© Semiconductor Components Industries, LLC, 2012
February, 2012 Rev. 3
1Publication Order Number:
NCP4587/D
NCP4587
150 mA, Tri-Mode, LDO
Linear Voltage Regulator
The NCP4587 is a CMOS 150 mA LDO which switches to a low
power mode under light current loads. The device automatically
switches back to a fast response mode as the output load increases
above 3 mA (typ.) or it can be placed in permanent fast mode through
a mode select pin. The family is available in a variety of packages:
SC70, SOT23 and an ultra thin (0.4 mm) small 1.2 x 1.2 mm XDFN.
Features
Operating Input Voltage Range: 1.4 V to 5.25 V
Output Voltage Range: 0.8 to 4.0 V (Available in 0.1 V steps)
Supply current: Low Power Mode – 1.0 mA
Fast Mode – 55 mA
Standby Mode – 0.1 mA
Very Low Dropout: 120 mV Typ. at 150 mA (Vout > 2.6 V)
±1% Output Voltage Accuracy (VOUT > 2 V, TJ = 25°C)
High PSRR: 70 dB at 1 kHz (Fast response mode)
Line Regulation 0.02%/V Typ.
Current Fold Back Protection
Stable with Ceramic Capacitors
Available in 1.2 x 1.2 XDFN, SC70 and SOT23 Package
These are PbFree Devices
Typical Applications
Battery Powered Equipments
Portable Communication Equipments
Cameras, Image Sensors and Camcorders
VIN VOUT
CE
GND
C1 C2
1m
VIN VOUT
NCP4587x
AE
1m
Figure 1. Typical Application Schematic
http://onsemi.com
See detailed ordering and shipping information in the package
dimensions section on page 16 of this data sheet.
ORDERING INFORMATION
SC70
CASE 419A
XX, XXX= Specific Device Code
MM = Date Code
MARKING
DIAGRAMS
XDFN6
CASE 711AA
SOT235
CASE 1212
XX
MM
XXX
XMM
1
XXXMM
1
1
NCP4587
http://onsemi.com
2
Current Limit
VIN
GND
Vref
CE
VOUT
AE
NCP4587Hxxxx
Current Limit
VIN
GND
Vref
CE
VOUT
AE
NCP4587Dxxxx
Figure 2. Simplified Schematic Block Diagram
PIN FUNCTION DESCRIPTION
Pin No.
XDFN
Pin No.
SC70
Pin No.
SOT23 Pin Name Description
4 4 1 VIN Input pin
2 2 2 GND Ground
3 5 3 CE Chip enable pin (active “H”)
6 3 5 VOUT Output pin
1 1 4 AE Auto Eco Pin
5 NC No connection
ABSOLUTE MAXIMUM RATINGS
Rating Symbol Value Unit
Input Voltage (Note 1) VIN 6.0 V
Output Voltage VOUT 0.3 to VIN + 0.3 V
Chip Enable Input VCE 0.3 to 6.0 V
Auto Eco Input VAE 0.3 to 6.0 V
Output Current IOUT 400 mA
Power Dissipation XDFN PD400 mW
Power Dissipation SC70 380
Power Dissipation SOT23 420
Maximum Junction Temperature TJ(MAX) 150 °C
Storage Temperature TSTG 55 to 125 °C
Operation Temperature TA40 to 85 °C
ESD Capability, Human Body Model (Note 2) ESDHBM 2000 V
ESD Capability, Machine Model (Note 2) ESDMM 200 V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.
2. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.
NCP4587
http://onsemi.com
3
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Characteristics, XDFN
Thermal Resistance, JunctiontoAir
RqJA 250
°C/W
Thermal Characteristics, SOT23
Thermal Resistance, JunctiontoAir
RqJA 238
°C/W
Thermal Characteristics, SC70
Thermal Resistance, JunctiontoAir
RqJA 263
°C/W
ELECTRICAL CHARACTERISTICS
40°C TA 85°C; VIN = VOUT(NOM) + 1 V or 2.5 V, whichever is greater; IOUT = 1 mA, CIN = COUT = 0.47 mF, unless otherwise noted.
Typical values are at TA = +25°C.
Parameter Test Conditions Symbol Min Typ Max Unit
Operating Input Voltage VIN 1.4 5.25 V
Output Voltage TA = +25 °C,
IOUT = 5 mA
VOUT > 2 V VOUT x0.99 x1.01 V
VOUT 2 V 20 20 mV
40°C TA 85°C,
IOUT = 5 mA
VOUT > 2 V x0.975 x1.015 V
VOUT 2 V 50 30 mV
Output Voltage Temp.
Coefficient
TA = 40 to 85°C±50 ppm/°C
Line Regulation VIN = VOUT + 0.5 V to
5 V, VIN 1.4 V
IOUT = 1 mA,
(Low Power Mode)
LineReg 0.50 %/V
IOUT = 10 mA,
(Fast Mode)
0.02 0.20
Load Regulation IOUT = 1 mA to 10 mA VOUT > 2.0 V LineReg 1.0 1.0 %
VOUT 2.0 V 20 20 mV
IOUT = 10 mA to 150 mA 18 40 mV
Dropout Voltage IOUT = 150 mA 0.8 V VOUT < 0.9 V VDO (Note 3) V
0.9 V VOUT < 1.0 V (Note 3)
1.0 V VOUT < 1.5 V 0.24 0.4
1.5 V VOUT < 2.6 V 0.19 0.25
2.6 V VOUT < 4.0 V 0.12 0.18
Output Current IOUT 150 mA
Short Current Limit VOUT = 0 V ISC 50 mA
Quiescent Current IOUT = 0 mA,
Low Power Mode
(Note 4)
VOUT 1.85 V IQ1.0 4.0 mA
VOUT > 1.85 V 1.5 4.0
Supply Current IOUT = 10 mA, Fast Mode IGND 55 mA
Standby Current VCE = 0 V, TJ = 25°C ISTB 0.1 1 mA
Fast Mode SwitchOver Current IOUT = light to heavy load IOUTH 8.0 mA
Low Power SwitchOver
Current
IOUT = heavy to light load IOUTL 1.0 2.0 mA
CE Pin Threshold Voltage CE Input Voltage “H” VCEH 1.0 V
CE Input Voltage “L” VCEL 0.4
CE Pull Down Current ICEPD 0.1 mA
3. VIN > 1.4 V condition is dominant against this specification
4. The value of quiescent current is excluding the pulldown current of CE and AE pin
NCP4587
http://onsemi.com
4
ELECTRICAL CHARACTERISTICS
40°C TA 85°C; VIN = VOUT(NOM) + 1 V or 2.5 V, whichever is greater; IOUT = 1 mA, CIN = COUT = 0.47 mF, unless otherwise noted.
Typical values are at TA = +25°C.
Parameter UnitMaxTypMinSymbolTest Conditions
AE Pin Threshold Voltage AE Input Voltage “H” VAEH 1.0 V
AE Input Voltage “L” VAEL 0.4
AE Pull Down Current IAEPD 0.1 mA
Power Supply Rejection Ratio VIN = VOUT + 1 V or 2.2 V whichever is higher,
DVIN = 0.2 Vpkpk, IOUT = 30 mA, f = 1 kHz, Fast
Mode
PSRR 70 dB
Output Noise Voltage VOUT = 1.2 V, IOUT = 30 mA, f = 10 Hz to
100 kHz
VN115 mVrms
Low Output Nch Tr. On
Resistance
VIN = 4 V, VCE = 0 V RLOW 50 W
3. VIN > 1.4 V condition is dominant against this specification
4. The value of quiescent current is excluding the pulldown current of CE and AE pin
NCP4587
http://onsemi.com
5
TYPICAL CHARACTERISTICS
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0 50 100 150 200 250 300 350 400
Figure 3. Output Voltage vs. Output Current
1.2 V Version (TA = 255C)
IOUT (mA)
VOUT (V)
VIN = 5.5 V
1.8 V
2.8 V
3.8 V
5.25 V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0 50 100 150 200 250 300
3.8 V
5.25 V
VIN = 5.5 V
Figure 4. Output Voltage vs. Output Current
2.8 V Version (TA = 255C)
IOUT (mA)
VOUT (V)
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0 30 60 90 120 150
IOUT (mA)
VDO (V)
85°C
25°C
40°C
Figure 5. Dropout Voltage vs. Output Current
1.2 V Version
0.00
0.03
0.06
0.09
0.12
0.15
0.18
0 30 60 90 120 150
IOUT (mA)
VDO (V)
Figure 6. Dropout Voltage vs. Output Current
2.8 V Version
85°C
25°C
40°C
0.2
0.4
0.6
0.8
1.0
1.2
1.4
012345
0
VIN (V)
VOUT (V)
Figure 7. Input Voltage vs. Output Voltage
1.2 V Version
IOUT = 50 mA
30 mA
1 mA
0.0
0.5
1.0
1.5
2.0
2.5
3.0
012345
VIN (V)
Figure 8. Input Voltage vs. Output Voltage
2.8 V Version
VOUT (V)
30 mA
IOUT = 50 mA
1 mA
NCP4587
http://onsemi.com
6
TYPICAL CHARACTERISTICS
1.14
1.16
1.18
1.20
1.22
1.24
40 200 20406080
TJ, JUNCTION TEMPERATURE (°C)
VOUT (V)
VIN = 2.2 V
Figure 9. Output Voltage vs. Temperature,
1.2 V Version
2.74
2.75
2.76
2.77
2.78
2.79
2.80
2.81
2.82
2.83
2.84
40 200 20406080
TJ, JUNCTION TEMPERATURE (°C)
VOUT (V)
Figure 10. Output Voltage vs. Temperature,
2.8 V Version
VIN = 3.8 V
0
10
20
30
40
50
60
70
012345
IGND (mA)
VIN (V)
Figure 11. Supply Current vs. Input Voltage,
1.2 V Version
IOUT = 0 mA
IOUT = 10 mA
0
10
20
30
40
50
60
70
012345
IGND (mA)
VIN (V)
Figure 12. Supply Current vs. Input Voltage,
2.8 V Version
IOUT = 0 mA
IOUT = 10 mA
0
20
40
60
80
100
120
140
160
0.1 1 10 100 1000
IGND (mA)
IOUT (mA)
Figure 13. Supply Current vs. Output Current,
1.2 V Version, VIN = 2.2 V, VAE = 0 V
Light to
Heavy Load
Heavy to
Light Load
0
20
40
60
80
100
120
140
160
0.1 1 10 100 1000
IGND (mA)
IOUT (mA)
Figure 14. Supply Current vs. Output Current,
2.8 V Version, VIN = 3.8 V, VAE = 0 V
Light to
Heavy Load
Heavy to
Light Load
NCP4587
http://onsemi.com
7
TYPICAL CHARACTERISTICS
40 200 20406080
0.0
0.5
1.0
1.5
2.0
2.5
3.0
IIN (mA)
TJ, JUNCTION TEMPERATURE (°C)
Figure 15. Supply Current vs. Temperature,
1.2 Version, VIN = 2.2 V, VAE = 0 V
25
30
35
40
45
50
55
IIN (mA)
TJ, JUNCTION TEMPERATURE (°C)
Figure 16. Supply Current vs. Temperature,
2.8 Version, VIN = 3.8 V, VAE = 0 V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
IIN (mA)
TJ, JUNCTION TEMPERATURE (°C)
Figure 17. Supply Current vs. Temperature,
1.2 Version, VIN = 2.2 V, VAE = 2.2 V
25
30
35
40
45
50
55
40 200 20406080
40 200 20406080
IIN (mA)
TJ, JUNCTION TEMPERATURE (°C)
Figure 18. Supply Current vs. Temperature,
2.8 Version, VIN = 3.8 V, VAE = 3.8 V
40 200 20406080
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
PSRR (dB)
FREQUENCY (kHz)
Figure 19. PSRR, 1.2 V Version, VIN = 2.2 V
IOUT = 1 mA Low
IOUT = 1 mA High
IOUT = 30 mA
IOUT = 50 mA
IOUT = 100 mA
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
PSRR (dB)
FREQUENCY (kHz)
Figure 20. PSRR, 2.8 V Version, VIN = 3.8 V
IOUT = 1 mA High
IOUT = 30 mA
IOUT = 50 mA
IOUT = 100 mA
IOUT = 1 mA Low
NCP4587
http://onsemi.com
8
TYPICAL CHARACTERISTICS
Figure 21. Output Voltage Noise, 1.2 V Version,
IOUT = 30 mA, , VIN = 2.2 V
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
0.01 0.1 1 10 100 1000
VN (mVrms/
Hz)
FREQUENCY (kHz)
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
0.01 0.1 1 10 100 100
0
VN (mVrms/Hz)
FREQUENCY (kHz)
Figure 22. Output Voltage Noise, 2.8 V Version,
IOUT = 30 mA, VIN = 3.8 V
Figure 23. Line Transients, 1.2 V Version,
tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V
1.14
1.16
1.18
1.20
1.22
1.24
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
2.2
2.7
3.2
3.7
VOUT (V)
t (ms)
VIN (V)
Figure 24. Line Transients, 2.8 V Version,
tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V
2.74
2.76
2.78
2.80
2.82
2.84
2.86
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
3.8
4.3
4.8
5.3
VOUT (V)
t (ms)
VIN (V)
NCP4587
http://onsemi.com
9
TYPICAL CHARACTERISTICS
Figure 25. Line Transients, 1.2 V Version,
tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V
1.194
1.196
1.198
1.200
1.202
1.204
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
2.2
2.7
3.2
3.7
VOUT (V)
t (ms)
VIN (V)
Figure 26. Line Transients, 2.8 V Version,
tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V
2.794
2.796
2.798
2.800
2.802
2.804
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
3.8
4.3
4.8
5.3
VOUT (V)
t (ms)
VIN (V)
Figure 27. Load Transients, 1.2 V Version,
IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 2.2 V,
AE = 0 V
1.00
1.05
1.10
1.15
1.20
1.25
1.30
0 20 40 60 80 100 120 140 160 180 200
0
75
150
225
VOUT (V)
t (ms)
IOUT (mA)
NCP4587
http://onsemi.com
10
TYPICAL CHARACTERISTICS
Figure 28. Load Transients, 2.8 V Version,
IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 2.2 V,
AE = 0 V
2.60
2.65
2.70
2.75
2.80
2.85
2.90
0 20 40 60 80 100 120 140 160 180 200
0
75
150
225
VOUT (V)
t (ms)
IOUT (mA)
Figure 29. Load Transients, 1.2 V Version,
IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 2.2 V,
AE = VIN V
VOUT (V)
t (ms)
IOUT (mA)
0
75
150
225
1.00
1.05
1.10
1.15
1.20
1.25
1.30
0 20 40 60 80 100 120 140 160 180 200
Figure 30. Load Transients, 2.8 V Version,
IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 2.8 V,
AE = VIN V
2.60
2.65
2.70
2.75
2.80
2.85
2.90
0 20 40 60 80 100 120 140 160 180 200
0
75
150
225
VOUT (V)
t (ms)
IOUT (mA)
NCP4587
http://onsemi.com
11
TYPICAL CHARACTERISTICS
Figure 31. Load Transients, 1.2 V Version,
IOUT = 1 – 50 mA, tR = tF = 0.5 ms, VIN = 2.2 V,
AE = 0 V
1.12
1.14
1.16
1.18
1.20
1.22
1.24
0 20 40 60 80 100 120 140 160 180 200
0
25
50
75
VOUT (V)
t (ms)
IOUT (mA)
Figure 32. Load Transients, 2.8 V Version,
IOUT = 1 – 50 mA, tR = tF = 0.5 ms, VIN = 3.8 V,
AE = 0 V
VOUT (V)
t (ms)
IOUT (mA)
Figure 33. Load Transients, 1.2 V Version,
IOUT = 1 – 50 mA, tR = tF = 0.5 ms, VIN = 2.2 V,
AE = VIN V
1.12
1.14
1.16
1.18
1.20
1.22
1.24
0 20 40 60 80 100 120 140 160 180 200
0
25
50
75
VOUT (V)
t (ms)
IOUT (mA)
2.72
2.74
2.76
2.78
2.80
2.82
2.84
0 20 40 60 80 100 120 140 160 180 200
0
25
50
75
NCP4587
http://onsemi.com
12
TYPICAL CHARACTERISTICS
Figure 34. Load Transients, 2.8 V Version,
IOUT = 1 – 50 mA, tR = tF = 0.5 ms, VIN = 3.8 V, AE
= VIN V
2.72
2.74
2.76
2.78
2.80
2.82
2.84
0 20 40 60 80 100 120 140 160 180 200
0
25
50
75
VOUT (V)
t (ms)
IOUT (mA)
Figure 35. Load Transients, 1.2 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 2.2 V
1.16
1.17
1.18
1.19
1.20
1.21
1.22
0 20 40 60 80 100 120 140 160 180 200
0
50
100
150
VOUT (V)
t (ms)
IOUT (mA)
Figure 36. Load Transients, 2.8 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 3.8 V
2.76
2.77
2.78
2.79
2.80
2.81
2.82
0 20 40 60 80 100 120 140 160 180 200
0
50
100
150
VOUT (V)
t (ms)
IOUT (mA)
NCP4587
http://onsemi.com
13
TYPICAL CHARACTERISTICS
Figure 37. AE Switch Transients, 1.2 V Version,
VIN = 2.2 V, IOUT = 1 mA
1.16
1.17
1.18
1.19
1.20
1.21
1.22
012345678910
0
1
2
3
VOUT (V)
t (ms)
VAE (V)
Figure 38. AE Switch Transients, 2.8 V Version,
VIN = 3.8 V, IOUT = 1 mA
2.76
2.77
2.78
2.79
2.80
2.81
2.82
012345678910
0
2
4
6
VOUT (V)
t (ms)
VAE (V)
Figure 39. Start-up, 1.2 V Version, VIN = 2.0 V
0.5
0.0
0.5
1.0
1.5
0 102030405060708090100
0
1
2
3
VOUT (V)
t (ms)
VCE (V)
IOUT = 1 mA
Chip Enable
IOUT = 30 mA
IOUT = 150 mA
NCP4587
http://onsemi.com
14
TYPICAL CHARACTERISTICS
Figure 40. Start-up, 2.8 V Version, VIN =3.8 V
1.0
0.0
1.0
2.0
3.0
0 102030405060708090100
0
2
4
6
VOUT (V)
t (ms)
VCE (V)
IOUT = 1 mA
Chip Enable
IOUT = 30 mA
IOUT = 150 mA
Figure 41. Shutdown, 1.2 V Version, VIN = 2.2 V
0.5
0.0
0.5
1.0
1.5
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
1
2
3
VOUT (V)
t (ms)
VCE (V)
Chip Enable
IOUT = 150 mA
IOUT = 30 mA
IOUT = 1 mA
Figure 42. Shutdown, 2.8 V Version, VIN = 3.8 V
1.0
0.0
1.0
2.0
3.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
2
4
6
VOUT (V)
t (ms)
VCE (V)
Chip Enable
IOUT = 150 mA
IOUT = 30 mA
IOUT = 1 mA
NCP4587
http://onsemi.com
15
APPLICATION INFORMATION
A typical application circuit for NCP4587 series is shown
in Figure 43.
VIN VOUT
CE
GND
C1 C2
1m
VIN VOUT
NCP4587x
AE
1m
Figure 43. Typical Application Schematic
Input Decoupling Capacitor (C1)
A 1 mF ceramic input decoupling capacitor should be
connected as close as possible to the input and ground pin of
the NCP4587. Higher values and lower ESR improves line
transient response.
Output Decoupling Capacitor (C2)
A 1 mF ceramic output decoupling capacitor is sufficient
to achieve stable operation of the IC. If tantalum capacitor
is used, and its ESR is high, the loop oscillation may result.
If output capacitor is composed from few ceramic capacitors
in parallel, the operation can be unstable. The capacitor
should be connected as close as possible to the output and
ground pin. Larger values and lower ESR improves dynamic
parameters.
Enable Operation
Enable pin CE may be used for turning the regulator on
and off. The regulator is switched on when CE pin voltage
is above logic high level. Enable pin has internal pull down
current source. If enable function is not needed connect CE
pin to VIN.
Current Limit
This regulator includes fold-back type current limit
circuit. This type of protection doesn’t limit current up to
current capability in normal operation, but when over
current occurs, the output voltage and current decrease until
the over current condition ends. Typical characteristics of
this protection type can be observed in the Output Voltage
versus Output Current graphs shown in the typical
characteristics chapter of this datasheet.
Output Discharger
The D version includes a transistor between VOUT and
GND that is used for faster discharging of the output
capacitor. This function is activated when the IC goes into
disable mode.
Auto ECO and Fast Mode
The NCP4587 has two operation modes that have impact
on supply current and transient response at low output
current. These two modes can be selected by AE pin. If AE
pin is at low level or floating Auto ECO mode is available.
Please, see supply current vs. output current charts. If AE pin
is at high level the device works in permanent Fast Transient
Mode.
Thermal
As power across the IC increases, it might become
necessary to provide some thermal relief. The maximum
power dissipation supported by the device is dependent
upon board design and layout. Mounting pad configuration
on the PCB, the board material, and also the ambient
temperature affect the rate of temperature rise for the part.
That is to say, when the device has good thermal
conductivity through the PCB, the junction temperature will
be relatively low with high power dissipation applications.
PCB layout
Make VIN and GND line sufficient. If their impedance is
high, noise pickup or unstable operation may result. Connect
capacitors C1 and C2 as close as possible to the IC, and make
wiring as short as possible.
NCP4587
http://onsemi.com
16
ORDERING INFORMATION
Device
Nominal Output
Voltage Description Marking Package Shipping
NCP4587DMX12TCG 1.2 V Auto discharge YE XDFN
(PbFree)
5000 / Tape & Reel
NCP4587DMX18TCG 1.8 V Auto discharge YL XDFN
(PbFree)
5000 / Tape & Reel
NCP4587DMX28TCG 2.8 V Auto discharge YW XDFN
(PbFree)
5000 / Tape & Reel
NCP4587DMX30TCG 3.0 V Auto discharge YY XDFN
(PbFree)
5000 / Tape & Reel
NCP4587DMX31TCG 3.1 V Auto discharge YZ XDFN
(PbFree)
5000 / Tape & Reel
NCP4587DMX33TCG 3.3 V Auto discharge ZB XDFN
(PbFree)
5000 / Tape & Reel
NCP4587DSN12T1G 1.2 V Auto discharge DBE SOT23
(PbFree)
3000 / Tape & Reel
NCP4587DSN18T1G 1.8 V Auto discharge DBL SOT23
(PbFree)
3000 / Tape & Reel
NCP4587DSN28T1G 2.8 V Auto discharge DBW SOT23
(PbFree)
3000 / Tape & Reel
NCP4587DSN30T1G 3.0 V Auto discharge DBY SOT23
(PbFree)
3000 / Tape & Reel
NCP4587DSN33T1G 3.3 V Auto discharge EBB SOT23
(PbFree)
3000 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
NOTE: To order other package and voltage variants, please contact your ON Semiconductor sales representative.
NCP4587
http://onsemi.com
17
PACKAGE DIMENSIONS
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A01 OBSOLETE. NEW STANDARD
419A02.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
DIM
A
MIN MAX MIN MAX
MILLIMETERS
1.80 2.200.071 0.087
INCHES
B1.15 1.350.045 0.053
C0.80 1.100.031 0.043
D0.10 0.300.004 0.012
G0.65 BSC0.026 BSC
H--- 0.10---0.004
J0.10 0.250.004 0.010
K0.10 0.300.004 0.012
N0.20 REF0.008 REF
S2.00 2.200.079 0.087
B0.2 (0.008) MM
12 3
45
A
G
S
D 5 PL
H
C
N
J
K
B
SC88A (SC705/SOT353)
CASE 419A02
ISSUE K
NCP4587
http://onsemi.com
18
PACKAGE DIMENSIONS
ÍÍÍ
ÍÍÍ
ÍÍÍ
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.25mm FROM TERMINAL TIPS.
4. COPLANARITY APPLIES TO ALL OF THE
TERMINALS.
A
SEATING
PLANE
D
E
0.05 C
A
A1
2X
2X 0.05 C
XDFN6 1.2x1.2, 0.4P
CASE 711AA01
ISSUE O
DIM
A
MIN MAX
MILLIMETERS
--- 0.40
A1 0.00 0.05
b0.13 0.23
D
E
e
L
PIN ONE
REFERENCE
0.05 C
0.05 C
NOTE 3
L
e
b
3
6
6X
1
4
MOUNTING FOOTPRINT*
1.20 BSC
1.20 BSC
0.40 BSC
0.37 0.48
BOTTOM VIEW
C
DIMENSIONS: MILLIMETERS
0.66
6X 0.22
6X
1.50
0.40
PITCH
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
C0.20 0.30
TOP VIEW
B
SIDE VIEW
NOTE 4
RECOMMENDED
C
6X
A
M
0.05 BC
PACKAGE
OUTLINE
NCP4587
http://onsemi.com
19
PACKAGE DIMENSIONS
SOT23
CASE 121201
ISSUE A
DIM MIN MAX
MILLIMETERS
A1 0.00 0.10
A2 1.00 1.30
b0.30 0.50
c0.10 0.25
D2.70 3.10
E2.50 3.10
E1 1.50 1.80
e0.95 BSC
L
L1 0.45 0.75
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSIONS: MILLIMETERS.
3. DATUM C IS THE SEATING PLANE.
A
1
5
23
4
D
E1
B
L1
E
eC
M
0.10 C S
BS
A
b
5X
A2
A1
S
0.05
C
L
0.20 ---
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
0.95
DIMENSIONS: MILLIMETERS
PITCH
5X
3.30
0.56
5X
0.85
A--- 1.45
RECOMMENDED
A
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
NCP4587/D
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative