December 2009 i
© 2009 Actel Corporation See the Actel website for the latest version of the datasheet.
v5.9
ProASICPLUS® Flash Family FPGAs
Features and Benefits
High Capacity
Commercial and Industrial
75,000 to 1 Million System Gates
27 K to 198 Kbits of Two-Port SRAM
66 to 712 User I/Os
Military
300, 000 to 1 Million System Gates
72 K to 198 Kbits of Two Port SRAM
158 to 712 User I/Os
Reprogrammable Flash Technology
0.22 µm 4 LM Flash-Based CMOS Process
Live At Power-Up (LAPU) Level 0 Support
Single-Chip Solution
No Configuration Device Required
Retains Programmed Design during Power-Down/Up Cycles
Mil/Aero Devices Operate over Full Military Temperature
Range
Performance
3.3 V, 32-Bit PCI, up to 50 MHz (33 MHz over military
temperature)
Two Integrated PLLs
External System Performance up to 150 MHz
Secure Programming
The Industry’s Most Effective Security Key (FlashLock®)
Low Power
Low Impedance Flash Switches
Segmented Hierarchical Routing Structure
Small, Efficient, Configurable (Combinatorial or Sequential)
Logic Cells
High Performance Routing Hierarchy
Ultra-Fast Local and Long-Line Network
High-Speed Very Long-Line Network
High-Performance, Low Skew, Splittable Global Network
100% Routability and Utilization
I/O
Schmitt-Trigger Option on Every Input
2.5 V / 3.3 V Support with Individually-Selectable Voltage
and Slew Rate
Bidirectional Global I/Os
Compliance with PCI Specification Revision 2.2
Boundary-Scan Test IEEE Std. 1149.1 (JTAG) Compliant
Pin-Compatible Packages across the ProASICPLUS Family
Unique Clock Conditioning Circuitry
PLL with Flexible Phase, Multiply/Divide, and Delay
Capabilities
Internal and/or External Dynamic PLL Configuration
Two LVPECL Differential Pairs for Clock or Data Inputs
Standard FPGA and ASIC Design Flow
Flexibility with Choice of Industry-Standard Front-End Tools
Efficient Design through Front-End Timing and Gate
Optimization
ISP Support
In-System Programming (ISP) via JTAG Port
SRAMs and FIFOs
SmartGen Netlist Generation Ensures Optimal Usage of
Embedded Memory Blocks
24 SRAM and FIFO Configurations with Synchronous and
Asynchronous Operation up to 150 MHz (typical)
Table 1 ProASICPLUS Product Profile
Device APA075 APA150 APA3001APA450 APA6001APA750 APA10001
Maximum System Gates 75,000 150,000 300,000 450,000 600,000 750,000 1,000,000
Tiles (Registers) 3,072 6,144 8,192 12,288 21,504 32,768 56,320
Embedded RAM Bits (k=1,024 bits) 27 k 36k 72 k 108 k 126 k 144 k 198 k
Embedded RAM Blocks (256x9) 12 16 32 48 56 64 88
LVPECL 222 2 2 2 2
PLL 222 2 2 2 2
Global Networks 4 4 4 4 4 4 4
Maximum Clocks 24 32 32 48 56 64 88
Maximum User I/Os 158 242 290 344 454 562 712
JTAG ISP Yes Yes Yes Yes Yes Yes Yes
PCI Yes Yes Yes Yes Yes Yes Yes
Package (by pin count)
TQFP 100, 144 100
PQFP 208 208 208 208 208 208 208
PBGA 456 456 456 456 456 456
FBGA 144 144, 256 144, 256 144, 256, 484 256, 484, 676 676, 896 896, 1152
CQFP2208, 352 208, 352 208, 352
CCGA/LGA2624 624
Notes:
1. Available as Commercial/Industrial and Military/MIL-STD-883B devices.
2. These packages are available only for Military/MIL-STD-883B devices.
v5.9
®
ProASICPLUS Flash Family FPGAs
ii v5.9
Ordering Information
APA1000 FG
_
Part Number
Speed Grade
Blank =Standard Speed
Package Type
PQ =Plastic Quad Flat Pack (0.5 mm pitch)
TQ =Thin Quad Flat Pack (0.5 mm pitch)
FG =Fine Pitch Ball Grid Array (1.0 mm pitch)
BG =Plastic Ball Grid Array (1.27 mm pitch)
CQ =Ceramic Quad Flat Pack (1.05 mm pitch)
CG =Ceramic Column Grid Array (1.27 mm pitch)
LG =Land Grid Array (1.27 mm pitch)
1152 I
Package Lead Count
Application (Ambient Temperature Range)
G
Lead-free packaging
Blank = Standard Packaging
G = RoHS Compliant Packaging
Blank = Commercial (0°C to +70°C)
I = Industrial (–40°C to +85°C)
PP = Pre-production
ES = Engineering Silicon (room temperature only)
M = Military (–55°C to 125°C)
B = MIL-STD-883 Class B
150,000 Equivalent System GatesAPA150 =
75,000 Equivalent System GatesAPA075 =
APA300 300,000 Equivalent System Gates=
APA450 450,000 Equivalent System Gates=
APA600 600,000 Equivalent System Gates=
APA750 750,000 Equivalent System Gates=
APA1000 1,000,000 Equivalent System Gates=
ProASICPLUS Flash Family FPGAs
v5.9 iii
Device Resources
General Guideline
Maximum performance numbers in this datasheet are based on characterized data. Actel does not guarantee
performance beyond the limits specified within the datasheet.
User I/Os2
Commercial/Industrial Military/MIL-STD-883B
Device
TQFP3
100-Pin
TQFP3
144-Pin
PQFP3
208-Pin
PBGA3
456-Pin
FBGA3
144-Pin
FBGA3
256-Pin
FBGA3
484-Pin
FBGA3
676-Pin
FBGA3
896-Pin
FBGA3
1152-Pin
CQFP
208-Pin
CQFP
352-Pin
CCGA/
LGA
624-Pin
APA075 66 107 158 100
APA150 66 158 242 100 186 4
APA300 158 5290 5100 5186 4, 5 158 248
APA450 158 344 100 186 4344 4
APA600 158 5356 5186 4, 5 370 4454 158 248 440
APA750 158 356 454 562 6
APA1000 158 5356 5642 5, 6 712 6158 248 440
Notes:
1. Package Definitions: TQFP = Thin Quad Flat Pack, PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch Ball Grid
Array, CQFP = Ceramic Quad Flat Pack, CCGA = Ceramic Column Grid Array, LGA = Land Grid Array
2. Each pair of PECL I/Os is counted as one user I/O.
3. Available in RoHS compatible packages. Ordering code is "G."
4. FG256 and FG484 are footprint-compatible packages.
5. Military Temperature Plastic Package Offering
6. FG896 and FG1152 are footprint-compatible packages.
ProASICPLUS Flash Family FPGAs
iv v5.9
Temperature Grade Offerings
Speed Grade and Temperature Matrix
Package APA075 APA150 APA300 APA450 APA600 APA750 APA1000
TQ100 C, I C, I
TQ144 C, I
PQ208 C, I C, I C, I, M C, I C, I, M C, I C, I, M
BG456 C, I C, I, M C, I C, I, M C, I C, I, M
FG144 C, I C, I C, I, M C, I
FG256 C, I C, I, M C, I C, I, M
FG484 C, I C, I, M
FG676 C, I, M C, I
FG896 C, I C, I, M
FG1152 C, I
CQ208 M, B M, B M, B
CQ352 M, B M, B M, B
CG624 M, B M, B
Note: C = Commercial
I = Industrial
M = Military
B = MIL-STD-883
Std.
C
I
M, B
Note: C = Commercial
I = Industrial
M = Military
B = MIL-STD-883
ProASICPLUS Flash Family FPGAs
v5.9 1-1
Device Family Overview
The ProASICPLUS family of devices, Actel’s second-
generation family of flash FPGAs, offers enhanced
performance over Actel’s ProASIC family. It combines the
advantages of ASICs with the benefits of programmable
devices through nonvolatile flash technology. This
enables engineers to create high-density systems using
existing ASIC or FPGA design flows and tools. In addition,
the ProASICPLUS family offers a unique clock conditioning
circuit based on two on-board phase-locked loops (PLLs).
The family offers up to one million system gates,
supported with up to 198 kbits of two-port SRAM and up
to 712 user I/Os, all providing 50 MHz PCI performance.
Advantages to the designer extend beyond
performance. Unlike SRAM-based FPGAs, four levels of
routing hierarchy simplify routing, while the use of flash
technology allows all functionality to be live at power-
up. No external boot PROM is required to support device
programming. While on-board security mechanisms
prevent access to the program information,
reprogramming can be performed in-system to support
future design iterations and field upgrades. The device’s
architecture mitigates the complexity of ASIC migration
at higher user volume. This makes ProASICPLUS a cost-
effective solution for applications in the networking,
communications, computing, and avionics markets.
The ProASICPLUS family achieves its nonvolatility and
reprogrammability through an advanced flash-based
0.22 μm LVCMOS process with four layers of metal.
Standard CMOS design techniques are used to
implement logic and control functions, including the
PLLs and LVPECL inputs. This results in predictable
performance compatible with gate arrays.
The ProASICPLUS architecture provides granularity
comparable to gate arrays. The device core consists of a
Sea-of-Tiles. Each tile can be configured as a flip-flop,
latch, or three-input/one-output logic function by
programming the appropriate Flash switches. The
combination of fine granularity, flexible routing
resources, and abundant flash switches allows 100%
utilization and over 95% routability for highly congested
designs. Tiles and larger functions are interconnected
through a four-level routing hierarchy.
Embedded two-port SRAM blocks with built-in FIFO/RAM
control logic can have user-defined depths and widths.
Users can also select programming for synchronous or
asynchronous operation, as well as parity generations or
checking.
The unique clock conditioning circuitry in each device
includes two clock conditioning blocks. Each block
provides a PLL core, delay lines, phase shifts (0° and
180°), and clock multipliers/dividers, as well as the
circuitry needed to provide bidirectional access to the
PLL. The PLL block contains four programmable
frequency dividers which allow the incoming clock signal
to be divided by a wide range of factors from 1 to 64.
The clock conditioning circuit also delays or advances the
incoming reference clock up to 8 ns (in increments of
0.25 ns). The PLL can be configured internally or
externally during operation without redesigning or
reprogramming the part. In addition to the PLL, there
are two LVPECL differential input pairs to accommodate
high-speed clock and data inputs.
To support customer needs for more comprehensive,
lower-cost, board-level testing, Actel’s ProASICPLUS
devices are fully compatible with IEEE Standard 1149.1
for test access port and boundary-scan test architecture.
For more information concerning the flash FPGA
implementation, please refer to the "Boundary Scan
(JTAG)" section on page 2-8.
ProASICPLUS devices are available in a variety of high-
performance plastic packages. Those packages and the
performance features discussed above are described in
more detail in the following sections.
ProASICPLUS Flash Family FPGAs
1-2 v5.9
ProASICPLUS Architecture
The proprietary ProASICPLUS architecture provides
granularity comparable to gate arrays.
The ProASICPLUS device core consists of a Sea-of-Tiles
(Figure 1-1). Each tile can be configured as a three-input
logic function (e.g., NAND gate, D-Flip-Flop, etc.) by
programming the appropriate flash switch
interconnections (Figure 1-2 and Figure 1-3 on page 1-3).
Tiles and larger functions are connected with any of the
four levels of routing hierarchy. Flash switches are
distributed throughout the device to provide
nonvolatile, reconfigurable interconnect programming.
Flash switches are programmed to connect signal lines to
the appropriate logic cell inputs and outputs. Dedicated
high-performance lines are connected as needed for fast,
low-skew global signal distribution throughout the core.
Maximum core utilization is possible for virtually any
design.
ProASICPLUS devices also contain embedded, two-port
SRAM blocks with built-in FIFO/RAM control logic.
Programming options include synchronous or
asynchronous operation, two-port RAM configurations,
user-defined depth and width, and parity generation or
checking. Refer to the "Embedded Memory
Specifications" section on page 2-54 for more
information.
Figure 1-1 The ProASICPLUS Device Architecture
Figure 1-2 Flash Switch
256x9 Two-Port SRAM
or FIFO Block
Logic Tile
256x9 Two Port SRAM
or FIFO Block
RAM Block
RAM Block
I/Os
Sensing Switching
Switch In
Switch Out
W
ord
Floating Gate
ProASICPLUS Flash Family FPGAs
v5.9 1-3
Live at Power-Up
The Actel flash-based ProASICPLUS devices support
Level 0 of the live at power-up (LAPU) classification
standard. This feature helps in system component
initialization, executing critical tasks before the
processor wakes up, setting up and configuring memory
blocks, clock generation, and bus activity management.
The LAPU feature of flash-based ProASICPLUS devices
greatly simplifies total system design and reduces total
system cost, often eliminating the need for complex
programmable logic device (CPLD) and clock generation
PLLs that are used for this purpose in a system. In
addition, glitches and brownouts in system power will
not corrupt the ProASICPLUS device's flash configuration,
and unlike SRAM-based FPGAs, the device will not have
to be reloaded when system power is restored. This
enables the reduction or complete removal of the
configuration PROM, expensive voltage monitor,
brownout detection, and clock generator devices from
the PCB design. Flash-based ProASICPLUS devices simplify
total system design, and reduce cost and design risk,
while increasing system reliability and improving system
initialization time.
Flash Switch
Unlike SRAM FPGAs, ProASICPLUS uses a live-at-power-up
ISP flash switch as its programming element.
In the ProASICPLUS flash switch, two transistors share the
floating gate, which stores the programming
information. One is the sensing transistor, which is only
used for writing and verification of the floating gate
voltage. The other is the switching transistor. It can be
used in the architecture to connect/separate routing nets
or to configure logic. It is also used to erase the floating
gate (Figure 1-2 on page 1-2).
Logic Tile
The logic tile cell (Figure 1-3) has three inputs (any or all
of which can be inverted) and one output (which can
connect to both ultra-fast local and efficient long-line
routing resources). Any three-input, one-output logic
function (except a three-input XOR) can be configured as
one tile. The tile can be configured as a latch with clear
or set or as a flip-flop with clear or set. Thus, the tiles can
flexibly map logic and sequential gates of a design.
Figure 1-3 Core Logic Tile
Local Routing
In 1
In 2 (CLK)
In 3 (Reset)
Efficient Long-Line Routing
ProASICPLUS Flash Family FPGAs
1-4 v5.9
Data Sheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet
Supplement." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advanced or production) containing general product
information. This brief gives an overview of specific device and family information.
Advance
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Datasheet Supplement
The datasheet supplement gives specific device information for a derivative family that differs from the general family
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and
for specifications that do not differ between the two families.
Export Administration Regulations (EAR)
The products described in this datasheet are subject to the Export Administration Regulations (EAR). They could
require an approved export license prior to export from the United States. An export includes release of product or
disclosure of technology to a foreign national inside or outside the United States.
Actel Safety Critical, Life Support, and High-Reliability Applications
Policy
The Actel products described in this advance status datasheet may not have completed Actel’s qualification process.
Actel may amend or enhance products during the product introduction and qualification process, resulting in changes
in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel
product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-
support, and other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability exclusions
relating to life-support applications. A reliability report covering all of Actel’s products is available on the Actel
website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and
lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.
v5.9
Table of Contents
ProASICPLUS Flash Family FPGAs
Device Family Overview
ProASICPLUS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
General Description
Routing Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Timing Control and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Sample Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Adjustable Clock Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Clock Skew Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
PLL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Design Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Calculating Typical Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
Tristate Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42
Output Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
Input Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
Global Input Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48
Predicted Global Routing Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
Global Routing Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
Module Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
Sample Macrocell Library Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
Embedded Memory Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-54
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73
Recommended Design Practice for VPN/VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74
Package Pin Assignments
100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
144-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
208-Pin PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
208-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
352-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
456-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
144-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37
256-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40
484-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45
676-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51
896-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-59
1152-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-69
624-Pin CCGA/LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-78
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Data Sheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Actel Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . 4-8
ProASICPLUS Flash Family FPGAs
v5.9 2-1
General Description
Routing Resources
The routing structure of ProASICPLUS devices is designed
to provide high performance through a flexible four-
level hierarchy of routing resources: ultra-fast local
resources, efficient long-line resources, high-speed, very
long-line resources, and high performance global
networks.
The ultra-fast local resources are dedicated lines that
allow the output of each tile to connect directly to every
input of the eight surrounding tiles (Figure 2-1).
The efficient long-line resources provide routing for
longer distances and higher fanout connections. These
resources vary in length (spanning 1, 2, or 4 tiles), run
both vertically and horizontally, and cover the entire
ProASICPLUS device (Figure 2-2 on page 2-2). Each tile can
drive signals onto the efficient long-line resources, which
can in turn access every input of every tile. Active buffers
are inserted automatically by routing software to limit
the loading effects due to distance and fanout.
The high-speed, very long-line resources, which span the
entire device with minimal delay, are used to route very
long or very high fanout nets. (Figure 2-3 on page 2-3).
The high-performance global networks are low-skew,
high fanout nets that are accessible from external pins or
from internal logic (Figure 2-4 on page 2-4). These nets
are typically used to distribute clocks, resets, and other
high fanout nets requiring a minimum skew. The global
networks are implemented as clock trees, and signals can
be introduced at any junction. These can be employed
hierarchically with signals accessing every input on all
tiles.
Figure 2-1 Ultra-Fast Local Resources
L
LL
LL
LInputs
Output
Ultra-Fast
Local Lines
(connects a tile to the
adjacent tile, I/O buffer,
or memory block)
LLL
ProASICPLUS Flash Family FPGAs
2-2 v5.9
Figure 2-2 Efficient Long-Line Resources
LL LLLL
LLLLLL
LL LLLL
LL LLLL
LL LLLL
Logic Cell
Spans 1 Tile
Spans 2 Tiles
Spans 4 Tiles
Spans 1 Tile
Spans 2 Tiles
Spans 4 Tiles
Logic Tile
ProASICPLUS Flash Family FPGAs
v5.9 2-3
Clock Resources
The ProASICPLUS family offers powerful and flexible
control of circuit timing through the use of analog
circuitry. Each chip has two clock conditioning blocks
containing a phase-locked loop (PLL) core, delay lines,
phase shifter (0° and 180°), clock multiplier/dividers, and
all the circuitry needed for the selection and
interconnection of inputs to the global network (thus
providing bidirectional access to the PLL). This permits
the PLL block to drive inputs and/or outputs via the two
global lines on each side of the chip (four total lines).
This circuitry is discussed in more detail in the
"ProASICPLUS Clock Management System" section on
page 2-10.
Clock Trees
One of the main architectural benefits of ProASICPLUS is
the set of power- and delay-friendly global networks.
ProASICPLUS offers four global trees. Each of these trees
is based on a network of spines and ribs that reach all
the tiles in their regions (Figure 2-4 on page 2-4). This
flexible clock tree architecture allows users to map up to
88 different internal/external clocks in an APA1000
device. Details on the clock spines and various numbers
of the family are given in Table 2-1 on page 2-4.
The flexible use of the ProASICPLUS clock spine allows the
designer to cope with several design requirements. Users
implementing clock-resource intensive applications can
easily route external or gated internal clocks using global
routing spines. Users can also drastically reduce delay
penalties and save buffering resources by mapping
critical high fanout nets to spines. For design hints on
using these features, refer to Actel’s Efficient Use of
ProASIC Clock Trees application note.
Figure 2-3 High-Speed, Very Long-Line Resources
PAD RING
PAD RING
PAD RING
I/O RING
I/O RING
High-Speed Very Long-Line Resouces
SRAM
SRAM
ProASICPLUS Flash Family FPGAs
2-4 v5.9
Note: This figure shows routing for only one global path.
Figure 2-4 High-Performance Global Network
Table 2-1 Clock Spines
APA075 APA150 APA300 APA450 APA600 APA750 APA1000
Global Clock Networks (Trees) 4 4 4 4 4 4 4
Clock Spines/Tree 6 8 8 12 14 16 22
Total Spines 24 32 32 48 56 64 88
Top or Bottom Spine Height (Tiles) 16 24 32 32 48 64 80
Tiles in Each Top or Bottom Spine 512 768 1,024 1,024 1,536 2,048 2,560
Total Tiles 3,072 6,144 8,192 12,288 21,504 32,768 56,320
Top Spine
Bottom Spine
Global
Pads Global
Pads
Global Networks
Global Spine
Global Ribs
High-Performance
Global Network
Scope of Spine
(Shaded area
plus local RAMs
and I/Os)
PAD RING
PAD RING
PAD RING
I/O RING
I/O RING
ProASICPLUS Flash Family FPGAs
v5.9 2-5
Array Coordinates
During many place-and-route operations in Actel’s
Designer software tool, it is possible to set constraints
that require array coordinates.
Table 2-2 is provided as a reference. The array coordinates
are measured from the lower left (0,0). They can be used in
region constraints for specific groups of core cells, I/Os, and
RAM blocks. Wild cards are also allowed.
I/O and cell coordinates are used for placement
constraints. Two coordinate systems are needed because
there is not a one-to-one correspondence between I/O
cells and core cells. In addition, the I/O coordinate system
changes depending on the die/package combination.
Core cell coordinates start at the lower left corner
(represented as (1,1)) or at (1,5) if memory blocks are
present at the bottom. Memory coordinates use the
same system and are indicated in Table 2-2. The memory
coordinates for an APA1000 are illustrated in Figure 2-5.
For more information on how to use constraints, see the
Designer User’s Guide or online help for ProASICPLUS
software tools.
Table 2-2 Array Coordinates
Device
Logic Tile Memory Rows
AllMin. Max. Bottom Top
xy x y y y Min. Max.
APA075 1 1 96 32 (33,33) or (33, 35) 0,0 97, 37
APA150 1 1 128 48 (49,49) or (49, 51) 0,0 129, 53
APA300 1 5 128 68 (1,1) or (1,3) (69,69) or (69, 71) 0,0 129, 73
APA450 1 5 192 68 (1,1) or (1,3) (69,69) or (69, 71) 0,0 193, 73
APA600 1 5 224 100 (1,1) or (1,3) (101,101) or (101, 103) 0,0 225, 105
APA750 1 5 256 132 (1,1) or (1,3) (133,133) or (133, 135) 0,0 257, 137
APA1000 1 5 352 164 (1,1) or (1,3) (165,165) or (165, 167) 0,0 353, 169
Figure 2-5 Core Cell Coordinates for the APA1000
(353,169)
(352,167)
(352,165)
(352,164)
(352,5)
(352,3)
(353,0)
(352,1)
(1,5)
(1,1)
(1,164)
(1,165)
(1,3)
(1,167)
(1,169)
(0,0)
Core
Memory
Blocks
Memory
Blocks
ProASICPLUS Flash Family FPGAs
2-6 v5.9
Input/Output Blocks
To meet complex system demands, the ProASICPLUS
family offers devices with a large number of user I/O
pins; up to 712 on the APA1000. Table 2-3 shows the
available supply voltage configurations (the PLL block
uses an independent 2.5 V supply on the AVDD and
AGND pins). All I/Os include ESD protection circuits. Each
I/O has been tested to 2000 V to the human body model
(per JESD22 (HBM)).
Six or seven standard I/O pads are grouped with a GND
pad and either a VDD (core power) or VDDP (I/O power)
pad. Two reference bias signals circle the chip. One
protects the cascaded output drivers, while the other
creates a virtual VDD supply for the I/O ring.
I/O pads are fully configurable to provide the maximum
flexibility and speed. Each pad can be configured as an
input, an output, a tristate driver, or a bidirectional
buffer (Figure 2-6 and Table 2-4).
Table 2-3 ProASICPLUS I/O Power Supply Voltages
VDDP
2.5 V 3.3 V
Input Compatibility 2.5V 3.3V
Output Drive 2.5V 3.3V
Figure 2-6 I/O Block Schematic Representation
3.3 V / 2.5 V
Signal Control
Pull-up
Control
Pad
Y
EN
A
3.3 V / 2.5 V Signal Control Drive
Strength and Slew-Rate Control
Table 2-4 I/O Features
Function Description
I/O pads configured as inputs Selectable 2.5 V or 3.3 V threshold levels
• Optional pull-up resistor
Optionally configurable as Schmitt trigger input. The Schmitt trigger input option can be
configured as an input only, not a bidirectional buffer. This input type may be slower than
a standard input under certain conditions and has a typical hysteresis of 0.35 V. I/O macros
with an "S" in the standard I/O library have added Schmitt capabilities.
3.3 V PCI Compliant (except Schmitt trigger inputs)
I/O pads configured as outputs Selectable 2.5 V or 3.3 V compliant output signals
2.5 V – JEDEC JESD 8-5
3.3 V – JEDEC JESD 8-A (LVTTL and LVCMOS)
3.3 V PCI compliant
Ability to drive LVTTL and LVCMOS levels
• Selectable drive strengths
• Selectable slew rates
• Tristate
I/O pads configured as bidirectional
buffers
Selectable 2.5 V or 3.3 V compliant output signals
2.5 V – JEDEC JESD 8-5
3.3 V – JEDEC JESD 8-A (LVTTL and LVCMOS)
3.3 V PCI compliant
• Optional pull-up resistor
• Selectable drive strengths
• Selectable slew rates
• Tristate
ProASICPLUS Flash Family FPGAs
v5.9 2-7
Power-Up Sequencing
While ProASICPLUS devices are live at power-up, the order
of VDD and VDDP power-up is important during system
start-up. VDD should be powered up simultaneously with
VDDP on ProASICPLUS devices. Failure to follow these
guidelines may result in undesirable pin behavior during
system start-up. For more information, refer to Actel’s
Power-Up Behavior of ProASICPLUS Devices application
note.
LVPECL Input Pads
In addition to standard I/O pads and power pads,
ProASICPLUS devices have a single LVPECL input pad on
both the east and west sides of the device, along with
AVDD and AGND pins to power the PLL block. The
LVPECL pad cell consists of an input buffer (containing a
low voltage differential amplifier) and a signal and its
complement, PPECL (I/P) (PECLN) and NPECL (PECLREF).
The LVPECL input pad cell differs from the standard I/O
cell in that it is operated from VDD only.
Since it is exclusively an input, it requires no output
signal, output enable signal, or output configuration
bits. As a special high-speed differential input, it also
does not require pull-ups. Recommended termination
for LVPECL inputs is shown in Figure 2-7. The LVPECL pad
cell compares voltages on the PPECL (I/P) pad (as
illustrated in Figure 2-8) and the NPECL pad and sends
the results to the global MUX (Figure 2-11 on page 2-11).
This high-speed, low-skew output essentially controls the
clock conditioning circuit.
LVPECLs are designed to meet LVPECL JEDEC receiver
standard levels (Table 2-5).
Figure 2-7 Recommended Termination for LVPECL Inputs
Figure 2-8 LVPECL High and Low Threshold Values
Table 2-5 LVPECL Receiver Specifications
Symbol Parameter Minimum Maximum Units
VIH Input High Voltage 1.49 2.72 V
VIL Input Low Voltage 0.86 2.125 V
VID Differential Input Voltage 0.3 VDD V
+
_
PPECL
NPECL
From LVPECL Driver Data
Z = 50 Ω
0
Z = 50 Ω
0
R = 100 Ω
2.72
2.125
1.49
0.86
Voltage
ProASICPLUS Flash Family FPGAs
2-8 v5.9
Boundary Scan (JTAG)
ProASICPLUS devices are compatible with IEEE Standard
1149.1, which defines a set of hardware architecture and
mechanisms for cost-effective, board-level testing. The
basic ProASICPLUS boundary-scan logic circuit is composed
of the TAP (test access port), TAP controller, test data
registers, and instruction register (Figure 2-9). This circuit
supports all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD and BYPASS) and the optional
IDCODE instruction (Table 2-6).
Each test section is accessed through the TAP, which has
five associated pins: TCK (test clock input), TDI and TDO
(test data input and output), TMS (test mode selector)
and TRST (test reset input). TMS, TDI and TRST are
equipped with pull-up resistors to ensure proper
operation when no input data is supplied to them. These
pins are dedicated for boundary-scan test usage. Actel
recommends that a nominal 20 kΩ pull-up resistor is
added to TDO and TCK pins.
The TAP controller is a four-bit state machine (16 states)
that operates as shown in Figure 2-10 on page 2-9. The
1s and 0s represent the values that must be present at
TMS at a rising edge of TCK for the given state transition
to occur. IR and DR indicate that the instruction register
or the data register is operating in that state.
ProASICPLUS devices have to be programmed at least
once for complete boundary-scan functionality to be
available. Prior to being programmed, EXTEST is not
available. If boundary-scan functionality is required prior
to programming, refer to online technical support on the
Actel website and search for ProASICPLUS BSDL.
Figure 2-9 ProASICPLUS JTAG Boundary Scan Test Logic Circuit
Device
Logic
TDI
TCK
TMS
TRST
TDO
I/OI/OI/O I/OI/O
I/OI/OI/O I/OI/O
I/O
I/O
I/O
I/O
Bypass Register
Instruction
Register
TAP
Controller
Test Data
Registers
Table 2-6 Boundary-Scan Opcodes
Hex Opcode
EXTEST 00
SAMPLE/PRELOAD 01
IDCODE 0F
CLAMP 05
BYPASS FF
Table 2-6 Boundary-Scan Opcodes
Hex Opcode
ProASICPLUS Flash Family FPGAs
v5.9 2-9
The TAP controller receives two control inputs (TMS and
TCK) and generates control and clock signals for the rest
of the test logic architecture. On power-up, the TAP
controller enters the Test-Logic-Reset state. To guarantee
a reset of the controller from any of the possible states,
TMS must remain high for five TCK cycles. The TRST pin
may also be used to asynchronously place the TAP
controller in the Test-Logic-Reset state.
ProASICPLUS devices support three types of test data
registers: bypass, device identification, and boundary
scan. The bypass register is selected when no other
register needs to be accessed in a device. This speeds up
test data transfer to other devices in a test data path.
The 32-bit device identification register is a shift register
with four fields (lowest significant byte (LSB), ID number,
part number and version). The boundary-scan register
observes and controls the state of each I/O pin.
Each I/O cell has three boundary-scan register cells, each
with a serial-in, serial-out, parallel-in, and parallel-out
pin. The serial pins are used to serially connect all the
boundary-scan register cells in a device into a boundary-
scan register chain, which starts at the TDI pin and ends
at the TDO pin. The parallel ports are connected to the
internal core logic tile and the input, output, and control
ports of an I/O buffer to capture and load data into the
register to control or observe the logic state of each I/O.
Figure 2-10 TAP Controller State Diagram
Test-Logic
Reset
Run-Test/
Idle Select-DR-
Scan
Capture-DR
Shift-DR
Exit-DR
Pause-DR
Exit2-DR
Update-DR
Select-IR-
Scan
Capture-IR
Shift-IR
Exit-IR
Pause-IR
Exit2-IR
Update-IR
1
11
0
1
0
00
11
00
00
11
00
1
1
11
11
110
0
00
0
0
ProASICPLUS Flash Family FPGAs
2-10 v5.9
Timing Control and
Characteristics
ProASICPLUS Clock Management System
ProASICPLUS devices provide designers with very flexible
clock conditioning capabilities. Each member of the
ProASICPLUS family contains two phase-locked loop (PLL)
blocks which perform the following functions:
Clock Phase Adjustment via Programmable Delay
(250 ps steps from –7 ns to +8 ns)
Clock Skew Minimization
Clock Frequency Synthesis
Each PLL has the following key features:
Input Frequency Range (fIN) = 1.5 to 180 MHz
Feedback Frequency Range (fVCO) = 24 to 180 MHz
Output Frequency Range (fOUT) = 8 to 180 MHz
Output Phase Shift = 0 ° and 180 °
Output Duty Cycle = 50%
Low Output Jitter (maximum at 25°C)
–f
VCO <10 MHz. Jitter ±1% or better
10 MHz < fVCO < 60 MHz. Jitter ±2% or better
–f
VCO > 60 MHz. Jitter ±1% or better
Note: Jitter (ps) = Jitter (%) × period
For Example:
Low Power Consumption – 6.9 mW (max. – analog
supply) + 7.0 µW/MHz (max. – digital supply)
Physical Implementation
Each side of the chip contains a clock conditioning circuit
based on a 180 MHz PLL block (Figure 2-11 on page
2-11). Two global multiplexed lines extend along each
side of the chip to provide bidirectional access to the PLL
on that side (neither MUX can be connected to the
opposite side's PLL). Each global line has optional LVPECL
input pads (described below). The global lines may be
driven by either the LVPECL global input pad or the
outputs from the PLL block, or both. Each global line can
be driven by a different output from the PLL. Unused
global pins can be configured as regular I/Os or left
unconnected. They default to an input with pull-up. The
two signals available to drive the global networks are as
follows (Figure 2-12 on page 2-12, Table 2-7 on page 2-
12, and Table 2-8 on page 2-13):
Global A (secondary clock)
Output from Global MUX A
Conditioned version of PLL output (fOUT) – delayed
or advanced
Divided version of either of the above
Further delayed version of either of the above
(0.25 ns, 0.50 ns, or 4.00 ns delay)1
Global B
Output from Global MUX B
Delayed or advanced version of fOUT
Divided version of either of the above
Further delayed version of either of the above
(0.25 ns, 0.50 ns, or 4.00 ns delay)2
Functional Description
Each PLL block contains four programmable dividers as
shown in Figure 2-11 on page 2-11. These allow
frequency scaling of the input clock signal as follows:
The n divider divides the input clock by integer
factors from 1 to 32.
The m divider in the feedback path allows
multiplication of the input clock by integer factors
ranging from 1 to 64.
The two dividers together can implement any
combination of multiplication and division
resulting in a clock frequency between 24 and 180
MHz exiting the PLL core. This clock has a fixed
50% duty cycle.
The output frequency of the PLL core is given by
the formula in EQ 2-1 (fREF is the reference clock
frequency):
fOUT = fREF × m ÷ n
EQ 2-1
The third and fourth dividers (u and v) permit the
signals applied to the global network to each be
further divided by integer factors ranging from 1
to 4.
The implementations shown in EQ 2-2 and EQ 2-3 enable
the user to define a wide range of frequency multiplier
and divisors.
EQ 2-2
EQ 2-3
Jitter in picoseconds at 100 MHz = 0.01 × (1/100E6) = 100 ps
Maximum Acquisition
Time
= 80 µs for fVCO > 40 MHz
= 30 µs for fVCO < 40 MHz
1. This mode is available through the delay feature of the global MUX driver.
fGLB
m
nu×()
-----------------=
fGLA
m
nv×()
-----------------=
ProASICPLUS Flash Family FPGAs
v5.9 2-11
The clock conditioning circuit can advance or delay the
clock up to 8 ns (in increments of 0.25 ns) relative to the
positive edge of the incoming reference clock. The system
also allows for the selection of output frequency clock
phases of 0° and 180°.
Prior to the application of signals to the rib drivers, they
pass through programmable delay units, one per global
network. These units permit the delaying of global
signals relative to other signals to assist in the control of
input set-up times. Not all possible combinations of input
and output modes can be used. The degrees of freedom
available in the bidirectional global pad system and in
the clock conditioning circuit have been restricted. This
avoids unnecessary and unwieldy design kit and software
work.
Notes:
1. FBDLY is a programmable delay line from 0 to 4 ns in 250 ps increments.
2. DLYA and DLYB are programmable delay lines, each with selectable values 0 ps, 250 ps, 500 ps, and 4 ns.
3. OBDIV will also divide the phase-shift since it takes place after the PLL Core.
Figure 2-11 PLL Block – Top-Level View and Detailed PLL Block Diagram
AVDD AGND GND
+
-
VDD
External Feedback Signal
GLA
GLB
Dynamic
Configuration Bits
Flash
Configuration Bits
8
27
4
Clock Conditioning
Circuitry
(Top level view)
Global MUX A OUT
Global MUX B OUT
See Figure 2-15
on page 2-15
Input Pins to the PLL
GLB
GLA
÷u
÷v
PLL Core
180°
0
1
6
7
5
4
2
Delay Line 0.0 ns, 0.25 ns,
0.50 ns and 4.00 ns
P+
P-
Clock from Core
(GLINT mode)
CLK
1
0
Deskew
Delay
2.95 ns
1
2
3
Delay Line
0.25 ns to
4.00 ns,
16 steps,
0.25 ns
increments
3
1
2
Delay Line 0.0 ns, 0.25 ns,
0.50 ns and 4.00 ns
Clock from Core
(GLINT mode)
CLKA
EXTFB XDLYSEL
Bypass Secondary
Bypass Primary
FIVDIV[4:0]
FBDIV[5:0]
FBSEL[1:0]
OAMUX[1:0]
DLYA[1:0]
DLYB[1:0]
OBDIV[1:0]
OBMUX[2:0]
OADIV[1:0]
FBDLY[3:0]
÷n
÷m
Clock Conditioning Circuitry Detailed Block Diagram
ProASICPLUS Flash Family FPGAs
2-12 v5.9
Note: When a signal from an I/O tile is connected to the core, it cannot be connected to the global MUX at the same time.
Figure 2-12 Input Connectors to ProASICPLUS Clock Conditioning Circuitry
Table 2-7 Clock-Conditioning Circuitry MUX Settings
MUX Datapath Comments
FBSEL
1 Internal Feedback
2 Internal Feedback and Advance Clock Using FBDLY –0.25 to –4 ns in 0.25 ns increments
3 External Feedback (EXTFB)
XDLYSEL
0 Feedback Unchanged
1 Deskew feedback by advancing clock by system delay Fixed delay of –2.95 ns
OBMUX GLB
0 Primary bypass, no divider
1 Primary bypass, use divider
2 Delay Clock Using FBDLY +0.25 to +4 ns in 0.25 ns increments
4 Phase Shift Clock by 0°
5 Reserved
6 Phase Shift Clock by +180°
7 Reserved
OAMUX GLA
0 Secondary bypass, no divider
1 Secondary bypass, use divider
2Delay Clock Using FBDLY +0.25 to +4 ns in 0.25 ns increments
3Phase Shift Clock by 0°
Configuration Tile
Configuration Tile
PECL Pad Cell
GLMX
GL
Std. Pad Cell
Std. Pad Cell
Std. Pad Cell
GL
NPECL
PPECL
CORE
Package Pins Physical I/O
Buffers
Global MUX
External
Feedback
Global MUX B
OUT
Global MUX A
OUT
Legend
Physical Pin
DATA Signals to the Core
DATA Signals to the PLL Block
DATA Signals to the Global MUX
Control Signals to the Global MUX
ProASICPLUS Flash Family FPGAs
v5.9 2-13
Lock Signal
An active high Lock signal (added via the SmartGen PLL
development tool) indicates that the PLL has locked to
the incoming clock signal. The PLL will acquire and
maintain a lock even when there is jitter on the incoming
clock signal. The PLL will maintain lock with an input
jitter up to 5% of the input period, with a maximum of
5 ns. Users can employ the Lock signal as a soft reset of
the logic driven by GLB and/or GLA. Note if FIN is not
within specified frequencies, then both the FOUT and lock
signal are indeterminate.
PLL Configuration Options
The PLL can be configured during design (via flash-
configuration bits set in the programming bitstream) or
dynamically during device operation, thus eliminating
the need to reprogram the device. The dynamic
configuration bits are loaded into a serial-in/parallel-out
shift register provided in the clock conditioning circuit.
The shift register can be accessed either from user logic
within the device or via the JTAG port. Another option is
internal dynamic configuration via user-designed
hardware. Refer to Actel's ProASICPLUS PLL Dynamic
Reconfiguration Using JTAG application note for more
information.
For information on the clock conditioning circuit, refer
to Actel’s Using ProASICPLUS Clock Conditioning Circuits
application note.
Sample Implementations
Frequency Synthesis
Figure 2-13 on page 2-14 illustrates an example where
the PLL is used to multiply a 33 MHz external clock up to
133 MHz. Figure 2-14 on page 2-14 uses two dividers to
synthesize a 50 MHz output clock from a 40 MHz input
reference clock. The input frequency of 40 MHz is
multiplied by five and divided by four, giving an output
clock (GLB) frequency of 50 MHz. When dividers are
used, a given ratio can be generated in multiple ways,
allowing the user to stay within the operating frequency
ranges of the PLL. For example, in this case the input
divider could have been two and the output divider also
two, giving us a division of the input frequency by four
to go with the feedback loop division (effective
multiplication) by five.
Adjustable Clock Delay
Figure 2-15 on page 2-15 illustrates the delay of the
input clock by employing one of the adjustable delay
lines. This is easily done in ProASICPLUS by bypassing the
PLL core entirely and using the output delay line. Notice
also that the output clock can be effectively advanced
relative to the input clock by using the delay line in the
feedback path. This is shown in Figure 2-16 on page 2-15.
Clock Skew Minimization
Figure 2-17 on page 2-16 indicates how feedback from
the clock network can be used to create minimal skew
between the distributed clock network and the input
clock. The input clock is fed to the reference clock input
of the PLL. The output clock (GLA) feeds a clock network.
The feedback input to the PLL uses a clock input delayed
by a routing network. The PLL then adjusts the phase of
the input clock to match the delayed clock, thus
providing nearly zero effective skew between the two
clocks. Refer to Actel's Using ProASICPLUS Clock
Conditioning Circuits application note for more
information.
Table 2-8 Clock Conditioning Circuitry Delay-Line
Settings
Delay Line Delay Value (ns)
DLYB
00
1 +0.25
2 +0.50
3+4.0
DLYA
00
1 +0.25
2 +0.50
3+4.0
ProASICPLUS Flash Family FPGAs
2-14 v5.9
Figure 2-13 Using the PLL 33 MHz In, 133 MHz Out
Figure 2-14 Using the PLL 40 MHz In, 50 MHz Out
÷n
÷m
÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX B OUT
Global MUX A OUT
GLB
GLA
0˚
180˚
33 MHz
133 MHz
÷4
÷1
÷1
÷n
÷m
÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX B OUT
Global MUX A OUT
GLB
GL
A
0˚
180˚
40 MHz 50 MHz
÷5
÷4
÷1
ProASICPLUS Flash Family FPGAs
v5.9 2-15
Figure 2-15 Using the PLL to Delay the Input Clock
Figure 2-16 Using the PLL to Advance the Input Clock
÷n
÷m
÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX B OUT
Global MUX A OUT
GLB
GL
A
0
˚
180
˚
133 MHz
133 MHz
÷1
÷1
÷1
÷n
÷m
÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX B OUT
Global MUX A OUT
GLB
GL
A
0˚
180˚
133 MHz
133 MHz
÷1
÷1
÷1
ProASICPLUS Flash Family FPGAs
2-16 v5.9
Figure 2-17 Using the PLL for Clock Deskewing
÷u
÷v
÷n
÷m
D
D
D
D
PLL Core
External
Feedback
Global MUX B
OUT
Global MUX A
OUT
GL
B
GL
A
133 MHz
133 MHz
/1
/1
D
Q
QSET
CLR
Off-Chip On-Chip
Reference
Clock
180°
ProASICPLUS Flash Family FPGAs
v5.9 2-17
Logic Tile Timing Characteristics
Timing characteristics for ProASICPLUS devices fall into
three categories: family dependent, device dependent,
and design dependent. The input and output buffer
characteristics are common to all ProASICPLUS family
members. Internal routing delays are device dependent.
Design dependency means that actual delays are not
determined until after placement and routing of the
user’s design are complete. Delay values may then be
determined by using the Timer utility or by performing
simulation with post-layout delays.
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most
timing-critical paths. Critical nets are determined by net
property assignment prior to place-and-route. Refer to
the Actel Designer User’s Guide or online help for details
on using constraints.
Timing Derating
Since ProASICPLUS devices are manufactured with a
CMOS process, device performance will vary with
temperature, voltage, and process. Minimum timing
parameters reflect maximum operating voltage,
minimum operating temperature, and optimal process
variations. Maximum timing parameters reflect minimum
operating voltage, maximum operating temperature,
and worst-case process variations (within process
specifications). The derating factors shown in Table 2-9
should be applied to all timing data contained within
this datasheet.
All timing numbers listed in this datasheet represent
sample timing characteristics of ProASICPLUS devices.
Actual timing delay values are design-specific and can be
derived from the Timer tool in Actel’s Designer software
after place-and-route.
Table 2-9 Temperature and Voltage Derating Factors
(Normalized to Worst-Case Commercial, TJ = 70°C, VDD = 2.3 V)
–55°C –40°C 0°C 25°C 70°C 85°C 110°C 125°C 135°C 150°C
2.3 V 0.840.860.910.941.001.021.051.131.181.27
2.5 V 0.810.820.870.900.950.981.011.091.131.21
2.7 V 0.770.790.830.860.910.930.961.041.081.16
Notes:
1. The user can set the junction temperature in Designer software to be any integer value in the range of –55°C to 175°C.
2. The user can set the core voltage in Designer software to be any value between 1.4 V and 1.6 V.
ProASICPLUS Flash Family FPGAs
2-18 v5.9
PLL Electrical Specifications
Parameter Value TJ –40°C Value TJ > –40°C Notes
Frequency Ranges
Reference Frequency fIN (min.) 2.0 MHz 1.5 MHz Clock conditioning circuitry (min.) lowest input
frequency
Reference Frequency fIN (max.) 180 MHz 180 MHz Clock conditioning circuitry (max.) highest input
frequency
OSC Frequency fVCO (min.) 60 24 MHz Lowest output frequency voltage controlled
oscillator
OSC Frequency fVCO (max.) 180 180 MHz Highest output frequency voltage controlled
oscillator
Clock Conditioning Circuitry fOUT (min.) fIN 40 = 18 MHz
fIN > 40 = 16 MHz
6 MHz Lowest output frequency clock conditioning
circuitry
Clock Conditioning Circuitry fOUT (max.) 180 180 MHz Highest output frequency clock conditioning
circuitry
Acquisition Time from Cold Start
Acquisition Time (max.) 80 μs 30 μsf
VCO 40 MHz
Acquisition Time (max.) 80 μs 80 μsf
VCO > 40 MHz
Long Term Jitter Peak-to-Peak Max.*
Temperature Frequency MHz
fVCO<
10
10<fV
CO<60
fVCO
>60
25°C (or higher) ±1% ±2% ±1% Jitter(ps) = Jitter(%)*period
For example:
Jitter in picoseconds at 100 MHz
= 0.01 * (1/100E6) = 100 ps
0°C ±1.5% ±2.5% ±1%
–40°C ±2.5% ±3.5% ±1%
–55°C ±2.5% ±3.5% ±1%
Power Consumption
Analog Supply Power (max.*) 6.9 mW per PLL
Digital Supply Current (max.) 7 μW/MHz
Duty Cycle 50% ±0.5%
Input Jitter Tolerance
5% input period (max.
5 ns)
Maximum jitter allowable on an input
clock to acquire and maintain lock.
Note: *High clock frequencies (>60 MHz) under typical setup conditions
ProASICPLUS Flash Family FPGAs
v5.9 2-19
PLL I/O Constraints
PLL locking is guaranteed only when the following constraints are followed:
Table 2-10 PLL I/O Constraints
TJ –40°C Value TJ > –40°C
I/O Type PLL locking is guaranteed only when using low drive strength and
low slew rate I/O. PLL locking may be inconsistent when using high
drive strength or high slew rate I/Os
No Constraints
SSO APA300 Hermetic packages 8 SSO With FIN 180 MHz and
outputs switching
simultaneously
Plastic packages 16 SSO
APA600 Hermetic packages 16 SSO
Plastic packages 32 SSO
APA1000 Hermetic packages 16 SSO
Plastic packages 32 SSO
APA300 Hermetic packages 12 SSO With FIN 50 MHz and half
outputs switching on positive
clock edge, half switching on
the negative clock edge no less
than 10 ns later
Plastic packages 20 SSO
APA600 Hermetic packages 32 SSO
Plastic packages 64 SSO
APA1000 Hermetic packages 32 SSO
Plastic packages 64 SSO
ProASICPLUS Flash Family FPGAs
2-20 v5.9
User Security
ProASICPLUS devices have FlashLock protection bits that,
once programmed, block the entire programmed
contents from being read externally. Refer to Table 2-11
for details on the number of bits in the key for each
device. If locked, the user can only reprogram the device
employing the user-defined security key. This protects
the device from being read back and duplicated. Since
programmed data is stored in nonvolatile memory cells
(actually very small capacitors) rather than in the wiring,
physical deconstruction cannot be used to compromise
data. This type of security breach is further discouraged
by the placement of the memory cells beneath the four
metal layers (whose removal cannot be accomplished
without disturbing the charge in the capacitor). This is
the highest security provided in the industry. For more
information, refer to Actel’s Design Security in
Nonvolatile Flash and Antifuse FPGAs white paper.
Embedded Memory Floorplan
The embedded memory is located across the top and
bottom of the device in 256x9 blocks (Figure 1-1 on page
1-2). Depending on the device, up to 88 blocks are
available to support a variety of memory configurations.
Each block can be programmed as an independent
memory array or combined (using dedicated memory
routing resources) to form larger, more complex memory
configurations. A single memory configuration could
include blocks from both the top and bottom memory
locations.
Embedded Memory Configurations
The embedded memory in the ProASICPLUS family
provides great configuration flexibility (Table 2-12). Each
ProASICPLUS block is designed and optimized as a two-
port memory (one read, one write). This provides 198
kbits of two-port and/or single port memory in the
APA1000 device.
Each memory block can be configured as FIFO or SRAM,
with independent selection of synchronous or
asynchronous read and write ports (Table 2-13).
Additional characteristics include programmable flags as
well as parity checking and generation. Figure 2-18 on
page 2-22 and Figure 2-19 on page 2-23 show the block
diagrams of the basic SRAM and FIFO blocks. Table 2-14
on page 2-22 and Table 2-15 on page 2-23 describe
memory block SRAM and FIFO interface signals,
respectively. A single memory block is designed to
operate at up to 150 MHz (standard speed grade typical
conditions). Each block is comprised of 256 9-bit words
(one read port, one write port). The memory blocks may
be cascaded in width and/or depth to create the desired
memory organization. (Figure 2-20 on page 2-24). This
provides optimal bit widths of 9 (one block), 18, 36, and
72, and optimal depths of 256, 512, 768, and 1,024. Refer
to Actel’s SmartGen User’s Guide for more information.
Figure 2-21 on page 2-24 gives an example of optimal
memory usage. Ten blocks with 23,040 bits have been
used to generate three arrays of various widths and
depths. Figure 2-22 on page 2-24 shows how RAM blocks
can be used in parallel to create extra read ports. In this
example, using only 10 of the 88 available blocks of the
APA1000 yields an effective 6,912 bits of multiple port
RAM. The Actel SmartGen software facilitates building
wider and deeper memory configurations for optimal
memory usage.
Table 2-11 Flashlock Key Size by Device
Device Key Size
APA075 79 bits
APA150 79 bits
APA300 79 bits
APA450 119 bits
APA600 167 bits
APA750 191 bits
APA1000 263 bits
®
Table 2-12 ProASICPLUS Memory Configurations by Device
Device Bottom Top
Maximum Width Maximum Depth
DWDW
APA075 0 12 256 108 1,536 9
APA150 0 16 256 144 2,048 9
APA300 16 16 256 144 2,048 9
APA450 24 24 256 216 3,072 9
APA600 28 28 256 252 3,584 9
APA750 32 32 256 288 4,096 9
APA1000 44 44 256 396 5,632 9
ProASICPLUS Flash Family FPGAs
v5.9 2-21
Table 2-13 Basic Memory Configurations
Type Write Access Read Access Parity Library Cell Name
RAM Asynchronous Asynchronous Checked RAM256x9AA
RAM Asynchronous Asynchronous Generated RAM256x9AAP
RAM Asynchronous Synchronous Transparent Checked RAM256x9AST
RAM Asynchronous Synchronous Transparent Generated RAM256x9ASTP
RAM Asynchronous Synchronous Pipelined Checked RAM256x9ASR
RAM Asynchronous Synchronous Pipelined Generated RAM256x9ASRP
RAM Synchronous Asynchronous Checked RAM256x9SA
RAM Synchronous Asynchronous Generated RAM256xSAP
RAM Synchronous Synchronous Transparent Checked RAM256x9SST
RAM Synchronous Synchronous Transparent Generated RAM256x9SSTP
RAM Synchronous Synchronous Pipelined Checked RAM256x9SSR
RAM Synchronous Synchronous Pipelined Generated RAM256x9SSRP
FIFO Asynchronous Asynchronous Checked FIFO256x9AA
FIFO Asynchronous Asynchronous Generated FIFO256x9AAP
FIFO Asynchronous Synchronous Transparent Checked FIFO256x9AST
FIFO Asynchronous Synchronous Transparent Generated FIFO256x9ASTP
FIFO Asynchronous Synchronous Pipelined Checked FIFO256x9ASR
FIFO Asynchronous Synchronous Pipelined Generated FIFO256x9ASRP
FIFO Synchronous Asynchronous Checked FIFO256x9SA
FIFO Synchronous Asynchronous Generated FIFO256x9SAP
FIFO Synchronous Synchronous Transparent Checked FIFO256x9SST
FIFO Synchronous Synchronous Transparent Generated FIFO256x9SSTP
FIFO Synchronous Synchronous Pipelined Checked FIFO256x9SSR
FIFO Synchronous Synchronous Pipelined Generated FIFO256x9SSRP
ProASICPLUS Flash Family FPGAs
2-22 v5.9
Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not
consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when
RAM blocks are cascaded and are automatically inserted by the software tools.
Figure 2-18 Example SRAM Block Diagrams
Table 2-14 Memory Block SRAM Interface Signals
SRAM Signal Bits In/Out Description
WCLKS 1 In Write clock used on synchronization on write side
RCLKS 1 In Read clock used on synchronization on read side
RADDR<0:7> 8 In Read address
RBLKB 1 In Read block select (active Low)
RDB 1 In Read pulse (active Low)
WADDR<0:7> 8 In Write address
WBLKB 1 In Write block select (active Low)
DI<0:8> 9 In Input data bits <0:8>, <8> can be used for parity In
WRB 1 In Write pulse (active Low)
DO<0:8> 9 Out Output data bits <0:8>, <8> can be used for parity out
RPE 1 Out Read parity error (active High)
WPE 1 Out Write parity error (active High)
PARODD 1 In Selects odd parity generation/detect when High, even parity when Low
Note: Not all signals shown are used in all modes.
SRAM
(256x9)
DI <0:8> DO <0:8>
RADDR <0:7>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
WCLKS RCLKS
RPE
PARODD
DI <0:8>
WADDR <0:7>
WRB
WBLKB
PARODD
WPE
WPE
SRAM
(256x9)
DI <0:8> DO <0:8>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
WCLKS
RPE
PARODD
WPE
RADDR <0:7>
PARODD
DI <0:8> DO <0:8>
RADDR <0:7>WADDR <0:7>
WRB RDB
WBLKB RBLKB
RCLKS
RPE
WPE
DO <0:8>
RADDR <0:7>
RDB
RBLKB
RCLKS
RPE
Sync Write
and
Sync Read
Ports
Async Write
and
Async Read
Ports
Sync Write
and
Async Read
Ports
Async Write
and
Sync Read
Ports
SRAM
(256x9)
SRAM
(256x9)
ProASICPLUS Flash Family FPGAs
v5.9 2-23
Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not
consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when
RAM blocks are cascaded and are automatically inserted by the software tools.
Figure 2-19 Basic FIFO Block Diagrams
Table 2-15 Memory Block FIFO Interface Signals
FIFO Signal Bits In/Out Description
WCLKS 1 In Write clock used for synchronization on write side
RCLKS 1 In Read clock used for synchronization on read side
LEVEL <0:7> 8 In Direct configuration implements static flag logic
RBLKB 1 In Read block select (active Low)
RDB 1 In Read pulse (active Low)
RESET 1 In Reset for FIFO pointers (active Low)
WBLKB 1 In Write block select (active Low)
DI<0:8> 9 In Input data bits <0:8>, <8> will be generated parity if PARGEN is true
WRB 1 In Write pulse (active Low)
FULL, EMPTY 2 Out FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH 2 Out EQTH is true when the FIFO holds the number of words specified by the LEVEL signal.
GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8> 9 Out Output data bits <0:8>. <8> will be parity output if PARGEN is true.
RPE 1 Out Read parity error (active High)
WPE 1 Out Write parity error (active High)
LGDEP <0:2> 3 In Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD 1 In Parity generation/detect – Even when Low, odd when High
FIFO
(256x9)
LEVEL<0:7> DO <0:8>
DI<0:8>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
WCLKS
RCLKS
RESET
RESET
RPE
WPE
FULL
EMPTY
EQTH
GEQTH
DO <0:8>
RPE
WPE
FULL
EMPTY
EQTH
GEQTH
DI <0:8> DO <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
DI <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
PARODD
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
RCLKS
RESET
RESET
LEVEL<0:7>
DI<0:8>
WRB
RDB
WBLKB
RBLKB
PARODD
LGDEP<0:2>
WCLKS
DO <0:8>
FIFO
(256x9)
FIFO
(256x9)
FIFO
(256x9)
Sync Write
and
Sync Read
Ports
Sync Write
and
Async Read
Ports
Async Write
and
Sync Read
Ports
Async Write
and
Async Read
Ports
ProASICPLUS Flash Family FPGAs
2-24 v5.9
Figure 2-20 APA1000 Memory Block Architecture
Figure 2-21 Example Showing Memory Arrays with Different Widths and Depths
Figure 2-22 Multi-Port Memory Usage
Word
Depth
Word Width
88 blocks
256
9
256
9
256
9
256
9
256
9
256
9
256
9
256
9
256
9
Word
Depth
Word Width
1,024 words x 9 bits, 1 read, 1 write
512 words x 18 bits, 1 read, 1 write
256 words x 18 bits, 1 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 23,040
256
256
256
256
9
256
256
9 9
256
99
256
256
256
256
256
99 9
256
9
512 words x 9 bits, 4 read, 1 write
256 words x 9 bits, 2 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 6,912
Word
Depth
Word Width
Write Port Write Port
Read Ports
99
Read Ports
999 9
256
256
256
256
256
256
256
ProASICPLUS Flash Family FPGAs
v5.9 2-25
Design Environment
The ProASICPLUS family of FPGAs is fully supported by
both Actel's Libero® Integrated Design Environment
(IDE) and Designer FPGA Development software. Actel
Libero IDE is an integrated design manager that
seamlessly integrates design tools while guiding the user
through the design flow, managing all design and log
files, and passing necessary design data among tools.
Additionally, Libero IDE allows users to integrate both
schematic and HDL synthesis into a single flow and verify
the entire design in a single environment (see Actel’s
website for more information about Libero IDE). Libero
IDE includes Synplify® AE from Synplicity®, ViewDraw®
AE from Mentor Graphics®, ModelSim® HDL Simulator
from Mentor Graphics, WaveFormer Lite™ AE from
SynaptiCAD®, PALACE™ AE Physical Synthesis from
Magma, and Designer software from Actel.
PALACE is an effective tool when designing with
ProASICPLUS. PALACE AE Physical Synthesis from Magma
takes an EDIF netlist and optimizes the performance of
ProASICPLUS devices through a physical placement-driven
process, ensuring that timing closure is easily achieved.
Actel's Designer software is a place-and-route tool that
provides a comprehensive suite of backend support tools
for FPGA development. The Designer software includes
the following:
Timer – A world-class integrated static timing
analyzer and constraints editor that supports
timing-driven place-and-route
NetlistViewer – A design netlist schematic viewer
ChipPlanner – A graphical floorplanner viewer and
editor
SmartPower – Allows the designer to quickly
estimate the power consumption of a design
PinEditor – A graphical application for editing pin
assignments and I/O attributes
I/O Attribute Editor – Displays all assigned and
unassigned I/O macros and their attributes in a
spreadsheet format
With the Designer software, a user can lock the design
pins before layout while minimally impacting the results
of place-and-route. Additionally, Actel’s back-annotation
flow is compatible with all the major simulators. Another
tool included in the Designer software is the SmartGen
macro builder, which easily creates popular and
commonly used logic functions for implementation into
your schematic or HDL design.
Actel's Designer software is compatible with the most
popular FPGA design entry and verification tools from
EDA vendors, such as Mentor Graphics, Synplicity,
Synopsys, and Cadence Design Systems. The Designer
software is available for both the Windows and UNIX
operating systems.
ISP
The user can generate *.bit or *.stp programming files
from the Designer software and can use these files to
program a device.
ProASICPLUS devices can be programmed in-system. For
more information on ISP of ProASICPLUS devices, refer to
the In-System Programming ProASICPLUS Devices and
Performing Internal In-System Programming Using Actel’s
ProASICPLUS Devices application notes. Prior to being
programmed for the first time, the ProASICPLUS device I/Os
are in a tristate condition with the pull-up resistor option
enabled.
ProASICPLUS Flash Family FPGAs
2-26 v5.9
Related Documents
Application Notes
Efficient Use of ProASIC Clock Trees
http://www.actel.com/documents/A500K_Clocktree_AN.pdf
I/O Features in ProASICPLUS Flash FPGAs
http://www.actel.com/documents/APA_LVPECL_AN.pdf
Power-Up Behavior of ProASICPLUS Devices
http://www.actel.com/documents/APA_PowerUp_AN.pdf
ProASICPLUS PLL Dynamic Reconfiguration Using JTAG
http://www.actel.com/documents/APA_PLLdynamic_AN.pdf
Using ProASICPLUS Clock Conditioning Circuits
http://www.actel.com/documents/APA_PLL_AN.pdf
In-System Programming ProASICPLUS Devices
http://www.actel.com/documents/APA_External_ISP_AN.pdf
Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
http://www.actel.com/documents/APA_Microprocessor_AN.pdf
ProASICPLUS RAM and FIFO Blocks
http://www.actel.com/documents/APA_RAM_FIFO_AN.pdf
White Paper
Design Security in Nonvolatile Flash and Antifuse FPGAs
http://www.actel.com/documents/DesignSecurity_WP.pdf
User’s Guides
Designer User’s Guide
http://www.actel.com/documents/designer_UG.pdf
SmartGen Cores Reference Guide
http://www.actel.com/documents/gen_refguide_ug.pdf
ProASIC and ProASICPLUS Macro Library Guide
http://www.actel.com/documents/pa_libguide_UG.pdf
Additional Information
The following link contains additional information on ProASICPLUS devices.
http://www.actel.com/products/proasicplus/default.aspx
ProASICPLUS Flash Family FPGAs
v5.9 2-27
Package Thermal Characteristics
The ProASICPLUS family is available in several package
types with a range of pin counts. Actel has selected
packages based on high pin count, reliability factors, and
superior thermal characteristics.
Thermal resistance defines the ability of a package to
conduct heat away from the silicon, through the
package to the surrounding air. Junction-to-ambient
thermal resistance is measured in degrees Celsius/Watt
and is represented as Theta ja (Θja). The lower the
thermal resistance, the more efficiently a package will
dissipate heat.
A package’s maximum allowed power (P) is a function of
maximum junction temperature (TJ), maximum ambient
operating temperature (TA), and junction-to-ambient
thermal resistance Θja. Maximum junction temperature is
the maximum allowable temperature on the active
surface of the integrated circuit (IC) and is 110°C. P is
defined as shown in EQ 2-4:
EQ 2-4
Θja is a function of the rate (in linear feet per minute
(lfpm)) of airflow in contact with the package. When the
estimated power consumption exceeds the maximum
allowed power, other means of cooling, such as
increasing the airflow rate, must be used. The maximum
power dissipation allowed for a Military temperature
device is specified as a function of Θjc. The absolute
maximum junction temperature is 150°C.
The calculation of the absolute maximum power
dissipation allowed for a Military temperature
application is illustrated in the following example for a
456-pin PBGA package:
EQ 2-5
PTJTA
Θja
-----------------=
Table 2-16 Package Thermal Characteristics
Plastic Packages Pin Count θjc
θja
UnitsStill Air
1.0 m/s
200 ft./min.
2.5 m/s
500 ft./min.
Thin Quad Flat Pack (TQFP) 100 14.0 33.5 27.4 25.0 °C/W
Thin Quad Flat Pack (TQFP) 144 11.0 33.5 28.0 25.7 °C/W
Plastic Quad Flat Pack (PQFP)1208 8.0 26.1 22.5 20.8 °C/W
PQFP with heat spreader2208 3.8 16.2 13.3 11.9 °C/W
Plastic Ball Grid Array (PBGA) 456 3.0 15.6 12.5 11.6 °C/W
Fine Pitch Ball Grid Array (FBGA) 144 3.8 26.9 22.9 21.5 °C/W
Fine Pitch Ball Grid Array (FBGA) 256 3.8 26.6 22.8 21.5 °C/W
Fine Pitch Ball Grid Array (FBGA)3484 3.2 18.0 14.7 13.6 °C/W
Fine Pitch Ball Grid Array (FBGA)4484 3.2 20.5 17.0 15.9 °C/W
Fine Pitch Ball Grid Array (FBGA) 676 3.2 16.4 13.0 12.0 °C/W
Fine Pitch Ball Grid Array (FBGA) 896 2.4 13.6 10.4 9.4 °C/W
Fine Pitch Ball Grid Array (FBGA) 1152 1.8 12.0 8.9 7.9 °C/W
Ceramic Quad Flat Pack (CQFP) 208 2.0 22.0 19.8 18.0 °C/W
Ceramic Quad Flat Pack (CQFP) 352 2.0 17.9 16.1 14.7 °C/W
Ceramic Column Grid Array (CCGA/LGA) 624 6.5 8.9 8.5 8.0 °C/W
Notes:
1. Valid for the following devices irrespective of temperature grade: APA075, APA150, and APA300
2. Valid for the following devices irrespective of temperature grade: APA450, APA600, APA750, and APA1000
3. Depopulated array
4. Full array
Maximum Power Allowed Max. junction temp. (°C) Max. case temp. (°C)
θjc(°C/W)
----------------------------------------------------------------------------------------------------------------------------- 150°C125°C
3.0°C/W
----------------------------------------8.333W===
ProASICPLUS Flash Family FPGAs
2-28 v5.9
Calculating Typical Power Dissipation
ProASICPLUS device power is calculated with both a static and an active component. The active component is a function
of both the number of tiles utilized and the system speed. Power dissipation can be calculated using the following
formula:
Total Power Consumption—Ptotal
Ptotal = Pdc + Pac
where:
Global Clock Contribution—Pclock
Pclock, the clock component of power dissipation, is given by the piece-wise model:
for R < 15000 the model is: (P1 + (P2*R) – (P7*R2)) * Fs (lightly-loaded clock trees)
for R > 15000 the model is: (P10 + P11*R) * Fs (heavily-loaded clock trees)
where:
Storage-Tile Contribution—Pstorage
Pstorage, the storage-tile (Register) component of AC power dissipation, is given by
Pstorage = P5 * ms * Fs
where:
Pdc = 7 mW for the APA075
8 mW for the APA150
11 mW for the APA300
12 mW for the APA450
12 mW for the APA600
13 mW for the APA750
19 mW for the APA1000
Pdc includes the static components of PVDDP + PVDD + PAVDD
Pac =P
clock + Pstorage + Plogic + Poutputs + Pinputs + Ppll + Pmemory
P1 = 100 µW/MHz is the basic power consumption of the clock tree per MHz of the clock
P2 = 1.3 µW/MHz is the incremental power consumption of the clock tree per storage tile – also per MHz of the
clock
P7 = 0.00003 µW/MHz is a correction factor for partially-loaded clock trees
P10 = 6850 µW/MHz is the basic power consumption of the clock tree per MHz of the clock
P11 = 0.4 µW/MHz is the incremental power consumption of the clock tree per storage tile – also per MHz of
the clock
R =
the number of storage tiles clocked by this clock
Fs = the clock frequency
P5 = 1.1 µW/MHz is the average power consumption of a storage tile per MHz of its output toggling rate.
The maximum output toggling rate is Fs/2.
ms = the number of storage tiles (Register) switching during each Fs cycle
Fs = the clock frequency
ProASICPLUS Flash Family FPGAs
v5.9 2-29
Logic-Tile Contribution—Plogic
Plogic, the logic-tile component of AC power dissipation, is given by
Plogic = P3 * mc * Fs
where:
I/O Output Buffer Contribution—Poutputs
Poutputs, the I/O component of AC power dissipation, is given by
Poutputs = (P4 + (Cload * VDDP2)) * p * Fp
where:
I/O Input Buffer's Buffer Contribution—Pinputs
The input’s component of AC power dissipation is given by
Pinputs = P8 * q * Fq
where:
PLL Contribution—Ppll
Ppll = P9 * Npll
where:
RAM Contribution—Pmemory
Finally, Pmemory, the memory component of AC power consumption, is given by
Pmemory = P6 * Nmemory * Fmemory * Ememory
where:
P3 = 1.4 μW/MHz is the average power consumption of a logic tile per MHz of its output toggling rate. The
maximum output toggling rate is Fs/2.
mc = the number of logic tiles switching during each Fs cycle
Fs = the clock frequency
P4 = 326 μW/MHz is the intrinsic power consumption of an output pad normalized per MHz of the output
frequency. This is the total I/O current VDDP
.
Cload = the output load
p = the number of outputs
Fp = the average output frequency
P8 = 29 μW/MHz is the intrinsic power consumption of an input pad normalized per MHz of the input
frequency.
q = the number of inputs
Fq = the average input frequency
P9 = 7.5 mW. This value has been estimated at maximum PLL clock frequency.
NPll = number of PLLs used
P6 = 175 µW/MHz is the average power consumption of a memory block per MHz of the clock
Nmemory = the number of RAM/FIFO blocks
(1 block = 256 words * 9 bits)
Fmemory = the clock frequency of the memory
Ememory = the average number of active blocks divided by the total number of blocks (N) of the memory.
Typical values for Ememory would be 1/4 for a 1k x 8,9,16, 32 memory and 1/16 for a 4kx8,
9, 16, and 32 memory configuration
In addition, an application-dependent component to Ememory can be considered. For
example, for a 1kx8 memory configuration using only 1 cycle out of 2, Ememory = 1/4*1/2 = 1/8
ProASICPLUS Flash Family FPGAs
2-30 v5.9
The following is an APA750 example using a shift register design with 13,440 storage tiles (Register) and 0 logic tiles.
This design has one clock at 10 MHz, and 24 outputs toggling at 5 MHz. We then calculate the various components as
follows:
Pclock
=> Pclock = (P1 + (P2*R) - (P7*R2)) * Fs = 121.5 mW
Pstorage
=> Pstorage = P5 * ms * Fs = 147.8 mW
Plogic
=> Plogic = 0 mW
Poutputs
=> Poutputs = (P4 + (Cload * VDDP2)) * p * Fp = 91.4 mW
Pinputs
=> Pinputs = P8 * q * Fq = 0.3 mW
Pmemory
=> Pmemory = 0 mW
Pac
=> 361 mW
Ptotal
Pdc + Pac = 374 mW (typical)
Fs = 10 MHz
R = 13,440
ms = 13,440 (in a shift register 100% of storage tiles are toggling at each clock cycle and Fs = 10 MHz)
mc = 0 (no logic tiles in this shift register)
Cload = 40 pF
VDDP = 3.3 V
p=24
Fp = 5 MHz
q=1
Fq = 10 MHz
Nmemory = 0 (no RAM/FIFO blocks in this shift register)
ProASICPLUS Flash Family FPGAs
v5.9 2-31
Operating Conditions
Table 2-17 and Table 2-18 delineate operating limits.
Performance Retention
For devices operated and stored at 110°C or less, the
performance retention period is 20 years after
programming. For devices operated and stored at
temperatures greater than 110°C, refer to Table 2-19 on
page 2-32 to determine the performance retention
period. Actel does not guarantee performance if the
performance retention period is exceeded. Designers can
determine the performance retention period from the
following table.
Evaluate the percentage of time spent at the highest
temperature, then determine the next highest
temperature to which the device will be exposed. In
Table 2-19 on page 2-32, find the temperature profile
that most closely matches the application.
Example – the ambient temperature of a system cycles
between 100°C (25% of the time) and 50°C (75% of the
time). No forced ventilation cooling system is in use. An
APA600-PQ208M FPGA operates in the system,
dissipating 1 W. The package thermal resistance
(junction-to-ambient) in still air Θja is 20°C/W, indicating
that the junction temperature of the FPGA will be 120°C
(25% of the time) and 70°C (75% of the time). The entry
in Table 2-19 on page 2-32, which most closely matches
the application, is 25% at 125°C with 75% at 110°C.
Performance retention in this example is at least 16.0
years.
Note that exceeding the stated retention period may
result in a performance degradation in the FPGA below
the worst-case performance indicated in the Actel Timer.
To ensure that performance does not degrade below the
worst-case values in the Actel Timer, the FPGA must be
reprogrammed within the performance retention
period. In addition, note that performance retention is
independent of whether or not the FPGA is operating.
The retention period of a device in storage at a given
temperature will be the same as the retention period of
a device operating at that junction temperature.
Table 2-17 Absolute Maximum Ratings*
Parameter Condition Minimum Maximum Units
Supply Voltage Core (VDD)–0.33.0V
Supply Voltage I/O Ring (VDDP)–0.34.0V
DC Input Voltage –0.3 VDDP + 0.3 V
PCI DC Input Voltage –1.0 VDDP + 1.0 V
PCI DC Input Clamp Current (absolute) VIN < –1 or VIN = VDDP + 1 V 10 mA
LVPECL Input Voltage –0.3 VDDP + 0.5 V
GND 00V
Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the
Recommended Operating Conditions.
Table 2-18 Programming, Storage, and Operating Limits
Product Grade Programming Cycles (min.) Program Retention (min.)
Storage Temperature Operating
Min. Max.
TJ Max.
Junction
Temperature
Commercial 500 20 years –55°C 110°C 110°C
Industrial 500 20 years –55°C 110°C 110°C
Military 100 Refer to Table 2-19 on page 2-32 –65°C 150°C 150°C
MIL-STD-883 100 Refer to Table 2-19 on page 2-32 –65°C 150°C 150°C
ProASICPLUS Flash Family FPGAs
2-32 v5.9
Table 2-19 Military Temperature Grade Product Performance Retention
Minimum Time at TJ
110°C or Below
Minimum Time at TJ
125°C or Below
Minimum Time at TJ
135°C or Below
Minimum Time at TJ
150°C or Below
Minimum
Performance
Retention (Years)
100% 20.0
90% 10% 18.2
75% 25% 16
90% 10% 15.4
50% 50% 13.3
90% 10% 11.8
75% 25% 11.4
100% 10
90% 10% 9.1
50% 50% 8
75% 25% 8
90% 10% 7.7
75% 25% 7.3
50% 50% 6.7
75% 25% 5.7
100% 5
90% 10% 4.5
50% 50% 4.4
50% 50% 4
75% 25% 4
50% 50% 3.3
100% 2.5
ProASICPLUS Flash Family FPGAs
v5.9 2-33
Table 2-20 Recommended Maximum Operating Conditions Programming and PLL Supplies
Parameter Condition
Commercial/Industrial/Military/MIL-STD-883
UnitsMinimum Maximum
VPP During Programming 15.8 16.5 V
Normal Operation1016.5V
VPN During Programming –13.8 –13.2 V
Normal Operation2–13.8 0.5 V
IPP During Programming 25 mA
IPN During Programming 10 mA
AVDD VDD VDD V
AGND GND GND V
Notes:
1. Please refer to the "VPP Programming Supply Pin" section on page 2-74 for more information.
2. Please refer to the "VPN Programming Supply Pin" section on page 2-74 for more information.
Table 2-21 Recommended Operating Conditions
Parameter Symbol
Limits
Commercial Industrial Military/MIL-STD-883
DC Supply Voltage (2.5 V I/Os) VDD and VDDP 2.5 V ± 0.2 V 2.5 V ± 0.2 V 2.5 V ± 0.2 V
DC Supply Voltage (3.3 V I/Os) VDDP
VDD
3.3 V ± 0.3 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
2.5 V ± 0.2 V
Operating Ambient Temperature Range TA, TC0°C to 70°C –40°C to 85°C –55°C (TA) to 125°C (TC)
Maximum Operating Junction Temperature TJ110°C 110°C 150°C
Note: For I/O long-term reliability, external pull-up resistors cannot be used to increase output voltage above VDDP.
ProASICPLUS Flash Family FPGAs
2-34 v5.9
Table 2-22 DC Electrical Specifications (VDDP = 2.5 V ±0.2V)
Symbol Parameter Conditions
Commercial/Industrial/
Military/MIL-STD-8831, 2
Min. Typ. Max. Units
VOH Output High Voltage
High Drive (OB25LPH)
Low Drive (OB25LPL)
IOH = –6 mA
IOH = –12 mA
IOH = –24 mA
IOH = –3 mA
IOH = –6 mA
IOH = –8 mA
2.1
2.0
1.7
2.1
1.9
1.7
V
VOL Output Low Voltage
High Drive (OB25LPH)
Low Drive (OB25LPL)
IOL = 8 mA
IOL = 15 mA
IOL = 24 mA
IOL = 4 mA
IOL = 8 mA
IOL = 15 mA
0.2
0.4
0.7
0.2
0.4
0.7
V
VIH3 Input High Voltage 1.7 VDDP + 0.3 V
VIL4 Input Low Voltage –0.3 0.7 V
RWEAKPULLUP Weak Pull-up Resistance
(OTB25LPU)
VIN 1.25 V 6 56 kΩ
HYST Input Hysteresis Schmitt See Table 2-4 on page 2-6 0.3 0.35 0.45 V
IIN Input Current with pull up (VIN = GND) –240 – 20 µA
without pull up (VIN = GND or VDD) –10 10 µA
IDDQ Quiescent Supply Current
(standby)
Commercial
VIN = GND5 or VDD Std. 5.0 15 mA
IDDQ Quiescent Supply Current
(standby)
Industrial
VIN = GND5 or VDD Std.
5.0 20 mA
IDDQ Quiescent Supply Current
(standby)
Military/MIL-STD-883
VIN = GND5 or VDD Std.
5.0 25 mA
IOZ Tristate Output Leakage Current VOH = GND or VDD Std. –10 10 µA
IOSH Output Short Circuit Current High
High Drive (OB25LPH)
Low Drive (OB25LPL)
VIN = VSS
VIN = VSS
–120
–100
mA
Notes:
1. All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.
2. All process conditions. Military: Junction Temperature: –55 to +150°C.
3. During transitions, the input signal may overshoot to VDDP +1.0V for a limited time of no larger than 10% of the duty cycle.
4. During transitions, the input signal may undershoot to -1.0V for a limited time of no larger than 10% of the duty cycle.
5. No pull-up resistor.
ProASICPLUS Flash Family FPGAs
v5.9 2-35
IOSL Output Short Circuit Current Low
High Drive (OB25LPH)
Low Drive (OB25LPL)
VIN = VDDP
VIN = VDDP
100
30
mA
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacitance 10 pF
Table 2-22 DC Electrical Specifications (VDDP = 2.5 V ±0.2V) (Continued)
Symbol Parameter Conditions
Commercial/Industrial/
Military/MIL-STD-8831, 2
Min. Typ. Max. Units
Notes:
1. All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.
2. All process conditions. Military: Junction Temperature: –55 to +150°C.
3. During transitions, the input signal may overshoot to VDDP +1.0V for a limited time of no larger than 10% of the duty cycle.
4. During transitions, the input signal may undershoot to -1.0V for a limited time of no larger than 10% of the duty cycle.
5. No pull-up resistor.
ProASICPLUS Flash Family FPGAs
2-36 v5.9
Table 2-23 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)
Applies to Commercial and Industrial Temperature Only
Symbol Parameter Conditions
Commercial/Industrial1
UnitsMin. Typ. Max.
VOH Output High Voltage
3.3 V I/O, High Drive (OB33P)
3.3 V I/O, Low Drive (OB33L)
IOH = –14 mA
IOH = –24 mA
IOH = –6 mA
IOH = –12 mA
0.9VDDP
2.4
0.9VDDP
2.4
V
VOL Output Low Voltage
3.3 V I/O, High Drive (OB33P)
3.3 V I/O, Low Drive (OB33L)
IOL = 15 mA
IOL = 20 mA
IOL = 28 mA
IOL = 7 mA
IOL = 10 mA
IOL = 15 mA
0.1VDDP
0.4
0.7
0.1VDDP
0.4
0.7
V
VIH2Input High Voltage
3.3 V Schmitt Trigger Inputs
3.3 V LVTTL/LVCMOS
2.5 V Mode
1.6
2
1.7
VDDP + 0.3
VDDP + 0.3
VDDP + 0.3
V
VIL3Input Low Voltage
3.3 V Schmitt Trigger Inputs
3.3 V LVTTL/LVCMOS
2.5 V Mode
–0.3
–0.3
–0.3
0.8
0.8
0.7
V
RWEAKPULLUP Weak Pull-up Resistance
(IOB33U)
VIN 1.5 V 7 43 kΩ
RWEAKPULLUP Weak Pull-up Resistance
(IOB25U)
VIN 1.5 V 7 43 kΩ
IIN Input Current with pull up (VIN = GND) –300 –40 µA
without pull up (VIN = GND or VDD) –10 10 µA
IDDQ Quiescent Supply Current
(standby)
Commercial
VIN = GND4 or VDD Std. 5.0 15 mA
IDDQ Quiescent Supply Current
(standby)
Industrial
VIN = GND4 or VDD
Std. 5.0 20 mA
IDDQ Quiescent Supply Current
(standby)
Military
VIN = GND4 or VDD
Std. 5.0 25 mA
Notes:
1. All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.
2. During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.
3. During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.
4. No pull-up resistor required.
ProASICPLUS Flash Family FPGAs
v5.9 2-37
IOSH Output Short Circuit Current
High
3.3 V High Drive (OB33P)
3.3 V Low Drive (OB33L)
VIN = GND
VIN = GND
–200
–100
IOSL Output Short Circuit Current
Low
3.3 V High Drive
3.3 V Low Drive
VIN = VDD
VIN = VDD
200
100
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacitance 10 pF
Table 2-23 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) (Continued)
Applies to Commercial and Industrial Temperature Only
Symbol Parameter Conditions
Commercial/Industrial1
UnitsMin. Typ. Max.
Notes:
1. All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.
2. During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.
3. During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.
4. No pull-up resistor required.
ProASICPLUS Flash Family FPGAs
2-38 v5.9
Table 2-24 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)
Applies to Military Temperature and MIL-STD-883B Temperature Only
Symbol Parameter Conditions
Military/MIL-STD-883B1
UnitsMin. Typ. Max.
VOH Output High Voltage
3.3 V I/O, High Drive, High Slew
(OB33PH)
3.3V I/O, High Drive, Normal/
Low Slew (OB33PN/OB33PL)
3.3 V I/O, Low Drive, High/
Normal/Low Slew (OB33LH/
OB33LN/OB33LL)
IOH = –8 mA
IOH = –16 mA
IOH = –3mA
IOH = –8mA
IOH = –3 mA
IOH = –8 mA
0.9VDDP
2.4
0.9VDDP
2.4
0.9VDDP
2.4
V
VOL Output Low Voltage
3.3 V I/O, High Drive, High Slew
(OB33PH)
3.3V I/O, High Drive, Normal/
Low Slew (OB33PN/OB33PL))
3.3 V I/O, Low Drive, High/
Normal/Low Slew (OB33LH/
OB33LN/OB33LL)
IOL = 12 mA
IOL = 17 mA
IOL = 28 mA
IOL = 4 mA
IOL = 6 mA
IOL = 13 mA
IOL = 4 mA
IOL = 6 mA
IOL = 13 mA
0.1VDDP
0.4
0.7
0.1VDDP
0.4
0.7
0.1VDDP
0.4
0.7
V
VIH2Input High Voltage
3.3 V Schmitt Trigger Inputs
3.3 V LVTTL/LVCMOS
2.5 V Mode
1.6
2
1.7
VDDP + 0.3
VDDP + 0.3
VDDP + 0.3
V
VIL3Input Low Voltage
3.3 V Schmitt Trigger Inputs
3.3 V LVTTL/LVCMOS
2.5 V Mode
–0.3
–0.3
–0.3
0.7
0.8
0.7
V
RWEAKPULLUP Weak Pull-up Resistance
(IOB33U)
VIN 1.5 V 7 43 kΩ
RWEAKPULLUP Weak Pull-up Resistance
(IOB25U)
VIN 1.5 V 7 43 kΩ
IIN Input Current with pull up (VIN = GND) –300 –40 µA
without pull up (VIN = GND or VDD) –10 10 µA
IDDQ Quiescent Supply Current
(standby)
Commercial
VIN = GND4 or VDD Std. 5.015mA
IDDQ Quiescent Supply Current
(standby)
Industrial
VIN = GND4 or VDD
Std. 5.0 20 mA
Notes:
1. All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: –55 to +125°C.
2. During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.
3. During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.
4. No pull-up resistor required.
ProASICPLUS Flash Family FPGAs
v5.9 2-39
IDDQ Quiescent Supply Current
(standby)
Military
VIN = GND4 or VDD
Std. 5.0 25 mA
IOZ Tristate Output Leakage
Current
VOH = GND or VDD Std. –10 10 µA
IOSH Output Short Circuit Current
High
3.3 V High Drive (OB33P)
3.3 V Low Drive (OB33L)
VIN = GND
VIN = GND
–200
–100
IOSL Output Short Circuit Current
Low
3.3 V High Drive
3.3 V Low Drive
VIN = VDD
VIN = VDD
200
100
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacitance 10 pF
Table 2-24 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) (Continued)
Applies to Military Temperature and MIL-STD-883B Temperature Only
Symbol Parameter Conditions
Military/MIL-STD-883B1
UnitsMin. Typ. Max.
Notes:
1. All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: –55 to +125°C.
2. During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.
3. During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.
4. No pull-up resistor required.
ProASICPLUS Flash Family FPGAs
2-40 v5.9
Table 2-25 DC Specifications (3.3 V PCI Operation)1
Symbol Parameter Condition
Commercial/
Industrial2Military/MIL-STD- 8832
UnitsMin. Max. Min. Max.
VDD Supply Voltage for Core 2.3 2.7 2.3 2.7 V
VDDP Supply Voltage for I/O Ring 3.0 3.6 3.0 3.6 V
VIH Input High Voltage 0.5VDDP VDDP + 0.5 0.5VDDP VDDP + 0.5 V
VIL Input Low Voltage –0.5 0.3VDDP –0.5 0.3VDDP V
IIPU Input Pull-up Voltage30.7VDDP 0.7VDDP V
IIL Input Leakage Current40 < VIN < VDDP Std. –10 10 –50 50 μA
VOH Output High Voltage IOUT = –500 µA 0.9VDDP 0.9VDDP V
VOL Output Low Voltage IOUT = 1500 µA 0.1VDDP 0.1VDDP V
CIN Input Pin Capacitance (except CLK) 10 10 pF
CCLK CLK Pin Capacitance 5 12 5 12 pF
Notes:
1. For PCI operation, use GL33, OTB33PH, OB33PH, IOB33PH, IB33, or IB33S macro library cell only.
2. All process conditions. Junction Temperature: –40 to +110°C for Commercial and Industrial devices and –55 to +125°C for Military.
3. This specification is guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated
network. Designers with applications sensitive to static power utilization should ensure that the input buffer is conducting minimum
current at this input voltage.
4. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
ProASICPLUS Flash Family FPGAs
v5.9 2-41
Table 2-26 AC Specifications (3.3 V PCI Revision 2.2 Operation)
Symbol Parameter Condition
Commercial/Industrial/Military/MIL-STD- 883
UnitsMin. Max.
IOH(AC) Switching Current High 0 < VOUT 0.3VDDP*–12VDDP mA
0.3VDDP VOUT < 0.9VDDP*(–17.1 + (VDDP – VOUT)) mA
0.7VDDP < VOUT < VDDP*See equation C – page 124 of
the PCI Specification
document rev. 2.2
(Test Point) VOUT = 0.7VDDP*–32VDDP mA
IOL(AC) Switching Current Low VDDP > VOUT 0.6VDDP*16VDDP mA
0.6VDDP > VOUT > 0.1VDDP 1(26.7VOUT)mA
0.18VDDP > VOUT > 0*See equation D – page 124 of
the PCI Specification
document rev. 2.2
(Test Point) VOUT = 0.18VDDP 38VDDP mA
ICL Low Clamp Current –3 < VIN –1 –25 + (VIN + 1)/0.015 mA
ICH High Clamp Current VDDP + 4 > VIN VDDP + 1 25 + (VIN – VDDP – 1)/0.015 mA
slewROutput Rise Slew Rate 0.2VDDP to 0.6VDDP load*14V/ns
slewFOutput Fall Slew Rate 0.6VDDP to 0.2VDDP load*14V/ns
Note: * Refer to the PCI Specification document rev. 2.2.
Pin
Output
Buffer
1/2 in. maxx
10 pF
1kΩ
Pin
Output
Buffer 10 pF
1kΩ
Pad Loading Applicable to the Rising Edge PCI
Pad Loading Applicable to the Falling Edge PCI
ProASICPLUS Flash Family FPGAs
2-42 v5.9
Tristate Buffer Delays
Figure 2-23 Tristate Buffer Delays
Table 2-27 Worst-Case Commercial Conditions
VDDP = 3.0 V, VDD = 2.3 V, 35 pF load, TJ = 70°C
Macro Type Description
Max.
tDLH1Max.
tDHL2Max.
tENZH3Max.
tENZL4
UnitsStd. Std. Std. Std.
OTB33PH 3.3 V, PCI Output Current, High Slew Rate 2.0 2.2 2.2 2.0 ns
OTB33PN 3.3 V, High Output Current, Nominal Slew Rate 2.2 2.9 2.4 2.1 ns
OTB33PL 3.3 V, High Output Current, Low Slew Rate 2.5 3.2 2.7 2.8 ns
OTB33LH 3.3 V, Low Output Current, High Slew Rate 2.6 4.0 2.8 3.0 ns
OTB33LN 3.3 V, Low Output Current, Nominal Slew Rate 2.9 4.3 3.2 4.1 ns
OTB33LL 3.3 V, Low Output Current, Low Slew Rate 3.0 5.6 3.3 5.5 ns
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
3. tENZH = Enable-to-Pad, Z to High
4. tENZL = Enable-to-Pad, Z to Low
Table 2-28 Worst-Case Commercial Conditions
VDDP = 2.3 V, VDD = 2.3 V, 35 pF load, TJ = 70°C
Macro Type Description
Max.
tDLH1Max.
tDHL2Max.
tENZH3Max.
tENZL4
UnitsStd. Std. Std. Std.
OTB25LPHH 2.5 V, Low Power, High Output Current, High Slew Rate52.0 2.1 2.3 2.0 ns
OTB25LPHN 2.5 V, Low Power, High Output Current, Nominal Slew Rate52.4 3.0 2.7 2.1 ns
OTB25LPHL 2.5 V, Low Power, High Output Current, Low Slew Rate52.9 3.2 3.1 2.7 ns
OTB25LPLH 2.5 V, Low Power, Low Output Current, High Slew Rate52.7 4.6 3.0 2.6 ns
OTB25LPLN 2.5 V, Low Power, Low Output Current, Nominal Slew Rate53.5 4.2 3.8 3.8 ns
OTB25LPLL 2.5 V, Low Power, Low Output Current, Low Slew Rate54.0 5.3 4.2 5.1 ns
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
3. tENZH = Enable-to-Pad, Z to High
4. tENZL = Enable-to-Pad, Z to Low
5. Low power I/O work with VDDP = 2.5 V ±10% only. VDDP = 2.3 V for delays.
PAD
A
OTBx
A50%
PAD
V
OL
VOH
50%
tDLH
50%
50%
tDHL
EN 50%
PAD
V
OL
50%
tENZL
50%
10%
EN 50%
PAD
GND
VOH
50%
tENZH
50%
90%
VDDP
35 pF
EN
ProASICPLUS Flash Family FPGAs
v5.9 2-43
Table 2-29 Worst-Case Military Conditions
VDDP = 3.0 V, VDD = 2.3 V, 35 pF load, TJ = 125°C for Military/MIL-STD-883
Macro Type Description
Max.
tDLH1Max.
tDHL2Max.
tENZH3Max.
tENZL4
UnitsStd. Std. Std. Std.
OTB33PH 3.3 V, PCI Output Current, High Slew Rate 2.2 2.4 2.3 2.1 ns
OTB33PN 3.3 V, High Output Current, Nominal Slew Rate 2.4 3.2 2.7 2.3 ns
OTB33PL 3.3 V, High Output Current, Low Slew Rate 2.7 3.5 2.9 3.0 ns
OTB33LH 3.3 V, Low Output Current, High Slew Rate 2.7 4.3 3.0 3.1 ns
OTB33LN 3.3 V, Low Output Current, Nominal Slew Rate 3.3 4.7 3.4 4.4 ns
OTB33LL 3.3 V, Low Output Current, Low Slew Rate 3.2 6.0 3.5 5.9 ns
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
3. tENZH = Enable-to-Pad, Z to High
4. tENZL = Enable-to-Pad, Z to Low
Table 2-30 Worst-Case Military Conditions
VDDP = 2.3 V, VDD = 2.3 V, 35 pF load, TJ = 125°C for Military/MIL-STD-883
Macro Type Description
Max.
tDLH1Max.
tDHL2Max.
tENZH3Max.
tENZL4
UnitsStd. Std. Std. Std.
OTB25LPHH 2.5 V, Low Power, High Output Current, High Slew Rate52.3 2.3 2.4 2.1 ns
OTB25LPHN 2.5 V, Low Power, High Output Current, Nominal Slew
Rate52.7 3.2 2.8 2.1 ns
OTB25LPHL 2.5 V, Low Power, High Output Current, Low Slew Rate53.2 3.5 3.3 2.8 ns
OTB25LPLH 2.5 V, Low Power, Low Output Current, High Slew Rate53.0 5.0 3.2 2.8 ns
OTB25LPLN 2.5 V, Low Power, Low Output Current, Nominal Slew Rate53.7 4.5 4.1 4.1 ns
OTB25LPLL 2.5 V, Low Power, Low Output Current, Low Slew Rate54.4 5.8 4.4 5.4 ns
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
3. tENZH = Enable-to-Pad, Z to High
4. tENZL = Enable-to-Pad, Z to Low
5. Low power I/O work with VDDP = 2.5 V ± 10% only. VDDP = 2.3 V for delays.
ProASICPLUS Flash Family FPGAs
2-44 v5.9
Output Buffer Delays
Figure 2-24 Output Buffer Delays
Table 2-31 Worst-Case Commercial Conditions
VDDP = 3.0 V, VDD = 2.3 V, 35 pF load, TJ = 70°C
Macro Type Description
Max. tDLH1Max. tDHL2
UnitsStd. Std.
OB33PH 3.3 V, PCI Output Current, High Slew Rate 2.0 2.2 ns
OB33PN 3.3 V, High Output Current, Nominal Slew Rate 2.2 2.9 ns
OB33PL 3.3 V, High Output Current, Low Slew Rate 2.5 3.2 ns
OB33LH 3.3 V, Low Output Current, High Slew Rate 2.6 4.0 ns
OB33LN 3.3 V, Low Output Current, Nominal Slew Rate 2.9 4.3 ns
OB33LL 3.3 V, Low Output Current, Low Slew Rate 3.0 5.6 ns
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
Table 2-32 Worst-Case Commercial Conditions
VDDP = 2.3 V, VDD = 2.3 V, 35 pF load, TJ = 70°C
Macro Type Description
Max. tDLH1Max. tDHL2
UnitsStd. Std.
OB25LPHH 2.5 V, Low Power, High Output Current, High Slew Rate32.0 2.1 ns
OB25LPHN 2.5 V, Low Power, High Output Current, Nominal Slew Rate32.4 3.0 ns
OB25LPHL 2.5 V, Low Power, High Output Current, Low Slew Rate32.9 3.2 ns
OB25LPLH 2.5 V, Low Power, Low Output Current, High Slew Rate32.7 4.6 ns
OB25LPLN 2.5 V, Low Power, Low Output Current, Nominal Slew Rate33.5 4.2 ns
OB25LPLL 2.5 V, Low Power, Low Output Current, Low Slew Rate34.0 5.3 ns
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
3. Low-power I/Os work with VDDP = 2.5 V ±10% only. VDDP = 2.3 V for delays.
Table 2-33 Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 125°C for Military/MIL-STD-883
Macro Type Description
Max.
tDLH1Max.
tDHL2
UnitsStd. Std.
OB33PH 3.3V, PCI Output Current, High Slew Rate 2.1 2.3 ns
OB33PN 3.3V, High Output Current, Nominal Slew Rate 2.5 3.2 ns
PAD
A50%
PAD
VOL
VOH
50%
tDLH
50%
50%
tDHL
35 pF
A
OBx
ProASICPLUS Flash Family FPGAs
v5.9 2-45
OB33PL 3.3V, High Output Current, Low Slew Rate 2.7 3.5 ns
OB33LH 3.3V, Low Output Current, High Slew Rate 2.7 4.3 ns
OB33LN 3.3V, Low Output Current, Nominal Slew Rate 3.3 4.7 ns
OB33LL 3.3V, Low Output Current, Low Slew Rate 3.3 6.1 ns
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
Table 2-34 Worst-Case Military Conditions
VDDP = 2.3 V, VDD = 2.3V, 35 pF load, TJ = 125°C for Military/MIL-STD-883
Macro Type Description
Max.
tDLH1Max.
tDHL2
UnitsStd. Std.
OB25LPHH 2.5V, Low Power, High Output Current, High Slew Rate32.3 2.4 ns
OB25LPHN 2.5V, Low Power, High Output Current, Nominal Slew Rate32.7 3.3 ns
OB25LPHL 2.5V, Low Power, High Output Current, Low Slew Rate33.2 3.5 ns
OB25LPLH 2.5V, Low Power, Low Output Current, High Slew Rate33.0 5.0 ns
OB25LPLN 2.5V, Low Power, Low Output Current, Nominal Slew Rate33.9 4.6 ns
OB25LPLL 2.5V, Low Power, Low Output Current, Low Slew Rate34.3 5.7 ns
Notes:
1. tDLH = Data-to-Pad High
2. tDHL = Data-to-Pad Low
3. Low power I/O work with VDDP = 2.5 V ±10% only. VDDP = 2.3 V for delays.
Table 2-33 Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 125°C for Military/MIL-STD-883
Macro Type Description
Max.
tDLH1Max.
tDHL2
UnitsStd. Std.
ProASICPLUS Flash Family FPGAs
2-46 v5.9
Input Buffer Delays
Figure 2-25 Input Buffer Delays
Table 2-35 Worst-Case Commercial Conditions
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C
Macro Type Description
Max. tINYH1 Max. tINYL2
UnitsStd. Std.
IB33 3.3 V, CMOS Input Levels3, No Pull-up Resistor 0.4 0.6 ns
IB33S 3.3 V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger 0.6 0.8 ns
Notes:
1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP=2.3 V for delays.
Table 2-36 Worst-Case Commercial Conditions
VDDP = 2.3 V, VDD = 2.3 V, TJ = 70°C
Macro Type Description
Max. tINYH1 Max. tINYL2
UnitsStd. Std.
IB25LP 2.5 V, CMOS Input Levels3, Low Power 0.9 0.6 ns
IB25LPS 2.5 V, CMOS Input Levels3, Low Power, Schmitt Trigger 0.7 0.9 ns
Notes:
1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP =2.3V for delays.
PAD Y
PAD
V
DDP
0 V
50%
Y
GND
VDD
50%
tINYH
50%
50%
IBx
tINYL
ProASICPLUS Flash Family FPGAs
v5.9 2-47
Table 2-37 Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Macro Type Description
Max. tINYH1 Max. tINYL2
UnitsStd. Std.
IB33 3.3 V, CMOS Input Levels3, No Pull-up Resistor 0.5 0.6 ns
IB33S 3.3 V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger 0.6 0.8 ns
Notes:
1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP =2.3V for delays.
Table 2-38 Worst-Case Military Conditions
VDDP = 2.3V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Macro Type Description
Max. tINYH1 Max. tINYL2
UnitsStd. Std.
IB25LP 2.5 V, CMOS Input Levels3, Low Power 0.9 0.7 ns
IB25LPS 2.5 V, CMOS Input Levels3, Low Power, Schmitt Trigger 0.8 1.0 ns
Notes:
1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP =2.3V for delays.
ProASICPLUS Flash Family FPGAs
2-48 v5.9
Global Input Buffer Delays
Table 2-39 Worst-Case Commercial Conditions
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C
Macro Type Description
Max. tINYH1 Max. tINYL2 Units
Std.3Std.3
GL33 3.3 V, CMOS Input Levels4, No Pull-up Resistor 1.0 1.1 ns
GL33S 3.3 V, CMOS Input Levels4, No Pull-up Resistor, Schmitt Trigger 1.0 1.1 ns
PECL PPECL Input Levels 1.0 1.1 ns
Notes:
1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. Applies to Military ProASICPLUS devices.
4. LVTTL delays are the same as CMOS delays.
5. For LP Macros, VDDP = 2.3 V for delays.
Table 2-40 Worst-Case Commercial Conditions
VDDP = 2.3 V, VDD = 2.3 V, TJ = 70°C
Macro Type Description
Max. tINYH1 Max. tINYL2 Units
Std.3Std.3
GL25LP 2.5 V, CMOS Input Levels4, Low Power 1.1 1.0 ns
GL25LPS 2.5 V, CMOS Input Levels4, Low Power, Schmitt Trigger 1.3 1.0 ns
Notes:
1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. Applies to Military ProASICPLUS devices.
4. LVTTL delays are the same as CMOS delays.
5. For LP Macros, VDDP =2.3V for delays.
ProASICPLUS Flash Family FPGAs
v5.9 2-49
Table 2-41 Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Macro Type Description
Max. tINYH1 Max. tINYL2
Std. Std.
GL33 3.3V, CMOS Input Levels3, No Pull-up Resistor 1.1 1.1
GL33S 3.3V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger 1.1 1.1
PECL PPECL Input Levels 1.1 1.1
Notes:
1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP =2.3V for delays.
Table 2-42 Worst-Case Military Conditions
VDDP = 2.3V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Macro Type Description
Max. tINYH1 Max. tINYL2
Std. Std.
GL25LP 2.5V, CMOS Input Levels3, Low Power 1.0 1.1
GL25LPS 2.5V, CMOS Input Levels3, Low Power, Schmitt Trigger 1.4 1.0
Notes:
1. tINYH = Input Pad-to-Y High
2. tINYL = Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP = 2.3 V for delays.
ProASICPLUS Flash Family FPGAs
2-50 v5.9
Predicted Global Routing Delay
Global Routing Skew
Table 2-43 Worst-Case Commercial Conditions1
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C
Parameter Description
Max.
UnitsStd.
tRCKH Input Low to High21.1 ns
tRCKL Input High to Low21.0 ns
tRCKH Input Low to High30.8 ns
tRCKL Input High to Low30.8 ns
Notes:
1. The timing delay difference between tile locations is less than 15 ps.
2. Highly loaded row 50%.
3. Minimally loaded row.
Table 2-44 Worst-Case Military Conditions
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Parameter Description Max. Units
tRCKH Input Low to High (high loaded row of 50%) 1.1 ns
tRCKL Input High to Low (high loaded row of 50%) 1.0 ns
tRCKH Input Low to High (minimally loaded row) 0.8 ns
tRCKL Input High to Low (minimally loaded row) 0.8 ns
Note: * The timing delay difference between tile locations is less than 15 ps.
Table 2-45 Worst-Case Commercial Conditions
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C
Parameter Description
Max.
UnitsStd.
tRCKSWH Maximum Skew Low to High 270 ps
tRCKSHH Maximum Skew High to Low 270 ps
Table 2-46 Worst-Case Commercial Conditions
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883
Parameter Description Max. Units
tRCKSWH Maximum Skew Low to High 270 ps
tRCKSHH Maximum Skew High to Low 270 ps
ProASICPLUS Flash Family FPGAs
v5.9 2-51
Module Delays
Sample Macrocell Library Listing
Figure 2-26 Module Delays
Table 2-47 Worst-Case Military Conditions1
VDD = 2.3 V, TJ = 70º C, TJ = 70°C, TJ = 125°C for Military/MIL-STD-883
Cell Name Description
Std.
Max Min Units
NAND2 2-Input NAND 0.5 ns
AND2 2-Input AND 0.7 ns
NOR3 3-Input NOR 0.8 ns
MUX2L 2-1 MUX with Active Low Select 0.5 ns
OA21 2-Input OR into a 2-Input AND 0.8 ns
XOR2 2-Input Exclusive OR 0.6 ns
LDL Active Low Latch (LH/HL)
LH20.9
ns
CLK-Q HL20.8 ns
tsetup 0.7 ns
thold 0.1 ns
DFFL Negative Edge-Triggered D-type Flip-Flop (LH/HL)
CLK-Q
LH20.9
ns
HL20.8 ns
tsetup 0.6 ns
thold 0.0 ns
Notes:
1. Intrinsic delays have a variable component, coupled to the input slope of the signal. These numbers assume an input slope typical of
local interconnect.
2. LH and HL refer to the Q transitions from Low to High and High to Low, respectively.
A
B
50%
Y
50%
50%50%
50% 50%
C50%50%
50%
50%
50% 50%
t
DALH
t
DBLH
t
DAHL
t
DBHL
t
DCHL
t
DCLH
A
B
C
Y
ProASICPLUS Flash Family FPGAs
2-52 v5.9
Table 2-48 Recommended Operating Conditions
Parameter Symbol
Limits
Commercial/Industrial Military/MIL-STD-883
Maximum Clock Frequency* fCLOCK 180 MHz 180 MHz
Maximum RAM Frequency* fRAM 150 MHz 150 MHz
Maximum Rise/Fall Time on Inputs*
Schmitt Trigger Mode (10% to 90%)
Non-Schmitt Trigger Mode (10% to
90%)
tR/tF
tR/tF
N/A
100 ns
100 ns
10 ns
Maximum LVPECL Frequency* 180 MHz 180 MHz
Maximum TCK Frequency (JTAG) fTCK 10 MHz 10 MHz
Table 2-49 Slew Rates Measured at C = 30pF, Nominal Power Supplies and 25°C
Type Trig. Level Rising Edge (ns) Slew Rate (V/ns) Falling Edge (ns) Slew Rate (V/ns) PCI Mode
OB33PH 10%-90% 1.60 1.65 1.65 1.60 Yes
OB33PN 10%-90% 1.57 1.68 3.32 0.80 No
OB33PL 10%-90% 1.57 1.68 1.99 1.32 No
OB33LH 10%-90% 3.80 0.70 4.84 0.55 No
OB33LN 10%-90% 4.19 0.63 3.37 0.78 No
OB33LL 10%-90% 5.49 0.48 2.98 0.89 No
OB25LPHH 10%-90% 1.55 1.29 1.56 1.28 No
OB25LPHN 10%-90% 1.70 1.18 2.08 0.96 No
OB25LPHL 10%-90% 1.97 1.02 2.09 0.96 No
OB25LPLH 10%-90% 3.57 0.56 3.93 0.51 No
OB25LPLN 10%-90% 4.65 0.43 3.28 0.61 No
OB25LPLL 10%-90% 5.52 0.36 3.44 0.58 No
ProASICPLUS Flash Family FPGAs
v5.9 2-53
Table 2-50 JTAG Switching Characteristics
Description Symbol Min Max Unit
Output delay from TCK falling to TDI, TMS tTCKTDI –4 4 ns
TDO Setup time before TCK rising tTDOTCK 10 ns
TDO Hold time after TCK rising tTCKTDO 0 ns
TCK period tTCK 100 21,000 ns
RCK period tRCK 100 1,000 ns
Notes:
1. For DC electrical specifications of the JTAG pins (TCK, TDI, TMS, TDO, TRST), refer to Table 2-22 on page 2-34 when VDDP = 2.5 V
and Table 2-24 on page 2-38 when VDDP = 3.3 V.
2. If RCK is being used, there is no minimum on the TCK period.
Figure 2-27 JTAG Operation Timing
TCK
TMS, TDI
TDO
tTCK
tTCKTDI
tTCKTDO
tTDOTCK
ProASICPLUS Flash Family FPGAs
2-54 v5.9
Embedded Memory Specifications
This section discusses ProASICPLUS SRAM/FIFO embedded
memory and its interface signals, including timing
diagrams that show the relationships of signals as they
pertain to single embedded memory blocks (Table 2-51).
Table 2-13 on page 2-21 shows basic SRAM and FIFO
configurations. Simultaneous read and write to the same
location must be done with care. On such accesses the DI
bus is output to the DO bus. Refer to the ProASICPLUS
RAM and FIFO Blocks application note for more
information.
Enclosed Timing Diagrams—SRAM Mode:
"Synchronous SRAM Read, Access Timed Output
Strobe (Synchronous Transparent)" section on
page 2-55
"Synchronous SRAM Read, Pipeline Mode Outputs
(Synchronous Pipelined)" section on page 2-56
"Asynchronous SRAM Write" section on page 2-57
"Asynchronous SRAM Read, Address Controlled,
RDB=0" section on page 2-58
"Asynchronous SRAM Read, RDB Controlled"
section on page 2-58
"Synchronous SRAM Write"
Embedded Memory Specifications
The difference between synchronous transparent and
pipeline modes is the timing of all the output signals
from the memory. In transparent mode, the outputs will
change within the same clock cycle to reflect the data
requested by the currently valid access to the memory. If
clock cycles are short (high clock speed), the data
requires most of the clock cycle to change to valid values
(stable signals). Processing of this data in the same clock
cycle is nearly impossible. Most designers add registers at
all outputs of the memory to push the data processing
into the next clock cycle. An entire clock cycle can then
be used to process the data. To simplify use of this
memory setup, suitable registers have been
implemented as part of the memory primitive and are
available to the user in the synchronous pipeline mode.
In this mode, the output signals will change shortly after
the second rising edge, following the initiation of the
read access.
Table 2-51 Memory Block SRAM Interface Signals
SRAM Signal Bits In/Out Description
WCLKS 1 In Write clock used on synchronization on write side
RCLKS 1 In Read clock used on synchronization on read side
RADDR[0:7] 8 In Read address
RBLKB 1 In True read block select (active Low)
RDB 1 In True read pulse (active Low)
WADDR[0:7] 8 In Write address
WBLKB 1 In Write block select (active Low)
DI[0:8] 9 In Input data bits [0:8], [8] can be used for parity In
WRB 1 In Negative true write pulse
DO[0:8] 9 Out Output data bits [0:8], [8] can be used for parity Out
RPE 1 Out Read parity error (active High)
WPE 1 Out Write parity error (active High)
PARODD 1 In Selects odd parity generation/detect when high, even when low
Note: Not all signals shown are used in all modes.
ProASICPLUS Flash Family FPGAs
v5.9 2-55
Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)
Note: The plot shows the normal operation status.
Figure 2-28 Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)
Table 2-52 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
OCA New DO access from RCLKS 7.5 ns
OCH Old DO valid from RCLKS 3.0 ns
RACH RADDR hold from RCLKS 0.5 ns
RACS RADDR setup to RCLKS 1.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RCLKS 9.5 ns
RPCH Old RPE valid from RCLKS 3.0 ns
RADDR
RPE
DO
RCLKS
RBD, RBLKB
New Valid Data Out
Cycle Start
Old Data Out
New Valid
Address
tRACS
tRDCS
tRDCH
tRACH
tOCH
tRPCH
tCMH
tOCA
tRPCA
tCCYC
tCML
ProASICPLUS Flash Family FPGAs
2-56 v5.9
Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
Note: The plot shows the normal operation status.
Figure 2-29 Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
Table 2-53 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = 0°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
OCA New DO access from RCLKS 2.0 ns
OCH Old DO valid from RCLKS 0.75 ns
RACH RADDR hold from RCLKS 0.5 ns
RACS RADDR setup to RCLKS 1.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RCLKS 4.0 ns
RPCH Old RPE valid from RCLKS 1.0 ns
RCLKS
RPE
DO New Valid Data Out
Cycle Start
New RPE Out
RADDR New Valid
Address
RDB, RBLKB
tRACS tOCA
tRPCH
tOCH
tRPCA
tCML
tCMH
tCCYC
tRACH
tRDCH
tRDCS
Old Data Out
Old RPE Out
ProASICPLUS Flash Family FPGAs
v5.9 2-57
Asynchronous SRAM Write
Note: The plot shows the normal operation status.
Figure 2-30 Asynchronous SRAM Write
Table 2-54 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883B
Symbol txxx Description Min. Max. Units Notes
AWRH WADDR hold from WB 1.0 ns
AWRS WADDR setup to WB 0.5 ns
DWRH DI hold from WB 1.5 ns
DWRS DI setup to WB 0.5 ns PARGEN is inactive.
DWRS DI setup to WB 2.5 ns PARGEN is active.
WPDA WPE access from DI 3.0 ns WPE is invalid, while PARGEN is
active.
WPDH WPE hold from DI 1.0 ns
WRCYC Cycle time 7.5 ns
WRMH WB high phase 3.0 ns Inactive
WRML WB low phase 3.0 ns Active
WRB, WBLKB
WADDR
WPE
DI
tAWRS
tWPDA
tAWRH
tDWRS
tWRML tWRMH
tWRCYC
tWPDH
tDWRH
ProASICPLUS Flash Family FPGAs
2-58 v5.9
Asynchronous SRAM Read, Address Controlled, RDB=0
Asynchronous SRAM Read, RDB Controlled
Note: The plot shows the normal operation status.
Figure 2-31 Asynchronous SRAM Read, Address Controlled, RDB = 0
Table 2-55 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883B
Symbol txxx Description Min. Max. Units Notes
ACYC Read cycle time 7.5 ns
OAA New DO access from RADDR stable 7.5 ns
OAH Old DO hold from RADDR stable 3.0 ns
RPAA New RPE access from RADDR stable 10.0 ns
RPAH Old RPE hold from RADDR stable 3.0 ns
Note: The plot shows the normal operation status.
Figure 2-32 Asynchronous SRAM Read, RDB Controlled
RPE
DO
RADDR
tOAH
tRPAH
tOAA
tRPAA
tACYC
RB=(RDB+RBLKB)
RPE
DO
tORDH
tORDA
tRPRDA
tRDML
tRDCYC
tRDMH
tRPRDH
ProASICPLUS Flash Family FPGAs
v5.9 2-59
Table 2-56 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
RDCYC Read cycle time 7.5 ns
RDMH RB high phase 3.0 ns Inactive setup to new cycle
RDML RB low phase 3.0 ns Active
RPRDA New RPE access from RB 9.5 ns
RPRDH Old RPE valid from RB 3.0 ns
ProASICPLUS Flash Family FPGAs
2-60 v5.9
Synchronous SRAM Write
Note: The plot shows the normal operation status.
Figure 2-33 Synchronous SRAM Write
Table 2-57 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
DCH DI hold from WCLKS 0.5 ns
DCS DI setup to WCLKS 1.0 ns
WACH WADDR hold from WCLKS 0.5 ns
WDCS WADDR setup to WCLKS 1.0 ns
WPCA New WPE access from WCLKS 3.0 ns WPE is invalid while
PARGEN is active
WPCH Old WPE valid from WCLKS 0.5 ns
WRCH, WBCH WRB & WBLKB hold from WCLKS 0.5 ns
WRCS, WBCS WRB & WBLKB setup to WCLKS 1.0 ns
Note: On simultaneous read and write accesses to the same location, DI is output to DO.
WCLKS
WPE
WADDR, DI
WRB, WBLKB
Cycle Start
tWRCH, tWBCH
tWRCS, tWBCS
tDCS, tWDCS
tWPCH
tDCH, tWACH
tWPCA
tCMH tCML
tCCYC
ProASICPLUS Flash Family FPGAs
v5.9 2-61
Synchronous Write and Read to the Same Location
Note: * New data is read if WCLKS
occurs before setup time. The data stored is read if WCLKS
occurs after hold time. The plot shows
the normal operation status.
Figure 2-34 Synchronous Write and Read to the Same Location
Table 2-58 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
WCLKRCLKS WCLKS to RCLKS setup time 0.1 ns
WCLKRCLKH WCLKS to RCLKS hold time 7.0 ns
OCH Old DO valid from RCLKS 3.0 ns OCA/OCH displayed for
Access Timed Output
OCA New DO valid from RCLKS 7.5 ns
Notes:
1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.
2. During synchronous write and synchronous read access to the same location, the new write data will be read out if the active write
clock edge occurs before or at the same time as the active read clock edge. The negative setup time insures this behavior for WCLKS
and RCLKS driven by the same design signal.
3. If WCLKS changes after the hold time, the data will be read.
4. A setup or hold time violation will result in unknown output data.
RCLKS
DO
WCLKS
tWCLKRCLKH
New Data*
Last Cycle Data
tWCLKRCLKS
tOCH
tCCYC
tCMH tCML
tOCA
ProASICPLUS Flash Family FPGAs
2-62 v5.9
Asynchronous Write and Synchronous Read to the Same Location
Note: *New data is read if WB
occurs before setup time. The stored data is read if WB
occurs after hold time. The plot shows the
normal operation status.
Figure 2-35 Asynchronous Write and Synchronous Read to the Same Location
Table 2-59 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
WBRCLKS WB to RCLKS setup time 0.1 ns
WBRCLKH WB to RCLKS hold time 7.0 ns
OCH Old DO valid from RCLKS 3.0 ns OCA/OCH displayed for
Access Timed Output
OCA New DO valid from RCLKS 7.5 ns
DWRRCLKS DI to RCLKS setup time 0 ns
DWRH DI to WB hold time 1.5 ns
Notes:
1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.
2. In asynchronous write and synchronous read access to the same location, the new write data will be read out if the active write
signal edge occurs before or at the same time as the active read clock edge. If WB changes to low after hold time, the data will be
read.
3. A setup or hold time violation will result in unknown output data.
WB = {WRB + WBLKB}
RCLKS
DO
tBRCLKH
New Data*
Last Cycle Data
tWRCKS
tOCH
tOCA
DI
tDWRRCLK tDWRH
tCCYC
tCMH tCML
ProASICPLUS Flash Family FPGAs
v5.9 2-63
Asynchronous Write and Read to the Same Location
Note: The plot shows the normal operation status.
Figure 2-36 Asynchronous Write and Read to the Same Location
Table 2-60 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
OWRA New DO access from WB 3.0 ns
OWRH Old DO valid from WB 0.5 ns
RAWRS RB or RADDR from WB 5.0 ns
RAWRH RB or RADDR from WB 5.0 ns
Notes:
1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automatically
trigger a read operation which updates the read data. Refer to the ProASICPLUS RAM and FIFO Blocks application note for more
information.
2. Violation or RAWRS will disturb access to the OLD data.
3. Violation of RAWRH will disturb access to the NEWER data.
RB, RADDR
OLD NEWERNEW
tORDA
tORDH
tOWRH
tRAWRH
WB = {WRB+WBLKB}
DO
tOWRA
tRAWRS
ProASICPLUS Flash Family FPGAs
2-64 v5.9
Synchronous Write and Asynchronous Read to the Same Location
Note: The plot shows the normal operation status.
Figure 2-37 Synchronous Write and Asynchronous Read to the Same Location
Table 2-61 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
OWRA New DO access from WCLKS 3.0 ns
OWRH Old DO valid from WCLKS 0.5 ns
RAWCLKS RB or RADDR from WCLKS 5.0 ns
RAWCLKH RB or RADDR from WCLKS 5.0 ns
Notes:
1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automatically
trigger a read operation which updates the read data.
2. Violation of RAWCLKS will disturb access to OLD data.
3. Violation of RAWCLKH will disturb access to NEWER data.
RB, RADDR
OLD NEWNEWER
tORDA
tORDH
tRAWCLKS
tRAWCLKH
WCLKS
DO
tOWRH
tOWRA
ProASICPLUS Flash Family FPGAs
v5.9 2-65
Asynchronous FIFO Full and Empty Transitions
The asynchronous FIFO accepts writes and reads while
not full or not empty. When the FIFO is full, all writes are
inhibited. Conversely, when the FIFO is empty, all reads
are inhibited. A problem is created if the FIFO is written
to during the transition from full to not full, or read
during the transition from empty to not empty. The
exact time at which the write or read operation changes
from inhibited to accepted after the read (write) signal
which causes the transition from full or empty to not full
or not empty is indeterminate. For slow cycles, this
indeterminate period starts 1 ns after the RB (WB)
transition, which deactivates full or not empty and ends
3 ns after the RB (WB) transition. For fast cycles, the
indeterminate period ends 3 ns (7.5 ns – RDL (WRL)) after
the RB (WB) transition, whichever is later (Table 2-1 on
page 2-4).
The timing diagram for write is shown in Figure 2-35 on
page 2-62. The timing diagram for read is shown in
Figure 2-36 on page 2-63. For basic SRAM configurations,
see Table 2-14 on page 2-22. When reset is asserted, the
empty flag will be asserted, the counters will reset, the
outputs go to zero, but the internal RAM is not erased.
Enclosed Timing Diagrams – FIFO Mode:
The following timing diagrams apply only to single cell;
they are not applicable to cascaded cells. For more
information, refer to the ProASICPLUS RAM/FIFO Blocks
application note.
"Asynchronous FIFO Read" section on page 2-67
"Asynchronous FIFO Write" section on page 2-68
"Synchronous FIFO Read, Access Timed Output
Strobe (Synchronous Transparent)" section on
page 2-69
"Synchronous FIFO Read, Pipeline Mode Outputs
(Synchronous Pipelined)" section on page 2-70
"Synchronous FIFO Write" section on page 2-71
"FIFO Reset" section on page 2-72
Table 2-62 Memory Block FIFO Interface Signals
FIFO Signal Bits In/Out Description
WCLKS 1 In Write clock used for synchronization on write side
RCLKS 1 In Read clock used for synchronization on read side
LEVEL [0:7]* 8 In Direct configuration implements static flag logic
RBLKB 1 In Read block select (active Low)
RDB 1 In Read pulse (active Low)
RESET 1 In Reset for FIFO pointers (active Low)
WBLKB 1 In Write block select (active Low)
DI[0:8] 9 In Input data bits [0:8], [8] will be generated if PARGEN is true
WRB 1 In Write pulse (active Low)
FULL, EMPTY 2 Out FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH* 2 Out EQTH is true when the FIFO holds the number of words specified by the LEVEL signal.
GEQTH is true when the FIFO holds (LEVEL) words or more
DO[0:8] 9 Out Output data bits [0:8]
RPE 1 Out Read parity error (active High)
WPE 1 Out Write parity error (active High)
LGDEP [0:2] 3 In Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD 1 In Selects Odd parity generation/detect when high, Even when low
Note: *LEVEL is always eight bits (0000.0000, 0000.0001). That means for values of DEPTH greater than 256, not all values will be
possible, e.g. for DEPTH = 512, the LEVEL can only have the values 2, 4, . . ., 512. The LEVEL signal circuit will generate signals that
indicate whether the FIFO is exactly filled to the value of LEVEL (EQTH) or filled equal or higher (GEQTH) than the specified LEVEL.
Since counting starts at 0, EQTH will become true when the FIFO holds (LEVEL+1) words for 512-bit FIFOs.
ProASICPLUS Flash Family FPGAs
2-66 v5.9
Figure 2-38 Write Timing Diagram
Figure 2-39 Read Timing Diagram
Write AcceptedWrite Inhibited
FULL
RB
Write
Cycle
1 ns
3 ns
WB
Read AcceptedRead Inhibited
EMPTY
WB
Read
Cycle
1 ns
3 ns
RB
ProASICPLUS Flash Family FPGAs
v5.9 2-67
Asynchronous FIFO Read
Note: The plot shows the normal operation status.
Figure 2-40 Asynchronous FIFO Read
Table 2-63 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
ERDH, FRDH,
THRDH
Old EMPTY, FULL, EQTH, & GETH valid hold
time from RB 0.5 ns Empty/full/thresh are invalid from the end
of hold until the new access is complete
ERDA New EMPTY access from RB 3.01ns
FRDA FULL access from RB 3.01ns
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
RDCYC Read cycle time 7.5 ns
RDWRS WB , clearing EMPTY, setup to
RB
3.02ns Enabling the read operation
1.0 ns Inhibiting the read operation
RDH RB high phase 3.0 ns Inactive
RDL RB low phase 3.0 ns Active
RPRDA New RPE access from RB 9.5 ns
RPRDH Old RPE valid from RB 4.0 ns
THRDA EQTH or GETH access from RB4.5 ns
Notes:
1. At fast cycles, ERDA and FRDA = MAX (7.5 ns – RDL), 3.0 ns.
2. At fast cycles, RDWRS (for enabling read) = MAX (7.5 ns – WRL), 3.0 ns.
RB = (RDB+RBLKB)
RPE
RDATA
EMPTY
EQTH, GETH
FULL
(Empty inhibits read)
Cycle Start
WB
tRDWRS tERDH, tFRDH
tERDA, tFRDA
tTHRDH
tORDH
tRPRDH
tORDA
tRPRDA
tRDL tRDH
tRPRDA
tRDL
tRDCYC
tRDH
tTHRDA
ProASICPLUS Flash Family FPGAs
2-68 v5.9
Asynchronous FIFO Write
Note: The plot shows the normal operation status.
Figure 2-41 Asynchronous FIFO Write
Table 2-64 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
DWRH DI hold from WB 1.5 ns
DWRS DI setup to WB 0.5 ns PARGEN is inactive
DWRS DI setup to WB 2.5 ns PARGEN is active
EWRH, FWRH,
THWRH
Old EMPTY, FULL, EQTH, & GETH valid hold
time after WB 0.5 ns Empty/full/thresh are invalid from the end
of hold until the new access is complete
EWRA EMPTY access from WB 3.01ns
FWRA New FULL access from WB 3.01ns
THWRA EQTH or GETH access from WB 4.5 ns
WPDA WPE access from DI 3.0 ns WPE is invalid while PARGEN is active
WPDH WPE hold from DI 1.0 ns
WRCYC Cycle time 7.5 ns
WRRDS RB , clearing FULL, setup to
WB
3.02ns Enabling the write operation
1.0 Inhibiting the write operation
WRH WB high phase 3.0 ns Inactive
WRL WB low phase 3.0 ns Active
Notes:
1. At fast cycles, EWRA, FWRA = MAX (7.5 ns – WRL), 3.0 ns.
2. At fast cycles, WRRDS (for enabling write) = MAX (7.5 ns – RDL), 3.0 ns.
3. After FIFO reset, WRB needs an initial falling edge prior to any write actions.
WPE
WDATA (Full inhibits write)
WB = (WRB + WBLKB)
EMPTY
EQTH, GETH
FULL
Cycle Start
RB
tWRRDS tDWRH
tWPDH
tWPDA
tDWRS
tEWRH, tFWRH
tEWRA, tFWRA
tTHWRH
tTHWRA
tWRH
tWRL
tWRCYC
ProASICPLUS Flash Family FPGAs
v5.9 2-69
Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
Note: The plot shows the normal operation status.
Figure 2-42 Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
Table 2-65 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
ECBA New EMPTY access from RCLKS 3.0* ns
FCBA FULL access from RCLKS 3.0* ns
ECBH, FCBH,
THCBH
Old EMPTY, FULL, EQTH, & GETH valid hold
time from RCLKS 1.0 ns Empty/full/thresh are invalid from the end
of hold until the new access is complete
OCA New DO access from RCLKS 7.5 ns
OCH Old DO valid from RCLKS 3.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RCLKS 9.5 ns
RPCH Old RPE valid from RCLKS 3.0 ns
HCBA EQTH or GETH access from RCLKS 4.5 ns
Note: *At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMH), 3.0 ns.
RCLK
RPE
RDATA
EMPTY
EQTH, GETH
FULL
RDB
tRDCH
tOCH
tRPCH
tRDCS
Old Data Out New Valid Data Out (Empty Inhibits Read)
Cycle Start
tECBH, tFCBH
tECBA, tFCBA
tOCA
tRPCA
tCMH tCML
tCCYC
tTHCBH
tHCBA
ProASICPLUS Flash Family FPGAs
2-70 v5.9
Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)
Note: The plot shows the normal operation status.
Figure 2-43 Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)
Table 2-66 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
ECBA New EMPTY access from RCLKS 3.0* ns
FCBA FULL access from RCLKS 3.0* ns
ECBH, FCBH,
THCBH
Old EMPTY, FULL, EQTH, & GETH valid hold
time from RCLKS
1.0 ns Empty/full/thresh are invalid from the end of
hold until the new access is complete
OCA New DO access from RCLKS 2.0 ns
OCH Old DO valid from RCLKS 0.75 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RCLKS 4.0 ns
RPCH Old RPE valid from RCLKS 1.0 ns
HCBA EQTH or GETH access from RCLKS 4.5 ns
Note: *At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMS), 3.0 ns.
RCLK
RPE
RDATA
EMPTY
EQTH, GETH
FULL
Old Data Out New Valid Data Out
RDB
Cycle Start
Old RPE Out New RPE Out
tECBH, tFCBH
tRDCH
tRDCS
tOCA
tECBA, tFCBA
tTHCBH
tHCBA
tCMH tCML
tCCYC
tRPCH
tOCH
tRPCA
ProASICPLUS Flash Family FPGAs
v5.9 2-71
Synchronous FIFO Write
Note: The plot shows the normal operation status.
Figure 2-44 Synchronous FIFO Write
Table 2-67 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
DCH DI hold from WCLKS 0.5 ns
DCS DI setup to WCLKS 1.0 ns
FCBA New FULL access from WCLKS 3.0* ns
ECBA EMPTY access from WCLKS 3.0* ns
ECBH,
FCBH,
HCBH
Old EMPTY, FULL, EQTH, & GETH valid hold
time from WCLKS 1.0 ns Empty/full/thresh are invalid from the end of
hold until the new access is complete
HCBA EQTH or GETH access from WCLKS 4.5 ns
WPCA New WPE access from WCLKS 3.0 ns WPE is invalid, while PARGEN is active
WPCH Old WPE valid from WCLKS 0.5 ns
WRCH, WBCH WRB & WBLKB hold from WCLKS 0.5 ns
WRCS, WBCS WRB & WBLKB setup to WCLKS 1.0 ns
Note: * At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMH), 3.0 ns.
WCLKS
WPE
DI
EMPTY
EQTH, GETH
FULL
(Full Inhibits Write)
WRB, WBLKB
Cycle Start
tWRCH, tWBCH tECBH, tFCBH
tECBA, tFCBA
tHCBA
tWRCS, tWBCS
tDCS
tWPCA
tCMH tCML
tCCYC
tWPCH
tDCH
tHCBH
ProASICPLUS Flash Family FPGAs
2-72 v5.9
FIFO Reset
Notes:
1. During reset, either the enables (WRB and RBD) OR the clocks (WCLKS and RCKLS) must be low.
2. The plot shows the normal operation status.
Figure 2-45 FIFO Reset
Table 2-68 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883
Symbol txxx Description Min. Max. Units Notes
CBRSH1WCLKS or RCLKS hold from RESETB 1.5 ns Synchronous mode only
CBRSS1WCLKS or RCLKS setup to RESETB 1.5 ns Synchronous mode only
ERSA New EMPTY access from RESETB 3.0 ns
FRSA FULL access from RESETB 3.0 ns
RSL RESETB low phase 7.5 ns
THRSA EQTH or GETH access from RESETB 4.5 ns
WBRSH1WB hold from RESETB 1.5 ns Asynchronous mode only
WBRSS1WB setup to RESETB 1.5 ns Asynchronous mode only
Note: During rest, the enables (WRB and RBD) must be high OR the clocks (WCLKS and RCKLS) must be low.
RESETB
EMPTY
EQTH, GETH
FULL
WRB/RBD1
Cycle Start
Cycle Start
WCLKS, RCLKS1
tERSA, tFRSA
tTHRSA
tCBRSS
tWBRSS
tCBRSH
tWBRSH
tRSL
ProASICPLUS Flash Family FPGAs
v5.9 2-73
Pin Description
User Pins
I/O User Input/Output
The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Input and output signal levels are
compatible with standard LVTTL and LVCMOS
specifications. Unused I/O pins are configured as inputs
with pull-up resistors.
NC No Connect
To maintain compatibility with other Actel ProASICPLUS
products, it is recommended that this pin not be
connected to the circuitry on the board.
GL Global Pin
Low skew input pin for clock or other global signals. This
pin can be configured with an internal pull-up resistor.
When it is not connected to the global network or the
clock conditioning circuit, it can be configured and used
as a normal I/O.
GLMX Global Multiplexing Pin
Low skew input pin for clock or other global signals. This
pin can be used in one of two special ways (refer to
Actel’s Using ProASICPLUS Clock Conditioning Circuits).
When the external feedback option is selected for the
PLL block, this pin is routed as the external feedback
source to the clock conditioning circuit.
In applications where two different signals access the
same global net at different times through the use of
GLMXx and GLMXLx macros, this pin will be fixed as one
of the source pins.
This pin can be configured with an internal pull-up
resistor. When it is not connected to the global network
or the clock conditioning circuit, it can be configured and
used as any normal I/O. If not used, the GLMXx pin will
be configured as an input with pull-up.
Dedicated Pins
GND Ground
Common ground supply voltage.
VDD Logic Array Power Supply Pin
2.5 V supply voltage.
VDDP I/O Pad Power Supply Pin
2.5 V or 3.3 V supply voltage.
TMS Test Mode Select
The TMS pin controls the use of boundary-scan circuitry.
This pin has an internal pull-up resistor.
TCK Test Clock
Clock input pin for boundary scan (maximum 10 MHz). Actel
recommends adding a nominal 20 kΩ pull-up resistor to this
pin.
TDI Test Data In
Serial input for boundary scan. A dedicated pull-up
resistor is included to pull this pin high when not being
driven.
TDO Test Data Out
Serial output for boundary scan. Actel recommends
adding a nominal 20kΩ pull-up resistor to this pin.
TRST Test Reset Input
Asynchronous, active low input pin for resetting
boundary-scan circuitry. This pin has an internal pull-up
resistor. For more information, please refer to Power-up
Behavior of ProASICPLUS Devices application note.
Special Function Pins
RCK Running Clock
A free running clock is needed during programming if
the programmer cannot guarantee that TCK will be
uninterrupted. If not used, this pin has an internal pull-
up and can be left floating.
NPECL User Negative Input
Provides high speed clock or data signals to the PLL
block. If unused, leave the pin unconnected.
PPECL User Positive Input
Provides high speed clock or data signals to the PLL
block. If unused, leave the pin unconnected.
AVDD PLL Power Supply
Analog VDD should be VDD (core voltage) 2.5 V (nominal)
and be decoupled from GND with suitable decoupling
capacitors to reduce noise. For more information, refer
to Actel’s Using ProASICPLUS Clock Conditioning Circuits
application note. If the clock conditioning circuitry is not
used in a design, AVDD can either be left floating or tied
to 2.5 V.
AGND PLL Power Ground
The analog ground can be connected to the system
ground. For more information, refer to Actel’s Using
ProASICPLUS Clock Conditioning Circuits application note.
If the PLLs or clock conditioning circuitry are not used in
a design, AGND should be tied to GND.
ProASICPLUS Flash Family FPGAs
2-74 v5.9
VPP Programming Supply Pin
This pin may be connected to any voltage between GND
and 16.5 V during normal operation, or it can be left
unconnected.2 For information on using this pin during
programming, see the In-System Programming
ProASICPLUS Devices application note. Actel recommends
floating the pin or connecting it to VDDP
.
VPN Programming Supply Pin
This pin may be connected to any voltage between 0.5 V
and –13.8 V during normal operation, or it can be left
unconnected.3 For information on using this pin during
programming, see the In-System Programming
ProASICPLUS Devices application note. Actel recommends
floating the pin or connecting it to GND.
Recommended Design Practice
for VPN/VPP
ProASICPLUS Devices – APA450, APA600,
APA750, APA1000
Bypass capacitors are required from VPP to GND and VPN
to GND for all ProASICPLUS devices during programming.
During the erase cycle, ProASICPLUS devices may have
current surges on the VPP and VPN power supplies. The
only way to maintain the integrity of the power
distribution to the ProASICPLUS device during these
current surges is to counteract the inductance of the
finite length conductors that distribute the power to the
device. This can be accomplished by providing sufficient
bypass capacitance between the VPP and VPN pins and
GND (using the shortest paths possible). Without
sufficient bypass capacitance to counteract the
inductance, the VPP and VPN pins may incur a voltage
spike beyond the voltage that the device can withstand.
This issue applies to all programming configurations.
The solution prevents spikes from damaging the
ProASICPLUS devices. Bypass capacitors are required for
the VPP and VPN pads. Use a 0.01 µF to 0.1 µF ceramic
capacitor with a 25 V or greater rating. To filter low-
frequency noise (decoupling), use a 4.7 µF (low ESR, <1
<Ω, tantalum, 25 V or greater rating) capacitor. The
capacitors should be located as close to the device pins as
possible (within 2.5 cm is desirable). The smaller, high-
frequency capacitor should be placed closer to the device
pins than the larger low-frequency capacitor. The same
dual-capacitor circuit should be used on both the VPP and
VPN pins (Figure 2-46).
ProASICPLUS Devices – APA075, APA150,
APA300
These devices do not require bypass capacitors on the VPP
and VPN pins as long as the total combined distance of
the programming cable and the trace length on the
board is less than or equal to 30 inches. Note: For trace
lengths greater than 30 inches, use the bypass capacitor
recommendations in the previous section.
2. There is a nominal 40 kΩ pull-up resistor on VPP
.
3. There is a nominal 40 kΩ pull-down resistor on VPN.
Figure 2-46 ProASICPLUS VPP and VPN Capacitor Requirements
2.5cm
0.1 µF
to
0.01 µF Programming
Header
or
Supplies
4.7 µF
Actel
ProASIC
Device
+
+
+
_
V
PP
V
PN +
_
0.1 µF
to
0.01 µF
4.7 µF
PLUS
ProASICPLUS Flash Family FPGAs
v5.9 3-1
Package Pin Assignments
100-Pin TQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
100-Pin TQFP
1100
ProASICPLUS Flash Family FPGAs
3-2 v5.9
100-Pin TQFP
Pin
Number
APA075
Function
APA150
Function
1GNDGND
2I/OI/O
3I/OI/O
4I/OI/O
5I/OI/O
6I/OI/O
7I/OI/O
8I/OI/O
9GNDGND
10 I/O / GLMX1 I/O / GLMX1
11 I/O / GL1 I/O / GL1
12 AGND AGND
13 NPECL1 NPECL1
14 AVDD AVDD
15 PPECL1 / Input PPECL1 / Input
16 I/O / GL2 I/O / GL2
17 VDD VDD
18 I/O I/O
19 I/O I/O
20 I/O I/O
21 I/O I/O
22 I/O I/O
23 I/O I/O
24 I/O I/O
25 GND GND
26 VDDP VDDP
27 I/O I/O
28 I/O I/O
29 I/O I/O
30 I/O I/O
31 I/O I/O
32 I/O I/O
33 I/O I/O
34 I/O I/O
35 I/O I/O
36 I/O I/O
37 VDD VDD
38 GND GND
39 VDDP VDDP
40 GND GND
41 I/O I/O
42 I/O I/O
43 I/O I/O
44 I/O I/O
45 I/O I/O
46 I/O I/O
47 TCK TCK
48 TDI TDI
49 TMS TMS
50 VDDP VDDP
51 GND GND
52 VPP VPP
53 VPN VPN
54 TDO TDO
55 TRST TRST
56 RCK RCK
57 I/O I/O
58 I/O I/O
59 I/O I/O
60 I/O / GL3 I/O / GL3
61 PPECL2 / Input PPECL2 / Input
62 AVDD AVDD
63 NPECL2 NPECL2
64 AGND AGND
65 I/O / GL4 I/O / GL4
66 I/O / GLMX2 I/O / GLMX2
67 GND GND
68 VDD VDD
69 I/O I/O
70 I/O I/O
100-Pin TQFP
Pin
Number
APA075
Function
APA150
Function
71 I/O I/O
72 I/O I/O
73 I/O I/O
74 I/O I/O
75 GND GND
76 VDDP VDDP
77 I/O I/O
78 I/O I/O
79 I/O I/O
80 I/O I/O
81 I/O I/O
82 I/O I/O
83 I/O I/O
84 I/O I/O
85 I/O I/O
86 GND GND
87 VDDP VDDP
88 GND GND
89 VDD VDD
90 I/O I/O
91 I/O I/O
92 I/O I/O
93 I/O I/O
94 I/O I/O
95 I/O I/O
96 I/O I/O
97 I/O I/O
98 I/O I/O
99 I/O I/O
100 VDDP VDDP
100-Pin TQFP
Pin
Number
APA075
Function
APA150
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-3
144-Pin TQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
144-Pin
TQFP
1
144
ProASICPLUS Flash Family FPGAs
3-4 v5.9
144-Pin TQFP
Pin
Number
APA075
Function
1I/O
2I/O
3I/O
4I/O
5I/O
6I/O
7I/O
8I/O
9V
DD
10 GND
11 VDDP
12 I/O
13 I/O
14 I/O
15 I/O / GLMX1
16 I/O / GL1
17 AGND
18 NPECL1
19 AVDD
20 PPECL1 /
Input
21 I/O / GL2
22 I/O
23 I/O
24 I/O
25 I/O
26 I/O
27 GND
28 VDDP
29 I/O
30 I/O
31 I/O
32 I/O
33 I/O
34 I/O
35 I/O
36 I/O
37 I/O
38 I/O
39 I/O
40 I/O
41 I/O
42 I/O
43 I/O
44 I/O
45 VDD
46 GND
47 VDDP
48 I/O
49 I/O
50 I/O
51 I/O
52 I/O
53 I/O
54 I/O
55 I/O
56 I/O
57 I/O
58 I/O
59 I/O
60 I/O
61 I/O
62 VDD
63 GND
64 VDDP
65 I/O
66 I/O
67 I/O
68 I/O
69 TCK
70 TDI
71 TMS
72 NC
144-Pin TQFP
Pin
Number
APA075
Function
73 VPP
74 VPN
75 TDO
76 TRST
77 RCK
78 I/O
79 I/O
80 I/O
81 VDDP
82 GND
83 I/O
84 I/O
85 I/O
86 I/O
87 I/O
88 I/O / GL3
89 PPECL2 /
Input
90 AVDD
91 NPECL2
92 AGND
93 I/O / GL4
94 I/O / GLMX2
95 I/O
96 I/O
97 I/O
98 VDDP
99 GND
100 VDD
101 I/O
102 I/O
103 I/O
104 I/O
105 I/O
106 I/O
107 I/O
108 I/O
144-Pin TQFP
Pin
Number
APA075
Function
109 I/O
110 I/O
111 I/O
112 I/O
113 I/O
114 I/O
115 I/O
116 I/O
117 VDDP
118 GND
119 VDD
120 I/O
121 I/O
122 I/O
123 I/O
124 I/O
125 I/O
126 I/O
127 I/O
128 I/O
129 I/O
130 I/O
131 I/O
132 I/O
133 I/O
134 VDDP
135 GND
136 VDD
137 I/O
138 I/O
139 I/O
140 I/O
141 I/O
142 I/O
143 I/O
144 I/O
144-Pin TQFP
Pin
Number
APA075
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-5
208-Pin PQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
208-Pin PQFP
1208
ProASICPLUS Flash Family FPGAs
3-6 v5.9
208-Pin PQFP
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
1 GND GND GND GND GND GND GND
2 I/OI/OI/OI/OI/OI/OI/O
3 I/OI/OI/OI/OI/OI/OI/O
4 I/OI/OI/OI/OI/OI/OI/O
5 I/OI/OI/OI/OI/OI/OI/O
6 I/OI/OI/OI/OI/OI/OI/O
7 I/OI/OI/OI/OI/OI/OI/O
8 I/OI/OI/OI/OI/OI/OI/O
9 I/OI/OI/OI/OI/OI/OI/O
10 I/O I/O I/O I/O I/O I/O I/O
11 I/O I/O I/O I/O I/O I/O I/O
12 I/O I/O I/O I/O I/O I/O I/O
13 I/O I/O I/O I/O I/O I/O I/O
14 I/O I/O I/O I/O I/O I/O I/O
15 I/O I/O I/O I/O I/O I/O I/O
16 VDD VDD VDD VDD VDD VDD VDD
17 GND GND GND GND GND GND GND
18 I/O I/O I/O I/O I/O I/O I/O
19 I/O I/O I/O I/O I/O I/O I/O
20 I/O I/O I/O I/O I/O I/O I/O
21 I/O I/O I/O I/O I/O I/O I/O
22 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
23 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1
24 I/O / GL2 I/O / GL2 I/O / GL2 I/O / GL2 I/O / GL2 I/O / GL2 I/O / GL2
25 AGND AGND AGND AGND AGND AGND AGND
26 NPECL1 NPECL1 NPECL1 NPECL1 NPECL1 NPECL1 NPECL1
27 AVDD AVDD AVDD AVDD AVDD AVDD AVDD
28 PPECL1 / Input PPECL1 / Input PPECL1 / Input PPECL1 / Input PPECL1 / Input PPECL1 / Input PPECL1 / Input
29 GND GND GND GND GND GND GND
30 I/O / GL1 I/O / GL1 I/O / GL1 I/O / GL1 I/O / GL1 I/O / GL1 I/O / GL1
31 I/O I/O I/O I/O I/O I/O I/O
32 I/O I/O I/O I/O I/O I/O I/O
33 I/O I/O I/O I/O I/O I/O I/O
34 I/O I/O I/O I/O I/O I/O I/O
35 I/O I/O I/O I/O I/O I/O I/O
ProASICPLUS Flash Family FPGAs
v5.9 3-7
36 VDD VDD VDD VDD VDD VDD VDD
37 I/O I/O I/O I/O I/O I/O I/O
38 I/O I/O I/O I/O I/O I/O I/O
39 I/O I/O I/O I/O I/O I/O I/O
40 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
41 GND GND GND GND GND GND GND
42 I/O I/O I/O I/O I/O I/O I/O
43 I/O I/O I/O I/O I/O I/O I/O
44 I/O I/O I/O I/O I/O I/O I/O
45 I/O I/O I/O I/O I/O I/O I/O
46 I/O I/O I/O I/O I/O I/O I/O
47 I/O I/O I/O I/O I/O I/O I/O
48 I/O I/O I/O I/O I/O I/O I/O
49 I/O I/O I/O I/O I/O I/O I/O
50 I/O I/O I/O I/O I/O I/O I/O
51 I/O I/O I/O I/O I/O I/O I/O
52 GND GND GND GND GND GND GND
53 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
54 I/O I/O I/O I/O I/O I/O I/O
55 I/O I/O I/O I/O I/O I/O I/O
56 I/O I/O I/O I/O I/O I/O I/O
57 I/O I/O I/O I/O I/O I/O I/O
58 I/O I/O I/O I/O I/O I/O I/O
59 I/O I/O I/O I/O I/O I/O I/O
60 I/O I/O I/O I/O I/O I/O I/O
61 I/O I/O I/O I/O I/O I/O I/O
62 I/O I/O I/O I/O I/O I/O I/O
63 I/O I/O I/O I/O I/O I/O I/O
64 I/O I/O I/O I/O I/O I/O I/O
65 GND GND GND GND GND GND GND
66 I/O I/O I/O I/O I/O I/O I/O
67 I/O I/O I/O I/O I/O I/O I/O
68 I/O I/O I/O I/O I/O I/O I/O
69 I/O I/O I/O I/O I/O I/O I/O
70 I/O I/O I/O I/O I/O I/O I/O
208-Pin PQFP
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-8 v5.9
71 VDD VDD VDD VDD VDD VDD VDD
72 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
73 I/O I/O I/O I/O I/O I/O I/O
74 I/O I/O I/O I/O I/O I/O I/O
75 I/O I/O I/O I/O I/O I/O I/O
76 I/O I/O I/O I/O I/O I/O I/O
77 I/O I/O I/O I/O I/O I/O I/O
78 I/O I/O I/O I/O I/O I/O I/O
79 I/O I/O I/O I/O I/O I/O I/O
80 I/O I/O I/O I/O I/O I/O I/O
81 GND GND GND GND GND GND GND
82 I/O I/O I/O I/O I/O I/O I/O
83 I/O I/O I/O I/O I/O I/O I/O
84 I/O I/O I/O I/O I/O I/O I/O
85 I/O I/O I/O I/O I/O I/O I/O
86 I/O I/O I/O I/O I/O I/O I/O
87 I/O I/O I/O I/O I/O I/O I/O
88 VDD VDD VDD VDD VDD VDD VDD
89 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
90 I/O I/O I/O I/O I/O I/O I/O
91 I/O I/O I/O I/O I/O I/O I/O
92 I/O I/O I/O I/O I/O I/O I/O
93 I/O I/O I/O I/O I/O I/O I/O
94 I/O I/O I/O I/O I/O I/O I/O
95 I/O I/O I/O I/O I/O I/O I/O
96 I/O I/O I/O I/O I/O I/O I/O
97 GND GND GND GND GND GND GND
98 I/O I/O I/O I/O I/O I/O I/O
99 I/O I/O I/O I/O I/O I/O I/O
100 I/O I/O I/O I/O I/O I/O I/O
101 TCK TCK TCK TCK TCK TCK TCK
102 TDI TDI TDI TDI TDI TDI TDI
103 TMS TMS TMS TMS TMS TMS TMS
104 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
105 GND GND GND GND GND GND GND
208-Pin PQFP
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-9
106 VPP VPP VPP VPP VPP VPP VPP
107 VPN VPN VPN VPN VPN VPN VPN
108 TDO TDO TDO TDO TDO TDO TDO
109 TRST TRST TRST TRST TRST TRST TRST
110 RCK RCK RCK RCK RCK RCK RCK
111 I/O I/O I/O I/O I/O I/O I/O
112 I/O I/O I/O I/O I/O I/O I/O
113 I/O I/O I/O I/O I/O I/O I/O
114 I/O I/O I/O I/O I/O I/O I/O
115 I/O I/O I/O I/O I/O I/O I/O
116 I/O I/O I/O I/O I/O I/O I/O
117 I/O I/O I/O I/O I/O I/O I/O
118 I/O I/O I/O I/O I/O I/O I/O
119 I/O I/O I/O I/O I/O I/O I/O
120 I/O I/O I/O I/O I/O I/O I/O
121 I/O I/O I/O I/O I/O I/O I/O
122 GND GND GND GND GND GND GND
123 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
124 I/O I/O I/O I/O I/O I/O I/O
125 I/O I/O I/O I/O I/O I/O I/O
126 VDD VDD VDD VDD VDD VDD VDD
127 I/O I/O I/O I/O I/O I/O I/O
128 I/O / GL3 I/O / GL3 I/O / GL3 I/O / GL3 I/O / GL3 I/O / GL3 I/O / GL3
129 PPECL2 / Input PPECL2 / Input PPECL2 / Input PPECL2 / Input PPECL2 / Input PPECL2 / Input PPECL2 / Input
130 GND GND GND GND GND GND GND
131 AVDD AVDD AVDD AVDD AVDD AVDD AVDD
132 NPECL2 NPECL2 NPECL2 NPECL2 NPECL2 NPECL2 NPECL2
133 AGND AGND AGND AGND AGND AGND AGND
134 I/O / GL4 I/O / GL4 I/O / GL4 I/O / GL4 I/O / GL4 I/O / GL4 I/O / GL4
135 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2
136 I/O I/O I/O I/O I/O I/O I/O
137 I/O I/O I/O I/O I/O I/O I/O
138 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
139 I/O I/O I/O I/O I/O I/O I/O
140 I/O I/O I/O I/O I/O I/O I/O
208-Pin PQFP
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-10 v5.9
141 GND GND GND GND GND GND GND
142 VDD VDD VDD VDD VDD VDD VDD
143 I/O I/O I/O I/O I/O I/O I/O
144 I/O I/O I/O I/O I/O I/O I/O
145 I/O I/O I/O I/O I/O I/O I/O
146 I/O I/O I/O I/O I/O I/O I/O
147 I/O I/O I/O I/O I/O I/O I/O
148 I/O I/O I/O I/O I/O I/O I/O
149 I/O I/O I/O I/O I/O I/O I/O
150 I/O I/O I/O I/O I/O I/O I/O
151 I/O I/O I/O I/O I/O I/O I/O
152 I/O I/O I/O I/O I/O I/O I/O
153 I/O I/O I/O I/O I/O I/O I/O
154 I/O I/O I/O I/O I/O I/O I/O
155 I/O I/O I/O I/O I/O I/O I/O
156 GND GND GND GND GND GND GND
157 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
158 I/O I/O I/O I/O I/O I/O I/O
159 I/O I/O I/O I/O I/O I/O I/O
160 I/O I/O I/O I/O I/O I/O I/O
161 I/O I/O I/O I/O I/O I/O I/O
162 GND GND GND GND GND GND GND
163 I/O I/O I/O I/O I/O I/O I/O
164 I/O I/O I/O I/O I/O I/O I/O
165 I/O I/O I/O I/O I/O I/O I/O
166 I/O I/O I/O I/O I/O I/O I/O
167 I/O I/O I/O I/O I/O I/O I/O
168 I/O I/O I/O I/O I/O I/O I/O
169 I/O I/O I/O I/O I/O I/O I/O
170 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
171 VDD VDD VDD VDD VDD VDD VDD
172 I/O I/O I/O I/O I/O I/O I/O
173 I/O I/O I/O I/O I/O I/O I/O
174 I/O I/O I/O I/O I/O I/O I/O
175 I/O I/O I/O I/O I/O I/O I/O
208-Pin PQFP
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-11
176 I/O I/O I/O I/O I/O I/O I/O
177 I/O I/O I/O I/O I/O I/O I/O
178 GND GND GND GND GND GND GND
179 I/O I/O I/O I/O I/O I/O I/O
180 I/O I/O I/O I/O I/O I/O I/O
181 I/O I/O I/O I/O I/O I/O I/O
182 I/O I/O I/O I/O I/O I/O I/O
183 I/O I/O I/O I/O I/O I/O I/O
184 I/O I/O I/O I/O I/O I/O I/O
185 I/O I/O I/O I/O I/O I/O I/O
186 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
187 VDD VDD VDD VDD VDD VDD VDD
188 I/O I/O I/O I/O I/O I/O I/O
189 I/O I/O I/O I/O I/O I/O I/O
190 I/O I/O I/O I/O I/O I/O I/O
191 I/O I/O I/O I/O I/O I/O I/O
192 I/O I/O I/O I/O I/O I/O I/O
193 I/O I/O I/O I/O I/O I/O I/O
194 I/O I/O I/O I/O I/O I/O I/O
195 GND GND GND GND GND GND GND
196 I/O I/O I/O I/O I/O I/O I/O
197 I/O I/O I/O I/O I/O I/O I/O
198 I/O I/O I/O I/O I/O I/O I/O
199 I/O I/O I/O I/O I/O I/O I/O
200 I/O I/O I/O I/O I/O I/O I/O
201 I/O I/O I/O I/O I/O I/O I/O
202 I/O I/O I/O I/O I/O I/O I/O
203 I/O I/O I/O I/O I/O I/O I/O
204 I/O I/O I/O I/O I/O I/O I/O
205 I/O I/O I/O I/O I/O I/O I/O
206 I/O I/O I/O I/O I/O I/O I/O
207 I/O I/O I/O I/O I/O I/O I/O
208 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
208-Pin PQFP
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-12 v5.9
208-Pin CQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
Ceramic
Tie Bar
No. 1
208-Pin CQFP
1
2
3
4
31
32
33
34
35
36
37
38
39
49
50
51
52
156
155
154
153
142
141
140
139
138
137
136
135
134
108
107
106
105
53
54
55
57
84
85
86
87
88
89
90
91
92
101
102
103
104
208
207
206
205
194
193
192
191
190
189
188
187
186
160
159
158
157
ProASICPLUS Flash Family FPGAs
v5.9 3-13
208-Pin CQFP
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
1GNDGNDGND
2 I/O I/O I/O
3 I/O I/O I/O
4 I/O I/O I/O
5 I/O I/O I/O
6 I/O I/O I/O
7 I/O I/O I/O
8 I/O I/O I/O
9 I/O I/O I/O
10 I/O I/O I/O
11 I/O I/O I/O
12 I/O I/O I/O
13 I/O I/O I/O
14 I/O I/O I/O
15 I/O I/O I/O
16 VDD VDD VDD
17 GND GND GND
18 I/O I/O I/O
19 I/O I/O I/O
20 I/O I/O I/O
21 I/O I/O I/O
22 VDDP VDDP VDDP
23 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1
24 I/O / GL2 I/O / GL2 I/O / GL2
25 AGND AGND AGND
26 NPECL1 NPECL1 NPECL1
27 AVDD AVDD AVDD
28 PPECL1 / Input PPECL1 / Input PPECL1 / Input
29 GND GND GND
30 I/O / GL1 I/O / GL1 I/O / GL1
31 I/O I/O I/O
32 I/O I/O I/O
33 I/O I/O I/O
34 I/O I/O I/O
35 I/O I/O I/O
36 VDD VDD VDD
37 I/O I/O I/O
38 I/O I/O I/O
39 I/O I/O I/O
40 VDDP VDDP VDDP
41 GND GND GND
42 I/O I/O I/O
43 I/O I/O I/O
44 I/O I/O I/O
45 I/O I/O I/O
46 I/O I/O I/O
47 I/O I/O I/O
48 I/O I/O I/O
49 I/O I/O I/O
50 I/O I/O I/O
51 I/O I/O I/O
52 GND GND GND
53 VDDP VDDP VDDP
54 I/O I/O I/O
55 I/O I/O I/O
56 I/O I/O I/O
57 I/O I/O I/O
58 I/O I/O I/O
59 I/O I/O I/O
60 I/O I/O I/O
61 I/O I/O I/O
62 I/O I/O I/O
63 I/O I/O I/O
64 I/O I/O I/O
65 GND GND GND
66 I/O I/O I/O
67 I/O I/O I/O
68 I/O I/O I/O
69 I/O I/O I/O
70 I/O I/O I/O
208-Pin CQFP
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-14 v5.9
71 VDD VDD VDD
72 VDDP VDDP VDDP
73 I/O I/O I/O
74 I/O I/O I/O
75 I/O I/O I/O
76 I/O I/O I/O
77 I/O I/O I/O
78 I/O I/O I/O
79 I/O I/O I/O
80 I/O I/O I/O
81 GND GND GND
82 I/O I/O I/O
83 I/O I/O I/O
84 I/O I/O I/O
85 I/O I/O I/O
86 I/O I/O I/O
87 I/O I/O I/O
88 VDD VDD VDD
89 VDDP VDDP VDDP
90 I/O I/O I/O
91 I/O I/O I/O
92 I/O I/O I/O
93 I/O I/O I/O
94 I/O I/O I/O
95 I/O I/O I/O
96 I/O I/O I/O
97 GND GND GND
98 I/O I/O I/O
99 I/O I/O I/O
100 I/O I/O I/O
101 TCK TCK TCK
102 TDI TDI TDI
103 TMS TMS TMS
104 VDDP VDDP VDDP
105 GND GND GND
208-Pin CQFP
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
106 VPP VPP VPP
107 VPN VPN VPN
108 TDO TDO TDO
109 TRST TRST TRST
110 RCK RCK RCK
111 I/O I/O I/O
112 I/O I/O I/O
113 I/O I/O I/O
114 I/O I/O I/O
115 I/O I/O I/O
116 I/O I/O I/O
117 I/O I/O I/O
118 I/O I/O I/O
119 I/O I/O I/O
120 I/O I/O I/O
121 I/O I/O I/O
122 GND GND GND
123 VDDP VDDP VDDP
124 I/O I/O I/O
125 I/O I/O I/O
126 VDD VDD VDD
127 I/O I/O I/O
128 I/O / GL3 I/O / GL3 I/O / GL3
129 PPECL2 / Input PPECL2 / Input PPECL2 / Input
130 GND GND GND
131 AVDD AVDD AVDD
132 NPECL2 NPECL2 NPECL2
133 AGND AGND AGND
134 I/O / GL4 I/O / GL4 I/O / GL4
135 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2
136 I/O I/O I/O
137 I/O I/O I/O
138 VDDP VDDP VDDP
139 I/O I/O I/O
140 I/O I/O I/O
208-Pin CQFP
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-15
141 GND GND GND
142 VDD VDD VDD
143 I/O I/O I/O
144 I/O I/O I/O
145 I/O I/O I/O
146 I/O I/O I/O
147 I/O I/O I/O
148 I/O I/O I/O
149 I/O I/O I/O
150 I/O I/O I/O
151 I/O I/O I/O
152 I/O I/O I/O
153 I/O I/O I/O
154 I/O I/O I/O
155 I/O I/O I/O
156 GND ]GND GND
157 VDDP VDDP VDDP
158 I/O I/O I/O
159 I/O I/O I/O
160 I/O I/O I/O
161 I/O I/O I/O
162 GND GND GND
163 I/O I/O I/O
164 I/O I/O I/O
165 I/O I/O I/O
166 I/O I/O I/O
167 I/O I/O I/O
168 I/O I/O I/O
169 I/O I/O I/O
170 VDDP VDDP VDDP
171 VDD VDD VDD
172 I/O I/O I/O
173 I/O I/O I/O
174 I/O I/O I/O
175 I/O I/O I/O
208-Pin CQFP
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
176 I/O I/O I/O
177 I/O I/O I/O
178 GND GND GND
179 I/O I/O I/O
180 I/O I/O I/O
181 I/O I/O I/O
182 I/O I/O I/O
183 I/O I/O I/O
184 I/O I/O I/O
185 I/O I/O I/O
186 VDDP VDDP VDDP
187 VDD VDD VDD
188 I/O I/O I/O
189 I/O I/O I/O
190 I/O I/O I/O
191 I/O I/O I/O
192 I/O I/O I/O
193 I/O I/O I/O
194 I/O I/O I/O
195 GND GND GND
196 I/O I/O I/O
197 I/O I/O I/O
198 I/O I/O I/O
199 I/O I/O I/O
200 I/O I/O I/O
201 I/O I/O I/O
202 I/O I/O I/O
203 I/O I/O I/O
204 I/O I/O I/O
205 I/O I/O I/O
206 I/O I/O I/O
207 I/O I/O I/O
208 VDDP VDDP VDDP
208-Pin CQFP
Pin
Number
APA300
Function
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-16 v5.9
352-Pin CQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
Ceramic
Tie Bar
352-Pin CQFP
1
2
3
4
41
42
43
44
45
46
47
48
49
85
86
87
88
89
90
91
92
127
128
129
130
131
132
133
134
135
173
174
175
176
264
263
262
261
180
179
178
177
223
222
221
220
219
218
217
216
215
352
351
350
349
339
338
337
336
335
334
333
332
331
268
267
266
265
Pin 1
ProASICPLUS Flash Family FPGAs
v5.9 3-17
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
1I/OI/OI/O
2I/OI/OI/O
3I/OI/OI/O
4I/OI/OI/O
5I/OI/OI/O
6I/OI/OI/O
7V
DD VDD VDD
8 GND GND GND
9V
DDP VDDP VDDP
10 I/O I/O I/O
11 I/O I/O I/O
12 I/O I/O I/O
13 I/O I/O I/O
14 I/O I/O I/O
15 I/O I/O I/O
16 I/O I/O I/O
17 I/O I/O I/O
18 VDD VDD VDD
19 GND GND GND
20 VDDP VDDP VDDP
21 I/O I/O I/O
22 I/O I/O I/O
23 I/O I/O I/O
24 I/O I/O I/O
25 I/O I/O I/O
26 I/O I/O I/O
27 I/O I/O I/O
28 I/O I/O I/O
29 VDD VDD VDD
30 GND GND GND
31 VDDP VDDP VDDP
32 I/O I/O I/O
33 I/O I/O I/O
34 I/O I/O I/O
35 I/O I/O I/O
36 I/O I/O I/O
37 I/O I/O I/O
38 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1
39 I/O / GL2 I/O / GL2 I/O / GL2
40 AGND AGND AGND
41 AVDD AVDD AVDD
42 NPECL1 NPECL1 NPECL1
43 PPECL1 / Input PPECL1 / Input PPECL1 / Input
44 I/O / GL1 I/O / GL1 I/O / GL1
45 I/O I/O I/O
46 I/O I/O I/O
47 VDD VDD VDD
48 GND GND GND
49 VDDP VDDP VDDP
50 I/O I/O I/O
51 I/O I/O I/O
52 I/O I/O I/O
53 I/O I/O I/O
54 I/O I/O I/O
55 I/O I/O I/O
56 I/O I/O I/O
57 I/O I/O I/O
58 VDD VDD VDD
59 GND GND GND
60 VDDP VDDP VDDP
61 I/O I/O I/O
62 I/O I/O I/O
63 I/O I/O I/O
64 I/O I/O I/O
65 I/O I/O I/O
66 I/O I/O I/O
67 I/O I/O I/O
68 I/O I/O I/O
69 VDD VDD VDD
70 GND GND GND
71 VDDP VDDP VDDP
72 I/O I/O I/O
73 I/O I/O I/O
74 I/O I/O I/O
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-18 v5.9
75 I/O I/O I/O
76 I/O I/O I/O
77 I/O I/O I/O
78 I/O I/O I/O
79 I/O I/O I/O
80 VDD VDD VDD
81 GND GND GND
82 VDDP VDDP VDDP
83 I/O I/O I/O
84 I/O I/O I/O
85 I/O I/O I/O
86 I/O I/O I/O
87 I/O I/O I/O
88 I/O I/O I/O
89 VDDP VDDP VDDP
90 GND GND GND
91 VDD VDD VDD
92 I/O I/O I/O
93 I/O I/O I/O
94 I/O I/O I/O
95 I/O I/O I/O
96 I/O I/O I/O
97 I/O I/O I/O
98 I/O I/O I/O
99 I/O I/O I/O
100 VDDP VDDP VDDP
101 GND GND GND
102 VDD VDD VDD
103 I/O I/O I/O
104 I/O I/O I/O
105 I/O I/O I/O
106 I/O I/O I/O
107 I/O I/O I/O
108 I/O I/O I/O
109 I/O I/O I/O
110 I/O I/O I/O
111 VDDP VDDP VDDP
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
112 GND GND GND
113 VDD VDD VDD
114 I/O I/O I/O
115 I/O I/O I/O
116 I/O I/O I/O
117 I/O I/O I/O
118 I/O I/O I/O
119 I/O I/O I/O
120 I/O I/O I/O
121 I/O I/O I/O
122 VDDP VDDP VDDP
123 GND GND GND
124 VDD VDD VDD
125 I/O I/O I/O
126 I/O I/O I/O
127 I/O I/O I/O
128 I/O I/O I/O
129 I/O I/O I/O
130 I/O I/O I/O
131 I/O I/O I/O
132 I/O I/O I/O
133 VDDP VDDP VDDP
134 GND GND GND
135 VDD VDD VDD
136 I/O I/O I/O
137 I/O I/O I/O
138 I/O I/O I/O
139 I/O I/O I/O
140 I/O I/O I/O
141 I/O I/O I/O
142 I/O I/O I/O
143 I/O I/O I/O
144 VDDP VDDP VDDP
145 GND GND GND
146 VDD VDD VDD
147 I/O I/O I/O
148 I/O I/O I/O
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-19
149 I/O I/O I/O
150 I/O I/O I/O
151 I/O I/O I/O
152 I/O I/O I/O
153 I/O I/O I/O
154 I/O I/O I/O
155 VDDP VDDP VDDP
156 GND GND GND
157 VDD VDD VDD
158 I/O I/O I/O
159 I/O I/O I/O
160 I/O I/O I/O
161 I/O I/O I/O
162 I/O I/O I/O
163 I/O I/O I/O
164 I/O I/O I/O
165 I/O I/O I/O
166 VDDP VDDP VDDP
167 GND GND GND
168 VDD VDD VDD
169 I/O I/O I/O
170 I/O I/O I/O
171 I/O I/O I/O
172 I/O I/O I/O
173 TCK TCK TCK
174 TDI TDI TDI
175 TMS TMS TMS
176 I/O I/O I/O
177 VPP VPP VPP
178 VPN VPN VPN
179 TDO TDO TDO
180 TRST TRST TRST
181 RCK RCK RCK
182 I/O I/O I/O
183 VDDP VDDP VDDP
184 GND GND GND
185 VDD VDD VDD
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
186 I/O I/O I/O
187 I/O I/O I/O
188 I/O I/O I/O
189 I/O I/O I/O
190 I/O I/O I/O
191 I/O I/O I/O
192 I/O I/O I/O
193 I/O I/O I/O
194 VDDP VDDP VDDP
195 GND GND GND
196 VDD VDD VDD
197 I/O I/O I/O
198 I/O I/O I/O
199 I/O I/O I/O
200 I/O I/O I/O
201 I/O I/O I/O
202 I/O I/O I/O
203 I/O I/O I/O
204 I/O I/O I/O
205 VDDP VDDP VDDP
206 GND GND GND
207 VDD VDD VDD
208 I/O I/O I/O
209 I/O I/O I/O
210 I/O I/O I/O
211 I/O I/O I/O
212 I/O I/O I/O
213 I/O I/O I/O
214 I/O I/O I/O
215 I/O I/O I/O
216 VDDP VDDP VDDP
217 GND GND GND
218 VDD VDD VDD
219 I/O I/O I/O
220 I/O I/O I/O
221 I/O / GL3 I/O / GL3 I/O / GL3
222 PPECL2 / Input PPECL2 / Input PPECL2 / Input
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-20 v5.9
223 NPECL2 NPECL2 NPECL2
224 AVDD AVDD AVDD
225 AGND AGND AGND
226 I/O / GL4 I/O / GL4 I/O / GL4
227 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2
228 I/O I/O I/O
229 I/O I/O I/O
230 I/O I/O I/O
231 I/O I/O I/O
232 I/O I/O I/O
233 I/O I/O I/O
234 VDDP VDDP VDDP
235 GND GND GND
236 VDD VDD VDD
237 I/O I/O I/O
238 I/O I/O I/O
239 I/O I/O I/O
240 I/O I/O I/O
241 I/O I/O I/O
242 I/O I/O I/O
243 I/O I/O I/O
244 I/O I/O I/O
245 VDDP VDDP VDDP
246 GND GND GND
247 VDD VDD VDD
248 I/O I/O I/O
249 I/O I/O I/O
250 I/O I/O I/O
251 I/O I/O I/O
252 I/O I/O I/O
253 I/O I/O I/O
254 I/O I/O I/O
255 I/O I/O I/O
256 VDDP VDDP VDDP
257 GND GND GND
258 VDD VDD VDD
259 I/O I/O I/O
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
260 I/O I/O I/O
261 I/O I/O I/O
262 I/O I/O I/O
263 I/O I/O I/O
264 I/O I/O I/O
265 I/O I/O I/O
266 I/O I/O I/O
267 I/O I/O I/O
268 I/O I/O I/O
269 I/O I/O I/O
270 I/O I/O I/O
271 I/O I/O I/O
272 I/O I/O I/O
273 VDD VDD VDD
274 GND GND GND
275 VDDP VDDP VDDP
276 I/O I/O I/O
277 I/O I/O I/O
278 I/O I/O I/O
279 I/O I/O I/O
280 I/O I/O I/O
281 I/O I/O I/O
282 I/O I/O I/O
283 I/O I/O I/O
284 VDD VDD VDD
285 GND GND GND
286 VDDP VDDP VDDP
287 I/O I/O I/O
288 I/O I/O I/O
289 I/O I/O I/O
290 I/O I/O I/O
291 I/O I/O I/O
292 I/O I/O I/O
293 I/O I/O I/O
294 I/O I/O I/O
295 VDD VDD VDD
296 GND GND GND
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-21
297 VDDP VDDP VDDP
298 I/O I/O I/O
299 I/O I/O I/O
300 I/O I/O I/O
301 I/O I/O I/O
302 I/O I/O I/O
303 I/O I/O I/O
304 I/O I/O I/O
305 I/O I/O I/O
306 VDD VDD VDD
307 GND GND GND
308 VDDP VDDP VDDP
309 I/O I/O I/O
310 I/O I/O I/O
311 I/O I/O I/O
312 I/O I/O I/O
313 I/O I/O I/O
314 I/O I/O I/O
315 I/O I/O I/O
316 I/O I/O I/O
317 VDD VDD VDD
318 GND GND GND
319 VDDP VDDP VDDP
320 I/O I/O I/O
321 I/O I/O I/O
322 I/O I/O I/O
323 I/O I/O I/O
324 I/O I/O I/O
325 I/O I/O I/O
326 I/O I/O I/O
327 I/O I/O I/O
328 VDD VDD VDD
329 GND GND GND
330 VDDP VDDP VDDP
331 I/O I/O I/O
332 I/O I/O I/O
333 I/O I/O I/O
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
334 I/O I/O I/O
335 I/O I/O I/O
336 I/O I/O I/O
337 I/O I/O I/O
338 I/O I/O I/O
339 VDD VDD VDD
340 GND GND GND
341 VDDP VDDP VDDP
342 I/O I/O I/O
343 I/O I/O I/O
344 I/O I/O I/O
345 I/O I/O I/O
346 I/O I/O I/O
347 I/O I/O I/O
348 I/O I/O I/O
349 I/O I/O I/O
350 VDD VDD VDD
351 GND GND GND
352 VDDP VDDP VDDP
352-Pin CQFP
Pin Number
APA300
Function
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-22 v5.9
456-Pin PBGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
12356789101115 14 13 121617181920212223 4242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
v5.9 3-23
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
A1 VDDP VDDP VDDP VDDP VDDP VDDP
A2 VDDP VDDP VDDP VDDP VDDP VDDP
A3 NC NC I/O I/O I/O I/O
A4 NC NC I/O I/O I/O I/O
A5 NC NC I/O I/O I/O I/O
A6 NC NC I/O I/O I/O I/O
A7 NC NC I/O I/O I/O I/O
A8I/OI/OI/OI/OI/OI/O
A9I/OI/OI/OI/OI/OI/O
A10 I/O I/O I/O I/O I/O I/O
A11 I/O I/O I/O I/O I/O I/O
A12 I/O I/O I/O I/O I/O I/O
A13 I/O I/O I/O I/O I/O I/O
A14 I/O I/O I/O I/O I/O I/O
A15 I/O I/O I/O I/O I/O I/O
A16 I/O I/O I/O I/O I/O I/O
A17 I/O I/O I/O I/O I/O I/O
A18 I/O I/O I/O I/O I/O I/O
A19 I/O I/O I/O I/O I/O I/O
A20 NC NC I/O I/O I/O I/O
A21 NC NC I/O I/O I/O I/O
A22 NC NC I/O I/O I/O I/O
A23 NC NC I/O I/O I/O I/O
A24 NC NC I/O I/O I/O I/O
A25 VDDP VDDP VDDP VDDP VDDP VDDP
A26 VDDP VDDP VDDP VDDP VDDP VDDP
B1 VDDP VDDP VDDP VDDP VDDP VDDP
B2 VDDP VDDP VDDP VDDP VDDP VDDP
B3 NC NC NC I/O I/O I/O
B4 NC NC I/O I/O I/O I/O
B5 NC NC I/O I/O I/O I/O
B6 NC NC I/O I/O I/O I/O
B7 NC NC I/O I/O I/O I/O
B8I/OI/OI/OI/OI/OI/O
ProASICPLUS Flash Family FPGAs
3-24 v5.9
B9I/OI/OI/OI/OI/OI/O
B10 I/O I/O I/O I/O I/O I/O
B11 I/O I/O I/O I/O I/O I/O
B12 I/O I/O I/O I/O I/O I/O
B13 I/O I/O I/O I/O I/O I/O
B14 I/O I/O I/O I/O I/O I/O
B15 I/O I/O I/O I/O I/O I/O
B16 I/O I/O I/O I/O I/O I/O
B17 I/O I/O I/O I/O I/O I/O
B18 I/O I/O I/O I/O I/O I/O
B19 I/O I/O I/O I/O I/O I/O
B20 NC NC I/O I/O I/O I/O
B21 NC NC I/O I/O I/O I/O
B22 NC NC I/O I/O I/O I/O
B23 NC NC I/O I/O I/O I/O
B24 NC NC I/O I/O I/O I/O
B25 VDDP VDDP VDDP VDDP VDDP VDDP
B26 VDDP VDDP VDDP VDDP VDDP VDDP
C1 VDDP VDDP VDDP VDDP VDDP VDDP
C2 NC I/O I/O I/O I/O I/O
C3 VDDP VDDP VDDP VDDP VDDP VDDP
C4 NC NC NC I/O I/O I/O
C5 NC NC I/O I/O I/O I/O
C6 NC NC I/O I/O I/O I/O
C7I/OI/OI/OI/OI/OI/O
C8I/OI/OI/OI/OI/OI/O
C9I/OI/OI/OI/OI/OI/O
C10I/OI/OI/OI/OI/OI/O
C11 I/O I/O I/O I/O I/O I/O
C12I/OI/OI/OI/OI/OI/O
C13I/OI/OI/OI/OI/OI/O
C14I/OI/OI/OI/OI/OI/O
C15I/OI/OI/OI/OI/OI/O
C16I/OI/OI/OI/OI/OI/O
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-25
C17I/OI/OI/OI/OI/OI/O
C18I/OI/OI/OI/OI/OI/O
C19I/OI/OI/OI/OI/OI/O
C20I/OI/OI/OI/OI/OI/O
C21 NC NC I/O I/O I/O I/O
C22 NC NC I/O I/O I/O I/O
C23 NC NC I/O I/O I/O I/O
C24 VDDP VDDP VDDP VDDP VDDP VDDP
C25NCNCNCI/O I/OI/O
C26NCNCNCI/O I/OI/O
D1 NC NC NC I/O I/O I/O
D2 NC NC NC I/O I/O I/O
D3 NC I/O I/O I/O I/O I/O
D4 VDDP VDDP VDDP VDDP VDDP VDDP
D5 NC NC I/O I/O I/O I/O
D6 NC NC I/O I/O I/O I/O
D7I/OI/OI/OI/OI/OI/O
D8I/OI/OI/OI/OI/OI/O
D9I/OI/OI/OI/OI/OI/O
D10 I/O I/O I/O I/O I/O I/O
D11 I/O I/O I/O I/O I/O I/O
D12 I/O I/O I/O I/O I/O I/O
D13 I/O I/O I/O I/O I/O I/O
D14 I/O I/O I/O I/O I/O I/O
D15 I/O I/O I/O I/O I/O I/O
D16 I/O I/O I/O I/O I/O I/O
D17 I/O I/O I/O I/O I/O I/O
D18 I/O I/O I/O I/O I/O I/O
D19 I/O I/O I/O I/O I/O I/O
D20 I/O I/O I/O I/O I/O I/O
D21 I/O I/O I/O I/O I/O I/O
D22 NC NC I/O I/O I/O I/O
D23 VDDP VDDP VDDP VDDP VDDP VDDP
D24 NC I/O I/O I/O I/O I/O
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-26 v5.9
D25NCNCNCI/O I/OI/O
D26NCNCNCI/O I/OI/O
E1NCI/OI/OI/OI/OI/O
E2NCI/OI/OI/OI/OI/O
E3NCI/OI/OI/OI/OI/O
E4NCI/OI/OI/OI/OI/O
E5 VDD VDD VDD VDD VDD VDD
E6 VDD VDD VDD VDD VDD VDD
E7 VDD VDD VDD VDD VDD VDD
E8 VDD VDD VDD VDD VDD VDD
E9I/OI/OI/OI/OI/OI/O
E10I/OI/OI/OI/OI/OI/O
E11I/OI/OI/OI/OI/OI/O
E12I/OI/OI/OI/OI/OI/O
E13I/OI/OI/OI/OI/OI/O
E14I/OI/OI/OI/OI/OI/O
E15I/OI/OI/OI/OI/OI/O
E16I/OI/OI/OI/OI/OI/O
E17I/OI/OI/OI/OI/OI/O
E18I/OI/OI/OI/OI/OI/O
E19I/OI/OI/OI/OI/OI/O
E20 VDD VDD VDD VDD VDD VDD
E21 VDD VDD VDD VDD VDD VDD
E22 VDD VDD VDD VDD VDD VDD
E23 NC I/O I/O I/O I/O I/O
E24 NC I/O I/O I/O I/O I/O
E25 NC I/O I/O I/O I/O I/O
E26 NC I/O I/O I/O I/O I/O
F1NCI/OI/OI/OI/OI/O
F2NCI/OI/OI/OI/OI/O
F3NCI/OI/OI/OI/OI/O
F4NCI/OI/OI/OI/OI/O
F5 VDD VDD VDD VDD VDD VDD
F22 VDD VDD VDD VDD VDD VDD
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-27
F23 NC I/O I/O I/O I/O I/O
F24 NC I/O I/O I/O I/O I/O
F25 NC I/O I/O I/O I/O I/O
F26 NC I/O I/O I/O I/O I/O
G1 I/O I/O I/O I/O I/O I/O
G2 I/O I/O I/O I/O I/O I/O
G3 NC I/O I/O I/O I/O I/O
G4 NC I/O I/O I/O I/O I/O
G5 VDD VDD VDD VDD VDD VDD
G22 VDD VDD VDD VDD VDD VDD
G23 NC I/O I/O I/O I/O I/O
G24 NC I/O I/O I/O I/O I/O
G25 NC I/O I/O I/O I/O I/O
G26 I/O I/O I/O I/O I/O I/O
H1I/OI/OI/OI/OI/OI/O
H2I/OI/OI/OI/OI/OI/O
H3I/OI/OI/OI/OI/OI/O
H4I/OI/OI/OI/OI/OI/O
H5 VDD VDD VDD VDD VDD VDD
H22 VDD VDD VDD VDD VDD VDD
H23 I/O I/O I/O I/O I/O I/O
H24 I/O I/O I/O I/O I/O I/O
H25 I/O I/O I/O I/O I/O I/O
H26 I/O I/O I/O I/O I/O I/O
J1 I/OI/OI/OI/OI/OI/O
J2 I/OI/OI/OI/OI/OI/O
J3 I/OI/OI/OI/OI/OI/O
J4 I/OI/OI/OI/OI/OI/O
J5 I/OI/OI/OI/OI/OI/O
J22 I/O I/O I/O I/O I/O I/O
J23 I/O I/O I/O I/O I/O I/O
J24 I/O I/O I/O I/O I/O I/O
J25 I/O I/O I/O I/O I/O I/O
J26 I/O I/O I/O I/O I/O I/O
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-28 v5.9
K1I/OI/OI/OI/OI/OI/O
K2I/OI/OI/OI/OI/OI/O
K3I/OI/OI/OI/OI/OI/O
K4I/OI/OI/OI/OI/OI/O
K5I/OI/OI/OI/OI/OI/O
K22 I/O I/O I/O I/O I/O I/O
K23 I/O I/O I/O I/O I/O I/O
K24 I/O I/O I/O I/O I/O I/O
K25 I/O I/O I/O I/O I/O I/O
K26 I/O I/O I/O I/O I/O I/O
L1 I/OI/OI/OI/OI/OI/O
L2 I/OI/OI/OI/OI/OI/O
L3 I/OI/OI/OI/OI/OI/O
L4 I/OI/OI/OI/OI/OI/O
L5 I/OI/OI/OI/OI/OI/O
L11 GND GND GND GND GND GND
L12 GND GND GND GND GND GND
L13 GND GND GND GND GND GND
L14 GND GND GND GND GND GND
L15 GND GND GND GND GND GND
L16 GND GND GND GND GND GND
L22I/OI/OI/OI/OI/OI/O
L23 I/O I/O I/O I/O I/O I/O
L24 I/O I/O I/O I/O I/O I/O
L25 I/O I/O I/O I/O I/O I/O
L26 I/O I/O I/O I/O I/O I/O
M1 I/O / GL1 I/O / GL1 I/O / GL1 I/O / GL1 I/O / GL1 I/O / GL1
M2 I/O / GL2 I/O / GL2 I/O / GL2 I/O / GL2 I/O / GL2 I/O / GL2
M3I/OI/OI/OI/OI/OI/O
M4I/OI/OI/OI/OI/OI/O
M5I/OI/OI/OI/OI/OI/O
M11 GND GND GND GND GND GND
M12 GND GND GND GND GND GND
M13 GND GND GND GND GND GND
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-29
M14 GND GND GND GND GND GND
M15 GND GND GND GND GND GND
M16 GND GND GND GND GND GND
M22 I/O / GL4 I/O / GL4 I/O / GL4 I/O / GL4 I/O / GL4 I/O / GL4
M23I/OI/OI/OI/OI/OI/O
M24I/OI/OI/OI/OI/OI/O
M25I/OI/OI/OI/OI/OI/O
M26I/OI/OI/OI/OI/OI/O
N1I/OI/OI/OI/OI/OI/O
N2 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1
N3 AGND AGND AGND AGND AGND AGND
N4 PPECL1 / Input PPECL1 / Input PPECL1 / Input PPECL1 / Input PPECL1 / Input PPECL1 / Input
N5 AVDD AVDD AVDD AVDD AVDD AVDD
N11 GND GND GND GND GND GND
N12 GND GND GND GND GND GND
N13 GND GND GND GND GND GND
N14 GND GND GND GND GND GND
N15 GND GND GND GND GND GND
N16 GND GND GND GND GND GND
N22 NPECL2 NPECL2 NPECL2 NPECL2 NPECL2 NPECL2
N23 I/O / GL3 I/O / GL3 I/O / GL3 I/O / GL3 I/O / GL3 I/O / GL3
N24 AVDDAVDDAVDDAVDDAVDDAVDD
N25 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2
N26 AGND AGND AGND AGND AGND AGND
P1I/OI/OI/OI/OI/OI/O
P2I/OI/OI/OI/OI/OI/O
P3I/OI/OI/OI/OI/OI/O
P4I/OI/OI/OI/OI/OI/O
P5 NPECL1 NPECL1 NPECL1 NPECL1 NPECL1 NPECL1
P11 GND GND GND GND GND GND
P12 GND GND GND GND GND GND
P13 GND GND GND GND GND GND
P14 GND GND GND GND GND GND
P15 GND GND GND GND GND GND
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-30 v5.9
P16 GND GND GND GND GND GND
P22I/OI/OI/OI/OI/OI/O
P23I/OI/OI/OI/OI/OI/O
P24I/OI/OI/OI/OI/OI/O
P25I/OI/OI/OI/OI/OI/O
P26 PPECL2 / Input PPECL2 / Input PPECL2 / Input PPECL2 / Input PPECL2 / Input PPECL2 / Input
R1I/OI/OI/OI/OI/OI/O
R2I/OI/OI/OI/OI/OI/O
R3I/OI/OI/OI/OI/OI/O
R4I/OI/OI/OI/OI/OI/O
R5I/OI/OI/OI/OI/OI/O
R11 GND GND GND GND GND GND
R12 GND GND GND GND GND GND
R13 GND GND GND GND GND GND
R14 GND GND GND GND GND GND
R15 GND GND GND GND GND GND
R16 GND GND GND GND GND GND
R22I/OI/OI/OI/OI/OI/O
R23 I/O I/O I/O I/O I/O I/O
R24 I/O I/O I/O I/O I/O I/O
R25 I/O I/O I/O I/O I/O I/O
R26 I/O I/O I/O I/O I/O I/O
T1I/OI/OI/OI/OI/OI/O
T2I/OI/OI/OI/OI/OI/O
T3I/OI/OI/OI/OI/OI/O
T4I/OI/OI/OI/OI/OI/O
T5I/OI/OI/OI/OI/OI/O
T11 GND GND GND GND GND GND
T12 GND GND GND GND GND GND
T13 GND GND GND GND GND GND
T14 GND GND GND GND GND GND
T15 GND GND GND GND GND GND
T16 GND GND GND GND GND GND
T22I/OI/OI/OI/OI/OI/O
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-31
T23I/OI/OI/OI/OI/OI/O
T24I/OI/OI/OI/OI/OI/O
T25I/OI/OI/OI/OI/OI/O
T26I/OI/OI/OI/OI/OI/O
U1I/OI/OI/OI/OI/OI/O
U2I/OI/OI/OI/OI/OI/O
U3I/OI/OI/OI/OI/OI/O
U4I/OI/OI/OI/OI/OI/O
U5I/OI/OI/OI/OI/OI/O
U22 I/O I/O I/O I/O I/O I/O
U23 I/O I/O I/O I/O I/O I/O
U24 I/O I/O I/O I/O I/O I/O
U25 I/O I/O I/O I/O I/O I/O
U26 I/O I/O I/O I/O I/O I/O
V1I/OI/OI/OI/OI/OI/O
V2I/OI/OI/OI/OI/OI/O
V3I/OI/OI/OI/OI/OI/O
V4I/OI/OI/OI/OI/OI/O
V5I/OI/OI/OI/OI/OI/O
V22 I/O I/O I/O I/O I/O I/O
V23 I/O I/O I/O I/O I/O I/O
V24 I/O I/O I/O I/O I/O I/O
V25 I/O I/O I/O I/O I/O I/O
V26 I/O I/O I/O I/O I/O I/O
W1I/OI/OI/OI/OI/OI/O
W2I/OI/OI/OI/OI/OI/O
W3I/OI/OI/OI/OI/OI/O
W4I/OI/OI/OI/OI/OI/O
W5 VDD VDD VDD VDD VDD VDD
W22 VDD VDD VDD VDD VDD VDD
W23 I/O I/O I/O I/O I/O I/O
W24 I/O I/O I/O I/O I/O I/O
W25 I/O I/O I/O I/O I/O I/O
W26 I/O I/O I/O I/O I/O I/O
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-32 v5.9
Y1I/OI/OI/OI/OI/OI/O
Y2I/OI/OI/OI/OI/OI/O
Y3I/OI/OI/OI/OI/OI/O
Y4NCI/OI/OI/OI/OI/O
Y5 VDD VDD VDD VDD VDD VDD
Y22 VDD VDD VDD VDD VDD VDD
Y23 NC I/O I/O I/O I/O I/O
Y24 NC I/O I/O I/O I/O I/O
Y25 NC I/O I/O I/O I/O I/O
Y26 NC I/O I/O I/O I/O I/O
AA1I/OI/OI/OI/OI/OI/O
AA2 NC I/O I/O I/O I/O I/O
AA3 NC I/O I/O I/O I/O I/O
AA4 NC I/O I/O I/O I/O I/O
AA5 VDD VDD VDD VDD VDD VDD
AA22 VDD VDD VDD VDD VDD VDD
AA23 NC I/O I/O I/O I/O I/O
AA24 NC I/O I/O I/O I/O I/O
AA25 NC I/O I/O I/O I/O I/O
AA26 NC I/O I/O I/O I/O I/O
AB1 NC I/O I/O I/O I/O I/O
AB2 NC I/O I/O I/O I/O I/O
AB3 NC I/O I/O I/O I/O I/O
AB4 NC I/O I/O I/O I/O I/O
AB5 VDD VDD VDD VDD VDD VDD
AB6 VDD VDD VDD VDD VDD VDD
AB7 VDD VDD VDD VDD VDD VDD
AB8I/OI/OI/OI/OI/OI/O
AB9I/OI/OI/OI/OI/OI/O
AB10I/OI/OI/OI/OI/OI/O
AB11I/OI/OI/OI/OI/OI/O
AB12I/OI/OI/OI/OI/OI/O
AB13I/OI/OI/OI/OI/OI/O
AB14I/OI/OI/OI/OI/OI/O
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-33
AB15I/OI/OI/OI/OI/OI/O
AB16I/OI/OI/OI/OI/OI/O
AB17I/OI/OI/OI/OI/OI/O
AB18I/OI/OI/OI/OI/OI/O
AB19I/OI/OI/OI/OI/OI/O
AB20 VDD VDD VDD VDD VDD VDD
AB21 VDD VDD VDD VDD VDD VDD
AB22 VDD VDD VDD VDD VDD VDD
AB23 NC I/O I/O I/O I/O I/O
AB24 NC I/O I/O I/O I/O I/O
AB25 NC I/O I/O I/O I/O I/O
AB26 NC NC NC I/O I/O I/O
AC1 NC I/O I/O I/O I/O I/O
AC2 NC I/O I/O I/O I/O I/O
AC3 NC I/O I/O I/O I/O I/O
AC4 VDDP VDDP VDDP VDDP VDDP VDDP
AC5 NC NC I/O I/O I/O I/O
AC6I/OI/OI/OI/OI/OI/O
AC7I/OI/OI/OI/OI/OI/O
AC8I/OI/OI/OI/OI/OI/O
AC9I/OI/OI/OI/OI/OI/O
AC10 I/O I/O I/O I/O I/O I/O
AC11 I/O I/O I/O I/O I/O I/O
AC12 I/O I/O I/O I/O I/O I/O
AC13 I/O I/O I/O I/O I/O I/O
AC14 I/O I/O I/O I/O I/O I/O
AC15 I/O I/O I/O I/O I/O I/O
AC16 I/O I/O I/O I/O I/O I/O
AC17 I/O I/O I/O I/O I/O I/O
AC18 I/O I/O I/O I/O I/O I/O
AC19 I/O I/O I/O I/O I/O I/O
AC20 I/O I/O I/O I/O I/O I/O
AC21 TMS TMS TMS TMS TMS TMS
AC22 TDO TDO TDO TDO TDO TDO
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-34 v5.9
AC23 VDDP VDDP VDDP VDDP VDDP VDDP
AC24 RCK RCK RCK RCK RCK RCK
AC25 NC NC I/O I/O I/O I/O
AC26 NC I/O I/O I/O I/O I/O
AD1 NC NC NC I/O I/O I/O
AD2 NC I/O I/O I/O I/O I/O
AD3 VDDP VDDP VDDP VDDP VDDP VDDP
AD4 NC NC I/O I/O I/O I/O
AD5 NC NC I/O I/O I/O I/O
AD6 NC NC I/O I/O I/O I/O
AD7I/OI/OI/OI/OI/OI/O
AD8I/OI/OI/OI/OI/OI/O
AD9I/OI/OI/OI/OI/OI/O
AD10 I/O I/O I/O I/O I/O I/O
AD11 I/O I/O I/O I/O I/O I/O
AD12 I/O I/O I/O I/O I/O I/O
AD13 I/O I/O I/O I/O I/O I/O
AD14 I/O I/O I/O I/O I/O I/O
AD15 I/O I/O I/O I/O I/O I/O
AD16 I/O I/O I/O I/O I/O I/O
AD17 I/O I/O I/O I/O I/O I/O
AD18 I/O I/O I/O I/O I/O I/O
AD19 I/O I/O I/O I/O I/O I/O
AD20 NC NC I/O I/O I/O I/O
AD21 TCK TCK TCK TCK TCK TCK
AD22 VPP VPP VPP VPP VPP VPP
AD23NCNCNCI/OI/O I/O
AD24 VDDP VDDP VDDP VDDP VDDP VDDP
AD25 NC NC I/O I/O I/O I/O
AD26 NC NC I/O I/O I/O I/O
AE1 VDDP VDDP VDDP VDDP VDDP VDDP
AE2 VDDP VDDP VDDP VDDP VDDP VDDP
AE3 NC NC I/O I/O I/O I/O
AE4 NC NC I/O I/O I/O I/O
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-35
AE5 NC NC I/O I/O I/O I/O
AE6 NC NC I/O I/O I/O I/O
AE7 NC NC I/O I/O I/O I/O
AE8 I/O I/O I/O I/O I/O I/O
AE9 I/O I/O I/O I/O I/O I/O
AE10I/OI/OI/OI/OI/OI/O
AE11I/OI/OI/OI/OI/OI/O
AE12I/OI/OI/OI/OI/OI/O
AE13I/OI/OI/OI/OI/OI/O
AE14I/OI/OI/OI/OI/OI/O
AE15I/OI/OI/OI/OI/OI/O
AE16I/OI/OI/OI/OI/OI/O
AE17I/OI/OI/OI/OI/OI/O
AE18I/OI/OI/OI/OI/OI/O
AE19I/OI/OI/OI/OI/OI/O
AE20 NC NC I/O I/O I/O I/O
AE21 NC NC I/O I/O I/O I/O
AE22 NC NC I/O I/O I/O I/O
AE23 VPN VPN VPN VPN VPN VPN
AE24 TRST TRST TRST TRST TRST TRST
AE25 VDDP VDDP VDDP VDDP VDDP VDDP
AE26 VDDP VDDP VDDP VDDP VDDP VDDP
AF1 VDDP VDDP VDDP VDDP VDDP VDDP
AF2 VDDP VDDP VDDP VDDP VDDP VDDP
AF3 NC NC I/O I/O I/O I/O
AF4 NC NC I/O I/O I/O I/O
AF5 NC NC I/O I/O I/O I/O
AF6 NC NC I/O I/O I/O I/O
AF7 NC NC I/O I/O I/O I/O
AF8NCNCNCI/O I/OI/O
AF9I/OI/OI/OI/OI/OI/O
AF10I/OI/OI/OI/OI/OI/O
AF11I/OI/OI/OI/OI/OI/O
AF12I/OI/OI/OI/OI/OI/O
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-36 v5.9
AF13I/OI/OI/OI/OI/OI/O
AF14I/OI/OI/OI/OI/OI/O
AF15I/OI/OI/OI/OI/OI/O
AF16I/OI/OI/OI/OI/OI/O
AF17I/OI/OI/OI/OI/OI/O
AF18 NC NC I/O I/O I/O I/O
AF19 NC NC I/O I/O I/O I/O
AF20 NC NC I/O I/O I/O I/O
AF21 NC NC I/O I/O I/O I/O
AF22 NC NC I/O I/O I/O I/O
AF23 TDI TDI TDI TDI TDI TDI
AF24 NC NC I/O I/O I/O I/O
AF25 VDDP VDDP VDDP VDDP VDDP VDDP
AF26 VDDP VDDP VDDP VDDP VDDP VDDP
456-Pin PBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-37
144-Pin FBGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
1
2
34567
89
101112
A
B
C
D
E
F
G
H
J
K
L
M
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
3-38 v5.9
144-FBGA Pin
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
A1 I/O I/O I/O I/O
A2 I/O I/O I/O I/O
A3 I/O I/O I/O I/O
A4 I/O I/O I/O I/O
A5 I/O I/O I/O I/O
A6 GND GND GND GND
A7 I/O I/O I/O I/O
A8 VDD VDD VDD VDD
A9 I/O I/O I/O I/O
A10 I/O I/O I/O I/O
A11 I/O I/O I/O I/O
A12 I/O I/O I/O I/O
B1 I/O I/O I/O I/O
B2GNDGNDGNDGND
B3 I/O I/O I/O I/O
B4 I/O I/O I/O I/O
B5 I/O I/O I/O I/O
B6 I/O I/O I/O I/O
B7 I/O I/O I/O I/O
B8 I/O I/O I/O I/O
B9 I/O I/O I/O I/O
B10 I/O I/O I/O I/O
B11GNDGNDGNDGND
B12 I/O I/O I/O I/O
C1 I/O I/O I/O I/O
C2 I/O / GL1 I/O / GL1 I/O / GL1 I/O / GL1
C3 I/O I/O I/O I/O
C4 VDD VDD VDD VDD
C5 I/O I/O I/O I/O
C6 I/O I/O I/O I/O
C7 I/O I/O I/O I/O
C8 I/O I/O I/O I/O
C9 I/O I/O I/O I/O
C10 I/O I/O I/O I/O
C11 I/O I/O I/O I/O
C12 I/O I/O I/O I/O
D1 I/O I/O I/O I/O
D2 I/O I/O I/O I/O
D3 I/O I/O I/O I/O
D4 I/O I/O I/O I/O
D5 I/O I/O I/O I/O
D6 I/O I/O I/O I/O
D7 I/O I/O I/O I/O
D8 I/O I/O I/O I/O
D9 I/O I/O I/O I/O
D10 I/O I/O I/O I/O
D11 I/O I/O I/O I/O
D12 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2
E1 VDD VDD VDD VDD
E2 I/O I/O I/O I/O
E3 I/O I/O I/O I/O
E4 VDDP VDDP VDDP VDDP
E5 I/O I/O I/O I/O
E6 VDDP VDDP VDDP VDDP
E7 VDDP VDDP VDDP VDDP
E8 AVDD AVDD AVDD AVDD
E9 VDDP VDDP VDDP VDDP
E10 VDD VDD VDD VDD
E11 NPECL2 NPECL2 NPECL2 NPECL2
E12 AGND AGND AGND AGND
F1 I/O / GL2 I/O / GL2 I/O / GL2 I/O / GL2
F2 AGND AGND AGND AGND
F3 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1
F4 I/O I/O I/O I/O
F5 GND GND GND GND
F6 GND GND GND GND
F7 GND GND GND GND
F8 I/O I/O I/O I/O
F9 I/O / GL4 I/O / GL4 I/O / GL4 I/O / GL4
F10 GND GND GND GND
F11 PPECL2 /
Input
PPECL2 /
Input
PPECL2 /
Input
PPECL2 /
Input
F12 I/O / GL3 I/O / GL3 I/O / GL3 I/O / GL3
144-FBGA Pin
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-39
G1 PPECL1 /
Input
PPECL1 /
Input
PPECL1 /
Input
PPECL1 /
Input
G2 GND GND GND GND
G3 AVDD AVDD AVDD AVDD
G4 NPECL1 NPECL1 NPECL1 NPECL1
G5 GND GND GND GND
G6 GND GND GND GND
G7 GND GND GND GND
G8 I/O I/O I/O I/O
G9 I/O I/O I/O I/O
G10 I/O I/O I/O I/O
G11 I/O I/O I/O I/O
G12 I/O I/O I/O I/O
H1 VDD VDD VDD VDD
H2 I/O I/O I/O I/O
H3 I/O I/O I/O I/O
H4 I/O I/O I/O I/O
H5 VDD VDD VDD VDD
H6 I/O I/O I/O I/O
H7 I/O I/O I/O I/O
H8 I/O I/O I/O I/O
H9 I/O I/O I/O I/O
H10 VDDP VDDP VDDP VDDP
H11 I/O I/O I/O I/O
H12 VDD VDD VDD VDD
J1 I/O I/O I/O I/O
J2 I/O I/O I/O I/O
J3 VDDP VDDP VDDP VDDP
J4 I/O I/O I/O I/O
J5 I/O I/O I/O I/O
J6 I/O I/O I/O I/O
J7 VDD VDD VDD VDD
J8 TCK TCK TCK TCK
J9 I/O I/O I/O I/O
J10 TDO TDO TDO TDO
J11 I/O I/O I/O I/O
J12 I/O I/O I/O I/O
144-FBGA Pin
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
K1 I/O I/O I/O I/O
K2 I/O I/O I/O I/O
K3 I/O I/O I/O I/O
K4 I/O I/O I/O I/O
K5 I/O I/O I/O I/O
K6 I/O I/O I/O I/O
K7 GND GND GND GND
K8 I/O I/O I/O I/O
K9 I/O I/O I/O I/O
K10 GND GND GND GND
K11 I/O I/O I/O I/O
K12 I/O I/O I/O I/O
L1 GND GND GND GND
L2 I/O I/O I/O I/O
L3 I/O I/O I/O I/O
L4 I/O I/O I/O I/O
L5 VDDP VDDP VDDP VDDP
L6 I/O I/O I/O I/O
L7 I/O I/O I/O I/O
L8 I/O I/O I/O I/O
L9TMSTMSTMSTMS
L10 RCK RCK RCK RCK
L11 I/O I/O I/O I/O
L12 TRST TRST TRST TRST
M1 I/O I/O I/O I/O
M2 I/O I/O I/O I/O
M3 I/O I/O I/O I/O
M4 I/O I/O I/O I/O
M5 I/O I/O I/O I/O
M6 I/O I/O I/O I/O
M7 I/O I/O I/O I/O
M8 I/O I/O I/O I/O
M9 TDI TDI TDI TDI
M10 VDDP VDDP VDDP VDDP
M11 VPP VPP VPP VPP
M12 VPN VPN VPN VPN
144-FBGA Pin
Pin
Number
APA075
Function
APA150
Function
APA300
Function
APA450
Function
ProASICPLUS Flash Family FPGAs
3-40 v5.9
256-Pin FBGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
A1 Ball Pad Corner
1
3
5
791113
15 246
8
101214
16
C
E
G
J
L
N
R
D
F
H
K
M
P
T
B
A
ProASICPLUS Flash Family FPGAs
v5.9 3-41
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
A1 GND GND GND GND
A2 I/O I/O I/O I/O
A3 I/O I/O I/O I/O
A4 I/O I/O I/O I/O
A5 I/O I/O I/O I/O
A6 I/O I/O I/O I/O
A7 I/O I/O I/O I/O
A8 I/O I/O I/O I/O
A9 I/O I/O I/O I/O
A10 I/O I/O I/O I/O
A11 I/O I/O I/O I/O
A12 I/O I/O I/O I/O
A13 I/O I/O I/O I/O
A14 I/O I/O I/O I/O
A15 I/O I/O I/O I/O
A16 GND GND GND GND
B1 I/O I/O I/O I/O
B2 I/O I/O I/O I/O
B3 I/O I/O I/O I/O
B4 I/O I/O I/O I/O
B5 I/O I/O I/O I/O
B6 I/O I/O I/O I/O
B7 I/O I/O I/O I/O
B8 I/O I/O I/O I/O
B9 I/O I/O I/O I/O
B10 I/O I/O I/O I/O
B11 I/O I/O I/O I/O
B12 I/O I/O I/O I/O
B13 I/O I/O I/O I/O
B14 I/O I/O I/O I/O
B15 I/O I/O I/O I/O
B16 I/O I/O I/O I/O
C1 I/O I/O I/O I/O
C2 I/O I/O I/O I/O
C3 I/O I/O I/O I/O
C4 I/O I/O I/O I/O
C5 I/O I/O I/O I/O
C6 I/O I/O I/O I/O
C7 I/O I/O I/O I/O
C8 I/O I/O I/O I/O
C9 I/O I/O I/O I/O
C10 I/O I/O I/O I/O
C11 I/O I/O I/O I/O
C12 I/O I/O I/O I/O
C13 I/O I/O I/O I/O
C14 I/O I/O I/O I/O
C15 I/O I/O I/O I/O
C16 I/O I/O I/O I/O
D1 I/O I/O I/O I/O
D2 I/O I/O I/O I/O
D3 I/O I/O I/O I/O
D4 I/O I/O I/O I/O
D5 I/O I/O I/O I/O
D6 I/O I/O I/O I/O
D7 I/O I/O I/O I/O
D8 I/O I/O I/O I/O
D9 I/O I/O I/O I/O
D10 I/O I/O I/O I/O
D11 I/O I/O I/O I/O
D12 I/O I/O I/O I/O
D13 I/O I/O I/O I/O
D14 I/O I/O I/O I/O
D15 I/O I/O I/O I/O
D16 I/O I/O I/O I/O
E1 I/O I/O I/O I/O
E2 I/O I/O I/O I/O
E3 I/O I/O I/O I/O
E4 I/O I/O I/O I/O
E5 I/O I/O I/O I/O
E6 VDDP VDDP VDDP VDDP
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
ProASICPLUS Flash Family FPGAs
3-42 v5.9
E7 VDDP VDDP VDDP VDDP
E8 I/O I/O I/O I/O
E9 I/O I/O I/O I/O
E10 VDDP VDDP VDDP VDDP
E11 VDDP VDDP VDDP VDDP
E12 I/O I/O I/O I/O
E13 I/O I/O I/O I/O
E14 I/O I/O I/O I/O
E15 I/O I/O I/O I/O
E16 I/O I/O I/O I/O
F1 I/O I/O I/O I/O
F2 I/O I/O I/O I/O
F3 I/O I/O I/O I/O
F4 I/O I/O I/O I/O
F5 VDDP VDDP VDDP VDDP
F6 GND GND GND GND
F7 VDD VDD VDD VDD
F8 VDD VDD VDD VDD
F9 VDD VDD VDD VDD
F10 VDD VDD VDD VDD
F11 GND GND GND GND
F12 VDDP VDDP VDDP VDDP
F13 I/O I/O I/O I/O
F14 I/O I/O I/O I/O
F15 I/O I/O I/O I/O
F16 I/O I/O I/O I/O
G1 I/O I/O I/O I/O
G2 I/O I/O I/O I/O
G3 I/O I/O I/O I/O
G4 I/O I/O I/O I/O
G5 VDDP VDDP VDDP VDDP
G6 VDD VDD VDD VDD
G7 GND GND GND GND
G8 GND GND GND GND
G9 GND GND GND GND
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
G10 GND GND GND GND
G11 VDD VDD VDD VDD
G12 VDDP VDDP VDDP VDDP
G13 I/O I/O I/O I/O
G14 I/O I/O I/O I/O
G15 I/O I/O I/O I/O
G16 I/O I/O I/O I/O
H1 I/O / GL1 I/O / GL1 I/O / GL1 I/O / GL1
H2 NPECL1 NPECL1 NPECL1 NPECL1
H3 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1 I/O / GLMX1
H4 AGND AGND AGND AGND
H5 I/O I/O I/O I/O
H6 VDD VDD VDD VDD
H7 GND GND GND GND
H8 GND GND GND GND
H9 GND GND GND GND
H10 GND GND GND GND
H11 VDD VDD VDD VDD
H12 I/O I/O I/O I/O
H13 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2 I/O / GLMX2
H14 NPECL2 NPECL2 NPECL2 NPECL2
H15 AGND AGND AGND AGND
H16 I/O / GL4 I/O / GL4 I/O / GL4 I/O / GL4
J1 I/O / GL2 I/O / GL2 I/O / GL2 I/O / GL2
J2 PPECL1 /
Input
PPECL1 /
Input
PPECL1 /
Input
PPECL1 /
Input
J3 AVDD AVDD AVDD AVDD
J4 I/O I/O I/O I/O
J5 I/O I/O I/O I/O
J6 VDD VDD VDD VDD
J7 GND GND GND GND
J8 GND GND GND GND
J9 GND GND GND GND
J10 GND GND GND GND
J11 VDD VDD VDD VDD
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-43
J12 I/O I/O I/O I/O
J13 PPECL2 /
Input
PPECL2 /
Input
PPECL2 /
Input
PPECL2 /
Input
J14 I/O I/O I/O I/O
J15 AVDD AVDD AVDD AVDD
J16 I/O / GL3 I/O / GL3 I/O / GL3 I/O / GL3
K1 I/O I/O I/O I/O
K2 I/O I/O I/O I/O
K3 I/O I/O I/O I/O
K4 I/O I/O I/O I/O
K5 VDDP VDDP VDDP VDDP
K6 VDD VDD VDD VDD
K7 GND GND GND GND
K8 GND GND GND GND
K9 GND GND GND GND
K10 GND GND GND GND
K11 VDD VDD VDD VDD
K12 VDDP VDDP VDDP VDDP
K13 I/O I/O I/O I/O
K14 I/O I/O I/O I/O
K15 I/O I/O I/O I/O
K16 I/O I/O I/O I/O
L1 I/O I/O I/O I/O
L2 I/O I/O I/O I/O
L3 I/O I/O I/O I/O
L4 I/O I/O I/O I/O
L5 VDDP VDDP VDDP VDDP
L6 GND GND GND GND
L7 VDD VDD VDD VDD
L8 VDD VDD VDD VDD
L9 VDD VDD VDD VDD
L10 VDD VDD VDD VDD
L11 GND GND GND GND
L12 VDDP VDDP VDDP VDDP
L13 I/O I/O I/O I/O
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
L14 I/O I/O I/O I/O
L15 I/O I/O I/O I/O
L16 I/O I/O I/O I/O
M1 I/O I/O I/O I/O
M2 I/O I/O I/O I/O
M3 I/O I/O I/O I/O
M4 I/O I/O I/O I/O
M5 I/O I/O I/O I/O
M6 VDDP VDDP VDDP VDDP
M7 VDDP VDDP VDDP VDDP
M8 I/O I/O I/O I/O
M9 I/O I/O I/O I/O
M10 VDDP VDDP VDDP VDDP
M11 VDDP VDDP VDDP VDDP
M12 I/O I/O I/O I/O
M13 I/O I/O I/O I/O
M14 I/O I/O I/O I/O
M15 I/O I/O I/O I/O
M16 I/O I/O I/O I/O
N1 I/O I/O I/O I/O
N2 I/O I/O I/O I/O
N3 I/O I/O I/O I/O
N4 I/O I/O I/O I/O
N5 I/O I/O I/O I/O
N6 I/O I/O I/O I/O
N7 I/O I/O I/O I/O
N8 I/O I/O I/O I/O
N9 I/O I/O I/O I/O
N10 I/O I/O I/O I/O
N11 I/O I/O I/O I/O
N12 I/O I/O I/O I/O
N13 I/O I/O I/O I/O
N14 RCK RCK RCK RCK
N15 I/O I/O I/O I/O
N16 I/O I/O I/O I/O
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
ProASICPLUS Flash Family FPGAs
3-44 v5.9
P1 I/O I/O I/O I/O
P2 I/O I/O I/O I/O
P3 I/O I/O I/O I/O
P4 I/O I/O I/O I/O
P5 I/O I/O I/O I/O
P6 I/O I/O I/O I/O
P7 I/O I/O I/O I/O
P8 I/O I/O I/O I/O
P9 I/O I/O I/O I/O
P10 I/O I/O I/O I/O
P11 I/O I/O I/O I/O
P12 I/O I/O I/O I/O
P13 TCK TCK TCK TCK
P14 VPP VPP VPP VPP
P15 TRST TRST TRST TRST
P16 I/O I/O I/O I/O
R1 I/O I/O I/O I/O
R2 I/O I/O I/O I/O
R3 I/O I/O I/O I/O
R4 I/O I/O I/O I/O
R5 I/O I/O I/O I/O
R6 I/O I/O I/O I/O
R7 I/O I/O I/O I/O
R8 I/O I/O I/O I/O
R9 I/O I/O I/O I/O
R10 I/O I/O I/O I/O
R11 I/O I/O I/O I/O
R12 I/O I/O I/O I/O
R13 I/O I/O I/O I/O
R14 TDI TDI TDI TDI
R15 VPN VPN VPN VPN
R16 TDO TDO TDO TDO
T1 GND GND GND GND
T2 I/O I/O I/O I/O
T3 I/O I/O I/O I/O
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
T4 I/O I/O I/O I/O
T5 I/O I/O I/O I/O
T6 I/O I/O I/O I/O
T7 I/O I/O I/O I/O
T8 I/O I/O I/O I/O
T9 I/O I/O I/O I/O
T10 I/O I/O I/O I/O
T11 I/O I/O I/O I/O
T12 I/O I/O I/O I/O
T13 I/O I/O I/O I/O
T14 I/O I/O I/O I/O
T15 TMS TMS TMS TMS
T16 GND GND GND GND
256-Pin FBGA
Pin
Number
APA150
Function
APA300
Function
APA450
Function
APA600
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-45
484-Pin FBGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
1
3
5
791113
15 246
8
101214
22 19 18 17 16
C
E
G
J
L
N
R
D
F
H
K
M
P
AB
AA
Y
W
V
U
T
B
A
21 20
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
3-46 v5.9
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
A1 GND GND
A2 GND GND
A3 VDDP VDDP
A4 I/O I/O
A5 I/O I/O
A6 I/O I/O
A7 I/O I/O
A8 I/O I/O
A9 I/O I/O
A10 I/O I/O
A11 I/O I/O
A12 I/O I/O
A13 I/O I/O
A14 I/O I/O
A15 I/O I/O
A16 I/O I/O
A17 I/O I/O
A18 I/O I/O
A19 I/O I/O
A20 VDDP VDDP
A21 GND GND
A22 GND GND
B1 GND GND
B2 VDDP VDDP
B3 I/O I/O
B4 I/O I/O
B5 I/O I/O
B6 I/O I/O
B7 I/O I/O
B8 I/O I/O
B9 I/O I/O
B10 I/O I/O
B11 I/O I/O
B12 I/O I/O
B13 I/O I/O
B14 I/O I/O
B15 I/O I/O
B16 I/O I/O
B17 I/O I/O
B18 I/O I/O
B19 I/O I/O
B20 I/O I/O
B21 VDDP VDDP
B22 GND GND
C1 VDDP VDDP
C2 NC I/O
C3 I/O I/O
C4 I/O I/O
C5 GND GND
C6 I/O I/O
C7 I/O I/O
C8 VDD VDD
C9 VDD VDD
C10 I/O I/O
C11 I/O I/O
C12 NC I/O
C13 NC I/O
C14 VDD VDD
C15 VDD VDD
C16 NC I/O
C17 I/O I/O
C18 GND GND
C19 I/O I/O
C20 I/O I/O
C21 I/O I/O
C22 VDDP VDDP
D1 I/O I/O
D2 I/O I/O
D3 NC I/O
D4 GND GND
D5 I/O I/O
D6 I/O I/O
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
D7 I/O I/O
D8 I/O I/O
D9 I/O I/O
D10 I/O I/O
D11 I/O I/O
D12 I/O I/O
D13 I/O I/O
D14 I/O I/O
D15 I/O I/O
D16 I/O I/O
D17 I/O I/O
D18 I/O I/O
D19 GND GND
D20 I/O I/O
D21 I/O I/O
D22 I/O I/O
E1 I/O I/O
E2 NC I/O
E3 GND GND
E4 I/O I/O
E5 I/O I/O
E6 I/O I/O
E7 I/O I/O
E8 I/O I/O
E9 I/O I/O
E10 I/O I/O
E11 I/O I/O
E12 I/O I/O
E13 I/O I/O
E14 I/O I/O
E15 I/O I/O
E16 I/O I/O
E17 I/O I/O
E18 I/O I/O
E19 I/O I/O
E20 GND GND
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-47
E21 I/O I/O
E22 I/O I/O
F1 I/O I/O
F2 I/O I/O
F3 I/O I/O
F4 I/O I/O
F5 I/O I/O
F6 I/O I/O
F7 I/O I/O
F8 I/O I/O
F9 I/O I/O
F10 I/O I/O
F11 I/O I/O
F12 I/O I/O
F13 I/O I/O
F14 I/O I/O
F15 I/O I/O
F16 I/O I/O
F17 I/O I/O
F18 I/O I/O
F19 I/O I/O
F20 I/O I/O
F21 I/O I/O
F22 NC I/O
G1 I/O I/O
G2 I/O I/O
G3 NC I/O
G4 I/O I/O
G5 I/O I/O
G6 I/O I/O
G7 I/O I/O
G8 I/O I/O
G9 I/O I/O
G10 I/O I/O
G11 I/O I/O
G12 I/O I/O
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
G13 I/O I/O
G14 I/O I/O
G15 I/O I/O
G16 I/O I/O
G17 I/O I/O
G18 I/O I/O
G19 I/O I/O
G20 I/O I/O
G21 I/O I/O
G22 I/O I/O
H1 I/O I/O
H2 I/O I/O
H3 VDD VDD
H4 I/O I/O
H5 I/O I/O
H6 I/O I/O
H7 I/O I/O
H8 I/O I/O
H9 VDDP VDDP
H10 VDDP VDDP
H11 I/O I/O
H12 I/O I/O
H13 VDDP VDDP
H14 VDDP VDDP
H15 I/O I/O
H16 I/O I/O
H17 I/O I/O
H18 I/O I/O
H19 I/O I/O
H20 VDD VDD
H21 I/O I/O
H22 I/O I/O
J1 I/O I/O
J2 I/O I/O
J3 NC I/O
J4 I/O I/O
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
J5 I/O I/O
J6 I/O I/O
J7 I/O I/O
J8 VDDP VDDP
J9 GND GND
J10 VDD VDD
J11 VDD VDD
J12 VDD VDD
J13 VDD VDD
J14 GND GND
J15 VDDP VDDP
J16 I/O I/O
J17 I/O I/O
J18 I/O I/O
J19 I/O I/O
J20 NC I/O
J21 I/O I/O
J22 I/O I/O
K1 I/O I/O
K2 I/O I/O
K3 NC I/O
K4 I/O I/O
K5 I/O I/O
K6 I/O I/O
K7 I/O I/O
K8 VDDP VDDP
K9 VDD VDD
K10 GND GND
K11 GND GND
K12 GND GND
K13 GND GND
K14 VDD VDD
K15 VDDP VDDP
K16 I/O I/O
K17 I/O I/O
K18 I/O I/O
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
ProASICPLUS Flash Family FPGAs
3-48 v5.9
K19 I/O I/O
K20 I/O I/O
K21 I/O I/O
K22 I/O I/O
L1 NC I/O
L2 I/O I/O
L3 I/O I/O
L4 I/O / GL1 I/O / GL1
L5 NPECL1 NPECL1
L6 I/O / GLMX1 I/O / GLMX1
L7 AGND AGND
L8 I/O I/O
L9 VDD VDD
L10 GND GND
L11 GND GND
L12 GND GND
L13 GND GND
L14 VDD VDD
L15 I/O I/O
L16 I/O / GLMX2 I/O / GLMX2
L17 NPECL2 NPECL2
L18 AGND AGND
L19 I/O / GL4 I/O / GL4
L20 I/O I/O
L21 I/O I/O
L22 I/O I/O
M1 I/O I/O
M2 I/O I/O
M3 I/O I/O
M4 I/O / GL2 I/O / GL2
M5 PPECL1 /
Input
PPECL1 /
Input
M6 AVDD AVDD
M7 I/O I/O
M8 I/O I/O
M9 VDD VDD
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
M10 GND GND
M11 GND GND
M12 GND GND
M13 GND GND
M14 VDD VDD
M15 I/O I/O
M16 PPECL2 /
Input
PPECL2 /
Input
M17 I/O I/O
M18 AVDD AVDD
M19 I/O / GL3 I/O / GL3
M20 I/O I/O
M21 I/O I/O
M22 I/O I/O
N1 I/O I/O
N2 I/O I/O
N3 NC I/O
N4 I/O I/O
N5 I/O I/O
N6 I/O I/O
N7 I/O I/O
N8 VDDP VDDP
N9 VDD VDD
N10 GND GND
N11 GND GND
N12 GND GND
N13 GND GND
N14 VDD VDD
N15 VDDP VDDP
N16 I/O I/O
N17 I/O I/O
N18 I/O I/O
N19 I/O I/O
N20 NC I/O
N21 I/O I/O
N22 I/O I/O
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
P1 I/O I/O
P2 I/O I/O
P3 I/O I/O
P4 I/O I/O
P5 I/O I/O
P6 I/O I/O
P7 I/O I/O
P8 VDDP VDDP
P9 GND GND
P10 VDD VDD
P11 VDD VDD
P12 VDD VDD
P13 VDD VDD
P14 GND GND
P15 VDDP VDDP
P16 I/O I/O
P17 I/O I/O
P18 I/O I/O
P19 I/O I/O
P20 NC I/O
P21 I/O I/O
P22 I/O I/O
R1 I/O I/O
R2 I/O I/O
R3 VDD VDD
R4 I/O I/O
R5 I/O I/O
R6 I/O I/O
R7 I/O I/O
R8 I/O I/O
R9 VDDP VDDP
R10 VDDP VDDP
R11 I/O I/O
R12 I/O I/O
R13 VDDP VDDP
R14 VDDP VDDP
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-49
R15 I/O I/O
R16 I/O I/O
R17 I/O I/O
R18 I/O I/O
R19 I/O I/O
R20 VDD VDD
R21 I/O I/O
R22 I/O I/O
T1 I/O I/O
T2 I/O I/O
T3 NC I/O
T4 I/O I/O
T5 I/O I/O
T6 I/O I/O
T7 I/O I/O
T8 I/O I/O
T9 I/O I/O
T10 I/O I/O
T11 I/O I/O
T12 I/O I/O
T13 I/O I/O
T14 I/O I/O
T15 I/O I/O
T16 I/O I/O
T17 RCK RCK
T18 I/O I/O
T19 I/O I/O
T20 NC I/O
T21 I/O I/O
T22 I/O I/O
U1 I/O I/O
U2 I/O I/O
U3 I/O I/O
U4 I/O I/O
U5 I/O I/O
U6 I/O I/O
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
U7 I/O I/O
U8 I/O I/O
U9 I/O I/O
U10 I/O I/O
U11 I/O I/O
U12 I/O I/O
U13 I/O I/O
U14 I/O I/O
U15 I/O I/O
U16 TCK TCK
U17 VPP VPP
U18 TRST TRST
U19 I/O I/O
U20 NC I/O
U21 I/O I/O
U22 I/O I/O
V1 I/O I/O
V2 I/O I/O
V3 GND GND
V4 I/O I/O
V5 I/O I/O
V6 I/O I/O
V7 I/O I/O
V8 I/O I/O
V9 I/O I/O
V10 I/O I/O
V11 I/O I/O
V12 I/O I/O
V13 I/O I/O
V14 I/O I/O
V15 I/O I/O
V16 I/O I/O
V17 TDI TDI
V18 VPN VPN
V19 TDO TDO
V20 GND GND
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
V21 NC I/O
V22 I/O I/O
W1 NC I/O
W2 I/O I/O
W3 I/O I/O
W4 GND GND
W5 I/O I/O
W6 I/O I/O
W7 I/O I/O
W8 I/O I/O
W9 I/O I/O
W10 I/O I/O
W11 I/O I/O
W12 I/O I/O
W13 I/O I/O
W14 I/O I/O
W15 I/O I/O
W16 I/O I/O
W17 I/O I/O
W18 TMS TMS
W19 GND GND
W20 NC I/O
W21 NC I/O
W22 I/O I/O
Y1 VDDP VDDP
Y2 I/O I/O
Y3 I/O I/O
Y4 I/O I/O
Y5 GND GND
Y6 I/O I/O
Y7 I/O I/O
Y8 VDD VDD
Y9 VDD VDD
Y10 I/O I/O
Y11 I/O I/O
Y12 I/O I/O
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
ProASICPLUS Flash Family FPGAs
3-50 v5.9
Y13 I/O I/O
Y14 VDD VDD
Y15 VDD VDD
Y16 I/O I/O
Y17 I/O I/O
Y18 GND GND
Y19 I/O I/O
Y20 I/O I/O
Y21 NC I/O
Y22 VDDP VDDP
AA1 GND GND
AA2 VDDP VDDP
AA3 I/O I/O
AA4 I/O I/O
AA5 I/O I/O
AA6 I/O I/O
AA7 I/O I/O
AA8 I/O I/O
AA9 I/O I/O
AA10 I/O I/O
AA11 I/O I/O
AA12 I/O I/O
AA13 I/O I/O
AA14 I/O I/O
AA15 I/O I/O
AA16 I/O I/O
AA17 I/O I/O
AA18 NC I/O
AA19 NC I/O
AA20 I/O I/O
AA21 VDDP VDDP
AA22 GND GND
AB1 GND GND
AB2 GND GND
AB3 VDDP VDDP
AB4 I/O I/O
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
AB5 I/O I/O
AB6 I/O I/O
AB7 I/O I/O
AB8 I/O I/O
AB9 I/O I/O
AB10 I/O I/O
AB11 I/O I/O
AB12 I/O I/O
AB13 I/O I/O
AB14 I/O I/O
AB15 I/O I/O
AB16 I/O I/O
AB17 I/O I/O
AB18 NC I/O
AB19 I/O I/O
AB20 VDDP VDDP
AB21 GND GND
AB22 GND GND
484-Pin FBGA
Pin
Number
APA450
Function
APA600
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-51
676-Pin FBGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
12356789101115 14 13 121617181920212223 4242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
3-52 v5.9
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
A1 GND GND
A2 GND GND
A3 I/O I/O
A4 I/O I/O
A5 I/O I/O
A6 I/O I/O
A7 I/O I/O
A8 I/O I/O
A9 I/O I/O
A10 I/O I/O
A11 I/O I/O
A12 I/O I/O
A13 I/O I/O
A14 I/O I/O
A15 I/O I/O
A16 I/O I/O
A17 I/O I/O
A18 I/O I/O
A19 I/O I/O
A20 I/O I/O
A21 I/O I/O
A22 I/O I/O
A23 I/O I/O
A24 I/O I/O
A25 GND GND
A26 GND GND
B1 GND GND
B2 GND GND
B3 GND GND
B4 GND GND
B5 I/O I/O
B6 I/O I/O
B7 I/O I/O
B8 I/O I/O
B9 I/O I/O
B10 I/O I/O
B11 I/O I/O
B12 I/O I/O
B13 I/O I/O
B14 I/O I/O
B15 I/O I/O
B16 I/O I/O
B17 I/O I/O
B18 I/O I/O
B19 I/O I/O
B20 I/O I/O
B21 I/O I/O
B22 I/O I/O
B23 I/O I/O
B24 I/O I/O
B25 GND GND
B26 GND GND
C1 GND GND
C2 GND GND
C3 GND GND
C4 GND GND
C5 I/O I/O
C6 I/O I/O
C7 I/O I/O
C8 I/O I/O
C9 I/O I/O
C10 I/O I/O
C11 I/O I/O
C12 I/O I/O
C13 I/O I/O
C14 I/O I/O
C15 I/O I/O
C16 I/O I/O
C17 I/O I/O
C18 I/O I/O
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
C19 I/O I/O
C20 I/O I/O
C21 I/O I/O
C22 I/O I/O
C23 I/O I/O
C24 I/O I/O
C25 I/O I/O
C26 I/O I/O
D1 I/O I/O
D2 I/O I/O
D3 GND GND
D4 I/O I/O
D5 I/O I/O
D6 I/O I/O
D7 I/O I/O
D8 I/O I/O
D9 I/O I/O
D10 I/O I/O
D11 I/O I/O
D12 I/O I/O
D13 I/O I/O
D14 I/O I/O
D15 I/O I/O
D16 I/O I/O
D17 I/O I/O
D18 I/O I/O
D19 I/O I/O
D20 I/O I/O
D21 I/O I/O
D22 I/O I/O
D23 I/O I/O
D24 I/O I/O
D25 I/O I/O
D26 I/O I/O
E1 I/O I/O
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-53
E2 I/O I/O
E3 I/O I/O
E4 I/O I/O
E5 I/O I/O
E6 I/O I/O
E7 I/O I/O
E8 I/O I/O
E9 I/O I/O
E10 I/O I/O
E11 I/O I/O
E12 I/O I/O
E13 I/O I/O
E14 I/O I/O
E15 I/O I/O
E16 I/O I/O
E17 I/O I/O
E18 I/O I/O
E19 I/O I/O
E20 I/O I/O
E21 I/O I/O
E22 I/O I/O
E23 I/O I/O
E24 I/O I/O
E25 I/O I/O
E26 I/O I/O
F1 I/O I/O
F2 I/O I/O
F3 I/O I/O
F4 I/O I/O
F5 GND GND
F6 I/O I/O
F7 NC NC
F8 I/O I/O
F9 I/O I/O
F10 I/O I/O
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
F11 I/O I/O
F12 I/O I/O
F13 I/O I/O
F14 I/O I/O
F15 I/O I/O
F16 I/O I/O
F17 I/O I/O
F18 I/O I/O
F19 I/O I/O
F20 I/O I/O
F21 I/O I/O
F22 I/O I/O
F23 I/O I/O
F24 I/O I/O
F25 I/O I/O
F26 I/O I/O
G1 I/O I/O
G2 I/O I/O
G3 I/O I/O
G4 I/O I/O
G5 I/O I/O
G6 I/O I/O
G7 I/O I/O
G8 VDD VDD
G9 NC NC
G10 I/O I/O
G11 NC NC
G12 I/O I/O
G13 NC NC
G14 I/O I/O
G15 NC NC
G16 I/O I/O
G17 NC NC
G18 I/O I/O
G19 VDDP VDDP
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
G20 NC NC
G21 I/O I/O
G22 I/O I/O
G23 I/O I/O
G24 I/O I/O
G25 I/O I/O
G26 I/O I/O
H1 I/O I/O
H2 I/O I/O
H3 I/O I/O
H4 I/O I/O
H5 I/O I/O
H6 I/O I/O
H7 VDDP VDDP
H8 VDD VDD
H9 VDDP VDDP
H10 VDDP VDDP
H11 VDDP VDDP
H12 VDDP VDDP
H13 VDDP VDDP
H14 VDDP VDDP
H15 VDDP VDDP
H16 VDDP VDDP
H17 VDDP VDDP
H18 VDDP VDDP
H19 VDD VDD
H20 VDD VDD
H21 I/O I/O
H22 I/O I/O
H23 I/O I/O
H24 I/O I/O
H25 I/O I/O
H26 I/O I/O
J1 I/O I/O
J2 I/O I/O
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
ProASICPLUS Flash Family FPGAs
3-54 v5.9
J3 I/O I/O
J4 I/O I/O
J5 I/O I/O
J6 I/O I/O
J7 NC NC
J8 VDDP VDDP
J9 VDD VDD
J10 VDD VDD
J11 VDD VDD
J12 VDD VDD
J13 VDD VDD
J14 VDD VDD
J15 VDD VDD
J16 VDD VDD
J17 VDD VDD
J18 VDD VDD
J19 VDDP VDDP
J20 NC NC
J21 I/O I/O
J22 I/O I/O
J23 I/O I/O
J24 I/O I/O
J25 I/O I/O
J26 I/O I/O
K1 I/O I/O
K2 I/O I/O
K3 I/O I/O
K4 I/O I/O
K5 I/O I/O
K6 I/O I/O
K7 I/O I/O
K8 VDDP VDDP
K9 VDD VDD
K10 GND GND
K11 GND GND
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
K12 GND GND
K13 GND GND
K14 GND GND
K15 GND GND
K16 GND GND
K17 GND GND
K18 VDD VDD
K19 VDDP VDDP
K20 I/O I/O
K21 I/O I/O
K22 I/O I/O
K23 I/O I/O
K24 I/O I/O
K25 I/O I/O
K26 I/O I/O
L1 I/O I/O
L2 I/O I/O
L3 I/O I/O
L4 I/O I/O
L5 I/O I/O
L6 I/O I/O
L7 NC NC
L8 VDDP VDDP
L9 VDD VDD
L10 GND GND
L11 GND GND
L12 GND GND
L13 GND GND
L14 GND GND
L15 GND GND
L16 GND GND
L17 GND GND
L18 VDD VDD
L19 VDDP VDDP
L20 NC NC
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
L21 I/O I/O
L22 I/O I/O
L23 I/O I/O
L24 I/O I/O
L25 I/O I/O
L26 I/O I/O
M1 I/O I/O
M2 I/O I/O
M3 I/O I/O
M4 I/O I/O
M5 I/O I/O
M6 I/O I/O
M7 I/O I/O
M8 VDDP VDDP
M9 VDD VDD
M10 GND GND
M11 GND GND
M12 GND GND
M13 GND GND
M14 GND GND
M15 GND GND
M16 GND GND
M17 GND GND
M18 VDD VDD
M19 VDDP VDDP
M20 I/O I/O
M21 I/O I/O
M22 I/O I/O
M23 I/O I/O
M24 I/O I/O
M25 I/O I/O
M26 I/O I/O
N1 I/O / GL1 I/O / GL1
N2 AGND AGND
N3 I/O / GLMX1 I/O / GLMX1
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-55
N4 I/O I/O
N5 NPECL1 NPECL1
N6 I/O I/O
N7 NC NC
N8 VDDP VDDP
N9 VDD VDD
N10 GND GND
N11 GND GND
N12 GND GND
N13 GND GND
N14 GND GND
N15 GND GND
N16 GND GND
N17 GND GND
N18 VDD VDD
N19 VDDP VDDP
N20 NC NC
N21 I/O I/O
N22 I/O / GL3 I/O / GL3
N23 I/O I/O
N24 NPECL2 NPECL2
N25 I/O / GL4 I/O / GL4
N26 I/O I/O
P1 I/O / GL2 I/O / GL2
P2 AVDD AVDD
P3 I/O I/O
P4 I/O I/O
P5 PPECL1 /
Input
PPECL1 /
Input
P6 I/O I/O
P7 I/O I/O
P8 VDDP VDDP
P9 VDD VDD
P10 GND GND
P11 GND GND
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
P12 GND GND
P13 GND GND
P14 GND GND
P15 GND GND
P16 GND GND
P17 GND GND
P18 VDD VDD
P19 VDDP VDDP
P20 I/O I/O
P21 I/O I/O
P22 I/O / GLMX2 I/O / GLMX2
P23 I/O I/O
P24 PPECL2 /
Input
PPECL2 /
Input
P25 AVDD AVDD
P26 AGND AGND
R1 I/O I/O
R2 I/O I/O
R3 I/O I/O
R4 I/O I/O
R5 I/O I/O
R6 I/O I/O
R7 NC NC
R8 VDDP VDDP
R9 VDD VDD
R10 GND GND
R11 GND GND
R12 GND GND
R13 GND GND
R14 GND GND
R15 GND GND
R16 GND GND
R17 GND GND
R18 VDD VDD
R19 VDDP VDDP
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
R20 NC NC
R21 I/O I/O
R22 I/O I/O
R23 I/O I/O
R24 I/O I/O
R25 I/O I/O
R26 I/O I/O
T1 I/O I/O
T2 I/O I/O
T3 I/O I/O
T4 I/O I/O
T5 I/O I/O
T6 I/O I/O
T7 I/O I/O
T8 VDDP VDDP
T9 VDD VDD
T10 GND GND
T11 GND GND
T12 GND GND
T13 GND GND
T14 GND GND
T15 GND GND
T16 GND GND
T17 GND GND
T18 VDD VDD
T19 VDDP VDDP
T20 I/O I/O
T21 I/O I/O
T22 I/O I/O
T23 I/O I/O
T24 I/O I/O
T25 I/O I/O
T26 I/O I/O
U1 I/O I/O
U2 I/O I/O
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
ProASICPLUS Flash Family FPGAs
3-56 v5.9
U3 I/O I/O
U4 I/O I/O
U5 I/O I/O
U6 I/O I/O
U7 NC NC
U8 VDDP VDDP
U9 VDD VDD
U10 GND GND
U11 GND GND
U12 GND GND
U13 GND GND
U14 GND GND
U15 GND GND
U16 GND GND
U17 GND GND
U18 VDD VDD
U19 VDDP VDDP
U20 NC NC
U21 I/O I/O
U22 I/O I/O
U23 I/O I/O
U24 I/O I/O
U25 I/O I/O
U26 I/O I/O
V1 I/O I/O
V2 I/O I/O
V3 I/O I/O
V4 I/O I/O
V5 I/O I/O
V6 I/O I/O
V7 I/O I/O
V8 VDDP VDDP
V9 VDD VDD
V10 VDD VDD
V11 VDD VDD
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
V12 VDD VDD
V13 VDD VDD
V14 VDD VDD
V15 VDD VDD
V16 VDD VDD
V17 VDD VDD
V18 VDD VDD
V19 VDDP VDDP
V20 I/O I/O
V21 I/O I/O
V22 I/O I/O
V23 I/O I/O
V24 I/O I/O
V25 I/O I/O
V26 I/O I/O
W1 I/O I/O
W2 I/O I/O
W3 I/O I/O
W4 I/O I/O
W5 I/O I/O
W6 I/O I/O
W7 VDD VDD
W8 VDD VDD
W9 VDDP VDDP
W10 VDDP VDDP
W11 VDDP VDDP
W12 VDDP VDDP
W13 VDDP VDDP
W14 VDDP VDDP
W15 VDDP VDDP
W16 VDDP VDDP
W17 VDDP VDDP
W18 VDDP VDDP
W19 VDD VDD
W20 VDDP VDDP
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
W21 I/O I/O
W22 I/O I/O
W23 I/O I/O
W24 I/O I/O
W25 I/O I/O
W26 I/O I/O
Y1 I/O I/O
Y2 I/O I/O
Y3 I/O I/O
Y4 I/O I/O
Y5 I/O I/O
Y6 I/O I/O
Y7 I/O I/O
Y8 VDDP VDDP
Y9 NC NC
Y10 I/O I/O
Y11 NC NC
Y12 I/O I/O
Y13 NC NC
Y14 I/O I/O
Y15 NC NC
Y16 I/O I/O
Y17 NC NC
Y18 I/O I/O
Y19 VDD VDD
Y20 VPP VPP
Y21 I/O I/O
Y22 I/O I/O
Y23 I/O I/O
Y24 I/O I/O
Y25 I/O I/O
Y26 I/O I/O
AA1 I/O I/O
AA2 I/O I/O
AA3 I/O I/O
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-57
AA4 I/O I/O
AA5 I/O I/O
AA6 GND GND
AA7 I/O I/O
AA8 I/O I/O
AA9 I/O I/O
AA10 I/O I/O
AA11 I/O I/O
AA12 I/O I/O
AA13 I/O I/O
AA14 I/O I/O
AA15 I/O I/O
AA16 I/O I/O
AA17 I/O I/O
AA18 I/O I/O
AA19 I/O I/O
AA20 I/O I/O
AA21 TDO TDO
AA22 GND GND
AA23 GND GND
AA24 I/O I/O
AA25 I/O I/O
AA26 I/O I/O
AB1 I/O I/O
AB2 I/O I/O
AB3 I/O I/O
AB4 I/O I/O
AB5 I/O I/O
AB6 GND GND
AB7 GND GND
AB8 I/O I/O
AB9 I/O I/O
AB10 I/O I/O
AB11 I/O I/O
AB12 I/O I/O
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
AB13 I/O I/O
AB14 I/O I/O
AB15 I/O I/O
AB16 I/O I/O
AB17 I/O I/O
AB18 I/O I/O
AB19 I/O I/O
AB20 I/O I/O
AB21 TCK TCK
AB22 TRST TRST
AB23 I/O I/O
AB24 I/O I/O
AB25 I/O I/O
AB26 I/O I/O
AC1 I/O I/O
AC2 I/O I/O
AC3 I/O I/O
AC4 I/O I/O
AC5 GND GND
AC6 I/O I/O
AC7 I/O I/O
AC8 I/O I/O
AC9 GND GND
AC10 I/O I/O
AC11 I/O I/O
AC12 I/O I/O
AC13 I/O I/O
AC14 I/O I/O
AC15 I/O I/O
AC16 I/O I/O
AC17 I/O I/O
AC18 I/O I/O
AC19 I/O I/O
AC20 I/O I/O
AC21 I/O I/O
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
AC22 TMS TMS
AC23 RCK RCK
AC24 I/O I/O
AC25 I/O I/O
AC26 I/O I/O
AD1 I/O I/O
AD2 I/O I/O
AD3 I/O I/O
AD4 I/O I/O
AD5 I/O I/O
AD6 I/O I/O
AD7 I/O I/O
AD8 I/O I/O
AD9 I/O I/O
AD10 I/O I/O
AD11 I/O I/O
AD12 I/O I/O
AD13 I/O I/O
AD14 I/O I/O
AD15 I/O I/O
AD16 I/O I/O
AD17 I/O I/O
AD18 I/O I/O
AD19 I/O I/O
AD20 I/O I/O
AD21 I/O I/O
AD22 I/O I/O
AD23 TDI TDI
AD24 VPN VPN
AD25 I/O I/O
AD26 I/O I/O
AE1 GND GND
AE2 GND GND
AE3 GND GND
AE4 I/O I/O
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
ProASICPLUS Flash Family FPGAs
3-58 v5.9
AE5 I/O I/O
AE6 I/O I/O
AE7 I/O I/O
AE8 I/O I/O
AE9 I/O I/O
AE10 I/O I/O
AE11 I/O I/O
AE12 I/O I/O
AE13 I/O I/O
AE14 I/O I/O
AE15 I/O I/O
AE16 I/O I/O
AE17 I/O I/O
AE18 I/O I/O
AE19 I/O I/O
AE20 I/O I/O
AE21 I/O I/O
AE22 I/O I/O
AE23 I/O I/O
AE24 I/O I/O
AE25 GND GND
AE26 GND GND
AF1 GND GND
AF2 GND GND
AF3 GND GND
AF4 GND GND
AF5 I/O I/O
AF6 I/O I/O
AF7 I/O I/O
AF8 I/O I/O
AF9 I/O I/O
AF10 I/O I/O
AF11 I/O I/O
AF12 I/O I/O
AF13 I/O I/O
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
AF14 I/O I/O
AF15 I/O I/O
AF16 I/O I/O
AF17 I/O I/O
AF18 I/O I/O
AF19 I/O I/O
AF20 I/O I/O
AF21 I/O I/O
AF22 I/O I/O
AF23 I/O I/O
AF24 I/O I/O
AF25 GND GND
AF26 GND GND
676-Pin FBGA
Pin
Number
APA600
Function
APA750
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-59
896-Pin FBGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
123456789101112131415161718192021222324252627282930
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
3-60 v5.9
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
A2 GND GND
A3 GND GND
A4 I/O I/O
A5 GND GND
A6 I/O I/O
A7 GND GND
A8 I/O I/O
A9 I/O I/O
A10 I/O I/O
A11 I/O I/O
A12 I/O I/O
A13 I/O I/O
A14 I/O I/O
A15 I/O I/O
A16 I/O I/O
A17 I/O I/O
A18 I/O I/O
A19 I/O I/O
A20 I/O I/O
A21 I/O I/O
A22 I/O I/O
A23 I/O I/O
A24 GND GND
A25 I/O I/O
A26 GND GND
A27 I/O I/O
A28 GND GND
A29 GND GND
B1 GND GND
B2 GND GND
B3 I/O I/O
B4 VDD VDD
B5 I/O I/O
B6 VDD VDD
B7 I/O I/O
B8 I/O I/O
B9 I/O I/O
B10 I/O I/O
B11 I/O I/O
B12 I/O I/O
B13 I/O I/O
B14 I/O I/O
B15 I/O I/O
B16 I/O I/O
B17 I/O I/O
B18 I/O I/O
B19 I/O I/O
B20 I/O I/O
B21 I/O I/O
B22 I/O I/O
B23 I/O I/O
B24 I/O I/O
B25 VDD VDD
B26 I/O I/O
B27 VDD VDD
B28 I/O I/O
B29 GND GND
B30 GND GND
C1 GND GND
C2 I/O I/O
C3 VDD VDD
C4 I/O I/O
C5 VDDP VDDP
C6 I/O I/O
C7 I/O I/O
C8 I/O I/O
C9 I/O I/O
C10 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
C11 I/O I/O
C12 I/O I/O
C13 I/O I/O
C14 I/O I/O
C15 I/O I/O
C16 I/O I/O
C17 I/O I/O
C18 I/O I/O
C19 I/O I/O
C20 I/O I/O
C21 I/O I/O
C22 I/O I/O
C23 I/O I/O
C24 I/O I/O
C25 I/O I/O
C26 VDDP VDDP
C27 I/O I/O
C28 VDD VDD
C29 NC I/O
C30 GND GND
D1 I/O I/O
D2 VDD VDD
D3 I/O I/O
D4 GND GND
D5 I/O I/O
D6 I/O I/O
D7 I/O I/O
D8 I/O I/O
D9 I/O I/O
D10 I/O I/O
D11 I/O I/O
D12 I/O I/O
D13 I/O I/O
D14 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-61
D15 I/O I/O
D16 I/O I/O
D17 I/O I/O
D18 I/O I/O
D19 I/O I/O
D20 I/O I/O
D21 I/O I/O
D22 I/O I/O
D23 I/O I/O
D24 I/O I/O
D25 I/O I/O
D26 I/O I/O
D27 GND GND
D28 I/O I/O
D29 VDD VDD
D30 I/O I/O
E1 GND GND
E2 I/O I/O
E3 VDDP VDDP
E4 I/O I/O
E5 VDD VDD
E6 I/O I/O
E7 VDDP VDDP
E8 I/O I/O
E9 I/O I/O
E10 I/O I/O
E11 I/O I/O
E12 I/O I/O
E13 I/O I/O
E14 I/O I/O
E15 I/O I/O
E16 I/O I/O
E17 I/O I/O
E18 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
E19 I/O I/O
E20 I/O I/O
E21 I/O I/O
E22 I/O I/O
E23 I/O I/O
E24 VDDP VDDP
E25 I/O I/O
E26 VDD VDD
E27 I/O I/O
E28 VDDP VDDP
E29 I/O I/O
E30 GND GND
F1 I/O I/O
F2 VDD VDD
F3 I/O I/O
F4 I/O I/O
F5 I/O I/O
F6 GND GND
F7 I/O I/O
F8 I/O I/O
F9 I/O I/O
F10 I/O I/O
F11 I/O I/O
F12 I/O I/O
F13 I/O I/O
F14 I/O I/O
F15 I/O I/O
F16 I/O I/O
F17 I/O I/O
F18 I/O I/O
F19 I/O I/O
F20 I/O I/O
F21 I/O I/O
F22 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
F23 I/O I/O
F24 I/O I/O
F25 GND GND
F26 I/O I/O
F27 I/O I/O
F28 I/O I/O
F29 VDD VDD
F30 I/O I/O
G1 GND GND
G2 I/O I/O
G3 I/O I/O
G4 I/O I/O
G5 VDDP VDDP
G6 I/O I/O
G7 VDD VDD
G8 I/O I/O
G9 VDDP VDDP
G10 I/O I/O
G11 I/O I/O
G12 I/O I/O
G13 I/O I/O
G14 I/O I/O
G15 I/O I/O
G16 I/O I/O
G17 I/O I/O
G18 I/O I/O
G19 I/O I/O
G20 I/O I/O
G21 I/O I/O
G22 VDDP VDDP
G23 I/O I/O
G24 VDD VDD
G25 I/O I/O
G26 VDDP VDDP
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-62 v5.9
G27 I/O I/O
G28 I/O I/O
G29 I/O I/O
G30 GND GND
H1 I/O I/O
H2 I/O I/O
H3 I/O I/O
H4 I/O I/O
H5 I/O I/O
H6 I/O I/O
H7 I/O I/O
H8 GND GND
H9 NC I/O
H10 NC I/O
H11 NC I/O
H12 NC I/O
H13 NC I/O
H14 NC I/O
H15 NC I/O
H16 NC I/O
H17 NC I/O
H18 NC I/O
H19 NC I/O
H20 NC I/O
H21 NC I/O
H22 NC I/O
H23 GND GND
H24 I/O I/O
H25 I/O I/O
H26 I/O I/O
H27 I/O I/O
H28 I/O I/O
H29 I/O I/O
H30 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
J1 I/O I/O
J2 I/O I/O
J3 I/O I/O
J4 I/O I/O
J5 I/O I/O
J6 I/O I/O
J7 VDDP VDDP
J8 I/O I/O
J9 VDD VDD
J10 NC I/O
J11 NC I/O
J12 NC I/O
J13 NC I/O
J14 NC I/O
J15 NC I/O
J16 NC I/O
J17 NC I/O
J18 NC I/O
J19 NC I/O
J20 NC I/O
J21 NC I/O
J22 VDD VDD
J23 I/O I/O
J24 VDDP VDDP
J25 I/O I/O
J26 I/O I/O
J27 I/O I/O
J28 I/O I/O
J29 I/O I/O
J30 I/O I/O
K1 I/O I/O
K2 I/O I/O
K3 I/O I/O
K4 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
K5 I/O I/O
K6 I/O I/O
K7 I/O I/O
K8 I/O I/O
K9 NC I/O
K10 VDD VDD
K11 NC I/O
K12 VDDP VDDP
K13 VDDP VDDP
K14 VDDP VDDP
K15 VDDP VDDP
K16 VDDP VDDP
K17 VDDP VDDP
K18 VDDP VDDP
K19 VDDP VDDP
K20 NC I/O
K21 VDD VDD
K22 NC I/O
K23 I/O I/O
K24 I/O I/O
K25 I/O I/O
K26 I/O I/O
K27 I/O I/O
K28 I/O I/O
K29 I/O I/O
K30 I/O I/O
L1 I/O I/O
L2 I/O I/O
L3 I/O I/O
L4 I/O I/O
L5 I/O I/O
L6 I/O I/O
L7 I/O I/O
L8 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-63
L9 NC I/O
L10 NC I/O
L11 VDD VDD
L12 VDD VDD
L13 VDD VDD
L14 VDD VDD
L15 VDD VDD
L16 VDD VDD
L17 VDD VDD
L18 VDD VDD
L19 VDD VDD
L20 VDD VDD
L21 NC I/O
L22 NC I/O
L23 I/O I/O
L24 I/O I/O
L25 I/O I/O
L26 I/O I/O
L27 I/O I/O
L28 I/O I/O
L29 I/O I/O
L30 I/O I/O
M1 I/O I/O
M2 I/O I/O
M3 I/O I/O
M4 I/O I/O
M5 I/O I/O
M6 I/O I/O
M7 I/O I/O
M8 I/O I/O
M9 NC I/O
M10 VDDP VDDP
M11 VDD VDD
M12 GND GND
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
M13 GND GND
M14 GND GND
M15 GND GND
M16 GND GND
M17 GND GND
M18 GND GND
M19 GND GND
M20 VDD VDD
M21 VDDP VDDP
M22 NC I/O
M23 I/O I/O
M24 I/O I/O
M25 I/O I/O
M26 I/O I/O
M27 I/O I/O
M28 I/O I/O
M29 I/O I/O
M30 I/O I/O
N1 I/O I/O
N2 I/O I/O
N3 I/O I/O
N4 I/O I/O
N5 I/O I/O
N6 I/O I/O
N7 I/O I/O
N8 I/O I/O
N9 NC I/O
N10 VDDP VDDP
N11 VDD VDD
N12 GND GND
N13 GND GND
N14 GND GND
N15 GND GND
N16 GND GND
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
N17 GND GND
N18 GND GND
N19 GND GND
N20 VDD VDD
N21 VDDP VDDP
N22 NC I/O
N23 I/O I/O
N24 I/O I/O
N25 I/O I/O
N26 I/O I/O
N27 I/O I/O
N28 I/O I/O
N29 I/O I/O
N30 I/O I/O
P1 I/O I/O
P2 I/O I/O
P3 I/O I/O
P4 I/O I/O
P5 I/O I/O
P6 I/O I/O
P7 I/O I/O
P8 I/O I/O
P9 I/O I/O
P10 VDDP VDDP
P11 VDD VDD
P12 GND GND
P13 GND GND
P14 GND GND
P15 GND GND
P16 GND GND
P17 GND GND
P18 GND GND
P19 GND GND
P20 VDD VDD
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-64 v5.9
P21 VDDP VDDP
P22 I/O I/O
P23 I/O I/O
P24 I/O I/O
P25 I/O I/O
P26 I/O I/O
P27 I/O I/O
P28 I/O I/O
P29 I/O I/O
P30 I/O I/O
R1 I/O I/O
R2 I/O / GLMX1 I/O / GLMX1
R3 AGND AGND
R4 NPECL1 NPECL1
R5 I/O / GL1 I/O / GL1
R6 I/O I/O
R7 I/O I/O
R8 I/O I/O
R9 NC I/O
R10 VDDP VDDP
R11 VDD VDD
R12 GND GND
R13 GND GND
R14 GND GND
R15 GND GND
R16 GND GND
R17 GND GND
R18 GND GND
R19 GND GND
R20 VDD VDD
R21 VDDP VDDP
R22 I/O I/O
R23 I/O I/O
R24 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
R25 I/O I/O
R26 I/O I/O
R27 NPECL2 NPECL2
R28 AGND AGND
R29 I/O / GLMX2 I/O / GLMX2
R30 I/O I/O
T1 I/O I/O
T2 AVDD AVDD
T3 I/O / GL2 I/O / GL2
T4 PPECL1 / Input PPECL1 / Input
T5 I/O I/O
T6 I/O I/O
T7 I/O I/O
T8 I/O I/O
T9 I/O I/O
T10 VDDP VDDP
T11 VDD VDD
T12 GND GND
T13 GND GND
T14 GND GND
T15 GND GND
T16 GND GND
T17 GND GND
T18 GND GND
T19 GND GND
T20 VDD VDD
T21 VDDP VDDP
T22 I/O I/O
T23 I/O I/O
T24 I/O I/O
T25 I/O I/O
T26 PPECL2 / Input PPECL2 / Input
T27 I/O / GL4 I/O / GL4
T28 I/O / GL3 I/O / GL3
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
T29 AVDD AVDD
T30 I/O I/O
U1 I/O I/O
U2 I/O I/O
U3 I/O I/O
U4 I/O I/O
U5 I/O I/O
U6 I/O I/O
U7 I/O I/O
U8 I/O I/O
U9 NC I/O
U10 VDDP VDDP
U11 VDD VDD
U12 GND GND
U13 GND GND
U14 GND GND
U15 GND GND
U16 GND GND
U17 GND GND
U18 GND GND
U19 GND GND
U20 VDD VDD
U21 VDDP VDDP
U22 NC I/O
U23 I/O I/O
U24 I/O I/O
U25 I/O I/O
U26 I/O I/O
U27 I/O I/O
U28 I/O I/O
U29 I/O I/O
U30 I/O I/O
V1 I/O I/O
V2 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-65
V3 I/O I/O
V4 I/O I/O
V5 I/O I/O
V6 I/O I/O
V7 I/O I/O
V8 I/O I/O
V9 NC I/O
V10 VDDP VDDP
V11 VDD VDD
V12 GND GND
V13 GND GND
V14 GND GND
V15 GND GND
V16 GND GND
V17 GND GND
V18 GND GND
V19 GND GND
V20 VDD VDD
V21 VDDP VDDP
V22 NC I/O
V23 I/O I/O
V24 I/O I/O
V25 I/O I/O
V26 I/O I/O
V27 I/O I/O
V28 I/O I/O
V29 I/O I/O
V30 I/O I/O
W1 I/O I/O
W2 I/O I/O
W3 I/O I/O
W4 I/O I/O
W5 I/O I/O
W6 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
W7 I/O I/O
W8 I/O I/O
W9 NC I/O
W10 VDDP VDDP
W11 VDD VDD
W12 GND GND
W13 GND GND
W14 GND GND
W15 GND GND
W16 GND GND
W17 GND GND
W18 GND GND
W19 GND GND
W20 VDD VDD
W21 VDDP VDDP
W22 NC I/O
W23 I/O I/O
W24 I/O I/O
W25 I/O I/O
W26 I/O I/O
W27 I/O I/O
W28 I/O I/O
W29 I/O I/O
W30 I/O I/O
Y1 I/O I/O
Y2 I/O I/O
Y3 I/O I/O
Y4 I/O I/O
Y5 I/O I/O
Y6 I/O I/O
Y7 I/O I/O
Y8 I/O I/O
Y9 NC I/O
Y10 NC I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
Y11 VDD VDD
Y12 VDD VDD
Y13 VDD VDD
Y14 VDD VDD
Y15 VDD VDD
Y16 VDD VDD
Y17 VDD VDD
Y18 VDD VDD
Y19 VDD VDD
Y20 VDD VDD
Y21 NC I/O
Y22 NC I/O
Y23 I/O I/O
Y24 I/O I/O
Y25 I/O I/O
Y26 I/O I/O
Y27 I/O I/O
Y28 I/O I/O
Y29 I/O I/O
Y30 I/O I/O
AA1 I/O I/O
AA2 I/O I/O
AA3 I/O I/O
AA4 I/O I/O
AA5 I/O I/O
AA6 I/O I/O
AA7 I/O I/O
AA8 I/O I/O
AA9 NC I/O
AA10 VDD VDD
AA11 NC I/O
AA12 VDDP VDDP
AA13 VDDP VDDP
AA14 VDDP VDDP
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-66 v5.9
AA15 VDDP VDDP
AA16 VDDP VDDP
AA17 VDDP VDDP
AA18 VDDP VDDP
AA19 VDDP VDDP
AA20 NC I/O
AA21 VDD VDD
AA22 NC I/O
AA23 I/O I/O
AA24 I/O I/O
AA25 I/O I/O
AA26 I/O I/O
AA27 I/O I/O
AA28 I/O I/O
AA29 I/O I/O
AA30 I/O I/O
AB1 I/O I/O
AB2 I/O I/O
AB3 I/O I/O
AB4 I/O I/O
AB5 I/O I/O
AB6 I/O I/O
AB7 VDDP VDDP
AB8 I/O I/O
AB9 VDD VDD
AB10 NC I/O
AB11 NC I/O
AB12 NC I/O
AB13 NC I/O
AB14 NC I/O
AB15 NC I/O
AB16 NC I/O
AB17 NC I/O
AB18 NC I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
AB19 NC I/O
AB20 NC I/O
AB21 NC I/O
AB22 VDD VDD
AB23 I/O I/O
AB24 VDDP VDDP
AB25 I/O I/O
AB26 I/O I/O
AB27 I/O I/O
AB28 I/O I/O
AB29 I/O I/O
AB30 I/O I/O
AC1 I/O I/O
AC2 I/O I/O
AC3 I/O I/O
AC4 I/O I/O
AC5 I/O I/O
AC6 I/O I/O
AC7 I/O I/O
AC8 GND GND
AC9 NC I/O
AC10 NC I/O
AC11 NC I/O
AC12 NC I/O
AC13 NC I/O
AC14 NC I/O
AC15 NC I/O
AC16 NC I/O
AC17 NC I/O
AC18 NC I/O
AC19 NC I/O
AC20 NC I/O
AC21 NC I/O
AC22 NC I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
AC23 GND GND
AC24 I/O I/O
AC25 I/O I/O
AC26 I/O I/O
AC27 I/O I/O
AC28 I/O I/O
AC29 I/O I/O
AC30 I/O I/O
AD1 GND GND
AD2 I/O I/O
AD3 I/O I/O
AD4 I/O I/O
AD5 VDDP VDDP
AD6 I/O I/O
AD7 VDD VDD
AD8 I/O I/O
AD9 VDDP VDDP
AD10 I/O I/O
AD11 I/O I/O
AD12 I/O I/O
AD13 I/O I/O
AD14 I/O I/O
AD15 I/O I/O
AD16 I/O I/O
AD17 I/O I/O
AD18 I/O I/O
AD19 I/O I/O
AD20 I/O I/O
AD21 I/O I/O
AD22 VDDP VDDP
AD23 TCK TCK
AD24 VDD VDD
AD25 TRST TRST
AD26 VDDP VDDP
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-67
AD27 I/O I/O
AD28 I/O I/O
AD29 I/O I/O
AD30 GND GND
AE1 I/O I/O
AE2 VDD VDD
AE3 I/O I/O
AE4 I/O I/O
AE5 I/O I/O
AE6 GND GND
AE7 I/O I/O
AE8 I/O I/O
AE9 I/O I/O
AE10 I/O I/O
AE11 I/O I/O
AE12 I/O I/O
AE13 I/O I/O
AE14 I/O I/O
AE15 I/O I/O
AE16 I/O I/O
AE17 I/O I/O
AE18 I/O I/O
AE19 I/O I/O
AE20 I/O I/O
AE21 I/O I/O
AE22 I/O I/O
AE23 I/O I/O
AE24 I/O I/O
AE25 GND GND
AE26 I/O I/O
AE27 I/O I/O
AE28 I/O I/O
AE29 VDD VDD
AE30 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
AF1 GND GND
AF2 I/O I/O
AF3 VDDP VDDP
AF4 I/O I/O
AF5 VDD VDD
AF6 I/O I/O
AF7 VDDP VDDP
AF8 I/O I/O
AF9 I/O I/O
AF10 I/O I/O
AF11 I/O I/O
AF12 I/O I/O
AF13 I/O I/O
AF14 I/O I/O
AF15 I/O I/O
AF16 I/O I/O
AF17 I/O I/O
AF18 I/O I/O
AF19 I/O I/O
AF20 I/O I/O
AF21 I/O I/O
AF22 I/O I/O
AF23 I/O I/O
AF24 VDDP VDDP
AF25 I/O I/O
AF26 VDD VDD
AF27 TDO TDO
AF28 VDDP VDDP
AF29 VPN VPN
AF30 GND GND
AG1 I/O I/O
AG2 VDD VDD
AG3 I/O I/O
AG4 GND GND
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
AG5 I/O I/O
AG6 I/O I/O
AG7 I/O I/O
AG8 I/O I/O
AG9 I/O I/O
AG10 I/O I/O
AG11 I/O I/O
AG12 I/O I/O
AG13 I/O I/O
AG14 I/O I/O
AG15 I/O I/O
AG16 I/O I/O
AG17 I/O I/O
AG18 I/O I/O
AG19 I/O I/O
AG20 I/O I/O
AG21 I/O I/O
AG22 I/O I/O
AG23 I/O I/O
AG24 I/O I/O
AG25 I/O I/O
AG26 I/O I/O
AG27 GND GND
AG28 RCK RCK
AG29 VDD VDD
AG30 I/O I/O
AH1 GND GND
AH2 I/O I/O
AH3 VDD VDD
AH4 I/O I/O
AH5 VDDP VDDP
AH6 I/O I/O
AH7 I/O I/O
AH8 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-68 v5.9
AH9 I/O I/O
AH10 I/O I/O
AH11 I/O I/O
AH12 I/O I/O
AH13 I/O I/O
AH14 I/O I/O
AH15 I/O I/O
AH16 I/O I/O
AH17 I/O I/O
AH18 I/O I/O
AH19 I/O I/O
AH20 I/O I/O
AH21 I/O I/O
AH22 I/O I/O
AH23 I/O I/O
AH24 I/O I/O
AH25 I/O I/O
AH26 VDDP VDDP
AH27 TDI TDI
AH28 VDD VDD
AH29 VPP VPP
AH30 GND GND
AJ1 GND GND
AJ2 GND GND
AJ3 I/O I/O
AJ4 VDD VDD
AJ5 I/O I/O
AJ6 VDD VDD
AJ7 I/O I/O
AJ8 I/O I/O
AJ9 I/O I/O
AJ10 I/O I/O
AJ11 I/O I/O
AJ12 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
AJ13 I/O I/O
AJ14 I/O I/O
AJ15 I/O I/O
AJ16 I/O I/O
AJ17 I/O I/O
AJ18 I/O I/O
AJ19 I/O I/O
AJ20 I/O I/O
AJ21 I/O I/O
AJ22 I/O I/O
AJ23 I/O I/O
AJ24 I/O I/O
AJ25 VDD VDD
AJ26 I/O I/O
AJ27 VDD VDD
AJ28 TMS TMS
AJ29 GND GND
AJ30 GND GND
AK2 GND GND
AK3 GND GND
AK4 I/O I/O
AK5 GND GND
AK6 I/O I/O
AK7 GND GND
AK8 I/O I/O
AK9 I/O I/O
AK10 I/O I/O
AK11 I/O I/O
AK12 I/O I/O
AK13 I/O I/O
AK14 I/O I/O
AK15 I/O I/O
AK16 I/O I/O
AK17 I/O I/O
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
AK18 I/O I/O
AK19 I/O I/O
AK20 I/O I/O
AK21 I/O I/O
AK22 I/O I/O
AK23 I/O I/O
AK24 GND GND
AK25 I/O I/O
AK26 GND GND
AK27 I/O I/O
AK28 GND GND
AK29 GND GND
896-Pin FBGA
Pin
Number
APA750
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-69
1152-Pin FBGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AGAG
AH
AJ
AK
1234567891011121314151617181920212324252627
28293031323334
AL
AM
AN
22
AP
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
3-70 v5.9
1152-Pin FBGA
Pin
Number
APA1000
Function
A2 NC
A3 GND
A4 GND
A5 GND
A6 I/O
A7 VDD
A8 VDD
A9 VDD
A10 VDD
A11 I/O
A12 GND
A13 I/O
A14 VDDP
A15 VDDP
A16 I/O
A17 GND
A18 GND
A19 I/O
A20 VDDP
A21 VDDP
A22 I/O
A23 GND
A24 I/O
A25 VDD
A26 VDD
A27 VDD
A28 VDD
A29 I/O
A30 GND
A31 GND
A32 GND
A33 NC
B1 NC
B2 NC
B3 GND
B4 GND
B5 GND
B6 NC
B7 I/O
B8 NC
B9 I/O
B10 NC
B11 I/O
B12 GND
B13 I/O
B14 VDDP
B15 VDDP
B16 I/O
B17 GND
B18 GND
B19 I/O
B20 VDDP
B21 VDDP
B22 I/O
B23 GND
B24 I/O
B25 NC
B26 I/O
B27 NC
B28 I/O
B29 NC
B30 GND
B31 GND
B32 GND
B33 NC
B34 NC
C1 GND
C2 GND
C3 NC
C4 GND
C5 GND
C6 I/O
C7 GND
C8 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
C9 GND
C10 I/O
C11 I/O
C12 I/O
C13 I/O
C14 I/O
C15 I/O
C16 I/O
C17 I/O
C18 I/O
C19 I/O
C20 I/O
C21 I/O
C22 I/O
C23 I/O
C24 I/O
C25 I/O
C26 GND
C27 I/O
C28 GND
C29 I/O
C30 GND
C31 GND
C32 NC
C33 GND
C34 GND
D1 GND
D2 GND
D3 GND
D4 GND
D5 I/O
D6 VDD
D7 I/O
D8 VDD
D9 I/O
D10 I/O
D11 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
D12 I/O
D13 I/O
D14 I/O
D15 I/O
D16 I/O
D17 I/O
D18 I/O
D19 I/O
D20 I/O
D21 I/O
D22 I/O
D23 I/O
D24 I/O
D25 I/O
D26 I/O
D27 VDD
D28 I/O
D29 VDD
D30 I/O
D31 GND
D32 GND
D33 GND
D34 GND
E1 GND
E2 GND
E3 GND
E4 I/O
E5 VDD
E6 I/O
E7 VDDP
E8 I/O
E9 I/O
E10 I/O
E11 I/O
E12 I/O
E13 I/O
E14 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-71
E15 I/O
E16 I/O
E17 I/O
E18 I/O
E19 I/O
E20 I/O
E21 I/O
E22 I/O
E23 I/O
E24 I/O
E25 I/O
E26 I/O
E27 I/O
E28 VDDP
E29 I/O
E30 VDD
E31 I/O
E32 GND
E33 GND
E34 GND
F1 I/O
F2 NC
F3 I/O
F4 VDD
F5 I/O
F6 GND
F7 I/O
F8 I/O
F9 I/O
F10 I/O
F11 I/O
F12 I/O
F13 I/O
F14 I/O
F15 I/O
F16 I/O
F17 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
F18 I/O
F19 I/O
F20 I/O
F21 I/O
F22 I/O
F23 I/O
F24 I/O
F25 I/O
F26 I/O
F27 I/O
F28 I/O
F29 GND
F30 I/O
F31 VDD
F32 I/O
F33 NC
F34 NC
G1 VDD
G2 I/O
G3 GND
G4 I/O
G5 VDDP
G6 I/O
G7 VDD
G8 I/O
G9 VDDP
G10 I/O
G11 I/O
G12 I/O
G13 I/O
G14 I/O
G15 I/O
G16 I/O
G17 I/O
G18 I/O
G19 I/O
G20 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
G21 I/O
G22 I/O
G23 I/O
G24 I/O
G25 I/O
G26 VDDP
G27 I/O
G28 VDD
G29 I/O
G30 VDDP
G31 I/O
G32 GND
G33 I/O
G34 VDD
H1 VDD
H2 NC
H3 I/O
H4 VDD
H5 I/O
H6 I/O
H7 I/O
H8 GND
H9 I/O
H10 I/O
H11 I/O
H12 I/O
H13 I/O
H14 I/O
H15 I/O
H16 I/O
H17 I/O
H18 I/O
H19 I/O
H20 I/O
H21 I/O
H22 I/O
H23 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
H24 I/O
H25 I/O
H26 I/O
H27 GND
H28 I/O
H29 I/O
H30 I/O
H31 VDD
H32 I/O
H33 NC
H34 VDD
J1 VDD
J2 I/O
J3 GND
J4 I/O
J5 I/O
J6 I/O
J7 VDDP
J8 I/O
J9 VDD
J10 I/O
J11 VDDP
J12 I/O
J13 I/O
J14 I/O
J15 I/O
J16 I/O
J17 I/O
J18 I/O
J19 I/O
J20 I/O
J21 I/O
J22 I/O
J23 I/O
J24 VDDP
J25 I/O
J26 VDD
1152-Pin FBGA
Pin
Number
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-72 v5.9
J27 I/O
J28 VDDP
J29 I/O
J30 I/O
J31 I/O
J32 GND
J33 I/O
J34 VDD
K1 VDD
K2 NC
K3 I/O
K4 I/O
K5 I/O
K6 I/O
K7 I/O
K8 I/O
K9 I/O
K10 GND
K11 I/O
K12 I/O
K13 I/O
K14 I/O
K15 I/O
K16 I/O
K17 I/O
K18 I/O
K19 I/O
K20 I/O
K21 I/O
K22 I/O
K23 I/O
K24 I/O
K25 GND
K26 I/O
K27 I/O
K28 I/O
K29 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
K30 I/O
K31 I/O
K32 I/O
K33 NC
K34 VDD
L1 I/O
L2 I/O
L3 I/O
L4 I/O
L5 I/O
L6 I/O
L7 I/O
L8 I/O
L9 VDDP
L10 I/O
L11 VDD
L12 I/O
L13 I/O
L14 I/O
L15 I/O
L16 I/O
L17 I/O
L18 I/O
L19 I/O
L20 I/O
L21 I/O
L22 I/O
L23 I/O
L24 VDD
L25 I/O
L26 VDDP
L27 I/O
L28 I/O
L29 I/O
L30 I/O
L31 I/O
L32 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
L33 I/O
L34 I/O
M1 GND
M2 GND
M3 I/O
M4 I/O
M5 I/O
M6 I/O
M7 I/O
M8 I/O
M9 I/O
M10 I/O
M11 I/O
M12 VDD
M13 I/O
M14 VDDP
M15 VDDP
M16 VDDP
M17 VDDP
M18 VDDP
M19 VDDP
M20 VDDP
M21 VDDP
M22 I/O
M23 VDD
M24 I/O
M25 I/O
M26 I/O
M27 I/O
M28 I/O
M29 I/O
M30 I/O
M31 I/O
M32 I/O
M33 GND
M34 GND
N1 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
N2 I/O
N3 I/O
N4 I/O
N5 I/O
N6 I/O
N7 I/O
N8 I/O
N9 I/O
N10 I/O
N11 I/O
N12 I/O
N13 VDD
N14 VDD
N15 VDD
N16 VDD
N17 VDD
N18 VDD
N19 VDD
N20 VDD
N21 VDD
N22 VDD
N23 I/O
N24 I/O
N25 I/O
N26 I/O
N27 I/O
N28 I/O
N29 I/O
N30 I/O
N31 I/O
N32 I/O
N33 I/O
N34 I/O
P1 VDDP
P2 VDDP
P3 I/O
P4 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-73
P5 I/O
P6 I/O
P7 I/O
P8 I/O
P9 I/O
P10 I/O
P11 I/O
P12 VDDP
P13 VDD
P14 GND
P15 GND
P16 GND
P17 GND
P18 GND
P19 GND
P20 GND
P21 GND
P22 VDD
P23 VDDP
P24 I/O
P25 I/O
P26 I/O
P27 I/O
P28 I/O
P29 I/O
P30 I/O
P31 I/O
P32 I/O
P33 VDDP
P34 VDDP
R1 VDDP
R2 VDDP
R3 I/O
R4 I/O
R5 I/O
R6 I/O
R7 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
R8 I/O
R9 I/O
R10 I/O
R11 I/O
R12 VDDP
R13 VDD
R14 GND
R15 GND
R16 GND
R17 GND
R18 GND
R19 GND
R20 GND
R21 GND
R22 VDD
R23 VDDP
R24 I/O
R25 I/O
R26 I/O
R27 I/O
R28 I/O
R29 I/O
R30 I/O
R31 I/O
R32 I/O
R33 VDDP
R34 VDDP
T1 I/O
T2 I/O
T3 I/O
T4 I/O
T5 I/O
T6 I/O
T7 I/O
T8 I/O
T9 I/O
T10 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
T11 I/O
T12 VDDP
T13 VDD
T14 GND
T15 GND
T16 GND
T17 GND
T18 GND
T19 GND
T20 GND
T21 GND
T22 VDD
T23 VDDP
T24 I/O
T25 I/O
T26 I/O
T27 I/O
T28 I/O
T29 I/O
T30 I/O
T31 I/O
T32 I/O
T33 I/O
T34 I/O
U1 GND
U2 GND
U3 I/O
U4 I/O / GLMX1
U5 AGND
U6 NPECL1
U7 I/O / GL1
U8 I/O
U9 I/O
U10 I/O
U11 I/O
U12 VDDP
U13 VDD
1152-Pin FBGA
Pin
Number
APA1000
Function
U14 GND
U15 GND
U16 GND
U17 GND
U18 GND
U19 GND
U20 GND
U21 GND
U22 VDD
U23 VDDP
U24 I/O
U25 I/O
U26 I/O
U27 I/O
U28 I/O
U29 NPECL2
U30 AGND
U31 I/O / GLMX2
U32 I/O
U33 GND
U34 GND
V1 GND
V2 GND
V3 I/O
V4 AVDD
V5 I/O / GL2
V6 PPECL1 /
Input
V7 I/O
V8 I/O
V9 I/O
V10 I/O
V11 I/O
V12 VDDP
V13 VDD
V14 GND
V15 GND
1152-Pin FBGA
Pin
Number
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-74 v5.9
V16 GND
V17 GND
V18 GND
V19 GND
V20 GND
V21 GND
V22 VDD
V23 VDDP
V24 I/O
V25 I/O
V26 I/O
V27 I/O
V28 PPECL2 /
Input
V29 I/O / GL4
V30 I/O / GL3
V31 AVDD
V32 I/O
V33 GND
V34 GND
W1 I/O
W2 I/O
W3 I/O
W4 I/O
W5 I/O
W6 I/O
W7 I/O
W8 I/O
W9 I/O
W10 I/O
W11 I/O
W12 VDDP
W13 VDD
W14 GND
W15 GND
W16 GND
W17 GND
1152-Pin FBGA
Pin
Number
APA1000
Function
W18 GND
W19 GND
W20 GND
W21 GND
W22 VDD
W23 VDDP
W24 I/O
W25 I/O
W26 I/O
W27 I/O
W28 I/O
W29 I/O
W30 I/O
W31 I/O
W32 I/O
W33 I/O
W34 I/O
Y1 VDDP
Y2 VDDP
Y3 I/O
Y4 I/O
Y5 I/O
Y6 I/O
Y7 I/O
Y8 I/O
Y9 I/O
Y10 I/O
Y11 I/O
Y12 VDDP
Y13 VDD
Y14 GND
Y15 GND
Y16 GND
Y17 GND
Y18 GND
Y19 GND
Y20 GND
1152-Pin FBGA
Pin
Number
APA1000
Function
Y21 GND
Y22 VDD
Y23 VDDP
Y24 I/O
Y25 I/O
Y26 I/O
Y27 I/O
Y28 I/O
Y29 I/O
Y30 I/O
Y31 I/O
Y32 I/O
Y33 VDDP
Y34 VDDP
AA1 VDDP
AA2 VDDP
AA3 I/O
AA4 I/O
AA5 I/O
AA6 I/O
AA7 I/O
AA8 I/O
AA9 I/O
AA10 I/O
AA11 I/O
AA12 VDDP
AA13 VDD
AA14 GND
AA15 GND
AA16 GND
AA17 GND
AA18 GND
AA19 GND
AA20 GND
AA21 GND
AA22 VDD
AA23 VDDP
1152-Pin FBGA
Pin
Number
APA1000
Function
AA24 I/O
AA25 I/O
AA26 I/O
AA27 I/O
AA28 I/O
AA29 I/O
AA30 I/O
AA31 I/O
AA32 I/O
AA33 VDDP
AA34 VDDP
AB1 I/O
AB2 I/O
AB3 I/O
AB4 I/O
AB5 I/O
AB6 I/O
AB7 I/O
AB8 I/O
AB9 I/O
AB10 I/O
AB11 I/O
AB12 I/O
AB13 VDD
AB14 VDD
AB15 VDD
AB16 VDD
AB17 VDD
AB18 VDD
AB19 VDD
AB20 VDD
AB21 VDD
AB22 VDD
AB23 I/O
AB24 I/O
AB25 I/O
AB26 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-75
AB27 I/O
AB28 I/O
AB29 I/O
AB30 I/O
AB31 I/O
AB32 I/O
AB33 I/O
AB34 I/O
AC1 GND
AC2 GND
AC3 I/O
AC4 I/O
AC5 I/O
AC6 I/O
AC7 I/O
AC8 I/O
AC9 I/O
AC10 I/O
AC11 I/O
AC12 VDD
AC13 I/O
AC14 VDDP
AC15 VDDP
AC16 VDDP
AC17 VDDP
AC18 VDDP
AC19 VDDP
AC20 VDDP
AC21 VDDP
AC22 I/O
AC23 VDD
AC24 I/O
AC25 I/O
AC26 I/O
AC27 I/O
AC28 I/O
AC29 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
AC30 I/O
AC31 I/O
AC32 I/O
AC33 GND
AC34 GND
AD1 I/O
AD2 I/O
AD3 I/O
AD4 I/O
AD5 I/O
AD6 I/O
AD7 I/O
AD8 I/O
AD9 VDDP
AD10 I/O
AD11 VDD
AD12 I/O
AD13 I/O
AD14 I/O
AD15 I/O
AD16 I/O
AD17 I/O
AD18 I/O
AD19 I/O
AD20 I/O
AD21 I/O
AD22 I/O
AD23 I/O
AD24 VDD
AD25 I/O
AD26 VDDP
AD27 I/O
AD28 I/O
AD29 I/O
AD30 I/O
AD31 I/O
AD32 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
AD33 I/O
AD34 I/O
AE1 VDD
AE2 NC
AE3 I/O
AE4 I/O
AE5 I/O
AE6 I/O
AE7 I/O
AE8 I/O
AE9 I/O
AE10 GND
AE11 I/O
AE12 I/O
AE13 I/O
AE14 I/O
AE15 I/O
AE16 I/O
AE17 I/O
AE18 I/O
AE19 I/O
AE20 I/O
AE21 I/O
AE22 I/O
AE23 I/O
AE24 I/O
AE25 GND
AE26 I/O
AE27 I/O
AE28 I/O
AE29 I/O
AE30 I/O
AE31 I/O
AE32 I/O
AE33 NC
AE34 VDD
AF1 VDD
1152-Pin FBGA
Pin
Number
APA1000
Function
AF2 I/O
AF3 GND
AF4 I/O
AF5 I/O
AF6 I/O
AF7 VDDP
AF8 I/O
AF9 VDD
AF10 I/O
AF11 VDDP
AF12 I/O
AF13 I/O
AF14 I/O
AF15 I/O
AF16 I/O
AF17 I/O
AF18 I/O
AF19 I/O
AF20 I/O
AF21 I/O
AF22 I/O
AF23 I/O
AF24 VDDP
AF25 TCK
AF26 VDD
AF27 TRST
AF28 VDDP
AF29 I/O
AF30 I/O
AF31 I/O
AF32 GND
AF33 I/O
AF34 VDD
AG1 VDD
AG2 NC
AG3 I/O
AG4 VDD
1152-Pin FBGA
Pin
Number
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-76 v5.9
AG5 I/O
AG6 I/O
AG7 I/O
AG8 GND
AG9 I/O
AG10 I/O
AG11 I/O
AG12 I/O
AG13 I/O
AG14 I/O
AG15 I/O
AG16 I/O
AG17 I/O
AG18 I/O
AG19 I/O
AG20 I/O
AG21 I/O
AG22 I/O
AG23 I/O
AG24 I/O
AG25 I/O
AG26 I/O
AG27 GND
AG28 I/O
AG29 I/O
AG30 I/O
AG31 VDD
AG32 I/O
AG33 NC
AG34 VDD
AH1 VDD
AH2 I/O
AH3 GND
AH4 I/O
AH5 VDDP
AH6 I/O
AH7 VDD
1152-Pin FBGA
Pin
Number
APA1000
Function
AH8 I/O
AH9 VDDP
AH10 I/O
AH11 I/O
AH12 I/O
AH13 I/O
AH14 I/O
AH15 I/O
AH16 I/O
AH17 I/O
AH18 I/O
AH19 I/O
AH20 I/O
AH21 I/O
AH22 I/O
AH23 I/O
AH24 I/O
AH25 I/O
AH26 VDDP
AH27 I/O
AH28 VDD
AH29 TDO
AH30 VDDP
AH31 VPN
AH32 GND
AH33 I/O
AH34 VDD
AJ1 I/O
AJ2 NC
AJ3 I/O
AJ4 VDD
AJ5 I/O
AJ6 GND
AJ7 I/O
AJ8 I/O
AJ9 I/O
AJ10 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
AJ11 I/O
AJ12 I/O
AJ13 I/O
AJ14 I/O
AJ15 I/O
AJ16 I/O
AJ17 I/O
AJ18 I/O
AJ19 I/O
AJ20 I/O
AJ21 I/O
AJ22 I/O
AJ23 I/O
AJ24 I/O
AJ25 I/O
AJ26 I/O
AJ27 I/O
AJ28 I/O
AJ29 GND
AJ30 RCK
AJ31 VDD
AJ32 I/O
AJ33 NC
AJ34 NC
AK1 GND
AK2 GND
AK3 GND
AK4 I/O
AK5 VDD
AK6 I/O
AK7 VDDP
AK8 I/O
AK9 I/O
AK10 I/O
AK11 I/O
AK12 I/O
AK13 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
AK14 I/O
AK15 I/O
AK16 I/O
AK17 I/O
AK18 I/O
AK19 I/O
AK20 I/O
AK21 I/O
AK22 I/O
AK23 I/O
AK24 I/O
AK25 I/O
AK26 I/O
AK27 I/O
AK28 VDDP
AK29 TDI
AK30 VDD
AK31 VPP
AK32 GND
AK33 GND
AK34 GND
AL1 GND
AL2 GND
AL3 GND
AL4 GND
AL5 I/O
AL6 VDD
AL7 I/O
AL8 VDD
AL9 I/O
AL10 I/O
AL11 I/O
AL12 I/O
AL13 I/O
AL14 I/O
AL15 I/O
AL16 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-77
AL17 I/O
AL18 I/O
AL19 I/O
AL20 I/O
AL21 I/O
AL22 I/O
AL23 I/O
AL24 I/O
AL25 I/O
AL26 I/O
AL27 VDD
AL28 I/O
AL29 VDD
AL30 TMS
AL31 GND
AL32 GND
AL33 GND
AL34 GND
AM1 GND
AM2 GND
AM3 NC
AM4 GND
AM5 GND
AM6 I/O
AM7 GND
AM8 I/O
AM9 GND
AM10 I/O
AM11 I/O
AM12 I/O
AM13 I/O
AM14 I/O
AM15 I/O
AM16 I/O
AM17 I/O
AM18 I/O
AM19 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
AM20 I/O
AM21 I/O
AM22 I/O
AM23 I/O
AM24 I/O
AM25 I/O
AM26 GND
AM27 I/O
AM28 GND
AM29 I/O
AM30 GND
AM31 GND
AM32 NC
AM33 GND
AM34 GND
AN1 NC
AN2 NC
AN3 GND
AN4 GND
AN5 GND
AN6 NC
AN7 I/O
AN8 NC
AN9 I/O
AN10 NC
AN11 I/O
AN12 GND
AN13 I/O
AN14 VDDP
AN15 VDDP
AN16 I/O
AN17 GND
AN18 GND
AN19 I/O
AN20 VDDP
AN21 VDDP
AN22 I/O
1152-Pin FBGA
Pin
Number
APA1000
Function
AN23 GND
AN24 I/O
AN25 NC
AN26 I/O
AN27 NC
AN28 I/O
AN29 NC
AN30 GND
AN31 GND
AN32 GND
AN33 NC
AN34 NC
AP2 NC
AP3 GND
AP4 GND
AP5 GND
AP6 I/O
AP7 VDD
AP8 VDD
AP9 VDD
AP10 VDD
AP11 I/O
AP12 GND
AP13 I/O
AP14 VDDP
AP15 VDDP
AP16 I/O
AP17 GND
AP18 GND
AP19 I/O
AP20 VDDP
AP21 VDDP
AP22 I/O
AP23 GND
AP24 I/O
AP25 VDD
AP26 VDD
1152-Pin FBGA
Pin
Number
APA1000
Function
AP27 VDD
AP28 VDD
AP29 I/O
AP30 GND
AP31 GND
AP32 GND
AP33 NC
1152-Pin FBGA
Pin
Number
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-78 v5.9
624-Pin CCGA/LGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/solutions/package/docs.aspx.
Side View
e
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1234567 8910 11 1213 14 15 16 17 18 19 20 21 22 23 2524
e
A1 Corner
Index Area
A2
A1
b
E1
E
Top View
Bottom View
D1
DA
ProASICPLUS Flash Family FPGAs
v5.9 3-79
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
A2 I/O I/O
A3 I/O I/O
A4 I/O I/O
A5 I/O I/O
A6 I/O I/O
A7 I/O I/O
A8 I/O I/O
A9 I/O I/O
A10 I/O I/O
A11 I/O I/O
A12 I/O I/O
A13 I/O I/O
A14 I/O I/O
A15 I/O I/O
A16 I/O I/O
A17 I/O I/O
A18 I/O I/O
A19 I/O I/O
A20 I/O I/O
A21 I/O I/O
A22 I/O I/O
A23 I/O I/O
A24 VDDP VDDP
A25 GND GND
B1 I/O I/O
B2 GND GND
B3 VDDP VDDP
B4 I/O I/O
B5 I/O I/O
B6 I/O I/O
B7 I/O I/O
B8 I/O I/O
B9 I/O I/O
B10 I/O I/O
B11 I/O I/O
B12 I/O I/O
B13 I/O I/O
B14 I/O I/O
B15 I/O I/O
B16 I/O I/O
B17 I/O I/O
B18 I/O I/O
B19 I/O I/O
B20 I/O I/O
B21 I/O I/O
B22 I/O I/O
B23 VDD VDD
B24 GND GND
B25 VDDP VDDP
C1 I/O I/O
C2 VDDP VDDP
C3 GND GND
C4 VDD VDD
C5 I/O I/O
C6 I/O I/O
C7 GND GND
C8 I/O I/O
C9 I/O I/O
C10 I/O I/O
C11 I/O I/O
C12 I/O I/O
C13 I/O I/O
C14 I/O I/O
C15 I/O I/O
C16 I/O I/O
C17 I/O I/O
C18 I/O I/O
C19 GND GND
C20 I/O I/O
C21 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
C22 I/O I/O
C23 GND GND
C24 VDD VDD
C25 I/O I/O
D1 I/O I/O
D2 I/O I/O
D3 VDD VDD
D4 GND GND
D5 I/O I/O
D6 I/O I/O
D7 I/O I/O
D8 I/O I/O
D9 I/O I/O
D10 I/O I/O
D11 GND GND
D12 I/O I/O
D13 I/O I/O
D14 I/O I/O
D15 GND GND
D16 I/O I/O
D17 I/O I/O
D18 I/O I/O
D19 I/O I/O
D20 I/O I/O
D21 I/O I/O
D22 I/O I/O
D23 I/O I/O
D24 I/O I/O
D25 I/O I/O
E1 I/O I/O
E2 I/O I/O
E3 I/O I/O
E4 I/O I/O
E5 I/O I/O
E6 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-80 v5.9
E7 I/O I/O
E8 I/O I/O
E9 I/O I/O
E10 I/O I/O
E11 I/O I/O
E12 I/O I/O
E13 I/O I/O
E14 I/O I/O
E15 I/O I/O
E16 I/O I/O
E17 I/O I/O
E18 I/O I/O
E19 I/O I/O
E20 I/O I/O
E21 I/O I/O
E22 I/O I/O
E23 I/O I/O
E24 I/O I/O
E25 I/O I/O
F1 I/O I/O
F2 I/O I/O
F3 I/O I/O
F4 I/O I/O
F5 I/O I/O
F6 I/O I/O
F7 I/O I/O
F8 GND GND
F9 I/O I/O
F10 I/O I/O
F11 I/O I/O
F12 I/O I/O
F13 I/O I/O
F14 I/O I/O
F15 I/O I/O
F16 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
F17 I/O I/O
F18 GND GND
F19 I/O I/O
F20 I/O I/O
F21 I/O I/O
F22 I/O I/O
F23 I/O I/O
F24 I/O I/O
F25 I/O I/O
G1 I/O I/O
G2 I/O I/O
G3 I/O I/O
G4 I/O I/O
G5 I/O I/O
G6 I/O I/O
G7 I/O I/O
G8 I/O I/O
G9 I/O I/O
G10 I/O I/O
G11 I/O I/O
G12 I/O I/O
G13 I/O I/O
G14 I/O I/O
G15 I/O I/O
G16 I/O I/O
G17 I/O I/O
G18 I/O I/O
G19 I/O I/O
G20 I/O I/O
G21 I/O I/O
G22 I/O I/O
G23 I/O I/O
G24 I/O I/O
G25 I/O I/O
H1 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
H2 I/O I/O
H3 GND GND
H4 I/O I/O
H5 I/O I/O
H6 I/O I/O
H7 I/O I/O
H8 VDDP VDDP
H9 VDDP VDDP
H10 VDDP VDDP
H11 VDDP VDDP
H12 VDDP VDDP
H13 VDDP VDDP
H14 VDDP VDDP
H15 VDDP VDDP
H16 VDDP VDDP
H17 VDDP VDDP
H18 VDDP VDDP
H19 I/O I/O
H20 I/O I/O
H21 I/O I/O
H22 I/O I/O
H23 GND GND
H24 I/O I/O
H25 I/O I/O
J1 I/O I/O
J2 I/O I/O
J3 I/O I/O
J4 I/O I/O
J5 I/O I/O
J6 GND GND
J7 I/O I/O
J8 VDDP VDDP
J9 GND GND
J10 GND GND
J11 GND GND
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-81
J12 GND GND
J13 GND GND
J14 GND GND
J15 GND GND
J16 GND GND
J17 GND GND
J18 VDDP VDDP
J19 I/O I/O
J20 GND GND
J21 I/O I/O
J22 I/O I/O
J23 I/O I/O
J24 I/O I/O
J25 I/O I/O
K1 I/O I/O
K2 I/O I/O
K3 I/O I/O
K4 I/O I/O
K5 I/O I/O
K6 I/O I/O
K7 I/O I/O
K8 VDDP VDDP
K9 GND GND
K10 VDD VDD
K11 VDD VDD
K12 VDD VDD
K13 VDD VDD
K14 VDD VDD
K15 VDD VDD
K16 VDD VDD
K17 GND GND
K18 VDDP VDDP
K19 I/O I/O
K20 I/O I/O
K21 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
K22 I/O I/O
K23 I/O I/O
K24 I/O I/O
K25 I/O I/O
L1 I/O I/O
L2 I/O I/O
L3 I/O I/O
L4 I/O I/O
L5 I/O I/O
L6 I/O I/O
L7 I/O I/O
L8 VDDP VDDP
L9 GND GND
L10 VDD VDD
L11 GND GND
L12 GND GND
L13 GND GND
L14 GND GND
L15 GND GND
L16 VDD VDD
L17 GND GND
L18 VDDP VDDP
L19 I/O I/O
L20 I/O I/O
L21 I/O I/O
L22 I/O I/O
L23 I/O I/O
L24 I/O I/O
L25 I/O I/O
M1 I/O I/O
M2 I/O I/O
M3 I/O I/O
M4 AGND AGND
M5 NPECL1 NPECL1
M6 I/O / GL2 I/O / GL2
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
M7 I/O / GLMX1 I/O / GLMX1
M8 VDDP VDDP
M9 GND GND
M10 VDD VDD
M11 GND GND
M12 GND GND
M13 GND GND
M14 GND GND
M15 GND GND
M16 VDD VDD
M17 GND GND
M18 VDDP VDDP
M19 I/O / GLMX2 I/O / GLMX2
M20 I/O / GL4 I/O / GL4
M21 NPECL2 NPECL2
M22 AGND AGND
M23 I/O I/O
M24 I/O I/O
M25 I/O I/O
N1 I/O I/O
N2 I/O I/O
N3 I/O I/O
N4 AVDD AVDD
N5 PPECL1 /
Input
PPECL1 /
Input
N6 I/O / GL1 I/O / GL1
N7 I/O I/O
N8 VDDP VDDP
N9 GND GND
N10 VDD VDD
N11 GND GND
N12 GND GND
N13 GND GND
N14 GND GND
N15 GND GND
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-82 v5.9
N16 VDD VDD
N17 GND GND
N18 VDDP VDDP
N19 I/O I/O
N20 I/O / GL3 I/O / GL3
N21 PPECL2 /
Input
PPECL2 /
Input
N22 AVDD AVDD
N23 I/O I/O
N24 I/O I/O
N25 I/O I/O
P1 I/O I/O
P2 I/O I/O
P3 I/O I/O
P4 GND GND
P5 I/O I/O
P6 I/O I/O
P7 I/O I/O
P8 VDDP VDDP
P9 GND GND
P10 VDD VDD
P11 GND GND
P12 GND GND
P13 GND GND
P14 GND GND
P15 GND GND
P16 VDD VDD
P17 GND GND
P18 VDDP VDDP
P19 I/O I/O
P20 I/O I/O
P21 I/O I/O
P22 GND GND
P23 I/O I/O
P24 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
P25 I/O I/O
R1 I/O I/O
R2 I/O I/O
R3 I/O I/O
R4 I/O I/O
R5 I/O I/O
R6 I/O I/O
R7 I/O I/O
R8 VDDP VDDP
R9 GND GND
R10 VDD VDD
R11 GND GND
R12 GND GND
R13 GND GND
R14 GND GND
R15 GND GND
R16 VDD VDD
R17 GND GND
R18 VDDP VDDP
R19 I/O I/O
R20 I/O I/O
R21 I/O I/O
R22 I/O I/O
R23 I/O I/O
R24 I/O I/O
R25 I/O I/O
T1 I/O I/O
T2 I/O I/O
T3 I/O I/O
T4 I/O I/O
T5 I/O I/O
T6 I/O I/O
T7 I/O I/O
T8 VDDP VDDP
T9 GND GND
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
T10 VDD VDD
T11 VDD VDD
T12 VDD VDD
T13 VDD VDD
T14 VDD VDD
T15 VDD VDD
T16 VDD VDD
T17 GND GND
T18 VDDP VDDP
T19 I/O I/O
T20 I/O I/O
T21 I/O I/O
T22 I/O I/O
T23 I/O I/O
T24 I/O I/O
T25 I/O I/O
U1 I/O I/O
U2 I/O I/O
U3 I/O I/O
U4 I/O I/O
U5 I/O I/O
U6 GND GND
U7 I/O I/O
U8 VDDP VDDP
U9 GND GND
U10 GND GND
U11 GND GND
U12 GND GND
U13 GND GND
U14 GND GND
U15 GND GND
U16 GND GND
U17 GND GND
U18 VDDP VDDP
U19 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 3-83
U20 GND GND
U21 I/O I/O
U22 I/O I/O
U23 I/O I/O
U24 I/O I/O
U25 I/O I/O
V1 I/O I/O
V2 I/O I/O
V3 GND GND
V4 I/O I/O
V5 I/O I/O
V6 I/O I/O
V7 I/O I/O
V8 VDDP VDDP
V9 VDDP VDDP
V10 VDDP VDDP
V11 VDDP VDDP
V12 VDDP VDDP
V13 VDDP VDDP
V14 VDDP VDDP
V15 VDDP VDDP
V16 VDDP VDDP
V17 VDDP VDDP
V18 VDDP VDDP
V19 RCK RCK
V20 I/O I/O
V21 I/O I/O
V22 I/O I/O
V23 GND GND
V24 I/O I/O
V25 I/O I/O
W1 I/O I/O
W2 I/O I/O
W3 I/O I/O
W4 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
W5 I/O I/O
W6 I/O I/O
W7 I/O I/O
W8 I/O I/O
W9 I/O I/O
W10 I/O I/O
W11 I/O I/O
W12 I/O I/O
W13 I/O I/O
W14 I/O I/O
W15 I/O I/O
W16 I/O I/O
W17 I/O I/O
W18 I/O I/O
W19 TMS TMS
W20 TDO TDO
W21 I/O I/O
W22 I/O I/O
W23 I/O I/O
W24 I/O I/O
W25 I/O I/O
Y1 I/O I/O
Y2 I/O I/O
Y3 I/O I/O
Y4 I/O I/O
Y5 I/O I/O
Y6 I/O I/O
Y7 I/O I/O
Y8 GND GND
Y9 I/O I/O
Y10 I/O I/O
Y11 I/O I/O
Y12 I/O I/O
Y13 I/O I/O
Y14 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
Y15 I/O I/O
Y16 I/O I/O
Y17 GND GND
Y18 I/O I/O
Y19 TCK TCK
Y20 VPP VPP
Y21 VPN VPN
Y22 I/O I/O
Y23 I/O I/O
Y24 I/O I/O
Y25 I/O I/O
AA1 I/O I/O
AA2 I/O I/O
AA3 I/O I/O
AA4 I/O I/O
AA5 I/O I/O
AA6 I/O I/O
AA7 I/O I/O
AA8 I/O I/O
AA9 I/O I/O
AA10 I/O I/O
AA11 I/O I/O
AA12 I/O I/O
AA13 I/O I/O
AA14 I/O I/O
AA15 I/O I/O
AA16 I/O I/O
AA17 I/O I/O
AA18 I/O I/O
AA19 I/O I/O
AA20 TDI TDI
AA21 TRST TRST
AA22 I/O I/O
AA23 I/O I/O
AA24 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
3-84 v5.9
AA25 I/O I/O
AB1 I/O I/O
AB2 I/O I/O
AB3 I/O I/O
AB4 I/O I/O
AB5 I/O I/O
AB6 I/O I/O
AB7 I/O I/O
AB8 I/O I/O
AB9 I/O I/O
AB10 I/O I/O
AB11 GND GND
AB12 I/O I/O
AB13 I/O I/O
AB14 I/O I/O
AB15 GND GND
AB16 I/O I/O
AB17 I/O I/O
AB18 I/O I/O
AB19 I/O I/O
AB20 I/O I/O
AB21 I/O I/O
AB22 I/O I/O
AB23 I/O I/O
AB24 I/O I/O
AB25 I/O I/O
AC1 I/O I/O
AC2 VDD VDD
AC3 GND GND
AC4 I/O I/O
AC5 I/O I/O
AC6 I/O I/O
AC7 GND GND
AC8 I/O I/O
AC9 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
AC10 I/O I/O
AC11 I/O I/O
AC12 I/O I/O
AC13 I/O I/O
AC14 I/O I/O
AC15 I/O I/O
AC16 I/O I/O
AC17 I/O I/O
AC18 I/O I/O
AC19 GND GND
AC20 I/O I/O
AC21 I/O I/O
AC22 I/O I/O
AC23 I/O I/O
AC24 VDD VDD
AC25 I/O I/O
AD1 VDDP VDDP
AD2 GND GND
AD3 VDD VDD
AD4 I/O I/O
AD5 I/O I/O
AD6 I/O I/O
AD7 I/O I/O
AD8 I/O I/O
AD9 I/O I/O
AD10 I/O I/O
AD11 I/O I/O
AD12 I/O I/O
AD13 I/O I/O
AD14 I/O I/O
AD15 I/O I/O
AD16 I/O I/O
AD17 I/O I/O
AD18 I/O I/O
AD19 I/O I/O
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
AD20 I/O I/O
AD21 I/O I/O
AD22 I/O I/O
AD23 VDD VDD
AD24 GND GND
AD25 VDDP VDDP
AE1 GND GND
AE2 VDDP VDDP
AE3 I/O I/O
AE4 I/O I/O
AE5 I/O I/O
AE6 I/O I/O
AE7 I/O I/O
AE8 I/O I/O
AE9 I/O I/O
AE10 I/O I/O
AE11 I/O I/O
AE12 I/O I/O
AE13 I/O I/O
AE14 I/O I/O
AE15 I/O I/O
AE16 I/O I/O
AE17 I/O I/O
AE18 I/O I/O
AE19 I/O I/O
AE20 I/O I/O
AE21 I/O I/O
AE22 I/O I/O
AE23 I/O I/O
AE24 VDDP VDDP
AE25 GND GND
624-Pin CCGA/LGA
Pin
Number
APA600
Function
APA1000
Function
ProASICPLUS Flash Family FPGAs
v5.9 4-1
Datasheet Information
List of Changes
The following table lists critical changes that were made in the current version of the document.
Previous version Changes in current version (v5.9) Page
v5.8
(June 2009)
The –F speed grade is no longer supported and was removed from the datasheet. N/A
A note regarding RoHS compliant packages was added to the "Device Resources" table.iii
v5.7
(September 2008)
The "PLL Electrical Specifications" table was updated significantly. Changes were made to the
Input, VCO (Voltage Controlled Oscillator), and Output frequencies, and the acquisition time.
2-18
Table 2-10 PLL I/O Constraints is new. 2-19
Table 2-23 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)
Applies to Commercial and Industrial Temperature Only is the same table that was in v5.7, but it
now only applies to commercial and industrial temperature ranges. Table 2-24 DC Electrical
Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) Applies to Military Temperature
and MIL-STD-883B Temperature Only is based on Ta b le 2- 23 but Tab le 2 -24 only applies to
military temperature. The VOH and VOL specifications were updated in Ta ble 2 -24 , and changes
have been made to the drive currents at which 3.3 V VOH and VOL voltage levels are measured
and are now split by slew rate. In addition in Ta b l e 2 - 2 4 , the maximum VIL specification has
changed from 0.8 V to 0.7 V for 3.3 V Schmitt-trigger input operation.
2-38
v5.6
(August 2008)
VOH and VOL data in Table 2-24 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD =
2.5 V ±0.2 V) Applies to Military Temperature and MIL-STD-883B Temperature Only was
changed back to the data in v5.5.
2-38
v5.5
(February 2007)
VOH and VOL data was updated in Table 2-24 DC Electrical Specifications (VDDP = 3.3 V ±0.3
V and VDD = 2.5 V ±0.2 V) Applies to Military Temperature and MIL-STD-883B Temperature
Only.
2-38
v5.4
(October 2006)
A statement about single cell and cascaded cell timing diagrams was added to the "Enclosed
Timing Diagrams – FIFO Mode:" section.
2-65
The following pins were updated in the "144-FBGA Pin" table:
Pin Number Updated Function
C2 I/O / GL1
F1 I/O / GL2
3-38
v5.3 The heading, MIL-STD-883B, and note 4 were added to the "Device Resources" table.iii
(May 2006) The "Temperature Grade Offerings" table was updated to include the military (M) temperature
grade in the following device/packages:
APA300-FG144
APA300-FG256
APA600-FG256
APA600-FG484
APA600-FG676
APA1000-FG896
iv
v5.2 90° and 270° phase shift support was removed from the datasheet. N/A
(December 2005) The "Ordering Information" section was updated to include RoHS information. ii
The last paragraph of the "Boundary Scan (JTAG)" section was updated. 2-8
The Output Frequency Range in the "Timing Control and Characteristics" section.2-10
The title for Table 2-19 Military Temperature Grade Product Performance Retention was
updated.
2-32
The caption was updated in Figure 2-45 FIFO Reset.2-72
ProASICPLUS Flash Family FPGAs
4-2 v5.9
v5.1 MIL-STD-883 was added to the datasheet. N/A
VCC and VCCI were changed to VDDP
.N/A
Table 2-9 Temperature and Voltage Derating Factors was updated to include 135°C. 2-17
v5.0 In the "208-Pin PQFP" table, the following pin numbers have been updated:
Pin Number Function
24 I/O / GL2
30 I/O / GL1
3-6
In the "208-Pin CQFP" table, the following pin numbers have been updated:
Pin Number Function
23 I/O / GLMX1
24 I/O / GL2
28 PPECL1 / Input
30 I/O / GL1
128 I/O / GL3
129 PPECL2 / Input
134 I/O / GL4
135 I/O / GLMX2
3-13
v4.1 In the "624-Pin CCGA/LGA" table, the following pin numbers have been updated:
Pin Number Function
M6 I/O / GL2
M7 I/O / GLMX1
M19 I/O / GLMX2
M20 I/O / GL4
N5 PPECL1 / Input
N6 I/O / GL1
N20 I/O / GL3
N21 PPECL2 / Input
3-79
MIL-STD 883B data will be added into this datasheet after the MIL-STD 883B qualification is
complete.
Green packaging information in the "Ordering Information" section was updated. ii
The "Temperature Grade Offerings" table was updated for the CG624. iv
The "Ordering Information" section was updated. ii
The "Live at Power-Up" section is new. 1-3
Note 2 in Figure 2-1 Ultra-Fast Local Resources was updated. 2-1
The 3.3 V column in Ta ble 2 -3 was updated. 2-6
The "Input/Output Blocks" section was updated. 2-6
The note was removed from Table 2-4 I/O Features.2-6
The "Power-Up Sequencing" section was updated. 2-7
The first bullet in the "ProASICPLUS Clock Management System" section was updated. 2-10
The first paragraph in the "Performance Retention" section was updated. 2-31
Mixed Voltage was removed from Table 2-20 Recommended Maximum Operating
Conditions Programming and PLL Supplies.
2-33
Table 2-21 Recommended Operating Conditions was updated. 2-33
Mixed Mode Voltage was removed from Tab l e 2- 22 and the Military/MIL-STD-883B column was
updated.
2-34
All tables from Table 2-27 Worst-Case Commercial Conditions to Table 2-47 Worst-Case
Military Conditions1 were updated.
2-42 to
2-51
Table 2-50 JTAG Switching Characteristics is new. 2-53
Previous version Changes in current version (v5.9) Page
ProASICPLUS Flash Family FPGAs
v5.9 4-3
v4.1
(continued)
Figure 2-27 JTAG Operation Timing is new. 2-53
Note 1 in Table 2-52 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial was
updated.
2-55
The notes in Table 2-56 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/Industrial
were updated.
2-59
A note was added to Figure 2-45 FIFO Reset.2-72
A note was added to Table 2-68 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/
Industrial.
2-72
The "TRST Test Reset Input" section was updated in the "Pin Description" section.2-73
The "624-Pin CCGA/LGA" section was updated for the APA600 and APA1000. Please review all
pin data.
3-78
v4.0 Figure 2-17 Using the PLL for Clock Deskewing was updated. 2-16
Table 2-48 Recommended Operating Conditions was updated. 2-52
The "1152-Pin FBGA" figure was updated. 3-69
Pin names were changed to more accurately reflect the multiple functions supported by each
pin.
v3.5 The ProASICPLUS and ProASICPLUS Military/Aerospace datasheets were combined. This
document now supports Commercial, Industrial, and Military Temperature devices.
Table 1 ProASICPLUS Product Profile was updated. i
The "Ordering Information" section was updated. ii
"Plastic Device Resources" table was updated. ii
The Long Term Jitter Peak-to-Peak Max. in the "PLL Electrical Specifications" table was updated. 2-18
The "Calculating Typical Power Dissipation" section was updated. 2-28
"Performance Retention" section 2-31
Table 2-19 Military Temperature Grade Product Performance Retention 2-32
Table 2-21 Recommended Operating Conditions was updated. 2-33
Table 2-22 DC Electrical Specifications (VDDP = 2.5 V ±0.2V) was updated. 2-34
Table 2-24 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) Applies
to Military Temperature and MIL-STD-883B Temperature Only was updated.
2-38
Table 2-48 Recommended Operating Conditions was updated. 2-52
v3.4 The "Temperature Grade Offerings" table is new. iv
The "Speed Grade and Temperature Matrix" table is new. iv
The "ProASICPLUS Clock Management System" section was updated. 2-10
The "Lock Signal" section was updated. 2-13
The "PLL Electrical Specifications" table was updated. 2-18
The "User Security" section was updated. 2-20
The "Design Environment" section was updated. 2-25
Table 2-16 Package Thermal Characteristics was updated. 2-27
The "Asynchronous FIFO Full and Empty Transitions" section was updated. 2-65
The "AVDD PLL Power Supply" section in the "Pin Description" section was updated. 2-73
v3.3 The "144-Pin TQFP" table was updated. The following pins changed:
Pin 15 = GLMX1
Pin 16 = GL1
Pin 21 = GL2
Pin 88 = GL3
Pin93 = GL4
Pin 94 = GLMX2
3-4
Previous version Changes in current version (v5.9) Page
ProASICPLUS Flash Family FPGAs
4-4 v5.9
v3.2 The "ProASICPLUS Clock Management System" section was updated. 2-10
Figure 2-11 PLL Block – Top-Level View and Detailed PLL Block Diagram was updated. 2-11
Table 2-7 Clock-Conditioning Circuitry MUX Settings is new. 2-12
Figure 2-17 Using the PLL for Clock Deskewing was updated. 2-16
The "PLL Electrical Specifications" section was updated. 2-18
Figure 2-23 Tristate Buffer Delays was updated. 2-42
In the "Calculating Typical Power Dissipation" section, P9 was changed to 7.5 mW. 2-28
The "Programming, Storage, and Operating Limits" section was updated. 2-31
The "Recommended Design Practice for VPN/VPP" section was updated. 2-74
v3.1 The datasheet was updated to include references to guidelines concerning the use of certain
ProASICPLUS I/O standards.
v3.0 In Table 2-2 Array Coordinates, the Memory Rows – Bottom coordinates were changed. 2-5
Figure 2-5 Core Cell Coordinates for the APA1000 was updated. 2-5
The VIL Minimum in the Table 2-24 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD
= 2.5 V ±0.2 V) Applies to Military Temperature and MIL-STD-883B Temperature Only was
changed from 0.3 to –0.3.
2-38
In the "Output Buffer Delays" section, the OB25LPLL tDHL Standard changed to 5.3. 2-44
In the "Sample Macrocell Library Listing" section, the AND2 Standard maximum changed to 0.7
and the –F maximum changed to 0.8.
2-51
v2.0 The Table 1 ProASICPLUS Product Profile was updated. i
The "Ordering Information" section was updated. ii
The "Plastic Device Resources" section was updated. ii
The "ProASICPLUS Architecture" section was updated. 1-2
Table 2-2 Array Coordinates was updated. 2-5
Figure 2-5 Core Cell Coordinates for the APA1000 is new. 2-13
Figure 2-8 LVPECL High and Low Threshold Values is new. 2-7
The Introduction section in the "ProASICPLUS Clock Management System" section was updated. 2-10
The "Physical Implementation" section was updated. 2-10
The "Functional Description" section was updated. 2-10
Figure 2-11 PLL Block – Top-Level View and Detailed PLL Block Diagram through Figure 2-
17 Using the PLL for Clock Deskewing were updated.
2-11 to 2-16
The "PLL Electrical Specifications" section was updated. 2-18
Figure 2-22 Multi-Port Memory Usage was updated. 2-24
The "Calculating Typical Power Dissipation" section was updated. 2-28
The "Nominal Supply Voltages’ section was updated. 1-34
The Table 2-24 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)
Applies to Military Temperature and MIL-STD-883B Temperature Only was updated.
2-38
The "Tristate Buffer Delays" section was updated. 2-42
The "Output Buffer Delays" section was updated. 2-44
The"Input Buffer Delays" section was updated. 2-46
"Global Routing Skew" section was updated. 2-50
The"Sample Macrocell Library Listing" section was updated. 2-51
The "Pin Description" section was updated. 2-73
Previous version Changes in current version (v5.9) Page
ProASICPLUS Flash Family FPGAs
v5.9 4-5
v2.0
(continued)
The following pins have been changed in the "100-Pin TQFP" table:
Pin Number Function Pin Number Function
10 I/O (GLMX1) 60 GL3
11 GL1 61 PPECL2 (I/P)
13 NPECL1 63 NPECL2
15 PPECL1(I/P) 65 GL4
16 GL2 66 I/O (GLMX2)
3-1
"144-Pin TQFP" section is new. 3-3
The following pins have been changed in the "208-Pin PQFP" table:
Pin Number Function Pin Number Function
23 I/O (GLMX1) 128 GL3
24 GL1 129 PPECL2 (I/P)
26 NPECL1 132 NPECL2
28 PPECL1 (I/P) 134 GL4
30 GL2 135 I/O (GLMX2)
3-5
The following pins have been changed in the "456-Pin PBGA" table:
Pin Number Function Pin Number Function
M1 GL1 N22 NPECL2
M2 GL2 N23 GL3
M22 GL4 N25 I/O (GLMX2)
N2 I/O (GLMX1) P5 NPECL1
N4 PPECL1 (I/P) P26 PPECL2 (I/P)
3-22
The following pins have been changed in the "144-Pin FBGA" table:
Pin Number Function Pin Number Function
C2 GL2 F9 GL4
D12 I/O (GLMX2 )F11 PPECL2 (I/P
E11 NPECL2 F12 GL3
F1 GL1 G1 PPECL1 (I/P)
F3 I/O (GLMX1) G4 NPECL1
3-37
The following pins have been changed in the "256-Pin FBGA" table:
Pin Number Function Pin Number Function
H1 GL1 H16 GL4
H2 NPECL1 J1 GL2
H3 I/O (GLMX1) J2 PPECL1 (I/P)
H13 I/O (GLMX2) J13 PPECL2 (I/P)
H14 NPECL2 J16 GL3
3-40
The following pins have been changed in the "484-Pin FBGA" table:
Pin Number Function Pin Number Function
L4 GL1 L19 GL4
L5 NPECL1 M4 GL2
L6 I/O (GLMX1) M5 PPECL1 (I/P)
L16 I/O (GLMX2) M16 PPECL2 (I/P)
L17 NPECL2 M19 GL3
3-45
The following pins have been changed in the "676-Pin FBGA" table:
Pin Number Function Pin Number Function
N1 GL1 N25 GL4
N3 I/O (GLMX1) P1 GL2
N5 NPECL1 P5 PPECL1 (I/P)
N22 GL3 P22 I/O (GLMX2)
N24 NPECL2 P24 PPECL2 (I/P)
3-51
The following pins have been changed in the "896-Pin FBGA" table:
Pin Number Function Pin Number Function
R2 I/O (GLMX1) T3 GL2
R4 NPECL1 T4 PPECL1 (I/P)
R5 GL1 T26 PPECL2 (I/P)
R27 NPECL2 T27 GL4
R29 I/O (GLMX2) T28 GL3
3-59
Previous version Changes in current version (v5.9) Page
ProASICPLUS Flash Family FPGAs
4-6 v5.9
v2.0
(continued)
The following pins have been changed in the "1152-Pin FBGA" table:
Pin Number Function Pin Number Function
U4 I/O (GLMX1) U29 NPECL2
U6 NPECL1 U31 I/O (GLMX2)
U7 GL1 V28 PPECL2 (I/P)
V5 GL2 V29 GL4
V6 PPECL1 (I/P) V30 GL3
3-69
Advance v0.7 The "ProASICPLUS Architecture" section was updated. 1-2
The "Array Coordinates" section and Table 2-2 Array Coordinates are new. 2-5
The "Power-Up Sequencing" section is new. 2-7
"I/O Features" section was updated. 2-6
The "Timing Control and Characteristics" section was updated. "Physical Implementation"
section, "Functional Description" section, "Lock Signal" section, and "PLL Configuration
Options" section are new.
2-10 to 2-13
"PLL Block – Top-Level View and Detailed PLL Block Diagram" section was updated. 2-11
Figure 2-12 Input Connectors to ProASICPLUS Clock Conditioning Circuitry was updated. 2-12
"Sample Implementations" section, "Adjustable Clock Delay" section, and the "Clock Skew
Minimization" section are new.
2-13
Figure 2-13 Using the PLL 33 MHz In, 133 MHz Outthrough and Figure 2-17 Using the PLL
for Clock Deskewing are new.
2-14 to 2-16
The "PLL Electrical Specifications" section is new. 2-18
The "Design Environment" section was updated. 2-25
Figure 2-23 Tristate Buffer Delays was updated. 2-42
The "Calculating Typical Power Dissipation" section was updated. 2-28
The "DC Electrical Specifications (VDDP = 2.5 V ±0.2V)" section was updated. 2-34
The Table 2-24 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)
Applies to Military Temperature and MIL-STD-883B Temperature Only was updated.
2-38
The "DC Specifications (3.3 V PCI Operation)1" section was updated. 2-40
The "Tristate Buffer Delays" section (the figure and table) have been updated. 2-42
The "Output Buffer Delays" section (the figure and table) have been updated. 2-44
The "Input Buffer Delays" section was updated. 2-46
The "Global Input Buffer Delays" section was updated. 2-48
The "Predicted Global Routing Delay" section was updated. 2-50
The "Global Routing Skew" section was updated. 2-50
The "Sample Macrocell Library Listing" section was updated. 2-51
The "Pin Description" section was updated. GLMX is new. 2-73
The "Recommended Design Practice for VPN/VPP" section was updated. 2-74
Pin AK31 of FG1152 for the APA1000 changed to VPP
.3-69
Advance v0.6 The "Features and Benefits" section were updated. i
The "ProASICPLUS Product Profile" section was updated. i
The "Ordering Information" section was updated. ii
The "Plastic Device Resources" was updated. ii
The "ProASICPLUS Architecture" section was updated. 1-2
Table 2-1 Clock Spines was updated. 2-4
Figure 2-11 PLL Block – Top-Level View and Detailed PLL Block Diagram was updated. 2-11
The "Design Environment" section was updated. 2-25
The "Package Thermal Characteristics" section was updated. 2-27
Previous version Changes in current version (v5.9) Page
ProASICPLUS Flash Family FPGAs
v5.9 4-7
Advance v0.6
(continued)
The "Calculating Typical Power Dissipation" section was updated. 2-28
The "Absolute Maximum Ratings*" section was updated. 2-31
The "Programming, Storage, and Operating Limits" section was updated. 2-31
The "Nominal Supply Voltages’ section was updated. 1-34
The "Recommended Operating Conditions" section was updated. 2-33
The "DC Electrical Specifications (VDDP = 2.5 V ±0.2V)" section was updated. 2-34
The "DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) Applies to
Military Temperature and MIL-STD-883B Temperature Only" section was updated.
2-38
The "Synchronous Write and Read to the Same Location" section was updated. 2-61
The "Asynchronous Write and Synchronous Read to the Same Location" section was updated. 2-62
The "Asynchronous FIFO Read" section was updated. 2-67
The "Pin Description" section has been updated. 2-73
The "Recommended Design Practice for VPN/VPP" section is new. 2-74
The "100-Pin TQFP" section is new. 3-1
The "484-Pin FBGA" section is new. 3-45
Advance v0.5 The description for the VPN pin has changed. 2-74
Advance v0.4 The "Plastic Device Resources" section has been updated. ii
Figure 2-9 ProASICPLUS JTAG Boundary Scan Test Logic Circuit and Figure 2-10 TAP
Controller State Diagram have been updated.
2-11
The "Tristate Buffer Delays" section has been updated. 2-42
The "Output Buffer Delays" section has been updated. 2-44
The "Input Buffer Delays" section has been updated. 2-46
The "Global Input Buffer Delays" section has been updated. 2-48
The "456-Pin PBGA" section has been updated. 3-22
The "676-Pin FBGA" section has been updated. 3-51
Advance v0.3 The "ProASICPLUS Product Profile" section has been changed. i
The "Plastic Device Resources" section has been updated. ii
The "ProASICPLUS I/O Power Supply Voltages" sectionhas been updated. 2-6
WDATA has ben changed to DI, and RDATA has been changed to DO to make them consistent
with the signal names found in the Macro Library Guide.
Figure 2-18 Example SRAM Block Diagrams and Figure 2-19 Basic FIFO Block Diagrams
have been updated.
2-22
and 2-23
The "Design Environment" section and Figure 2-23 Tristate Buffer Delays have been
updated.
2-25
and 2-42
The table in the "Package Thermal Characteristics" section has been updated. 2-27
The "Calculating Typical Power Dissipation" section is new. 2-28
The "Programming, Storage, and Operating Limits" section is new. 2-31
The "Nominal Supply Voltages’ section has been updated. 1-34
The "DC Electrical Specifications (VDDP = 2.5 V ±0.2V)" section was updated. 2-34
The "DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) Applies to
Military Temperature and MIL-STD-883B Temperature Only" section was updated.
2-38
The "Recommended Operating Conditions" section was updated. 2-33
The "ProASICPLUS Clock Management System" section was updated. 2-10
Figure 2-11 PLL Block – Top-Level View and Detailed PLL Block Diagram was updated. 2-11
Figure 2-10 TAP Controller State Diagram is new. 2-9
Tables 5, 6, and 7 from Advanced v0.3 were removed.
Previous version Changes in current version (v5.9) Page
ProASICPLUS Flash Family FPGAs
4-8 v5.9
Data Sheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet
Supplement." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advanced or production) containing general product
information. This brief gives an overview of specific device and family information.
Advance
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Datasheet Supplement
The datasheet supplement gives specific device information for a derivative family that differs from the general family
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and
for specifications that do not differ between the two families.
Export Administration Regulations (EAR)
The products described in this datasheet are subject to the Export Administration Regulations (EAR). They could
require an approved export license prior to export from the United States. An export includes release of product or
disclosure of technology to a foreign national inside or outside the United States.
Actel Safety Critical, Life Support, and High-Reliability Applications
Policy
The Actel products described in this advance status datasheet may not have completed Actel’s qualification process.
Actel may amend or enhance products during the product introduction and qualification process, resulting in changes
in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel
product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-
support, and other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability exclusions
relating to life-support applications. A reliability report covering all of Actel’s products is available on the Actel
website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and
lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.
Advance v0.3
(continued)
The "Memory Block SRAM Interface Signals" section was updated. 2-22
The "Memory Block FIFO Interface Signals" section was updated. 2-23
All pinout tables have been updated, and several packages are new:
208-Pin PQFP – APA150, APA300, APA450, APA600
456-Pin PBGA – APA150, APA300, APA450, APA600
144-Pin FBGA – APA150, APA300, APA450
256-Pin FBGA – APA150, APA300, APA450, APA600
676-Pin FBGA – APA600
Advance v0.1 Figure 2-20 APA1000 Memory Block Architecture has been updated. 2-24
Previous version Changes in current version (v5.9) Page
5172161-25/12.09
Actel Corporation
2061 Stierlin Court
Mountain View, CA
94043-4655
USA
Phone 650.318.4200
Fax 650.318.4600
Actel Europe Ltd.
River Court, Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540
Actel Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com
Actel Hong Kong
Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of
system and power management solutions. Power Matters. Learn more at www.actel.com.