AFBR-1010/AFBR-2010
 Fiber Optic Transmitter and Receiver for 50 MBaud MOST®

Data Sheet

Description

AFBR-1010 Transmitter and AFBR-2010 Receiver are packaged in 4-pin transfer molded, low-cost packages ready for assembly into plastic fiber optic connector receptacles compliant with MOST ${ }^{\circledR}$ technology. The transmitter utilizes a 650 nm LED source with integrated optics for efficient coupling into 1 mm Polymer Optical Fiber (POF), and the receiver contains a large area PIN diode to receive this light. Input/output data has TTL switching levels, compatible with MOST ${ }^{\circledR}$ Network Interface Controller ICs. These optical components are specified for operation over a wide $-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ extended temperature range, and meet the rigorous reliability requirements of automotive applications. In the absence of data activity, the receiver switches to very low power mode. While in this mode, the PIN diode can sense new data activity and switch the receiver back to full operation.

Features

- Optical transmitter (EOC) and receiver (OEC) for use in MOST ${ }^{\circledR}$ equipment for up to 50 M baud
- Compliant to MOST ${ }^{\circledR}$ Specification of Physical Layer Rev 1.1
- Operating temperature range of $-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
- Reliability performance per automotive application requirements
- Lead is flash gold

Applications

- Optical Transmitter and Receiver for MOST® ${ }^{\circledR} 50$ M baud systems (A full description of M OST ${ }^{\circledR} 50 \mathrm{M}$ baud information and entertainment LAN system and standards are available at www.mostcooperation.com)

MOST® is a registered trademark of M OST Corperation.

Regulatory Compliance

Feature	Test M ethod	Performance
Electrostatic Discharge (ESD) to the	J EDEC/ EIA J ESD22-A114-B	M in $\pm 2000 \mathrm{~V}$
Electrical Pins Human Body M odel	Human Body M odel	
Electrostatic Discharge (ESD) to the	J EDEC/ EIA J ESD22-A115-A	M in $\pm 400 \mathrm{~V}$
Electrical Pins M achine M odel	M achine M odel	
Electrostatic Discharge (ESD) to the	J EDEC/ EIA J ESD22-C-101-B	M in $\pm 500 \mathrm{~V}$
Electrical Pins Charged Device M odel	Charged Device M odel	
Eye Safety	IEC 60825-1,2, Class 1	TUV File \#: 30382990.001

Pin Description Transmitter
Front View Optics Up. $1=$ Leftmost Pin to $4=$ Rightmost Pin

Pin	Name	Function/ Description	Notes
1	Data In	Transmitter Data Input	1
2	V $_{\text {EET }}$	Transmitter Ground	
3	V $_{\text {CCT }}$	Transmitter Power 5 V $\pm 5 \%$	
4	CONT	Connection to LED Current Control Resistor	2

Notes:

1. Logic 1 input will turn the light on and the logic 0 will turn the light off.
2. This is a digital input for the transmitter output power selector. $\mathrm{R}_{\mathrm{CN}}<17.32 \mathrm{k} \Omega$ will set the transmitter to normal output power. $\mathrm{R}_{\mathrm{CR}}>25.65 \mathrm{k} \Omega$ will set the transmitter to reduced output power. $R_{C N} / R_{C R}$ is connected betw een CONT input and $V_{C C T}$.

Pin Description Receiver

Front View Optics Up. 1 = Leftmost Pin to $4=$ Rightmost Pin

Pin	Name	Function/ Description	Notes
1	V CCR	Receiver Power 5 V $\pm 5 \%$	
2	V $_{\text {EER }}$	Receiver Ground	
3	Mode Out	Receiver M ode Output	1
4	Data Out	Receiver Data Output	2

Notes:

1. This output is logic 1 high if the receiver is asleep for no light input, and logic 0 low if the receiver is awake for valid light input levels.
2. TTL compatible data output.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Storage Temperature	Ts	-40		100	${ }^{\circ} \mathrm{C}$	1
Ambient Temperature, No Air Flow	TC	-40	95	${ }^{\circ} \mathrm{C}$	1,2	
Relative Humidity	RH	0	95	$\%$	1	
Supply Voltage	$\mathrm{V}_{\mathrm{CCT}} / \mathrm{V}_{\mathrm{CCR}}$	-0.5	7	V	1	
Data Input Voltage	V_{IN}	-0.5		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	1
CONT Input Voltage	$\mathrm{V}_{\text {CONT }}$	-0.5		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	1,3
Data Output Current	I_{O}			10	mA	1,4
Mode Output Current	I_{M}			10	mA	1
Data Rate	8	45.2	50	M Baud		

Notes:

1. Absolute M aximum Ratings are those values beyond which damage to the device may occur if these limits are exceeded for other than a short period of time. See Reliability Data Sheets for specific reliability performance.
2. M easured 1 cm outside of $M O S T^{\circledR}$ optical connector housing (header) on a M OST ${ }^{\circledR}$ application $P C B$. The optical components (EOC and OEC) are inside the header connector assembly composed of the plastic housing and EMI shield, that is, airflow is restricted to natural convection.
3. The CONT input is a digital function. An open circuit will select lower (normal light output -3 dB), and a short circuit to $\mathrm{V}_{\text {cCT }}$ will select normal light output power. This makes the LED meet eye safety under this fault condition
4. A safety resistor of 50Ω (minimum) is to be connected between Data Out and the receiving circuitry. The receiving circuitry must be powered up within 50 ms after M ode Out goes low to prevent permanent damage to the OEC

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Ambient Temperature, No Air Flow	T_{A}	-40	25	95	${ }^{\circ} \mathrm{C}$	1,2
Supply Voltage	$\mathrm{V}_{\mathrm{CCT}} / \mathrm{V}_{\mathrm{CCR}}$	4.75	5	5.25	V	1
CONT Input Resistor for	R_{CN}	0	13.5	17.32	$\mathrm{k} \Omega$	1,3
Normal Output Power	R_{CR}	25.65	27	Open Circuit	$\mathrm{k} \Omega$	1,3
CONT Input Resistor for Reduced Output Power						

Notes:

1. Recommended operating conditions are those values outside of which functional performance is not intended, device reliability is not implied, and damage to the device may occur over an extended period of time. See Reliability Data Sheet for specific reliability performance.
2. M easured 1 cm outside of $M O S T{ }^{\circledR}$ optical connector housing (header) on a M OST ${ }^{\circledR}$ application $P C B$. The optical components (EOC and OEC) are inside the header connector assembly composed of the plastic housing and EM I shield, that is, airflow is restricted to natural convection.
3. Resistor values between $17.32 \mathrm{k} \Omega-25.65 \mathrm{k} \Omega$ are not allowed.

Process Compatibility

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Solder Environment	$\mathrm{T}_{\text {SoLD }}$			260	${ }^{\circ} \mathrm{C}$	$1,3,4$
	$\mathrm{t}_{\text {SoLD }}$		10	sec	$2,3,4$	

Notes:

1. Maximum temperature refers to peak temperature.
2. Maximum time refers to time spent at peak temperature.
3. Solder surface to be at least 1 mm below lead frame stops.
4. Product is moisture sensitive level 2A. See Application Note "Avago AFBR-1010 Fiber Optic Transmitter and AFBR-2010 Receiver for 50 M baud M OST ${ }^{\circledR}$-Handling."

Transmitter Electrical Characteristics

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCT}}=5 \mathrm{~V} \pm 5 \%$)

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Supply Current (Optical Power ON)	$\mathrm{I}_{\mathrm{CCT}}$		40	mA	1	
Supply Current (Optical Power OFF)	$\mathrm{I}_{\mathrm{CCT}}$		40	mA	2	
Optical Power ON Delay	$\mathrm{t}_{\mathrm{ON} 2}$		7	$\mu \mathrm{~S}$	5	
Optical Power OFF Delay	$\mathrm{t}_{\mathrm{OFF}}$		50	$\mu \mathrm{~S}$	4	
Input Voltage - Low	V_{IL}	-0.3	0.8	V	3	
Input Voltage - High	V_{HH}	2.0	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	3	
Data Input Capacitance	C_{IN}		7	pF		
Data Input Resistance	R_{IN}	2		$\mathrm{k} \Omega$		

Notes:

1. For 50% duty cycle Biphase mark data and $R_{C N}=13.5 \mathrm{k} \Omega$ (normal light output control selection).
2. Data $\mathrm{In}=0 \mathrm{~V}$.
3. Standard TTL compatible inputs.
4. After a static 0 is received on Data In for $t_{0 f f 2} \mu \mathrm{~s}$, the transmitter optical output power drops to a level below -50 dBm
5. After modulated data is received on Data In for $t_{O N 2} \mu \mathrm{~S}$, the transmitter exits the "OFF" state to enter normal operating "ON" state.

Transmitter Optical Characteristics
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}, \mathrm{V}_{\text {CCT }}=5 \mathrm{~V} \pm 5 \%$)

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Output Optical Power (Average), Normal Power	P_{N}	-7.5		-1.5	dBm	$1,3,5$
Delta B etween Reduced and Normal Optical Output Power	$\Delta \mathrm{Po}$		-3.0		dB	2
Output Optical Power (A verage), OFF	PS_{S}			-50	dBm	
Extinction Ratio	ER	10			dB	
Spectrum Central W avelength	$\lambda \mathrm{C}$	635	675	nm	6	
Spectrum RM S	$\lambda \mathrm{w}$		17	nm	7	
Rise Time (20\%-80\%)	$\mathrm{t}_{\text {RT }}$		6.0	ns	1,3	
Fall Time (20\%-80\%)	$\mathrm{t}_{\text {FT }}$		6.0	ns	1,3	
Pulse W idth Variation	$\mathrm{t}_{\text {PWVT }}$	20.0	24.3	ns	$1,3,4$	
Pulse W idth Distortion - Average	$\mathrm{t}_{\text {APWDT }}$	-1.39		+1.39	ns	$1,3,4$

Notes:

1. Resistance between CONT and $\mathrm{V}_{C C T}$ pin, $\mathrm{R}_{\mathrm{CN}}=13.5 \mathrm{k} \Omega$ (normal light output control selection).
2. The difference between $R_{C N}=13.5 \mathrm{k} \Omega$ and $R_{C R}=27 \mathrm{k} \Omega$ (reduced versus normal output optical power control selection).
3. Using input signal to the Transmitter as defined in SP1 M OST® Specification of Physical Layer Rev 1.1 at $45.2 \mathrm{M} \mathrm{Baud}, \mathrm{UI}=22.14 \mathrm{~ns}$.
4. Pulse width is measured at 50% threshold using a rising edge trigger and a M OST ${ }^{\circledR}$ w orst case test pattern (WCPWV).
5. M easured with ideal alignment to LED after 1 meter 0.5 NA 1mm POF with polished face using a large area detector.
6. Central wavelength is defined as:

Ref: EIA/ TIA standard FOTP-127/ 61.1, 1991.
7. Spectrum RMS is defined as:

$$
\lambda_{W}=\left(\binom{\sum_{i=1}^{N} P_{i} \lambda_{i}^{2}}{\hdashline \sum_{i=1}^{N} P_{i}}=\lambda_{C}^{2}\right)^{\frac{1}{2}}
$$

Ref: EIA/ TIA standard FOTP-127/ 61.3, 1991.

Receiver Electrical Characteristics
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCR}}=5 \mathrm{~V} \pm 5 \%$)

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Supply Current - Awake	$I_{\text {CCR }}$			35	mA	1
Supply Current - Sleep	$I_{\text {CCR }}$			20	$\mu \mathrm{A}$	2
Data Output Voltage - Low	VoL	-0.3		0.4	V	$3,10 \mathrm{~L}=1.6 \mathrm{~mA}$
Data Output Voltage - High	V_{OH}	2.5	3.0	$\mathrm{V}_{\text {CCR }}+0.3$	V	3 , $\mathrm{IOH}=-150 \mu \mathrm{~A}$
M ode Output Voltage - Low	$V_{\text {OLM }}$	-0.3	0.0	0.5	V	$\mathrm{I}_{\mathrm{OL}}=2.4 \mathrm{~mA}$
M ode Output Voltage - High	Vонм	$V_{\text {CCR }}-1$		$\mathrm{V}_{\text {CCR }}+0.3$	V	$\mathrm{IOH}_{\mathrm{O}}=-1 \mathrm{~mA}$
Rise Time (10\%-90\%)	$t_{\text {RR }}$			9.9	ns	1,4,6
Fall Time (10\%-90\%)	$\mathrm{t}_{\text {FR }}$			9.9	ns	1,4,6
Pulse Width Variation	tpwvR	16.5		31.0	ns	1,4,5,6
Pulse W idth Distortion - Average	$\mathrm{t}_{\text {APWDR }}$	-3.3		7.0	ns	1,4, 5, 6

Notes:

1. M easured using Input signal condition as defined by SP3 M OST ${ }^{\circledR}$ Specification of Physical Layer Rev 1.1 at $45.2 \mathrm{M} \mathrm{Baud}, \mathrm{UI}=22.14 \mathrm{~ns}$.
2. Optical input is $<-40 \mathrm{dBm}$, and M ode Out $\mathrm{I}_{\mathrm{M}}=0$.
3. Standard TTL output.
4. M easured with $R_{L}=50 \mathrm{k} \Omega$ and $C_{L}=15 \mathrm{pF}$.
5. Pulse width is measured at 1.5 V threshold using a rising edge trigger and a $\mathrm{MOST}{ }^{\circledR}$ worst case test pattern (WCPWV).
6. Optical power generated by a standard Avago Transmitter, with ideal alignment to the photodiode using a 1 mm POF ($\mathrm{NA}=0.5$).

Receiver Optical Characteristics

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCR}}=5 \mathrm{~V} \pm 5 \%$)

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Input Optical Power (Average)	P_{IN}	-25		-2	dBm	1
Optical Spectrum Range	$\lambda \mathrm{C}$	630		685	nm	
Input Optical Power for light-off state	$\mathrm{P}_{\text {INSQ }}$	-40		-25	dBm	2

Notes:

1. All Receiver input condition to be as specified in SP3 of M OST® Specification of Physical Layer Rev 1.1 at $45.2 \mathrm{M} \mathrm{Baud}, \mathrm{UI}=22.14 \mathrm{~ns}$.
2. Light-off state means M ode Output Voltage is high and Data Output Voltage is low.

Receiver Timing Characteristics

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCR}}=5 \mathrm{~V} \pm 5 \%$)

Parameter	Symbol	Min.	Typical	Max.	Unit
M ode Deassert Time (On to Off)	t_{D}		2	Notes	
Squelch Time (Signal OFF Delay)	$\mathrm{t}_{\text {OFF4 }}$		2	ms	
W akeup Time (Signal ON Delay)	$\mathrm{t}_{\text {ON4 }}$		3	ms	1

Note:

1. Receiver is designed to only respond to modulated light input.

Reference Design Schematic

Part Number Options

Part Number	Part Description
AFBR-1010	Transmitter
AFBR-2010	Receiver
AFBR-1010S	Transmitter - Short Lead
AFBR-2010S	Receiver - Short Lead
AFBR-1010T	Transmitter -90° Bent Lead
AFBR-2010T	Receiver -90° Bent Lead

Package Dimensions

Transmitter (AFBR-1010)

 UNLESS OTHERWISE SPECIFIED.

Short Lead Option (AFBR-1010S)

NOTE:
UNIT $=\mathrm{mm}$, TOLERANCE $= \pm 0.1 \mathrm{~mm}$
UNLESS OTHERWISE SPECIFIED.

Receiver (AFBR-2010)

UNIT $=\mathrm{mm}$, TOLERANCE $= \pm 0.1 \mathrm{~mm}$ UNLESS OTHERWISE SPECIFIED.

Short Lead Option (AFBR-2010S)
Bend Option (AFBR-2010T)

NOTE:
UNIT $=\mathrm{mm}$, TOLERANCE $= \pm 0.1 \mathrm{~mm}$ UNLESS OTHERWISE SPECIFIED.

Device M arking

