)
MIX—mixer
mm-millimeter
MOD—modulator
modem—modulator/demodulator
MOS-metal-oxide semiconductor
MOSFET-metal-oxide semiconductor field-effect transistor
MS—meteor scatter
ms-millisecond
m / s-meters per second
msb-most-significant bit
MSI-medium-scale integration
MSK-minimum-shift keying
MSO—message storage operation
MUF-maximum usable frequency
mV -millivolt
mW -milliwatt
$\mathrm{M} \Omega$-megohm

N

n—nano (prefix for 10^{-9}); number of turns (inductors)
NBFM-narrow-band frequency modulation
NC—no connection; normally closed
NCS-net-control station; National Communications System
nF -nanofarad
NF—noise figure
nH—nanohenry
NiCd—nickel cadmium
NM—Net Manager
NMOS-N-channel metal-oxide silicon
NO-normally open
NPN—negative-positive-negative (transistor)
NPRM—Notice of Proposed Rule Making (FCC)
ns-nanosecond
NTIA-National Telecommunications
and Information Administration
NTS—National Traffic System
0
OBS—Official Bulletin Station
OD—outside diameter
OES—Official Emergency Station
OO—Official Observer
op amp-operational amplifier
ORS—Official Relay Station
OSC-oscillator
OSCAR—Orbiting Satellite Carrying Amateur Radio
OTC—Old Timer's Club
oz-ounce ($1 / 16$ pound)

P

p—pico (prefix for 10-12)
P-power; plug
PA-power amplifier
PACTOR—digital mode combining aspects of packet and AMTOR
PAM-pulse-amplitude modulation
PBS—packet bulletin-board system

PC—printed circuit
PD-power dissipation
PEP-peak envelope power
PEV—peak envelope voltage
pF—picofarad
pH -picohenry
PIC—Public Information Coordinator
PIN—positive-intrinsic-negative (semiconductor)
PIO—Public Information Officer
PIV—peak inverse voltage
PLC—Power Line Carrier
PLL—phase-locked loop
PM-phase modulation
PMOS-P-channel (metal-oxide semiconductor)
PNP—positive negative positive (transistor)
pot-potentiometer
P-P—peak to peak
ppd—postpaid
PROM-programmable read-only memory
PSAC—Public Service Advisory Committee
PSHR—Public Service Honor Roll
PTO-permeability-tuned oscillator
PTT—push to talk

Q-R

Q-figure of merit (tuned circuit); transistor
QRP—low power (less than 5-W output)
R-resistor
RACES—Radio Amateur Civil Emergency Service
RAM-random-access memory
RC-resistance-capacitance
R/C—radio control
RCC—Rag Chewer's Club
RDF-radio direction finding
RF-radio frequency
RFC-radio-frequency choke
RFI-radio-frequency interference
RHC-right-hand circular (polarization)
RIT—receiver incremental tuning
RLC-resistance-inductance-capacitance
RM—rule making (number assigned to petition)
r/min (RPM)—revolutions per minute
rms-root mean square
ROM-read-only memory
r/s—revolutions per second
RS—Radio Sputnik (Russian ham satellite)
RST-readability-strength-tone (CW signal report)
RTTY—radioteletype
RX—receiver, receiving

S

s-second (time)
S-siemens (unit of conductance); switch
SASE-self-addressed stamped envelope

SCF-switched capacitor filter
SCR-silicon controlled rectifier
SEC-Section Emergency Coordinator
SET-Simulated Emergency Test
SGL—State Government Liaison
SHF-super-high frequency ($3-30 \mathrm{GHz}$)
SM—Section Manager; silver mica (capacitor)
S/N—signal-to-noise ratio
SPDT-single-pole double-throw (switch)
SPST-single-pole single-throw (switch)
SS—ARRL Sweepstakes; spread spectrum
SSB—single sideband
SSC—Special Service Club
SSI-small-scale integration
SSTV—slow-scan television
STM-Section Traffic Manager
SX—simplex
sync-synchronous, synchronizing
SWL—shortwave listener
SWR-standing-wave ratio

T

T-tera (prefix for 1012); transformer
TA—ARRL Technical Advisor
TC-Technical Coordinator
TCC-Transcontinental Corps (NTS)
TCP/IP-Transmission Control Protocol/ Internet Protocol
tfc-traffic
TNC-terminal node controller (packet radio)
TR-transmit/receive
TS-Technical Specialist
TTL—transistor-transistor logic
TTY-teletypewriter
TU-terminal unit
TV-television
TVI-television interference
TX-transmitter, transmitting
U
U-integrated circuit
UHF-ultra-high frequency (300 MHz to 3 GHz)
USB-upper sideband
UTC-Coordinated Universal Time (also abbreviated Z)
UV—ultraviolet
v
V-volt; vacuum tube
VCO-voltage-controlled oscillator
VCR—video cassette recorder
VDT-video-display terminal
VE-Volunteer Examiner
VEC-Volunteer Examiner Coordinator
VFO—variable-frequency oscillator
VHF-very-high frequency (30300 MHz)
VLF-very-low frequency ($3-30 \mathrm{kHz}$)
VLSI-very-large-scale integration
VMOS-V-topology metal-oxidesemiconductor
VOM-volt-ohmmeter
VOX—voice-operated switch
VR-voltage regulator
VSWR-voltage standing-wave ratio
VTVM—vacuum-tube voltmeter
VUCC-VHF/UHF Century Club
VXO—variable-frequency crystal oscillator

W
W-watt ($\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$), unit of power
WAC-Worked All Continents
WAS-Worked All States
WBFM-wide-band frequency modulation
WEFAX—weather facsimile
Wh-watthour
WPM-words per minute
WRC-World Radiocommunication Conference
WVDC-working voltage, direct current

X

X—reactance
XCVR-transceiver
XFMR-transformer
XIT-transmitter incremental tuning
XO—crystal oscillator
XTAL-crystal
XVTR—transverter

Y-Z

Y-crystal; admittance
YIG-yttrium iron garnet
Z-impedance; also see UTC

Numbers/Symbols

5BDXCC—Five-Band DXCC
5BWAC-Five-Band WAC
5BWAS—Five-Band WAS
6BWAC-Six-Band WAC
${ }^{\circ}$-degree (plane angle)
${ }^{\circ} \mathrm{C}$-degree Celsius (temperature)
${ }^{\circ} \mathrm{F}$-degree Fahrenheit (temperature)
α-(alpha) angles; coefficients, attenuation constant, absorption factor, area, common-base forward current-transfer ratio of a bipolar transistor
β-(beta) angles; coefficients, phase constant, current gain of commonemitter transistor amplifiers
γ-(gamma) specific gravity, angles, electrical conductivity, propagation constant
Γ-(gamma) complex propagation constant
δ-(delta) increment or decrement; density; angles
Δ-(delta) increment or decrement determinant, permittivity
ع-(epsilon) dielectric constant; permittivity; electric intensity
ζ-(zeta) coordinates; coefficients
η-(eta) intrinsic impedance; efficiency; surface charge density; hysteresis; coordinate
θ-(theta) angular phase displacement; time constant; reluctance; angles
-(iota) unit vector
K-(kappa) susceptibility; coupling coefficient
λ-(lambda) wavelength; attenuation constant
Λ-(lambda) permeance
μ-(mu) permeability; amplification
factor; micro (prefix for 10^{-6})
$\mu \mathrm{F}$-microfarad
$\mu \mathrm{H}$-microhenry
$\mu \mathrm{P}$-microprocessor
ξ-(xi) coordinates
π-(pi) ≈ 3.14159
ρ-(rho) resistivity; volume charge density; coordinates; reflection coefficient
σ-(sigma) surface charge density; complex propagation constant; electrical conductivity; leakage coefficient; deviation
Σ-(sigma) summation
τ-(tau) time constant; volume resistivity; time-phase displacement; transmission factor; density
ϕ-(phi) magnetic flux angles
Φ-(phi) summation
χ-(chi) electric susceptibility; angles
Ψ-(psi) dielectric flux; phase difference; coordinates; angles
ω-(omega) angular velocity $2 \pi \mathrm{~F}$
Ω-(omega) resistance in ohms; solid angle

Table 7.46

Computer Connector Pinouts

(D)

Serial Port (DB 25 pin)
Male

Pin Signal	Pin Signal	
1	N/C (not connected)	20
2	DTR (Data Terminal Ready)	
3	RxD (Receive Data)	21
N/C (Rens		
4	RTS (Request To Send)	22
5	RTS (Clear To Send)	23
N/C $/ C$		
6	DSR (Data Set Ready)	24
N/C $/ C$		
7	GND (Signal Ground)	25
N/C		
8	DCD (Data Carrier Detect)	
$9-19$ N/C		

(E)

Ethernet Connector (RJ45-8 pin)

Pin Signal	
1	Output Transmit Data (+)
2	Output Transmit Data (-)
3	Input Receive Data (+)
4	N/C (not connected)
5	N/C
6	Input Receive Data (-)
7	N/C
8	N/C

(F)

Ethernet Connector (RJ45-10 pin)

> Pin Signal
> 1 DCD (Data Carrier Detect)
> 2 DTR (Data Terminal Ready)
> CTS (Clear To Send) GND (Signal Ground) 5 RxD (Receive Data) TxD (Transmit Data) GND (Frame Ground) RTS (Request To Send) DSR (Data Set Ready)
> 10 RI (Ring Indicator)
(G)

Pin Signal
1 N/C (not connected)
2 Data
$\begin{array}{ll}3 & \text { Clock } \\ 4 & \text { N/C }\end{array}$
5 GND (Signal Ground)
6 N/C
7 RTS (12-9 V)
8 N/C
(J)

PC-AT Type Power Connector

PC-ATX Type Power Connector Viewed from Connector End

HBKOO3O

Table 7.47
Voltage-Power Conversion Table
Based on a 50 -ohm system

RMS	Peak-to-Peak	dBmV
$0.01 \mu \mathrm{~V}$	$0.0283 \mu \mathrm{~V}$	-100
$0.02 \mu \mathrm{~V}$	$0.0566 \mu \mathrm{~V}$	-93.98
$0.04 \mu \mathrm{~V}$	$0.113 \mu \mathrm{~V}$	-87.96
$0.08 \mu \mathrm{~V}$	$0.226 \mu \mathrm{~V}$	-81.94
$0.1 \mu \mathrm{~V}$	$0.283 \mu \mathrm{~V}$	-80.0
$0.2 \mu \mathrm{~V}$	$0.566 \mu \mathrm{~V}$	-73.98
$0.4 \mu \mathrm{~V}$	$1.131 \mu \mathrm{~V}$	-67.96
$0.8 \mu \mathrm{~V}$	$2.236 \mu \mathrm{~V}$	-61.94
$1.0 \mu \mathrm{~V}$	$2.828 \mu \mathrm{~V}$	-60.0
$2.0 \mu \mathrm{~V}$	$5.657 \mu \mathrm{~V}$	-53.98
$4.0 \mu \mathrm{~V}$	$11.31 \mu \mathrm{~V}$	-47.96
$8.0 \mu \mathrm{~V}$	22.63 V V	-41.94
10.0 MV	$28.28 \mu \mathrm{~V}$	-40.00
20.0 V	$56.57 \mu \mathrm{~V}$	-33.98
40.0 M V	113.1 $\mu \mathrm{V}$	-27.96
$80.0 \mu \mathrm{~V}$	226.3 $\mu \mathrm{V}$	-21.94
$100.0 \mu \mathrm{~V}$	282.8 ¢ V	-20.0
$200.0 \mu \mathrm{~V}$	$565.7 \mu \mathrm{~V}$	-13.98
$400.0 \mu \mathrm{~V}$	1.131 mV	-7.959
$800.0 \mu \mathrm{~V}$	2.263 mV	-1.938
1.0 mV	2.828 mV	0.0
2.0 mV	5.657 mV	6.02
4.0 mV	11.31 mV	12.04
8.0 mV	22.63 mV	18.06
10.0 mV	28.28 mV	20.00
20.0 mV	56.57 mV	26.02
40.0 mV	113.1 mV	32.04
80.0 mV	226.3 mV	38.06
100.0 mV	282.8 mV	40.0
200.0 mV	565.7 mV	46.02
223.6 mV	632.4 mV	46.99
400.0 mV	1.131 V	52.04
800.0 mV	2.263 V	58.06
1.0 V	2.828 V	60.0
2.0 V	5.657 V	66.02
4.0 V	11.31 V	72.04
8.0 V	22.63 V	78.06
10.0 V	28.28 V	80.0
20.0 V	56.57 V	86.02
40.0 V	113.1 V	92.04
80.0 V	226.3 V	98.06
100.0 V	282.8 V	100.0
200.0 V	565.7 V	106.0
223.6 V	632.4 V	107.0
400.0 V	1,131.0 V	112.0
800.0 V	2,263.0 V	118.1
1000.0 V	2,828.0 V	120.0
2000.0 V	5,657.0 V	126.0
4000.0 V	11,310.0 V	132.0
8000.0 V	22,630.0 V	138.1
10,000.0 V	28,280.0 V	140.0

Voltage, $\mathrm{V}_{\mathrm{p}-\mathrm{p}}=\mathrm{V}_{\mathrm{RMS}} \times 2 \sqrt{2}$
Voltage, $\mathrm{dBmV}=20 \times \log _{10}\left[\frac{\mathrm{~V}_{\text {RMS }}}{0.001 \mathrm{~V}}\right]$ or $20 \times \log _{10}\left[\mathrm{mV}_{\text {RMS }}\right]$

Watts	dBm
2×10^{-18}	-147.0
8×10^{-18}	-141.0
32×10^{-18}	-134.9
128×10^{-18}	-128.9
200×10^{-18}	-127.0
800×10^{-18}	-121.0
3.2×10^{-15}	-114.9
12.8×10^{-15}	-108.9
20.0×10^{15}	-107.0
80.0×10^{-15}	-101.0
320.0×10^{-15}	-94.95
1.28×10^{-12}	-88.93
2.0×10^{-12}	-86.99
8.0×10^{-12}	-80.97
32.0×10^{-12}	-74.95
128.0×10^{-12}	-68.93
200.0×10^{-12}	-66.99
800.0×10^{-12}	-60.97
3.2×10^{-9}	-54.95
12.8×10^{-9}	-48.93
20.0×10^{-9}	-46.99
80.0×10^{-9}	-40.97
320×10^{-9}	-34.95
$1.28 \mu \mathrm{~W}$	-28.93
$12.0 \mu \mathrm{~W}$	-26.99
$8.0 \mu \mathrm{~W}$	-20.97
$32.0 \mu \mathrm{~W}$	-14.95
128.0 HW	-8.93
200.0 ¢W	-6.99
$800.0 \mu \mathrm{~W}$	-0.97
1.0 mW	0
3.2 mW	5.05
12.80 mW	11.07
20.0 mW	13.01
80.0 mW	19.03
320.0 mW	25.05
1.28 W	31.07
2.0 W	33.01
8.0 W	39.03
32.0 W	45.05
128.0 W	51.07
200.0 W	53.01
800.0 W	59.03
1,000.0 W	60.0
3,200.0 W	65.05
12,800.0 W	71.07
20,000 W	73.01
80,000 W	79.03
320,000 W	85.05
1.28 MW	91.07
2.0 MW	93.01

Power, watts $=\left[\frac{\mathrm{V}_{\mathrm{RMS}}{ }^{2}}{50 \Omega}\right]$
Power, $\mathrm{dBm}=10 \times \log _{10}\left[\frac{\text { Power (watts) }}{0.001 \mathrm{~W}}\right]$ or $10 \times \log _{10}\left[\mathrm{~mW}_{\text {RMS }}\right]$

Table 7.48
Large Machine-Wound Coil Specifications
Coil Dia
Inches
Inch
$11 / 4$
Turns
Per Inch

4	2.75
6	6.3
8	11.2
10	17.5
16	42.5

$11 / 2$	4	3.9
	6	8.8
	8	15.6
	10	24.5
	16	63
$13 / 4$	4	5.2
	6	11.8
	8	21
	10	33
	16	85

2

2	4	6.6
	6	15
	8	26.5
	10	42
	16	108
	$1 / 2$	4
	6	10.2
	8	23
	10	41
		64

3
Inductance
in μH
2.75
6.3
11.2
17.5
42.5

3.9
8.8
15.6
24.5
63

5.2
11.8
21
33
85
6.6
26.5

108
10.2

23
64
14
31.5

56
89

Inductance Factor for Large Machine-Wound Coils

Factor to be applied to the inductance of large coils for coil lengths up to 5 inches.

Table 7.50
Small Machine-Wound Coil Specifications
\(\left.\begin{array}{lcc}Coil Dia, \& Turns

Inches \& Per Inch \& Inductance

in \mu \mathrm{H}\end{array}\right]\)| 1/2 (A) |
| :--- |

Table 7.51
Inductance Factor for Small Machine-Wound Coils

Factor to be applied to the inductance of small coils as a function of coil length. Use curve A for coils marked A, and curve B for coils marked B.

Table 7.52
Measured Inductance for \#12 Wire Windings

Values are for inductors with half-inch leads and wound with eight turns per inch.

Table 7.53
Relationship Between Noise Figure and Noise Temperature
Note: Reference temperature is 290 kelvin

Table 7.54

Antenna Wire Strength

American Wire Gauge

4
6
8
10
12
14
16
18
20

Recommended Tension ${ }^{1}$ (pounds)
Copper-clad Hard-drawn stee ${ }^{2}$

495
310
195
120
75
50
31
19
12
copper

214 130 84 84 32 32 20 13

Weight (pounds per 1000 feet)
Copper-clad Hard-drawn
steel ${ }^{2}$ copper
$115.8 \quad 126$
$72.9 \quad 79.5$
$45.5 \quad 50$
$28.8 \quad 31.4$
$18.1 \quad 19.8$
$11.4 \quad 12.4$
$7.1 \quad 7.8$
4.5
2.8
4.9
3.1
${ }^{1}$ Approximately one-tenth the breaking load. Might be increased 50% if end supports are firm and there is no danger of ice loading.
2"Copperweld," 40% copper.

Table 7.55
Standard vs American Wire Gauge

SWG	Diam (in.)	Nearest AWG
12	0.104	10
14	0.08	12
16	0.064	14
18	0.048	16
20	0.036	19
22	0.028	21
24	0.022	23
26	0.018	25
28	0.0148	27
30	0.0124	28
32	0.0108	29
34	0.0092	31
36	0.0076	32
38	0.006	34
40	0.0048	36
42	0.004	38
44	0.0032	40
46	0.0024	-

Table 7.56
Pi-Network Resistive Attenuators (50 Ω)

dB Atten.	R1 (Ohms)	$R 2$ (Ohms)
1.0	870	5.77
2.0	436	11.6
3.0	292	17.6
4.0	221	23.8
5.0	178	30.4
6.0	150	37.4
7.0	131	44.8
8.0	116	52.8
9.0	105	61.6
10.0	96.2	71.2
11.0	89.2	81.7
12.0	83.5	93.2
13.0	78.8	106
14.0	74.9	120
15.0	71.6	136
16.0	68.8	154
17.0	66.4	173
18.0	64.4	195
19.0	62.6	220
20.0	61.1	248
21.0	59.8	278
22.0	58.6	313
23.0	57.6	352
24.0	56.7	395
25.0	56.0	443
30.0	53.2	790
35.0	51.8	1405
40.0	51.0	2500
45.0	50.5	4446
50.0	50.3	1406
55.0	50.2	25000
60.0	50.1	

Note: A PC board kit for the Low-Power Step Attenuator (Sep 1982 QST) is available from FAR Circuits. Project details are in the Handbook template package STEP ATTENUATOR.

Table 7.57
T-Network Resistive Attenuators (50 Ω)

$d B$ Atten.	R1 (Ohms)	R2 (Ohms)
1.0	2.88	433
2.0	5.73	215
3.0	8.55	142
4.0	11.3	105
5.0	14.0	82.2
6.0	16.6	66.9
7.0	19.1	55.8
8.0	21.5	47.3
9.0	23.8	40.6
10.0	26.0	35.1
11.0	28.0	30.6
12.0	30.0	26.8
13.0	31.7	23.5
14.0	33.3	20.8
15.0	35.0	18.4
16.0	36.3	16.2
17.0	37.6	14.4
18.0	38.8	12.8
19.0	40.0	11.4
20.0	41.0	10.0
21.0	41.8	9.0
22.0	42.6	8.0
23.0	43.4	7.1
24.0	44.0	6.3
25.0	44.7	5.6
30.0	47.0	3.2
35.0	48.2	1.8
40.0	49.0	1.0
45.0	49.4	0.56
50.0	49.7	0.32
55.0	49.8	0.18
60.0	49.9	0.10
$0-\sim_{0}^{R 1} \sim \sim_{0}^{R 1}$		

Table 7.58
Impedance of Various Two-Conductor Lines
—— Twists per Inch -_

Wire Size	2.5	5	7.5	10	12.5
no. 20	43	39	35		
no. 22	46	41	39	37	32
no. 24	60	45	44	43	41
no. 26	65	57	54	48	47
no. 28	74	53	51	49	47
no. 30			49	46	47

Measured in ohms at 14.0 MHz .
This illustrates the impedance of various two-conductor lines as a function of the wire size and number of twists per inch.

Table 7.59
Attenuation per Foot for Lines

					Twists per Inch
	Sire Size			2.5	5
7.5	10	12.5			
no. 20	0.11	0.11	0.12		
no. 22	0.11	0.12	0.12	0.12	0.12
no. 24	0.11	0.12	0.12	0.13	0.13
no. 26	0.11	0.13	0.13	0.13	0.13
no. 28	0.11	0.13	0.13	0.16	0.16
no. 30			0.25	0.27	0.27

Measured in decibels at 14.0 MHz .
Attenuation in $d B$ per foot for the same lines as shown above.

Table 7.60

Equivalent Values of Reflection Coefficient, Attenuation, SWR and Return Loss

| Reflection | Attenuation | Max | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Coefficient (\%) | (dB) | Return | Reflection
 Coefficient (\%) | Attenuation
 (dB) | Max | Return
 Loss, dB |

Table 7.61
Guy Wire Lengths to Avoid

The black bars indicate ungrounded guy wire lengths to avoid for the eight HF amateur bands. This chart is based on resonance within 10% of any frequency in the band. Grounded wires will exhibit resonance at odd multiples of a quarter wavelength. (Jerry Hall, K1TD)

Table 7.62
Morse Code Character Set ${ }^{1}$

A	didah	- -
B	dahdididit	- •••
C	dahdidahdit	-•-•
D	dahdidit	-••
E	dit	-
F	dididahdit	-•-•
G	dahdahdit	--•
H	didididit	-0.0
I	didit	-
J	didahdahdah	-- - -
K	dahdidah	-•-
L	didahdidit	--••
M	dahdah	- -
N	dahdit	-•
O	dahdahdah	- - -
P	didahdahdit	---•
Q	dahdahdidah	--•-
R	didahdit	--•
S	dididit	$\bullet \bullet$
T	dah	-
U	dididah	-•-
V	didididah	-••
W	didahdah	-- -
X	dahdididah	-••
Y	dahdidahdah	-•--
Z	dahdahdidit	-
1	didahdahdahdah	----
2	dididahdahdah	-•---
3	didididahdah	-••- -
4	dididididah	-0.0
5	dididididit	-0.0•
6	dahdidididit	- -0.*
7	dahdahdididit	-••
8	dahdahdahdidit	---•••
9	dahdahdahdahdit	----•
0	dahdahdahdahdah	----

At [@]
Period [.]:
Comma [,]:
Question mark or
request for repetition [?]:
Error:
Hyphen or dash [-]:
Double dash [=]
Colon [:]:
Semicolon [;]:
Left parenthesis [(]:
Right parenthesis [)]:
Fraction bar [/]:
Quotation marks ["]:
Dollar sign [\$]:
Apostrophe [']:
Paragraph [7$]$:
Underline [_]:
Starting signal:
Wait:
End of message or cross [+]:
Invitation to transmit [K]:
End of work:
Understood:

Notes:

1. Not all Morse characters shown are used in FCC code tests. License applicants are responsible for knowing, and may be tested on, the 26 letters, the numerals 0 to 9 , the period, the comma, the question mark, AR, SK, BT and fraction bar [DN].

2. The follo	wing letters are used in		Esperanto cha	rs:
certain Eur	pean languages which use	$\hat{\text { ® }}$		
the Latin a	lphabet:	C	dahdidahdidit	-•-••
Ä, A	didahdidah	$\hat{\text { s }}$		
Á, À, À, Â	didahdahdidah	S	didididahdit	
Ç, Ć	dahdidahdidit -•-••	$\hat{\jmath}$		
É, È, E	dididahdidit $\quad \bullet-\bullet$		didahdahdahdit	
E	didahdididah •-••-	\hat{H}	dahdidahdahdit	-•
	dahdididahdit - - -			
Ö, O̊, Ó	dahdahdahdit	U	dididahdah	-•--
N Ü	dahdahdidahdah --•--			
ジ	dididahdah	G	dahdahdidahdit	--•-•
Ż	dahdahdidit			
Z	dahdahdididah --••-			
CH , Ş	dahdahdahdah			

4. Signals used in other radio services:

Interrogatory	dididahdidah	$\bullet \bullet$ - -	$\overline{\text { INT }}$
Emergency silence	dididididahdah	-•••--	$\overline{\mathrm{HM}}$
Executive follows	dididahdididah	-•-•• -	IX
Break-in signal	dahdahdahdahdah	-----	TTTTT
Emergency signal	didididahdahdahdididit	-••---*••	$\overline{\text { SOS }}$
Relay of distress	dahdididahdididahdidit	-•-••	DDD

Table 7.63
Morse Abbeviated ("Cut") Numbers

Numeral		Long Number		Abbreviated Number	Equivalent Character
1	didahdahdahdah	- - - - -	didah	- -	A
2	dididahdahdah	-•---	dididah	-•-	U
3	didididahdah	-••--	didididah	-••-	V
4	dididididah	-...-	dididididah	-•••-	4
5	dididididit	- .	dididididit	-.... or -	5 or E
6	dahdidididit	-•••	dahdidididit	. . .	6
7	dahdahdididit	- •••	dahdididit	-•	B
8	dahdahdahdidit	- - - ••	dahdidit	-	D
9	dahdahdahdahdit	----•	dahdit	-•	N
0	dahdahdahdahdah	-----	dah	-	T

Note: These abbreviated numbers are not legal for use in call signs. They should be used only where there is agreement between operators and when no confusion will result.

Table 7.64

The ASCII Coded Character Set

					6	0	0	0	0	1	1	1	1
					5	0	0	1	1	0	0	1	1
Number					4	0	1	0	1	0	1	0	1
				Hex	1st	0	1	2	3	4	5	6	7
3	2	1	0	2nd									
0	0	0	0	0		NUL	DLE	SP	0	@	P	،	p
0	0	0	1	1		SOH	DC1	!	1	A	Q	a	q
0	0	1	0	2		STX	DC2	"	2	B	R	b	r
0	0	1	1	3		ETX	DC3	\#	3	C	S	c	s
0	1	0	0	4		EOT	DC4	\$	4	D	T	d	t
0	1	0	1	5		ENQ	NAK	\%	5	E	U	e	u
0	1	1	0	6		ACK	SYN	\&	6	F	V	f	v
0	1	1	1	7		BEL	ETB	'	7	G	W	g	w
1	0	0	0	8		BS	CAN	(8	H	X	h	x
1	0	0	1	9		HT	EM)	9	I	Y	i	,
1	0	1	0	A		LF	SUB	*	:	J	Z	j	z
1	0	1	1	B		VT	ESC	+	,	K	[k	1
1	1	0	0	C		FF	FS	,	<	L	1	,	\|
1	1	0	1	D		CR	GS	-	=	M]	m	\}
1	1	1	0	E		SO	RS	.	>	N	\wedge	n	\sim
1	1	1	1	F		SI	US	i	?	O	-	-	DEL

Notes

1. "1" = mark, "0" = space.
2. Bit 6 is the most-significant bit (MSB). Bit 0 is the least-significant bit (LSB).

Table 7.65

Voluntary HF Band Plans

The following frequencies are generally recognized for certain modes or activities (all frequencies are in MHz).
Nothing in the rules recognizes a net's, group's or any individual's special privilege to any specific frequency. Section $97.101(\mathrm{~b})$ of the Rules states that "Each station licensee and each control operator must cooperate in selecting transmitting channels and in making the most effective use of the amateur service frequencies. No frequency will be assigned for the exclusive use of any station." No one "owns" a frequency.

It's good practice-and plain old common sense-for any operator, regardless of mode, to check to see if the frequency is in use prior to engaging operation. If you are there first, other operators should make an effort to protect you from interference to the extent possible given that 100% inter-ference-free operation is an unrealistic expectation in today's congested bands.

1.800-1.810	Digital Modes	14.285	QRP SSB calling frequency
1.810	CW QRP	14.286	AM calling frequency
1.800-2.000	CW		
1.843-2.000	SSB, SSTV and other wideband modes	18.100-18.105	Data
1.910	SSB QRP	18.105-18.110	Automatically controlled data stations
1.995-2.000	Experimental		
1.999-2.000	Beacons	21.060	QRP CW calling frequency
		21.070-21.090	Data
3.500-3.510	CW DX	21.090-21.100	Automatically controlled data stations
3.590	RTTY DX	21.340	SSTV
3.580-3.620	Data	21.385	QRP SSB calling frequency
3.620-3.635	Automatically controlled data stations		
3.790-3.800	DX window	24.920-24.925	Data
3.845	SSTV	24.925-24.930	Automatically controlled data stations
3.885	AM calling frequency		
3.985	QRP SSB calling frequency	28.060	QRP CW calling frequency
		28.070-28.120	Data
7.040	RTTY DX	28.120-28.189	Automatically controlled data stations
	QRP CW calling frequency	28.190-28.225	Beacons
7.075-7.100	Phone in KH/KL/KP only	28.385	QRP SSB calling frequency
7.080-7.100	Data	28.680	SSTV
7.100-7.105	Automatically controlled data stations		
7.171	SSTV	29.000-29.200	AM
7.290	AM calling frequency	29.300-29.510	Satellite downlinks
		29.520-29.580	Repeater inputs
10.106	QRP CW calling frequency	29.600	FM simplex
10.130-10.140	Data	29.620-29.680	Repeater outputs
10.140-10.150	Automatically controlled data stations	Notes	
14.060	QRP CW calling frequency Data	ARRL band plans for frequencies above 28.300 MHz are shown in	
14.070-14.095		The ARRL Repeater Directory The FCC Rule Book	
14.095-14.0995	Automatically controlled data stations	QST	
14.100	IBP/NCDXF beacons		
14.1005-14.112	Automatically controlled data stations		
14.230	SSTV		

Table 7.66
VHF/UHF/EHF Calling Frequencies
Band (MHz) Calling Frequency
50
50.125 SSB
50.620 digital (packet)
52.525 National FM simplex frequency

144

222

432

902
144.010 EME
144.100, 144.110 CW
144.200 SSB
146.520 National FM simplex frequency
222.100 CW/SSB
223.500 National FM simplex frequency
432.010 EME
432.100 CW/SSB
446.000 National FM simplex frequency
902.100 CW/SSB
903.1 Alternate CW, SSB
906.500 National FM simplex frequency

1296

2304

10000

VHF/UHF Activity Nights

Some areas do not have enough VHF/UHF activity to support contacts at all times. This schedule is intended to help VHF/UHF operators make contact. This is only a starting point; check with others in your area to see if local hams have a different schedule.

Band (MHz)	Day	Local Time
50	Sunday	6 PM
144	Monday	7 PM
222	Tuesday	8 PM
432	Wednesday	9 PM
902	Friday	9 PM
1296	Thursday	10 PM

7.52 Chapter 7

Table 7.67
ITU Regions

The International Telecommunication Union divides the world into three regions. Geographic details appear in The FCC Rule Book.

Table 7.68
Allocation of International Call Signs

AAA-ALZ	United States of America	EKA-EKZ	Armenia	H4A-H4Z
AMA-AOZ	Spain	ELA-ELZ	Liberia	H6A-H7Z

P3A-P3Z	Cyprus
P4A-P4Z	Aruba
P5A-P9Z	Democratic People's
	Republic of Korea
RAA-RZZ	Russian Federation
SAA-SMZ	Sweden
SNA-SRZ	Poland
SSA-SSM	Egypt
SSN-STZ	Sudan
SUA-SUZ	Egypt
SVA-SZZ	Greece
S2A-S3Z	Bangladesh
S5A-S5Z	Slovenia
S6A-S6Z	Singapore
S7A-S7Z	Seychelles
S8A-S8Z	South Africa
S9A-S9Z	Sao Tome and Principe
TAA-TCZ	Turkey
TDA-TDZ	Guatemala
TEA-TEZ	Costa Rica
TFA-TFZ	Iceland
TGA-TGZ	Guatemala
THA-THZ	France
TIA-TIZ	Costa Rica
TJA-TJZ	Cameroon
TKA-TKZ	France
TLA-TLZ	Central Africa
TMA-TMZ	France
TNA-TNZ	Congo (Republic of the)
TOA-TQZ	France
TRA-TRZ	Gabon
TSA-TSZ	Tunisia
TTA-TTZ	Chad
TUA-TUZ	Ivory Coast
TVA-TXZ	France
TYA-TYZ	Benin
TZA-TZZ	Mali
T2A-T2Z	Tuvalu
T3A-T3Z	Kiribati
T4A-T4Z	Cuba
T5A-T5Z	Somalia
T6A-T6Z	Afghanistan
T7A-T7Z	San Marino
T8A-T8Z	Palau
T9A-T9Z	Bosnia and Herzegovina
UAA-UIZ	Russian Federation
UJA-UMZ	Uzbekistan
UNA-UQZ	Kazakhstan
URA-UZZ	Ukraine
VAA-VGZ	Canada
VHA-VNZ	Australia
VOA-VOZ	Canada
VPA-VQZ	United Kingdom of Great Britain and Northern Ireland
VRA-VRZ	China (People's Republic of)-Hong Kong
VSA-VSZ	United Kingdom of Great Britain and Northern Ireland
VTA-VWZ	India
VXA-VYZ	Canada
VZA-VZZ	Australia
V2A-V2Z	Antigua and Barbuda
V3A-V3Z	Belize
V4A-V4Z	Saint Kitts and Nevis
V5A-V5Z	Namibia
V6A-V6Z	Micronesia
V7A-V7Z	Marshall Islands
V8A-V8Z	Brunei
WAA-WZZ	United States of America

XAA-XIZ	Mexico
XJA-XOZ	Canada
XPA-XPZ	Denmark
XQA-XRZ	Chile
XSA-XSZ	China
XTA-XTZ	Burkina Faso
XUA-XUZ	Cambodia
XVA-XVZ	Viet Nam
XWA-XWZ	Laos
XXA-XXZ	Portugal
XYA-XZZ	Myanmar
YAA-YAZ	Afghanistan
YBA-YHZ	Indonesia
YIA-YIZ	Iraq
YJA-YJZ	Vanuatu
YKA-YKZ	Syria
YLA-YLZ	Latvia
YMA-YMZ	Turkey
YNA-YNZ	Nicaragua
YOA-YRZ	Romania
YSA-YSZ	El Salvador
YTA-YUZ	Yugoslavia
YVA-YYZ	Venezuela
YZA-YZZ	Yugoslavia
Y2A-Y9Z	Germany
ZAA-ZAZ	Albania
ZBA-ZJZ	United Kingdom of Great Britain and Northern Ireland
ZKA-ZMZ	New Zealand
ZNA-ZOZ	United Kingdom of Great Britain and Northern Ireland
ZPA-ZPZ	Paraguay
ZQA-ZQZ	United Kingdom of Great Britain and Northern Ireland
ZRA-ZUZ	South Africa
ZVA-ZZZ	Brazil
Z2A-Z2Z	Zimbabwe
Z3A-Z3Z	Macedonia (Former Yugoslav Republic)
2AA-2ZZ	United Kingdom of Great Britain and Northern Ireland
3AA-3AZ	Monaco
3BA-3BZ	Mauritius
3CA-3CZ	Equatorial Guinea
3DA-3DM	Swaziland
3DN-3DZ	Fiji
3EA-3FZ	Panama
3GA-3GZ	Chile
3HA-3UZ	China
3VA-3VZ	Tunisia
3WA-3WZ	Viet Nam
3XA-3XZ	Guinea
3YA-3YZ	Norway
3ZA-3ZZ	Poland
4AA-4CZ	Mexico
4DA-4IZ	Philippines
4JA-4KZ	Azerbaijani Republic
4LA-4LZ	Georgia
4MA-4MZ	Venezuela
4NA-4OZ	Yugoslavia
4PA-4SZ	Sri Lanka
4TA-4TZ	Peru
* 4UA-4UZ	United Nations
4VA-4VZ	Haiti
* 4WA-4WZ	United Nations
4XA-4XZ	Israel
* 4YA-4YZ	International Civil Aviation Organization
4ZA-4ZZ	Israel

5AA-5AZ	Libya
5BA-5BZ	Cyprus
5CA-5GZ	Morocco
5HA-5IZ	Tanzania
5JA-5KZ	Colombia
5LA-5MZ	Liberia
5NA-5OZ	Nigeria
5PA-5QZ	Denmark
5RA-5SZ	Madagascar
5TA-5TZ	Mauritania
5UA-5UZ	Niger
5VA-5VZ	Togo
5WA-5WZ	Western Samoa
5XA-5XZ	Uganda
5YA-5ZZ	Kenya
6AA-6BZ	Egypt
6CA-6CZ	Syria
6DA-6JZ	Mexico
6KA-6NZ	Republic of Korea
6OA-6OZ	Somalia
6PA-6SZ	Pakistan
6TA-6UZ	Sudan
6VA-6WZ	Senegal
6XA-6XZ	Madagascar
6YA-6YZ	Jamaica
6ZA-6ZZ	Liberia
7AA-7IZ	Indonesia
7JA-7NZ	Japan
70A-7OZ	Yemen
7PA-7PZ	Lesotho
7QA-7QZ	Malawi
7RA-7RZ	Algeria
7SA-7SZ	Sweden
7TA-7YZ	Algeria
7ZA-7ZZ	Saudi Arabia
8AA-8IZ	Indonesia
$8 \mathrm{JA}-8 \mathrm{NZ}$	Japan
80A-80Z	Botswana
8PA-8PZ	Barbados
8QA-8QZ	Maldives
8RA-8RZ	Guyana
8SA-8SZ	Sweden
8TA-8YZ	India
8ZA-8ZZ	Saudi Arabia
9AA-9AZ	Croatia
9BA-9DZ	Iran
9EA-9FZ	Ethiopia
9GA-9GZ	Ghana
9HA-9HZ	Malta
91A-9JZ	Zambia
9KA-9KZ	Kuwait
9LA-9LZ	Sierra Leone
9MA-9MZ	Malaysia
9NA-9NZ	Nepal
90A-9TZ	Democratic Republic of the Congo
9UA-9UZ	Burundi
9VA-9VZ	Singapore
9WA-9WZ	Malaysia
9XA-9XZ	Rwanda
9YZ-9ZZ	Trinidad and Tobago

Notes:

[^2]Table 7.69

FCC-Allocated Prefixes for Areas Outside the Continental US

Prefix	Location
AH1, KH1, NH1, WH1	Baker, Howland Is
AH2, KH2, NH2, WH2	Guam
AH3, KH3, NH3, WH3	Johnston I
AH4, KH4, NH4, WH4	Midway I
AH5K, KH5K, NH5K, WH5K	Kingman Reef
AH5, KH5, NH5, WH5 (except K suffix)	Palmyra, Jarvis Is
AH6-7, KH6-7, NH6-7, WH6-7	Hawaii
AH7K, KH7K, NH7K, WH7K	Kure I
AH8, KH8, NH8, WH8	American Samoa
AH9, KH9, NH9, WH9	Wake, Wilkes, Peale Is
AHØ, KHØ, NHø, WHØ	Northern Mariana Is
AL, KL, NL, WL	Alaska
KP1, NP1, WP1	Navassa
KP2, NP2, WP2	Virgin Is
KP3-4, NP3-4, WP3-4	Puerto Rico
KP5, NP5, WP5	Desecheo

Table 7.70

DX Operating Code

For W/VE Amateurs

Some DXers have caused considerable confusion and interference in their efforts to work DX stations. The points below, if observed by all W/VE amateurs, will help make DX more enjoyable for all.

1) Call DX only after he calls CQ, QRZ? or signs $\overline{S K}$, or voice equivalents thereof. Make your calls short.
2) Do not call a DX station:
a) On the frequency of the station he is calling until you are sure the QSO is over ($\overline{\mathrm{SK}}$).
b) Because you hear someone else calling him.
c) When he signs $\overline{K N}, \overline{A R}$ or CL.
d) Exactly on his frequency.
e) After he calls a directional CQ, unless of course you are in the right direction or area.
3) Keep within frequency band limits. Some DX stations can get away with working outside, but you cannot.
4) Observe calling instructions given by DX stations. Example: 15U means "call 15 kHz up from my frequency." 15D means down, etc.
5) Give honest reports. Many DX stations depend on W/VE reports for adjustment of station and equipment.
6) Keep your signal clean. Key clicks, ripple, feedback or splatter gives you a bad reputation and may get you a citation from the FCC.
7) Listen and call the station you want. Calling CQ DX is not the best assurance that the rare DX will reply.
8) When there are several W or VE stations waiting, avoid asking DX to "listen for a friend." Also avoid engaging him in a ragchew against his wishes.

For Overseas Amateurs

To all overseas amateur stations:
In their eagerness to work you, many W and VE amateurs resort to practices that cause confusion and QRM. Most of this is good-intentioned but ill-advised; some of it is intentional and selfish. The key to the cessation of unethical DX operating practices is in your hands. We believe that your adoption of certain operating habits will increase your enjoyment of Amateur Radio and that of amateurs on this side who are eager to work you. We recommend your adoption of the following principles:

1) Do not answer calls on your own frequency.
2) Answer calls from W/VE stations only when their signals are of good quality.
3) Refuse to answer calls from other stations when you are already in contact with someone, and do not acknowledge calls from amateurs who indicate they wish to be "next."
4) Give everybody a break. When many W/VE amateurs are patiently and quietly waiting to work you, avoid complying with requests to "listen for a friend."
5) Tell listeners where to call you by indicating how many kilohertz up (U) or down (D) from your frequency you are listening.
6) Use the ARRL-recommended ending signals, especially $\overline{\mathrm{KN}}$ to indicate to impatient listeners the status of the QSO. $\overline{K N}$ means "Go ahead (specific station); all others keep out."
7) Let it be known that you avoid working amateurs who are constant violators of these principles.

Table 7.71

W1AW SCHEDULE

Pacific	Mtn	Central	East	Mon	Tue	Wed	Thu	Fri
6 AM	7 AM	8 AM	9 AM		Fast Code	Slow Code	Fast Code	Slow Code
$\begin{array}{\|l} 7 \mathrm{AM} \\ 1 \mathrm{PM} \end{array}$	$\begin{aligned} & \hline 8 \text { AM - } \\ & 2 \text { PM } \end{aligned}$	$\begin{aligned} & \hline 9 \text { AM - } \\ & 3 \text { PM } \end{aligned}$	$\begin{aligned} & 10 \mathrm{AM}- \\ & 4 \mathrm{PM} \end{aligned}$	Visiting Operator Time (12 PM - 1 PM closed for lunch)				
1 PM	2 PM	3 PM	4 PM	Fast Code	Slow Code	Fast Code	Slow Code	Fast Code
2 PM	3 PM	4 PM	5 PM	Code Bulletin				
3 PM	4 PM	5 PM	6 PM	Teleprinter Bulletin				
4 PM	5 PM	6 PM	7 PM	Slow Code	Fast Code	Slow Code	Fast Code	Slow Code
5 PM	6 PM	7 PM	8 PM	Code Bulletin				
6 PM	7 PM	8 PM	9 PM	Teleprinter Bulletin				
6:45 PM	7:45 PM	8:45 PM	9:45 PM	Voice Bulletin				
7 PM	8 PM	9 PM	10 PM	Fast Code	Slow Code	Fast Code	$\begin{aligned} & \text { Slow } \\ & \text { Code } \end{aligned}$	Fast Code
8 PM	9 PM	10 PM	11 PM	Code Bulletin				

W1AW's schedule is at the same local time throughout the year. The schedule according to your local time will change if your local time does not have seasonal adjustments that are made at the same time as North American time changes between standard time and daylight time. From the first Sunday in April to the last Sunday in October, UTC = Eastern Time +4 hours. For the rest of the year, UTC $=$ Eastern Time +5 hours.

Morse code transmissions:

Frequencies are 1.818, 3.5815, 7.0475, 14.0475, 18.0975, 21.0675, 28.0675 and 147.555 MHz .
Slow Code $=$ practice sent at $5,71 / 2,10,13$ and 15 wpm .
Fast Code = practice sent at $35,30,25,20,15,13$ and 10 wpm.
Code practice text is from the pages of QST. The source is given at the beginning of each practice session and alternate speeds within each session. For example, "Text is from June 2003 QST, pages 9 and 81 ," indicates that the plain text is from the article on page 9 and mixed number/letter groups are from page 81.
Code bulletins are sent at 18 wpm .
W1AW qualifying runs are sent on the same frequencies as the Morse code transmissions. West Coast qualifying runs are transmitted on approximately 3.590 MHz by K6YR. At the beginning of each code practice session, the schedule for the next qualifying run is presented. Underline one minute of the highest speed you copied, certify that your copy was made without aid, and send it to ARRL for grading. Please include your name, call sign (if any) and complete mailing address. The fee structure is $\$ 10$ for a certificate and $\$ 7.50$ for endorsements.

Teleprinter transmissions:

Frequencies are $3.625,7.095,14.095,18.1025,21.095,28.095$ and 147.555 MHz .
Bulletins are sent at 45.45 -baud Baudot and 100-baud AMTOR, FEC Mode B. 110-baud ASCII will be sent only as time allows.
On Tuesdays and Fridays at 6:30 PM Eastern Time, Keplerian elements for many amateur -satellites are sent on the regular teleprinter frequencies.
Voice transmissions:
Frequencies are $1.855,3.99,7.29,14.29,18.16,21.39,28.59$ and 147.555 MHz .

Miscellanea:

On Fridays, UTC, a DX bulletin replaces the regular bulletins.
W1AW is open to visitors from 10 AM until noon and from 1 PM until 3:45 PM on Monday through Friday. FCC-licensed amateurs may operate the station during that time. Be sure to bring your current FCC amateur license or a photocopy. In a communication emergency, monitor W1AW for special bulletins as follows: voice on the hour, teleprinter at 15 minutes past the hour, and CW on the half hour.
Headquarters and W1AW are closed on New Year's Day, President's Day, Good Friday, Memorial Day, Independence Day, Labor Day, Thanksgiving and the following Friday, and Christmas Day and the following day.

Table 7.72

ARRL Procedural Signals (Prosigns)

In general, the CW prosigns are used on all data modes as well, although word abbreviations may be spelled out. That is, "CLEAR" might be used rather than "CL" on radioteletype. Additional radioteletype conventions appear at the end of the table.

Situation
check for a clear frequency
seek contact with any station
after call to specific named station or to indicate end of message
invite any station to transmit
invite a specific named station to transmit
invite receiving station to transmit
all received correctly
please stand by
end of contact (sent before call sign)
going off the air

CW	Voice
QRL?	Is the frequency in use?
CQ	CQ
AR	over, end of message
K	go
$\overline{\mathrm{KN}}$	go only
BK	back to you
R	received
AS	wait, stand by
SK	clear
CL	closing station

Additional RTTY prosigns

SK QRZ-Ending contact, but listening on frequency.
SK KN-Ending contact, but listening for one last transmission from the other station.
SK SZ-Signing off and listening on the frequency for any other calls.

Table 7.73

Q Signals

These Q signals most often need to be expressed with brevity and clarity in amateur work. (Q abbreviations take the form of questions only when each is sent followed by a question mark.)
QRA What is the name of your station? The name of your station is
QRG Will you tell me my exact frequency (or that of _____)? Your exact frequency (or that of ____) is ____ kHz.
QRH Does my frequency vary? Your frequency varies.
QRI How is the tone of my transmission? The tone of your transmission is ____ (1. Good; 2. Variable; 3. Bad).
QRJ Are you receiving me badly? I cannot receive you. Your signals are too weak.
QRK What is the intelligibility of my signals (or those of

QRL Are you busy? I am busy (or I am busy with _____). Please do not interfere.
QRM Is my transmission being interfered with? Your transmission is being interfered with (1. Nil; 2. Slightly; 3. Moderately; 4. Severely; 5. Extremely.)
QRN Are you troubled by static? I am troubled by static ____ ($1-5$ as under QRM).
QRO Shall I increase power? Increase power
QRP Shall I decrease power? Decrease power.
QRQ Shall I send faster? Send faster (___ WPM).
QRS Shall I send more slowly? Send more slowly (___ WPM).
QRT Shall I stop sending? Stop sending. QSV
QRU Have you anything for me? I have nothing for you.
QRV Are you ready? I am ready.
QRW Shall I inform \qquad that you are calling on \qquad kHz? Please inform \qquad that I am calling on \qquad kHz.
QRX When will you call me again? I will call you again at
\qquad hours (on \qquad kHz).
QRY What is my turn? Your turn is numbered \qquad
\qquad (on
QRZ Who is calling me? You are being called by
\qquad kHz).

What is the strength of my signals (or those of _)? The strength of your signals (or those of \qquad ___ (1. Scarcely perceptible; 2. Weak; 3. Fairly good; 4. Good; 5. Very good).
Are my signals fading? Your signals are fading.
Is my keying defective? Your keying is defective.
Shall I send \qquad messages at a time? Send messages at a time.
Can you hear me between your signals and if so can I break in on your transmission? I can hear you between my signals; break in on my transmission.
SL Can you acknowledge receipt? I am acknowledging receipt.
SM Shall I repeat the last message which I sent you, or some previous message? Repeat the last message which you sent me [or message(s) number(s) _____].
Did you hear me (or ____) on \qquad kHz ? I did hear you (or \qquad) on \qquad kHz .
Can you communicate with \qquad direct or by relay? I can communicate with \qquad direct (or by relay through
\qquad
Will you relay to \qquad ? I will relay to \qquad
General call preceding a message addressed to all amateurs and ARRL members. This is in effect "CQ ARRL."
Shall I send or reply on this frequency (or on \qquad kHz). kHz)? Send or reply on this frequency (or \qquad
Shall I send a series of Vs on this frequency (or on on \qquad kHz)? Send a series of Vs on this frequency (or kzz.
Will you send on this frequency (or on \qquad kHz)? । am going to send on this frequency (or on \qquad kHz).
Will you listen to \qquad on \qquad kHz ? I am listening to
\qquad on \qquad kHz.
Shall I change to transmission on another frequency? Change to transmission on another frequency (or on ___ kHz).

QSZ	Shall I send each word or group more than once? Send each word or group twice (or \qquad times).	QNL QNM*	Your net frequency is Low. You are QRMing the net. Stand by.
QTA	Shall I cancel message number \qquad ? Cancel message number \qquad	QNN	Net control station is \qquad . What station has net control?
QTB	Do you agree with my counting of words? I do not agree with your counting of words. I will repeat the first letter or digit of each word or group.	$\begin{aligned} & \text { QNO } \\ & \text { QNP } \end{aligned}$	Station is leaving the net. Unable to copy you. Unable to copy
QTC	How many messages have you to send? I have \qquad messages for you (or for \qquad).	QNQ*	Move frequency to \qquad and wait for \qquad to finish handling traffic. Then send him traffic for \qquad
QTH	What is your location? My location is	QNR*	Answer ___ and Receive traffic.
QTR	What is the correct time? The correct time is	QNS	Following Stations are in the net.* (follow with list.) Request list of stations in the net.
QTV	Shall I stand guard for you? Stand guard for me.	QNT	I request permission to leave the net for ____ minutes.
QTX	Will you keep your station open for further communication with me? Keep your station open for me.	QNU*	The net has traffic for you. Stand by.
QUA	Have you news of ____ ? I have news of _____.	QNV*	Establish contact with \qquad on this frequency. If successful, move to \qquad and send him traffic for
ARRL	N Signals		
QNA*	Answer in prearranged order.	QNW	How do I route messages for ___ ?
QNB	Act as relay between ____ and	QNX	You are excused from the net.*
QNC	All net stations copy. I have a message for all net stations.	QNY*	Shift to another frequency (or to \qquad kHz) to clear traffic with \qquad _.
QND*	Net is Directed (Controlled by net control station.)	QNZ	Zero beat your signal with mine.
QNE*	Entire net stand by.	*For use only by the Net Control Station.	
QNF	Net is Free (not controlled).	Notes on Use of QN Signals	
QNG	Take over as net control station	These QN signals are special ARRL signals for use in amateur CW nets only. They are not for use in casual amateur conversation. Other meanings that may be used in other services do not apply. Do not use QN signals on phone nets. Say it with words. QN signals need not be followed by a question mark, even though the meaning may be interrogatory.	
QNH	Your net frequency is High.		
QNI	Net stations report in. I am reporting into the net. (Follow with a list of traffic or QRU.)		
QNJ	Can you copy me?		
QNK*	Transmit messages for ___ to ___		

Table 7.74
The RST System

Readability
1—Unreadable.
2-Barely readable, occasional words distinguishable.
3-Readable with considerable difficulty.
4-Readable with practically no difficulty.
5-Perfectly readable.

Signal Strength

1-Faint signals, barely perceptible.
2-Very weak signals.
3-Weak signals.
4-Fair signals.
5-Fairly good signals.
6-Good signals.
7-Moderately strong signals.
8-Strong signals.
9-Extremely strong signals.

[^3]Table 7.75
CW Abbreviations

AA	All after	GUD	Good	SIG	Signature; signal
AB	All before	HI	The telegraphic laugh; high	SINE	Operator's personal initials or
AB	About	HR	Here, hear		nickname
ADR	Address	HV	Have	SKED	Schedule
AGN	Again	HW	How	SRI	Sorry
ANT	Antenna	LID	A poor operator	SSB	Single sideband
BCl	Broadcast interference	MA, MILS	Milliamperes	SVC	Service; prefix to service
BCL	Broadcast listener	MSG	Message; prefix to radiogram		message
BK	Break; break me; break in	N	No	T	Zero
BN	All between; been	NCS	Net control station	TFC	Traffic
BUG	Semi-automatic key	ND	Nothing doing	TMW	Tomorrow
B4	Before	NIL	Nothing; I have nothing for	TNX-TKS	Thanks
C	Yes		you	TT	That
CFM	Confirm; I confirm	NM	No more	TU	Thank you
CK	Check	NR	Number	TVI	Television interference
CL	I am closing my station; call	NW	Now; I resume transmission	TX	Transmitter
CLD-CLG	Called; calling	OB	Old boy	TXT	Text
CQ	Calling any station	OC	Old chap	UR-URS	Your; you're; yours
CUD	Could	OM	Old man	VFO	Variable-frequency oscillator
CUL	See you later	OP-OPR	Operator	VY	Very
CW		OT	Old timer; old top	WA	Word after
	radiotelegraph)	PBL	Preamble	WB	Word before
DE	From	PSE	Please	WD-WDS	Word; words
DLD-DLVD	Delivered	PWR	Power	WKD-WKG	Worked; working
DR	Dear	PX	Press	WL	Well; will
DX	Distance, foreign countries	R RCD	Received as transmitted; are Received	WX	Weather
ES	And, \&	RCVR (RX)	Received	XCVR	Transceiver
FB	Fine business, excellent			XMTR (TX)	Transmitter
FM	Frequency modulation	REF	Refer to; referring to;	XTAL	Crystal
GA	Go ahead (or resume sending)	RFI	reference Radio Frequency Interference	XYL (YF)	Wife
GB	Good-by	RIG	Station equipment	73	Best regards
GBA	Give better address	RPT	Repeat; I repeat; report	88	Love and Kisses
GE	Good evening	RTTY	Radioteletype	Although abbreviations help to cut down unnecessary transmission, make it a rule not to abbreviate unnecessarily when working an operator of unknown experience.	
GG	Going	RX	Receiver		
GM	Good morning	SASE	Self-addressed, stamped		
GN	Good night		envelope		
GND	Ground	SED	Said		

Table 7.76

ITU Recommended Phonetics

A - Alfa (AL FAH)
B - Bravo (BRAH VOH)
C - Charlie (CHAR LEE OR SHAR LEE)
D - Delta (DELL TAH)
E - Echo (ECK OH)
F - Foxtrot (FOKS TROT)
G - Golf (GOLF)
H - Hotel (HOH TELL)
I - India (IN DEE AH)
J - Juliet (JEW LEE ETT)
K - Kilo (KEY LOH)
L - Lima (LEE MAH)
M - Mike (MIKE)
N - November (NO VEM BER)
O - Oscar (OSS CAH)
P - Papa (PAH PAH)

Q - Quebec (KEH BECK)
R - Romeo (ROW ME OH)
S - Sierra (SEE AIR RAH)
T - Tango (TANG GO)
U - Uniform (YOU NEE FORM or OO NEE FORM)
V — Victor (VIK TAH)
W - Whiskey (WISS KEY)
X - X-Ray (ECKS RAY)
Y - Yankee (YANG KEY)
Z - Zulu (ZOO LOO)
Note: The Boldfaced syllables are emphasized. The pronunciations shown in the table were designed for speakers from all international languages. The pronunciations given for "Oscar" and "Victor" may seem awkward to English-speaking people in the U.S.

Table 7.77
ARRL Log

The ARRL Log is adaptable for all types of operating-ragchewing, contesting, DXing. References are to pages in the ARRL Log.

Table 7.78

ARRL Operating Awards

Award
Worked All States (WAS)
Worked All Continents (WAC)
DX Century Club (DXCC)
VHF/UHF Century Club (VUCC)
A-1 Operator Club
Code Proficiency

Qualification

QSLs from all 50 US states
QSLs from all six continents
QSLs from at least 100 different countries
QSLs from many grid squares
Recommendation by two A-1 operators
One minute of perfect copy from W1AW qualifying run

Table 7.79
ARRL Membership QSL Card

The ARRL membership QSL card. This example is from Harris Ruben, N2ERN, who designed the card. Your card would reflect your own call sign and address; awards and VUCC grid-square are optional. ARRL does not print or sell the cards. Inquire with printers who advertise in the QST Ham Ads.

Table 7.80
Mode Abbreviations for QSL Cards

Abbreviation	Explanation CW
DATA	Telegraphy Telemetry, telecommand and computer communications (includes packet radio)
	Facsimile and television
IMAGE	Tone-modulated telegraphy
MCW	Speech and other sound
PHONE	Modulated main carrier
PULSE	Direct-printing telegraphy (includes AMTOR)
RTTY	Spread Spectrum
SS	Emissions containing no information

Note: For additional information on emission types refer to latest edition of The FCC Rule Book.

A map showing US states, Canadian provinces and ARRL/RAC Sections.

Table 7.82
ARRL Grid Locator Map for North America
This and a World Grid Locator Map are available from ARRL.

Table 7.83

Amateur Message Form

Every formal radiogram message originated and handled should contain the following component parts in the order given.

I PREAMBLE

a. Number (begin with 1 each month or year)
b. Precedence (R, W, P or EMERGENCY)
c. Handling Instructions (optional, see text)
d. Station of Origin (first amateur handler)
e. Check (number of words/groups in text only)
f. Place of Origin (not necessarily location of station of origin)
g. Time Filed (optional with originating station)
h. Date (must agree with date of time filed)

II ADDRESS (as complete as possible, include zip code and telephone number)

III TEXT (limit to 25 words of less, if possible)

IV SIGNATURE

CW MESSAGE EXAMPLE

I NR 1 R HXG W1AW 8 NEWINGTON CT 1830Z JULY 1

a	b	c	d	e	f	g	h

II

DONALD SMITH AA
160 EAST SIXTH AVE $\overline{\mathrm{AA}}$
NORTH RIVER CITY MO $00789 \overline{\mathrm{AA}}$
7334868 BT
III
HAPPY BIRTHDAY X SEE YOU SOON X LOVE $\overline{\mathrm{BT}}$
IV
DIANA $\overline{\mathrm{AR}}$
Note that X , when used in the text as punctuation, counts as a word.
$\mathbf{C W}$: The prosign $\overline{\mathrm{AA}}$ separates the parts of the message. $\overline{\mathrm{BT}}$ separates the address from the text the text from the signature. $\overline{\mathrm{AR}}$ marks the end of message; this is followed by B if there is another message to follow, by N if this is the only or last message. It is customary to copy the preamble, parts of the address, text and signature on separate lines.

RTTY: Same as CW procedure above, except (1) use extra space between parts of address, instead of $\overline{\mathrm{AA}}$; (2) omit CW procedure sign BT to separate text from address and signature, using line spaces instead; (3) add a CFM line under the signature, consisting of all names, numerals and unusual words in the message in the order transmitted.

PACKET/AMTOR BBS: Same format as shown in the CW message example above, except that the $\overline{\mathrm{AA}}$ and $\overline{\mathrm{AR}}$ prosigns may be omitted. Most AMTOR and Packet BBS software in use today allow formal message traffic to be sent with the "ST" command. Always avoid the use of spectrum-wasting multiple line feeds and indentations.

PHONE: Use prowords instead of prosigns, but it is not necessary to name each part of the message as you send it. For example, the above message would be sent on phone as follows: "Number one routine HX

Golf W1AW eight Newington Connecticut one eight three zero zulu July one Donald Smith Figures one six four East Sixth Avenue North River City Missouri zero zero seven eight nine Telephone seven three three four nine six eight Break Happy Birthday X-ray see you soon X-ray love Break Diana End of Message Over. "End of Message" is followed by "More" if there is another message to follow, "No More" if it is the only or last message. Speak clearly using VOX (or pause frequently on push-to-talk) so that the receiving station can get his fills. Spell phonetically all difficult or unusual words-do not spell out common words. Do not use CW abbreviations or Q-signals in phone traffic handling

PRECEDENCES

The precedence will fill the message number. For example, on CW 207 R or 207 EMERGENCY. On phone, "Two Zero Seven Routine (or Emergency)."

EMERGENCY-Any message having life and death urgency to any person or group of persons, which is transmitted by Amateur Radio in the absence of regular commercial facilities. This includes official messages of welfare agencies during emergencies requesting supplies, materials or instructions vital to relief of stricken populace in emergency areas. During normal times, it will be very rare. On CW, RTTY and other digital modes this designation will always be spelled out. When in doubt, do not use it.

PRIORITY-Important messages having a specific time limit. Official messages not covered in the Emergency category. Press dispatches and other emergency-related traffic not of the utmost urgency. Notification of death or injury in a disaster area, personal or official. Use the abbreviation P on CW.

WELFARE-A message that is either (a) an inquiry as to the health and welfare of an individual in the disaster area (b) an advisory or reply from the disaster area that indicates that all is well should carry this precedence, which is abbreviated W on CW. These messages are handled after Emergency and Priority traffic but before Routine.

ROUTINE—Most traffic normal times will bear this designation. In disaster situations, traffic labeled Routine (R on CW) should be handled last, or not at all when circuits are busy with Emergency, Priority or Welfare traffic.

Handling Instructions (Optional)

HXA-(Followed by number.) Collect landline delivery authorized by addressee withinmiles. (If no number, authorization is unlimited.) HXB-(Followed by number.) Cancel message if not delivered withinhours of filing time; service originating station.
$\mathbf{H X C}$-Report date and time of delivery (TOD) to originating station.
HXD-Report to originating station the identify of station from which received, plus date and time. Report identity of station to which relayed, plus date and time, or if delivered report date, time and method of delivery.
HXE-Delivering station get reply from addressee, originate message back.
HXF - (Followed by number.) Hold delivery until.......(date).
HXG-Delivery by mail or landline toll call not required. If toll or other expense involved, cancel message and service originating station.

For further information on traffic handling, consult The ARRL Operating Manual, published by the ARRL.

Table 7.84
A Simple NTS Formal Message

Table 7.85

Handling Instructions

HXA-(Followed by number.) Collect landline delivery authorized by addressee within \qquad miles. (If no number, authorization is unlimited.)
HXB—(Followed by number.) Cancel messages if not delivered within \qquad hours of filing time; service originating station.
HXC-Report date and time of delivery (TOD) to originating station.
HXD-Report to originating station the identity of station from which received, plus date and time. Report identity of station to which relayed, plus date and time, or if delivered report date, time and method of delivery.
HXE-Delivering station get reply from addressee, originate message back.

HXF-(Followed by number.) Hold delivery until \qquad (date). HXG-Delivery by mail or landline toll call not required. If toll or other expense involved, cancel message and service originating station.

An HX prosign (when used) will be inserted in the message preamble before the station of origin, thus: NR 207 R HXA50 W1AW 12...(etc). If more than one HX prosign is used they can be combined if no numbers are to be inserted; otherwise the HX should be repeated, thus: NR 207 R HXAC W1AW... (etc), but: NR 207 R HXA50 HXC W1AW...(etc). On phone, use phonetics for the letter or letters following the HX, to ensure accuracy.

Table 7.86

ARL Numbered Radiograms

The letters ARL are inserted in the preamble in the check and in the text before spelled out numbers, which represent texts from this list. Note that some ARL texts include insertion of numerals. Example: NR 1 R W1AW ARL 5 NEWINGTON CONN DEC 25 DONALD R SMITH AA 164 EAST SIXTH AVE AA NORTH RIVER CITY MO AA PHONE 7333968 BT ARL FIFTY ARL SIXTY ONE BT DIANA AR.

Group One—For possible "Relief Emergency" Use

ONE TW TH FIV SIX

SEVEN $\quad \begin{aligned} & \text { Please reply by Amateur Radio through the } \\ & \text { amateur delivering this message. This is a }\end{aligned}$ free public service.
EIGHT

NINE

TEN

ELEVEN

TWELVE

THIRTEEN
FOURTEEN
FIFTEEN Please advise your condition and what help is needed.
Property damage very severe in this area.
REACT communications services also available. Establish REACT communications with \qquad on channel \qquad .
EIGHTEEN

NINETEEN

TWENTY

TWENTY ONE

TWENTY TWO

TWENTY THREE

TWENTY FOUR

TWENTY FIVE
Everyone safe here. Please don't worry. Coming home as soon as possible.
Am in \qquad hospital. Receiving excellent care and recovering fine.
\(\left.$$
\begin{array}{ll}\text { FOUR } & \begin{array}{l}\text { Only slight property damage here. Do not } \\
\text { be concerned about disaster reports. } \\
\text { Am moving to new location. Send no } \\
\text { further mail or communication. Will inform }\end{array}
$$

you of new address when relocated.\end{array}\right\}\)| Will contact you as soon as possible. |
| :--- |
| SIX |
| SEVEN |
| Elease reply by Amateur Radio through the |
| amateur delivering this message. This is a |
| free public service. |

Please contact . Advise to standby and provide further emergency information, instructions or assistance.
Establish Amateur Radio emergency communications with \qquad on \qquad MHz.
Anxious to hear from you. No word in some time. Please contact me as soon as possible.
Medical emergency situation exists here.
Situation here becoming critical. Losses and damage from \qquad increasing.

SIXTEEN SEVENTEEN

Please contact me as soon as possible at
Request health and welfare report on ____. (State name, address and telephone number.)
Temporarily stranded. Will need some assistance. Please contact me at \qquad _.

Search and Rescue assistance is needed by local authorities here. Advise availability.
Need accurate information on the extent and type of conditions now existing at your location. Please furnish this information and reply without delay.
Report at once the accessibility and best way to reach your location.
Evacuation of residents from this area urgently needed. Advise plans for help.
Furnish as soon as possible the weather conditions at your location.

TWENTY SIX

Emergency/priority messages originating from official sources must carry the signature of the originating official.
Group Two-Routine messages

FORTY SIX

FIFTY
FIFTY ONE

FIFTY TWO

FIFTY THREE

FIFTY FOUR
FIFTY FIVE
FIFTY SIX

FIFTY SEVEN
FIFTY EIGHT

FIFTY NINE
*SIXTY
SIXTY ONE
*SIXTY TWO
SIXTY THREE
SIXTY FOUR
SIXTY FIVE

SIXTY SIX

SIXTY SEVEN

SIXTY EIGHT
SIXTY NINE

$$
\begin{aligned}
& \text { Greetings on your birthday and best } \\
& \text { wishes for many more to come. } \\
& \text { Greetings by Amateur Radio. } \\
& \text { Greetings by Amateur Radio. This } \\
& \text { message is sent as a free public service by } \\
& \text { ham radio operators here at ___. Am } \\
& \text { having a wonderful time. }
\end{aligned}
$$

Really enjoyed being with you. Looking forward to getting together again.
Received your \qquad It's appreciated; many thanks.
Many thanks for your good wishes.
Good news is always welcome. Very delighted to hear about yours.
Congratulations on your \qquad , a most worthy and deserved achievement.
Wish we could be together.
Have a wonderful time. Let us know when you return.
Congratulations on the new arrival. Hope mother and child are well.

Wishing you the best of everything on

Wishing you a very merry Christmas and a happy New Year. Greetings and best wishes to you for a pleasant \qquad holiday season. Victory or defeat, our best wishes are with you. Hope you win. Arrived safely at \qquad . Arriving \qquad on \qquad Please arrange to meet me there. DX QSLs are on hand for you at the \qquad QSL Bureau. Send \qquad selfaddressed envelopes. Your message number \qquad undeliverable because of \qquad Please advise. Sorry to hear you are ill. Best wishes for a speedy recovery. Welcome to the \qquad We are glad to have you with us and hope you will enjoy the fun and fellowship of the organization.

* Can be used for all holidays.

Note: ARL numbers should be spelled out at all times.

Table 7.87

How to be the Kind of Net Operator the Net Control Station (NCS) Loves

As a net operator, you have a duty to be self-disciplined. A net is only as good as its worst operator. You can be an exemplary net operator by following a few easy guidelines.

1) Zero beat the NCS. The NCS doesn't have time to chase all over the band for you. Make sure you're on frequency, and you will never be known at the annual net picnic as "old so-and-so who's always off frequency."
2) Don't be late. There's no such thing as "fashionably late" on a net. Liaison stations are on a tight timetable. Don't hold them up by checking in 10 minutes late with three pieces of traffic.
3) Speak only when spoken to by the NCS. Unless it is a bona fide emergency situation, you don't need to "help" the NCS unless asked. If you need to contact the NCS, make it brief. Resist the urge to help clear the frequency for the NCS or to "advise" the NCS. The NCS, not you, is boss.
4) Unless otherwise instructed by the NCS, transmit only to the NCS. Side comments to another station in the net are out of order.
5) Stay until you are excused. If the NCS calls you and you don't respond because you're getting a "cold one" from the fridge, the NCS may assume you've left the net, and net business may be stymied. If you need to leave the net prematurely, contact the NCS and simply ask to be excused (QNX PSE ON CW).
6) Be brief when transmitting to the NCS. A simple "yes" (C) or "no" (N) will usually suffice. Shaggy dog tales only waste valuable net time.
7) Know how the net runs. The NCS doesn't have time to explain procedure to you. After you have been on the net for a while, you should already know these things.

Table 7.88

Checking Your Message

Traffic handlers don't have to dine out to fight over the check! Even good ops find much confusion when counting up the text of a message. You can eliminate some of this confusion by remembering these basic rules:

1) Punctuation ("X-rays," "Querys") count separately as a word.
2) Mixed letter-number groups (1700Z, for instance) count as one word.
3) Initial or number groups count as one word if sent together, two if sent separately.
4) The signature does not count as part of the text, but any closing lines, such as "Love" or "Best wishes" do.

Here are some examples:

- Charles J McClain-3 words
- W B Stewart-3 words
- St Louis-2 words
-3 PM-2 words
- SASE-1 word
- ARL FORTY SIX—3 words
- 2N1601-1 word
- Seventy-three-2 words
- 73-1 word

Telephone numbers count as 3 words (area code, prefix, number), and ZIP codes count as one, ZIP + 4 codes count as two words. Canadian postal codes count as two words (first three characters, last three characters.)
Although, it is improper to change the text of a message, you may change the check. Always do this by following the original check with a slash bar, then the corrected check. On phone, use the words "corrected to."

Table 7.89

Tips on Handling NTS Traffic by Packet Radio

Listing Messages

- After logging on to your local NTS-supported bulletin board, type the command LT, meaning List Traffic. The BBS will sort and display an index of all NTSXX traffic awaiting delivery.

Receiving Messages

- To take a message off the Bulletin Board for telephone delivery to the third party, or for relay to a NTS Local or Section Net, type the R command, meaning Read Traffic, and the message number. R 188 will cause the BBS to find the BBS message number 188. This RADIOGRAM will look like any other, with preamble, address, text and signature; only some additional packet-related message header information is added. This information includes the routing path of the message for auditing purposes; e.g., to discern any excessive delays in the system.
- After the message is saved to the printer or disk, the message should be KILLED by using the KT command, meaning Kill Traffic, and the message number. In the above case, at the BBS prompt, type KT 188. This prevents the message from being delivered twice. Some of the newer BBS software requires use of K rather than $K T$.
- At the time the message is killed, many BBSs will automatically send a message back to the station in the FROM field with information on who took the traffic, and when it was taken!

Delivering or Relaying A Message

- A downloaded RADIOGRAM should, of course, be handled expeditiously in the traditional way: telephone delivery, or relay to another net.

Sending Messages

- To send a RADIOGRAM, use the ST command meaning Send Traffic. The BBS will prompt you for the NTS routing
(0611@NTSCT, for example), the message title which should contain the city in the address of the RADIOGRAM (QTC 1 Dayton), and the text of the message in RADIOGRAM format. The BBS, usually within the hour, will check its outgoing mailpouch, find the NTSCT message and automatically forward it to the next packet station in line to the NTSCT node. Note: Some states have more than one ARRL Section. If you do not know the destination ARRL Section ("Is San Angelo in the ARRL North, South or West Texas Section?"), then simply use the state designator NTSTX.
*Note: While NTS/packet radio message forwarding is evolving rapidly, there are still some gaps. When uploading an NTS message destined for a distant state, use handling instruction "HXC" to ask the delivering station to report back to you the date and time of delivery.

We Want You!

Local and Section BBSs need to be checked daily for NTS traffic. SYSOPs and STMs can't do it alone. They need your help to clear NTS RADIOGRAMs every day, seven days a week, for delivery and relay. If you are a traffic handler/packeteer, contact your Section Traffic Manager or Section Manager for information on existing NTS/packet procedures in your Section.

If you are a packeteer, and know nothing of NTS traffic handling, contact ARRL HQ, your Section Manager or Section Traffic Manager for information on how you can put your packet radio gear to use in serving the public in routine times, but especially in time of emergency!

And, if you enjoy phone/CW traffic handling, but aren't on packet yet, discover the incredible speed and accuracy of packet radio traffic handling. You probably already have a small computer and 2-meter rig; all you need is a packet radio "black box" to connect between your 2-meter rig and computer. For more information on packet radio, see Practical Packet Radio, published by the ARRL.

[^0]: Source: Horowitz (W1HFA) and Hill, The Art of Electronics—2nd edition, page 570. © Cambridge University Press 1980, 1989. Reprinted with the permission of Cambridge University Press.

[^1]: Alphabetical subscripts ($\mathrm{D}=$ diode, $\mathrm{P}=$ pentode, $\mathrm{T}=$ triode and $\mathrm{HX}=$ hexode) indicate structures in multistructure tubes. Subscript CT indicates filament or heater center tap.
 Generally, when pin 1 of a metal-envelope tube (except all triodes) is shown connected to the envelope, pin 1 of a glass-envelope counterpart (suffix G or GT) is connected to an internal shield.

[^2]: *Series allocated to an international organization
 ${ }^{\dagger}$ In response to Resolution 99 (Minneapolis, 1998) of the Plenipotentiary Conference

[^3]: Tone
 1-Sixty-cycle ac or less, very rough and broad.
 2-Very rough ac, very harsh and broad.
 3-Rough ac tone, rectified but not filtered.
 4-Rough note, some trace of filtering.
 5-Filtered rectified ac but strongly ripple-modulated.
 6-Filtered tone, definite trace of ripple modulation.
 7-Near pure tone, trace of ripple modulation.
 8-Near perfect tone, slight trace of modulation.
 9-Perfect tone, no trace of ripple of modulation of any kind. If the signal has the characteristic steadiness of crystal control, add the letter X to the RST report. If there is a chirp, add the letter C. Similarly for a click, add K. (See FCC Regulations §97.307, Emissions Standards.) The above reporting system is used on both CW and voice; leave out the "tone" report on voice.

