November 2011 Doc ID 022516 Rev 1 1/49
49
LIS2DH
MEMS digital output motion sensor:
ultra low-power high performance 3-axis “femto” accelerometer
Features
Wide supply voltage, 1.71 V to 3.6 V
Independent IOs supply (1.8 V) and supply
voltage compatible
Ultra low-power mode consumption down to 2
µA
±2g/±4g/±8g/±16g dynamically selectable full-
scale
I2C/SPI digital output interface
2 independent programmable interrupt
generators for free-fall and motion detection
6D/4D orientation detection
“Sleep to wake” and “return to sleep” function
Freefall detection
Motion detection
Embedded temperature sensor
Embedded FIFO
ECOPACK® RoHS and “Green” compliant
Applications
Motion activated functions
Display orientation
Shake control
Pedometer
Gaming and virtual reality input devices
Impact recognition and logging
Description
The LIS2DH is an ultra low-power high
performance three-axis linear accelerometer
belonging to the “femto” family, with digital I2C/SPI
serial interface standard output.
The LIS2DH has dynamically user selectable full
scales of ±2g/±4g/±8g/±16g and it is capable of
measuring accelerations with output data rates
from 1 Hz to 5.3 kHz.
The self-test capability allows the user to check
the functioning of the sensor in the final
application.
The device may be configured to generate
interrupt signals by two independent inertial
wake-up/free-fall events as well as by the position
of the device itself.
The LIS2DH is available in small thin plastic land
grid array package (LGA) and is guaranteed to
operate over an extended temperature range from
-40 °C to +85 °C.
LGA-14
(2.0x2.0x1 mm)
Table 1. Device summary
Order codes Temperature range [°C] Package Packaging
LIS2DH -40 to +85 LGA-14 Tray
LIS2DHTR -40 to +85 LGA-14 Tape and reel
www.st.com
Contents LIS2DH
2/49 Doc ID 022516 Rev 1
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Terminology and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.3 High resolution, normal mode, low power mode . . . . . . . . . . . . . . . . . . 14
2.6.4 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.5 6D / 4D orientation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.6 “Sleep to wake” and “Return to sleep” . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.11 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
LIS2DH Contents
Doc ID 022516 Rev 1 3/49
4.1.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.4 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.5 Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7 Registers Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1 STATUS_AUX (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2 OUT_TEMP_L (0Ch), OUT_TEMP_H (0Dh) . . . . . . . . . . . . . . . . . . . . . . 30
7.3 INT_COUNTER (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.5 TEMP_CFG_REG (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.6 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.7 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.8 CTRL_REG3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.9 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.10 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.11 CTRL_REG6 (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.12 REFERENCE/DATACAPTURE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.13 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.14 OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.15 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.16 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.17 FIFO_CTRL_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.18 FIFO_SRC_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.19 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Contents LIS2DH
4/49 Doc ID 022516 Rev 1
7.20 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.21 INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.22 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.23 INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.24 INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.25 INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.26 INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.27 CLICK_CFG (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.28 CLICK_SRC (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.29 CLICK_THS (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.30 TIME_LIMIT (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.31 TIME_LATENCY (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.32 TIME WINDOW(3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.33 Act_THS(3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.34 Act_DUR (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
LIS2DH List of tables
Doc ID 022516 Rev 1 5/49
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 7. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 9. Operating mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 10. Turn-on time for operating mode change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 11. Operating modes current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 12. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 13. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 14. SAD+read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 15. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 16. Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 17. Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 22
Table 18. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 22
Table 19. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 20. STATUS_REG_AUX register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 21. STATUS_REG_AUX description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 22. INT_COUNTER register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 23. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 24. TEMP_CFG_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 25. TEMP_CFG_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 26. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 27. CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 28. Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 29. CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 30. CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 31. High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 32. CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 33. CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 34. CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 35. CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 36. Self-test mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 37. CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 38. CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 39. CTRL_REG6 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 40. CTRL_REG6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 41. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 42. REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 43. STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 44. STATUS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 45. FIFO_CTRL_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 46. FIFO_CTRL_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 47. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 48. FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
List of tables LIS2DH
6/49 Doc ID 022516 Rev 1
Table 49. INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 50. INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 51. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 52. INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 53. INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 54. INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 55. INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 56. INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 57. INT1_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 58. INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 59. INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 60. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 61. INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 62. INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 63. INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 64. INT2_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 65. INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 66. INT2_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 67. CLICK_CFG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 68. CLICK_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 69. CLICK_SRC register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 70. CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 71. CLICK_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 72. CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 73. TIME_LIMIT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 74. TIME_LIMIT description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 75. TIME_LATENCY register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 76. TIME_LATENCY description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 77. TIME_WINDOW register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 78. TIME_WINDOW description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 79. TIME_WINDOW register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 80. TIME_WINDOW description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 81. Act_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 82. Act_DUR description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 83. LGA-14 2x2x0.9 mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 84. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
LIS2DH List of figures
Doc ID 022516 Rev 1 7/49
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. LIS2DH electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 6. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 7. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 8. Multiple bytes SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 9. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 10. Multiple bytes SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 12. LGA-14 2x2x0.9 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Block diagram and pin description LIS2DH
8/49 Doc ID 022516 Rev 1
1 Block diagram and pin description
1.1 Block diagram
Figure 1. Block diagram
1.2 Pin description
Figure 2. Pin connection
CHARGE
AMPLIFIER
Y+
Z+
Y-
Z-
a
X+
X-
I2C
SPI
CS
SCL/SPC
SDA/SDO/SDI
SDO/SA0
CONTROL LOGIC
&
INTERRUPT GEN.
INT 1
CLOCK
TRIMMING
CIRCUITS
Temperature
SELF TEST
CONTROL
A/D
CONVERTER
INT 2
MUX
32 Level
FIFO
LOGIC
Sensor
AM10218V1
(TOP VIEW)
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
Y
1
X
Z
Vdd_IO
SC
L/SPC
SDA/SDI/SDO
CS
SDO/SA0
GND
INT1
INT2
Res
Vdd
Res
(BOTTOM VIEW)
Pin 1 indicator
4
1
5
7
11
8
GND
GND
12 14
Res
AM10218V1
LIS2DH Block diagram and pin description
Doc ID 022516 Rev 1 9/49
Table 2. Pin description
Pin# Name Function
1SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
2
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
3SDO
SA0
SPI serial data output (SDO)
I2C less significant bit of the device address (SA0)
4CS
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
5 INT2 Intterupt pin 2
6 INT1 Intterupt pin 1
7 Vdd_IO Power supply for I/O pins
8 Vdd Power supply
9 GND 0 V supply
10 Res Connect to GND
11 Res Connect to GND
12-14 Res Connect to GND
Mechanical and electrical specifications LIS2DH
10/49 Doc ID 022516 Rev 1
2 Mechanical and electrical specifications
2.1 Mechanical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(a)
a. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71V to 3.6 V.
Table 3. Mechanical characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
FS Measurement range(2)
FS bit set to 00 ±2.0
g
FS bit set to 01 ±4.0
FS bit set to 10 ±8.0
FS bit set to 11 ±16.0
So Sensitivity
FS bit set to 00;
Normal mode 4
mg/digit
FS bit set to 00;
High Resolution mode 1
FS bit set to 00;
Low power mode 16
FS bit set to 01;
Normal mode 8
mg/digit
FS bit set to 01;
High Resolution mode 2
FS bit set to 01;
Low power mode 32
FS bit set to 10;
Normal mode 16
mg/digit
FS bit set to 10;
High Resolution mode 4
FS bit set to 10;
Low power mode 64
FS bit set to 11;
Normal mode 48
mg/digit
FS bit set to 11;
High Resolution mode 12
FS bit set to 11;
Low power mode 192
TCSo Sensitivity change vs
temperature FS bit set to 00 0.01 %/°C
Ty O f f Typical zero-g level
offset accuracy(3),(4) FS bit set to 00 ±40 mg
LIS2DH Mechanical and electrical specifications
Doc ID 022516 Rev 1 11/49
2.2 Temperature sensor characteristics
@ Vdd =2.5 V, T=25 °C unless otherwise noted(b)
TCOff Zero-g level change
vs temperature Max delta from 25 °C ±0.5 mg/°C
Vst Self-test
output change(5),(6),(7)
FS bit set to 00
X axis; Normal mode 17 360 LSb
FS bit set to 00
Y axis; Normal mode 17 360 LSb
FS bit set to 00
Z axis; Normal mode 17 360 LSb
Top Operating
temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical zero-g level offset value after MSL3 preconditioning.
4. Offset can be eliminated by enabling the built-in high pass filter.
5. The sign of “Self-test output change” is defined by CTRL_REG4 ST bit, for all axes.
6.
“Self-test output change” is defined as the absolute value of:
OUTPUT[LSb]
(Self test enabled)
- OUTPUT[LSb](Self test disabled). 1LSb=4mg at 10bit representation, ±2 g Full-scale
7. After enabling ST, correct data is obtained after two samples (Low power mode / Normal mode) or after eight samples (high
resolution mode).
Table 3. Mechanical characteristics (continued)
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
b. The product is factory calibrated at 2.5 V. Temperature sensor operation is guaranteed in the range 2 V - 3.6 V
Table 4. Temperature sensor characteristics
Symbol Parameter Min. Typ.(1)
1. Typical specifications are not guaranteed.
Max. Unit
TSDr Temperature sensor output
change vs temperature 1 digit/°C(2)
2. 8-bit resolution.
TODR Temperature refresh rate ODR(3)
3. Refer to Table 28: Data rate configuration.
Hz
Top Operating temperature range -40 +85 °C
Mechanical and electrical specifications LIS2DH
12/49 Doc ID 022516 Rev 1
2.3 Electrical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(c)
c. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V.
Table 5. Electrical characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
Vdd Supply voltage 1.71 2.5 3.6 V
Vdd_IO I/O pins supply voltage(2) 1.71 Vdd+0.1 V
Idd Current consumption
in Normal mode 50 Hz ODR 11 µA
Idd Current consumption
in Normal mode 1 Hz ODR 2 µA
IddLP Current consumption
in low-power mode 50 Hz ODR 6 µA
IddPdn Current consumption in power-
down mode 0.5 µA
VIH Digital high level input voltage 0.8*Vdd_IO V
VIL Digital low level input voltage 0.2*Vdd_IO V
VOH High level output voltage 0.9*Vdd_IO V
VOL Low level output voltage 0.1*Vdd_IO V
Top Operating temperature range -40 +85 °C
1. Typical specification are not guaranteed.
2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the
measurement chain is powered off.
LIS2DH Mechanical and electrical specifications
Doc ID 022516 Rev 1 13/49
2.4 Communication interface characteristics
2.4.1 SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Figure 3. SPI slave timing diagram(d)
3. When no communication is on-going, data on SDO is driven by internal pull-up resistors
Table 6. SPI slave timing values
Symbol Parameter
Value (1)
Unit
Min Max
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 5
ns
th(CS) CS hold time 20
tsu(SI) SDI input setup time 5
th(SI) SDI input hold time 15
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 5
tdis(SO) SDO output disable time 50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production
d. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both Input and output port.
SPC
CS
SDI
SDO
t
su(CS)
t
v(SO)
t
h(SO)
t
h(SI)
t
su(SI)
t
h(CS)
t
dis(SO)
t
c(SPC)
MSB IN
MSB OUT LSB OUT
LSB IN
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
Mechanical and electrical specifications LIS2DH
14/49 Doc ID 022516 Rev 1
2.4.2 I2C - Inter IC control interface
Subject to general operating conditions for Vdd and top.
Figure 4. I2C Slave timing diagram (e)
Table 7. I2C slave timing values
Symbol Parameter
I2C standard mode (1) I2C fast mode (1)
Unit
Min Max Min Max
f(SCL) SCL clock frequency 0 100 0 400 kHz
tw(SCLL) SCL clock low time 4.7 1.3
µs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100 ns
th(SDA) SDA data hold time 0 3.45 0.01 0.9 µs
tr(SDA) tr(SCL) SDA and SCL rise time 1000 20 + 0.1Cb (2) 300
ns
tf(SDA) tf(SCL) SDA and SCL fall time 300 20 + 0.1Cb (2) 300
th(ST) START condition hold time 4 0.6
µs
tsu(SR) Repeated START condition
setup time 4.7 0.6
tsu(SP) STOP condition setup time 4 0.6
tw(SP:SR) Bus free time between STOP
and START condition 4.7 1.3
1. Data based on standard I2C protocol requirement, not tested in production.
2. Cb = total capacitance of one bus line, in pF.
e. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both port.
SPC
CS
SDI
SDO
t
su(CS)
t
v(SO)
t
h(SO)
t
h(SI)
t
su(SI)
t
h(CS)
t
dis(SO)
t
c(SPC)
MSB IN
MSB OUT LSB OUT
LSB IN
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
LIS2DH Mechanical and electrical specifications
Doc ID 022516 Rev 1 15/49
2.5 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Note: Supply voltage on any pin should never exceed 4.8 V
Table 8. Absolute maximum ratings
Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
Vdd_IO I/O pins Supply voltage -0.3 to 4.8 V
Vin Input voltage on any control pin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) -0.3 to Vdd_IO +0.3 V
APOW Acceleration (any axis, powered, Vdd = 2.5 V) 3000 g for 0.5 ms
10000 g for 0.1 ms
AUNP Acceleration (any axis, unpowered) 3000 g for 0.5 ms
10000 g for 0.1 ms
TOP Operating temperature range -40 to +85 °C
TSTG Storage temperature range -40 to +125 °C
ESD Electrostatic discharge protection 2 (HBM) kV
Mechanical and electrical specifications LIS2DH
16/49 Doc ID 022516 Rev 1
2.6 Terminology and functionality
Terminology
2.6.1 Sensitivity
Sensitivity describes the gain of the sensor and can be determined e.g. by applying 1 g
acceleration to it. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the earth, noting the output value, rotating
the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and also time. The sensitivity tolerance describes
the range of Sensitivities of a large population of sensors.
2.6.2 Zero-g level
Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal
output signal if no acceleration is present. A sensor in a steady state on a horizontal surface
will measure 0 g in X axis and 0 g in Y axis whereas the Z axis will measure 1 g. The output
is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h,
data expressed as 2’s complement number). A deviation from ideal value in this case is
called Zero-g offset. Offset is to some extent a result of stress to MEMS sensor and
therefore the offset can slightly change after mounting the sensor onto a printed circuit
board or exposing it to extensive mechanical stress. Offset changes little over temperature,
see “Zero-g level change vs. temperature”. The Zero-g level tolerance (TyOff) describes the
standard deviation of the range of Zero-g levels of a population of sensors.
Functionality
2.6.3 High resolution, Normal mode, Low power mode
The LIS2DH provides three different operating modes respectively reported as High
resolution mode, Normal mode and Low power mode.
The table below reported summarizes how to select among the different operating modes.
Table 9. Operating mode selection
Operating mode CTRL_REG1[3]
(LPen bit)
CTRL_REG4[3]
(HR bit) BW [Hz] Turn-on
time [ms]
So @ ±2g
[mg/digit]
Low power mode (8
bit data output) 1 0 ODR/2 1 16
Normal mode(10 bit
data output) 0 0 ODR/2 1.6 4
High resolution (12
bit data output) 0 1 ODR/9 7/ODR 1
Not allowed 1 1 -- -- --
LIS2DH Mechanical and electrical specifications
Doc ID 022516 Rev 1 17/49
The turn-on time to change from all operating mode is reported into Table 10.: Turn-on time
for operating mode change.
2.6.4 Self-test
Self-test allows the user to check the sensor functionality without moving it. When the self-
test is enabled an actuation force is applied to the sensor, simulating a definite input
acceleration. In this case the sensor outputs will exhibit a change in their DC levels which
are related to the selected full scale through the device sensitivity. When self-test is
activated, the device output level is given by the algebraic sum of the signals produced by
the acceleration acting on the sensor and by the electrostatic test-force. If the output signals
change within the amplitude specified inside Ta bl e 3 , then the sensor is working properly
and the parameters of the interface chip are within the defined specifications.
Table 10. Turn-on time for operating mode change
Operating mode change Turn-on Tim
[ms]
12-bit mode to 8 bit mode 1/ODR
12-bit mode to 10 bit mode 1/ODR
10-bit mode to 8 bit mode 1/ODR
10-bit mode to 12 bit mode 7/ODR
8-bit mode to 10 bit mode 1/ODR
8-bit mode to 12 bit mode 7/ODR
Table 11. Operating modes current consumption
Operating mode [Hz]
Low power mode
(8 bit data output)
[μA]
Normal mode
(10 bit data output)
[μA]
High resolution
(12 bit data output)
[μA]
1222
10 3 4 4
25 4 6 6
50 6 11 11
100 10 20 20
200 18 38 38
400 36 73 73
1344 -- 185 185
1620 100 -- --
5376 185 -- --
Mechanical and electrical specifications LIS2DH
18/49 Doc ID 022516 Rev 1
2.6.5 6D / 4D orientation detection
The LIS2DH include 6D / 4D orientation detection.
6D / 4D orientation recognition
In this configuration the interrupt is generated when the device is stable in a known
direction. In 4D configuration Z axis position detection is disable.
2.6.6 “Sleep to wake” and “Return to sleep”
The LIS2DH can be programmed to automatically switch to Low power mode upon
recognition of a determined event.
Once the event condition is over, the device returns back to the preset Normal or High
resolution mode.
To enable this function the desired threshold value must be stored inside Act_THS(3Eh)
registers while the duration value written inside Act_DUR(3Fh) registers.
When acceleration module becomes lower than the treshold value, the device automatically
switches to Low power mode (10Hz ODR).
During this condition, ODRx bits and LPen bit inside CTRL_REG1 (20h) and HR bit in
CTRL_REG3 (22h) are not considered.
As soon as the acceleration goes back over the threshold, the systems restores the
operating mode and ODRs as for CTRL_REG1 (20h) and CTRL_REG3 (22h) settings.
2.7 Sensing element
A proprietary process is used to create a surface micro-machined accelerometer. The
technology allows carring out suspended silicon structures which are attached to the
substrate in a few points called anchors and are free to move in the direction of the sensed
acceleration. To be compatible with the traditional packaging techniques a cap is placed on
top of the sensing element to avoid blocking the moving parts during the moulding phase of
the plastic encapsulation.
When an acceleration is applied to the sensor the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half-bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the capacitor.
At steady state the nominal value of the capacitors are few pF and when an acceleration is
applied the maximum variation of the capacitive load is in the fF range.
2.8 IC interface
The complete measurement chain is composed by a low-noise capacitive amplifier which
converts the capacitive unbalancing of the MEMS sensor into an analog voltage that is
finally available to the user by an analog-to-digital converter.
The acceleration data may be accessed through an I2C/SPI interface thus making the
device particularly suitable for direct interfacing with a microcontroller.
The LIS2DH features a data-ready signal (RDY) which indicates when a new set of
measured acceleration data is available thus simplifying data synchronization in the digital
system that uses the device.
LIS2DH Mechanical and electrical specifications
Doc ID 022516 Rev 1 19/49
The LIS2DH may also be configured to generate an inertial Wake-Up and Free-Fall interrupt
signal accordingly to a programmed acceleration event along the enabled axes. Both Free-
Fall and Wake-Up can be available simultaneously on two different pins.
2.9 Factory calibration
The IC interface is factory calibrated for sensitivity (So) and Zero-g level (TyOff).
The trimming values are stored inside the device in a non volatile memory. Any time the
device is turned on, the trimming parameters are downloaded into the registers to be used
during the active operation. This allows to use the device without further calibration.
2.10 FIFO
The LIS2DH contains a 10 bit, 32-level FIFO. Buffered output allows 4 operation modes:
FIFO, stream, trigger and FIFO ByPass. Where FIFO bypass mode is activated FIFO is not
operating and remains empty. In FIFO mode, data from acceleration detection on x, y, and z-
axes measurements are stored in FIFO.
2.11 Temperature sensor
The LIS2DH is supplied with an internal temperature sensor. Temperature data can be
enabled by setting the TEMP_EN bit of the TEMP_CFG_REG register to 1.
To retrieve the temperature sensor data BDU bit on CTRL_REG4 (23h) must be set to ‘1’.
Both OUT_TEMP_H and OUT_TEMP_L registers must be read.
Temperature data is stored inside OUT_TEMP_H as 2’s complement data in 8 bit format left
justified.
Application hints LIS2DH
20/49 Doc ID 022516 Rev 1
3 Application hints
Figure 5. LIS2DH electrical connection
The device core is supplied through Vdd line while the I/O pads are supplied through
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 µF aluminum) should
be placed as near as possible to the pin 8 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO
without blocking the communication bus, in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data is selectable and
accessible through the I2C or SPI interfaces.When using the I2C, CS must be tied high.
The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be
completely programmed by the user through the I2C/SPI interface.
3.1 Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com.
Vdd_IO
Digital signal from/to signal controller.Signal’s levels are defined by proper selection of Vdd_IO
Vdd_IO
SCL/SPC
SDA/SDI/SDO
CS
SDO/SA0 GND
INT1
INT2
Vdd
Pin 1 indicator
4
1
57
11
8
GND
GND
1214
10µF
Vdd
100nF
GND
GND
AM10220V1
LIS2DH Digital main blocks
Doc ID 022516 Rev 1 21/49
4 Digital main blocks
4.1 FIFO
The LIS2DH embeds a 32-slot data FIFO for each of the three output channels, X, Y and Z.
This allows a consistent power saving for the system, since the host processor does not
need to continuously poll data from the sensor, but it can wakeup only when needed and
burst the significant data out from the FIFO. This buffer can work accordingly to four different
modes: Bypass mode, FIFO mode, Stream mode and Stream-to-FIFO mode. Each mode is
selected by the FIFO_MODE bits into the FIFO_CTRL_REG (2E). Programmable
Watermark level, FIFO_empty or FIFO_Full events can be enabled to generate dedicated
interrupts on INT1/2 pin (configuration through FIFO_CFG_REG).
4.1.1 Bypass mode
In bypass mode, the FIFO is not operational and for this reason it remains empty. As
described in the next figure, for each channel only the first address is used. The remaining
FIFO slots are empty.
4.1.2 FIFO mode
In FIFO mode, data from X, Y and Z channels are stored into the FIFO. A watermark
interrupt can be enabled (FIFO_WTMK_EN bit into FIFO_CTRL_REG (2E) in order to be
raised when the FIFO is filled to the level specified into the FIFO_WTMK_LEVEL bits of
FIFO_CTRL_REG (2E). The FIFO continues filling until it is full (32 slots of data for X, Y and
Z). When full, the FIFO stops collecting data from the input channels.
4.1.3 Stream mode
In the stream mode, data from X, Y and Z measurement are stored into the FIFO. A
watermark interrupt can be enabled and set as in the FIFO mode.The FIFO continues filling
until it’s full (32 slots of data for X, Y and Z). When full, the FIFO discards the older data as
the new arrive.
4.1.4 Stream-to-FIFO mode
In Stream-to_FIFO mode, data from X, Y and Z measurement are stored into the FIFO. A
watermark interrupt can be enabled (FIFO_WTMK_EN bit into FIFO_CTRL_REG) in order
to be raised when the FIFO is filled to the level specified into the FIFO_WTMK_LEVEL bits
of FIFO_CTRL_REG. The FIFO continues filling until it’s full (32 slots of 10 bit for for X, Y
and Z). When full, the FIFO discards the older data as the new arrive. Once trigger event
occurs, the FIFO starts operating in FIFO mode.
4.1.5 Retrieve data from FIFO
FIFO data is read through OUT_X (Addr reg 29h), OUT_Y (Addr reg 2Bh) and OUT_Z (Addr
reg 2Dh). When the FIFO is in stream, Trigger or FIFO mode, a read operation to the
OUT_X, OUT_Y or OUT_Z regiters provides the data stored into the FIFO. Each time data
is read from the FIFO, the oldest X, Y and Z data are placed into the OUT_X, OUT_Y and
OUT_Z registers and both single read and read_burst operations can be used.
Digital main blocks LIS2DH
22/49 Doc ID 022516 Rev 1
The reading address is automatically updated by the device and it rolls back to 0x28 when
register 0x2D is reached. In order to read all FIFO levels in a multiple byte reading,192 bytes
(6 output registers by 32 levels) have to be read.
LIS2DH Digital interfaces
Doc ID 022516 Rev 1 23/49
5 Digital interfaces
The registers embedded inside the LIS2DH may be accessed through both the I2C and SPI
serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I2C interface, CS
line must be tied high (i.e. connected to Vdd_IO).
5.1 I2C serial interface
The LIS2DH I2C is a bus slave. The I2C is employed to write data into registers whose
content can also be read back.
The relevant I2C terminology is given in the table below.
There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial
DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up
resistor. When the bus is free both the lines are high.
The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with the
Normal mode.
Table 12. Serial interface pin description
Pin name Pin description
CS
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SA0
SDO
I2C less significant bit of the device address (SA0)
SPI serial data output (SDO)
Table 13. Serial interface pin description
Term Description
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave The device addressed by the master
Digital interfaces LIS2DH
24/49 Doc ID 022516 Rev 1
5.1.1 I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the Master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the Master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the Master.
The Slave ADdress (SAD) associated to the LIS2DH is 001100xb. SDO/SA0 pad can be
used to modify less significant bit of the device address. If SA0 pad is connected to voltage
supply, LSb is ‘1’ (address 0011001b) else if SA0 pad is connected to ground, LSb value is
‘0’ (address 0011000b). This solution permits to connect and address two different
accelerometers to the same I2C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LIS2DH behaves like a slave device and the following protocol
must be adhered to. After the start condition (ST) a slave address is sent, once a slave
acknowledge (SAK) has been returned, a 8-bit sub-address (SUB) is transmitted: the 7 LSb
represent the actual register address while the MSB enables address auto increment. If the
MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to allow
multiple data read/write.
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write)
the Master will transmit to the slave with direction unchanged. Ta b l e explains how the
SAD+read/write bit pattern is composed, listing all the possible configurations.
Table 14. SAD+read/write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 001100 0 1 00110001 (31h)
Write 001100 0 0 00110000 (30h)
Read 001100 1 1 00110011 (33h)
Write 001100 1 0 00110010 (32h)
Table 15. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
LIS2DH Digital interfaces
Doc ID 022516 Rev 1 25/49
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real time function) the data line must be left HIGH by
the slave. The Master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-
address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of first register to be read.
In the presented communication format MAK is Master acknowledge and NMAK is No
Master Acknowledge.
5.2 SPI bus interface
The LIS2DH SPI is a bus slave. The SPI allows to write and read the registers of the device.
The Serial Interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.
Table 16. Transfer when master is writing multiple bytes to slave:
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 17. Transfer when master is receiving (reading) one byte of data from slave:
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 18. Transfer when Master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Digital interfaces LIS2DH
26/49 Doc ID 022516 Rev 1
Figure 6. Read and write protocol
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiple of 8 in case of multiple bytes read/write. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1: MS bit. When 0, the address will remain unchanged in multiple read/write commands.
When 1, the address is auto incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When MS
bit is ‘0’ the address used to read/write data remains the same for every block. When MS bit
is ‘1’ the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
CS
SPC
SDI
SDO
RW
AD5 AD4 AD3AD2 AD1 AD0
DI7 DI6 DI5 DI4 DI3DI2 DI1 DI0
DO7 DO6 DO5 DO4 DO3DO2 DO1 DO0
MS
AM10129V1
LIS2DH Digital interfaces
Doc ID 022516 Rev 1 27/49
5.2.1 SPI read
Figure 7. SPI read protocol
The SPI Read command is performed with 16 clock pulses. Multiple byte read command is
performed adding blocks of 8 clock pulses at the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
Figure 8. Multiple bytes SPI read protocol (2 bytes example)
CS
SPC
SDI
SDO
RW
DO7 DO6 DO5 DO4 DO3DO2 DO1 DO0
AD5 AD4 AD3AD2 AD1 AD0
MS
AM10130V1
CS
SPC
SDI
SDO
RW
DO 7 DO 6 DO 5 DO 4 DO 3DO 2 DO 1 DO 0
AD5 AD4 AD 3AD2 AD1 AD0
DO 15 DO 14 DO 13 DO 12 DO 11 DO 10 D O9 D O8
MS
AM10131V1
Digital interfaces LIS2DH
28/49 Doc ID 022516 Rev 1
5.2.2 SPI write
Figure 9. SPI write protocol
The SPI Write command is performed with 16 clock pulses. Multiple byte write command is
performed adding blocks of 8 clock pulses at the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
Figure 10. Multiple bytes SPI write protocol (2 bytes example)
5.2.3 SPI read in 3-wires mode
3-wires mode is entered by setting to ‘1’ bit SIM (SPI serial interface mode selection) in
CTRL_REG4.
CS
SPC
SDI
RW DI7 DI6 DI5 DI4 DI3DI 2 DI1 DI 0
AD5 AD4 AD 3AD2 AD1 AD0MS
AM10132V1
CS
SPC
SDI
RW
AD5 AD4 AD3AD2 AD1 AD0
DI7 D I6 DI5 D I4 DI 3DI2 DI 1 DI 0 DI 15 D I1 4 DI13 DI12 DI11 DI 10 DI9 DI 8
MS
AM10133V1
LIS2DH Digital interfaces
Doc ID 022516 Rev 1 29/49
Figure 11. SPI read protocol in 3-wires mode
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
Multiple read command is also available in 3-wires mode.
CS
SPC
SDI/O
RW DO7 DO6 DO5 DO4 DO3DO2 DO 1 DO 0
AD5 AD4 AD3AD2 AD1 AD0MS
AM10134V1
Register mapping LIS2DH
30/49 Doc ID 022516 Rev 1
6 Register mapping
The table given below provides a listing of the 8 bit registers embedded in the device and
the related addresses:
Table 19. Register address map
Name Type
Register address
Default Comment
Hex Binary
Reserved 00 - 06 Reserved
STATUS_REG_AUX r 07 000 0111
Reserved r 08-0B Reserved
OUT_TEMP_L r 0C 000 1100 Output
OUT_TEMP_H r 0D 000 1101 Output
INT_COUNTER_REG r 0E 000 1110
WHO_AM_I r 0F 000 1111 00110011 Dummy register
Reserved 10 - 1E Reserved
TEMP_CFG_REG rw 1F 001 1111
CTRL_REG1 rw 20 010 0000 00000111
CTRL_REG2 rw 21 010 0001 00000000
CTRL_REG3 rw 22 010 0010 00000000
CTRL_REG4 rw 23 010 0011 00000000
CTRL_REG5 rw 24 010 0100 00000000
CTRL_REG6 rw 25 010 0101 00000000
REFERENCE rw 26 010 0110 00000000
STATUS_REG2 r 27 010 0111 00000000
OUT_X_L r 28 010 1000 Output
OUT_X_H r 29 010 1001 Output
OUT_Y_L r 2A 010 1010 Output
OUT_Y_H r 2B 010 1011 Output
OUT_Z_L r 2C 010 1100 Output
OUT_Z_H r 2D 010 1101 Output
FIFO_CTRL_REG rw 2E 010 1110 00000000
FIFO_SRC_REG r 2F 010 1111 0010000
INT1_CFG rw 30 011 0000 00000000
INT1_SOURCE r 31 011 0001 00000000
INT1_THS rw 32 011 0010 00000000
INT1_DURATION rw 33 011 0011 00000000
LIS2DH Register mapping
Doc ID 022516 Rev 1 31/49
Registers marked as Reserved or not listed in the table above must not be changed. The
writing to those registers may cause permanent damages to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered-up.
Boot procedure is complete about 5 milliseconds just after powered up the device.
INT2_CFG rw 34 011 0100 00000000
INT2_SOURCE r 35 011 0101 00000000
INT2_THS rw 36 011 0110 00000000
INT2_DURATION rw 37 011 0111 00000000
CLICK_CFG rw 38 011 1000 00000000
CLICK_SRC r 39 011 1001 00000000
CLICK_THS rw 3A 011 1010 00000000
TIME_LIMIT rw 3B 011 1011 00000000
TIME_LATENCY rw 3C 011 1100 00000000
TIME_WINDOW rw 3D 011 1101 00000000
Act_THS rw 3E 011 1110 00000000
Act_DUR rw 3F 011 1111 00000000
Table 19. Register address map (continued)
Name Type
Register address
Default Comment
Hex Binary
Registers Description LIS2DH
32/49 Doc ID 022516 Rev 1
7 Registers Description
7.1 STATUS_AUX (07h)
7.2 OUT_TEMP_L (0Ch), OUT_TEMP_H (0Dh)
Temperature sensor data. Refer to Section 2.11: Temperature sensor for details on how to
enable and read the temperature sensor output data.
7.3 INT_COUNTER (0Eh)
7.4 WHO_AM_I (0Fh)
Device identification register.
7.5 TEMP_CFG_REG (1Fh)
Table 20. STATUS_REG_AUX register
-- TOR -- -- -- TDA -- --
Table 21. STATUS_REG_AUX description
TOR Temperature Data Overrun. Default value: 0
(0: no overrun has occurred;
1: a new temperature data has overwritten the previous one)
TDA Temperature new Data Available. Default value: 0
(0: a new temperature data is not yet available;
1: a new temperature data is available)
Table 22. INT_COUNTER register
IC7IC6IC5IC4IC3IC2IC1IC0
Table 23. WHO_AM_I register
00110011
Table 24. TEMP_CFG_REG register
TEMP_EN1TEMP_EN0000000
LIS2DH Registers Description
Doc ID 022516 Rev 1 33/49
7.6 CTRL_REG1 (20h)
ODR<3:0> is used to set Power Mode and ODR selection. In the following table are
reported all frequency resulting in combination of ODR<3:0>
Table 25. TEMP_CFG_REG description
TEMP_EN[1-0] Temperature sensor (T) enable. Default value: 00
(00: T disabled; 11: T enabled)
Table 26. CTRL_REG1 register
ODR3 ODR2 ODR1 ODR0 LPen Zen Yen Xen
Table 27. CTRL_REG1 description
ODR3-0 Data rate selection. Default value: 00
(0000:Power Down mode; Others: Refer to Ta b l e 2 8 , "Data Rate Configuration")
LPen
Low power mode enable. Default value: 0
(0: Normal mode, 1: Low power mode)
(Refer to section 2.6.3: High resolution, Normal mode, Low power mode)
Zen Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Ye n Y axis enable. Default value: 1
(0: Y axis disabled; 1: Y axis enabled)
Xen X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
Table 28. Data rate configuration
ODR3 ODR2 ODR1 ODR0 Power mode selection
0 0 0 0 Power down mode
0 0 0 1 HR / normal / Low power mode (1 Hz)
0 0 1 0 HR / normal / Low power mode (10 Hz)
0 0 1 1 HR / normal / Low power mode (25 Hz)
0 1 0 0 HR / normal / Low power mode (50 Hz)
0 1 0 1 HR / normal / Low power mode (100 Hz)
0 1 1 0 HR / normal / Low power mode (200 Hz)
0 1 1 1 HR/ normal / Low power mode (400 Hz)
1 0 0 0 Low power mode (1.620 kHz)
1 0 0 1 HR/ normal (1.344 kHz);
Low power mode (5.376 kHz)
Registers Description LIS2DH
34/49 Doc ID 022516 Rev 1
7.7 CTRL_REG2 (21h)
7.8 CTRL_REG3 (22h)
Table 29. CTRL_REG2 register
HPM1 HPM0 HPCF2 HPCF1 FDS HPCLICK HPIS2 HPIS1
Table 30. CTRL_REG2 description
HPM1 -HPM0 High Pass filter Mode Selection. Default value: 00
Refer to Table 31, "High pass filter mode configuration"
HPCF2 -
HPCF1 High Pass filter Cut Off frequency selection
FDS
Filtered Data Selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register and
FIFO)
HPCLICK High Pass filter enabled for CLICK function.
(0: filter bypassed; 1: filter enabled)
HPIS2 High Pass filter enabled for AOI function on Interrupt 2,
(0: filter bypassed; 1: filter enabled)
HPIS1 High Pass filter enabled for AOI function on Interrupt 1,
(0: filter bypassed; 1: filter enabled)
Table 31. High pass filter mode configuration
HPM1 HPM0 High Pass filter Mode
0 0 Normal mode (reset reading REFERENCE/DATACAPTURE (26h) register)
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Autoreset on interrupt event
Table 32. CTRL_REG3 register
I1_CLICK I1_AOI1 I1_AOI2 I1_DRDY1 I1_DRDY2 I1_WTM I1_OVERRUN --
Table 33. CTRL_REG3 description
I1_CLICK CLICK interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
I1_AOI1 AOI1 interrupt on INT1 pn. Default value 0.
(0: Disable; 1: Enable)
LIS2DH Registers Description
Doc ID 022516 Rev 1 35/49
7.9 CTRL_REG4 (23h)
I1_AOI2 AOI2 interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
I1_DRDY1 DRDY1 interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
I1_DRDY2 DRDY2 interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
I1_WTM FIFO Watermark interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
I1_OVERRUN FIFO Overrun interrupt on INT1 pin. Default value 0.
(0: Disable; 1: Enable)
Table 33. CTRL_REG3 description (continued)
Table 34. CTRL_REG4 register
BDU BLE(1)
1. BLE function can be activated only in High Resolution mode
FS1 FS0 HR ST1 ST0 SIM
Table 35. CTRL_REG4 description
BDU Block data update. Default value: 0
(0: continuos update; 1: output registers not updated until MSB and LSB have
been read)
BLE Big/Little Endian data selection. Default value:0;
(0: data LSb at lower address; 1: data MSb at lower address)
The BLE function can be activated only in High Resolution mode
FS1-FS0 Full Scale selection. Default value: 00
(00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G)
HR Operating mode selection (refer to section 2.6.3: High resolution, Normal
mode, Low power mode)
ST1-ST0 Self Test Enable. Default value: 00
(00: Self Test Disabled; Other: See Tabl e )
SIM SPI Serial Interface Mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
Table 36. Self test mode configuration
ST1 ST0 Self test mode
0 0 Normal mode
01Self test 0
10Self test 1
11--
Registers Description LIS2DH
36/49 Doc ID 022516 Rev 1
7.10 CTRL_REG5 (24h)
7.11 CTRL_REG6 (25h)
Table 37. CTRL_REG5 register
BOOT FIFO_EN -- -- LIR_INT1 D4D_INT1 LIR_INT2 D4D_INT2
Table 38. CTRL_REG5 description
BOOT Reboot memory content. Default value: 0
(0: Normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO Enable)
LIR_INT1 Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by
reading INT1_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
D4D_INT1 4D enable: 4D detection is enabled on INT1 pin when 6D bit on INT1_CFG is set to
1.
LIR_INT2 Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by
reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
D4D_INT2 4D enable: 4D detection is enabled on INT2 pin when 6D bit on INT2_CFG is set to
1.
Table 39. CTRL_REG6 register
I2_CLICKen I2_INT1 I2_INT2 BOOT_I2 P2_ACT - - H_LACTIVE -
Table 40. CTRL_REG6 description
I2_CLICKen Click interrupt on INT2 pin. Default value: 0
(0: disable; 1: enable)
I2_INT1 Interrupt 1 function enabled on INT2 pin. Default value: 0
(0: function disable; 1: function enable)
I2_INT2 Interrupt 2 function enabled on INT2 pin. Default value: 0
(0: function disable; 1: function enable)
BOOT_I2 Boot on INT2 pin enable. Default value: 0
(0: disable; 1:enable)
P2_ACT Activity interrupt enable on INT2 pin. Default value: 0.
(0: disable; 1:enable)
H_LACTIVE interrupt active. Default value: 0.
(0: interrupt active high; 1: interrupt active low)
LIS2DH Registers Description
Doc ID 022516 Rev 1 37/49
7.12 REFERENCE/DATACAPTURE (26h)
7.13 STATUS_REG (27h)
7.14 OUT_X_L (28h), OUT_X_H (29h)
X-axis acceleration data. The value is expressed as two’s complement left justified.
Please refer to Section 2.6.3: High resolution, Normal mode, Low power mode.
Table 41. REFERENCE register
Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
Table 42. REFERENCE register description
Ref 7-Ref0 Reference value for Interrupt generation. Default value: 0
Table 43. STATUS register
ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA
Table 44. STATUS register description
ZYXOR X, Y and Z axis Data Overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data has overwritten the previous ones)
ZOR Z axis Data Overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous
one)
YOR Y axis Data Overrun. Default value: 0
(0: no overrun has occurred;
1: a new data for the Y-axis has overwritten the previous one)
XOR X axis Data Overrun. Default value: 0
(0: no overrun has occurred;
1: a new data for the X-axis has overwritten the previous one)
ZYXDA X, Y and Z axis new Data Available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA Z axis new Data Available. Default value: 0
(0: a new data for the Z-axis is not yet available;
1: a new data for the Z-axis is available)
YDA Y axis new Data Available. Default value: 0
(0: a new data for the Y-axis is not yet available;
1: a new data for the Y-axis is available)
Registers Description LIS2DH
38/49 Doc ID 022516 Rev 1
7.15 OUT_Y_L (2Ah), OUT_Y_H (2Bh)
Y-axis acceleration data. The value is expressed as two’s complement left justified.
Please refer to Section 2.6.3: High resolution, Normal mode, Low power mode.
7.16 OUT_Z_L (2Ch), OUT_Z_H (2Dh)
Z-axis acceleration data. The value is expressed as two’s complement left justified.
Please refer to Section 2.6.3: High resolution, Normal mode, Low power mode.
7.17 FIFO_CTRL_REG (2Eh)
7.18 FIFO_SRC_REG (2Fh)
Table 45. FIFO_CTRL_REG register
FM1 FM0 TR FTH4 FTH3 FTH2 FTH1 FTH0
Table 46. FIFO_CTRL_REG register description
FM1-FM0 FIFO mode selection. Default value: 00 (see Ta bl e 4 7 )
TR Trigger selection. Default value: 0
0: Trigger event allows to trigger signal on INT1
1: Trigger event allows to trigger signal on INT2
FTH4:0 Default value: 0
Table 47. FIFO mode configuration
FM1 FM0 FIFO mode
0 0 Bypass mode
01FIFO mode
1 0 Stream mode
1 1 Trigger mode
Table 48. FIFO_SRC register
WTM OVRN_FIFO EMPTY FSS4 FSS3 FSS2 FSS1 FSS0
LIS2DH Registers Description
Doc ID 022516 Rev 1 39/49
7.19 INT1_CFG (30h)
Content of this register is loaded at boot.
Write operation at this address is possible only after system boot.
Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generate when orientation move from
unknown zone to known zone. The interrupt signal stay for a duration ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generate when orientation is inside a
known zone. The interrupt signal stay untill orientation is inside the zone.
Table 49. INT1_CFG register
AOI 6D ZHIE/
ZUPE
ZLIE/
ZDOWNE
YHIE/
YUPE
YLIE/
YDOWNE
XHIE/
XUPE
XLIE/
XDOWNE
Table 50. INT1_CFG description
AOI And/Or combination of Interrupt events. Default value: 0. Refer to Table 51, "Interrupt
mode"
6D 6 direction detection function enabled. Default value: 0. Refer to Table 51, "Interrupt
mode"
ZHIE/
ZUPE
Enable interrupt generation on Z high event or on Direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
ZLIE/
ZDOWNE
Enable interrupt generation on Z low event or on Direction recognition. Default value:
0 (0: disable interrupt request;1: enable interrupt request)
YHIE/
YUPE
Enable interrupt generation on Y high event or on Direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
YLIE/
YDOWNE
Enable interrupt generation on Y low event or on Direction recognition. Default value:
0 (0: disable interrupt request; 1: enable interrupt request.)
XHIE/
XUPE
Enable interrupt generation on X high event or on Direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XLIE/XDOWN
E
Enable interrupt generation on X low event or on Direction recognition. Default value:
0 (0: disable interrupt request; 1: enable interrupt request.)
Table 51. Interrupt mode
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6 direction movement recognition
1 0 AND combination of interrupt events
1 1 6 direction position recognition
Registers Description LIS2DH
40/49 Doc ID 022516 Rev 1
7.20 INT1_SRC (31h)
Interrupt 1 source register. Read only register.
Reading at this address clears INT1_SRC IA bit (and the interrupt signal on INT 1 pin) and
allows the refreshment of data in the INT1_SRC register if the latched option was chosen.
7.21 INT1_THS (32h)
Table 52. INT1_SRC register
0 IA ZHZLYHYLXHXL
Table 53. INT1_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z High event has occurred)
ZL Z low. Default value: 0
(0: no interrupt; 1: Z Low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y High event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y Low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X High event has occurred)
XL X low. Default value: 0
(0: no interrupt, 1: X Low event has occurred)
Table 54. INT1_THS register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 55. INT1_THS description
THS6 - THS0
Interrupt 1 threshold. Default value: 000 0000
1LSb = 16mg @FS=2g
1LSb = 32 mg @FS=4g
1LSb = 62 mg @FS=8g
1LSb = 186 mg @FS=16g
LIS2DH Registers Description
Doc ID 022516 Rev 1 41/49
7.22 INT1_DURATION (33h)
D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration
steps and maximum values depend on the ODR chosen.
Duration time is measured in N/ODR, where N is the content of the duration register.
7.23 INT2_CFG (34h)
Table 56. INT1_DURATION register
0 D6D5D4D3D2D1D0
Table 57. INT1_DURATION description
D6 - D0 Duration value. Default value: 000 0000
1 LSb = 1/ODR
Table 58. INT2_CFG register
AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE
Table 59. INT2_CFG description
AOI AND/OR combination of interrupt events. Default value: 0.
(See table below)
6D 6 direction detection function enabled. Default value: 0. Refer to Table 60, "Interrupt
mode"
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Registers Description LIS2DH
42/49 Doc ID 022516 Rev 1
Content of this register is loaded at boot.
Write operation at this address is possible only after system boot.
Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generate when orientation move from
unknown zone to known zone. The interrupt signal stay for a duration ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generate when orientation is inside a
known zone. The interrupt signal stay untill orientation is inside the zone.
7.24 INT2_SRC (35h)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Table 60. Interrupt mode
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6 direction movement recognition
1 0 AND combination of interrupt events
1 1 6 direction position recognition
Table 59. INT2_CFG description (continued)
Table 61. INT2_SRC register
0 IA ZHZLYHYLXHXL
Table 62. INT2_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
LIS2DH Registers Description
Doc ID 022516 Rev 1 43/49
Interrupt 2 source register. Read only register.
Reading at this address clears INT2_SRC IA bit (and the interrupt signal on INT 2 pin) and
allows the refreshment of data in the INT2_SRC register if the latched option was chosen.
7.25 INT2_THS (36h)
7.26 INT2_DURATION (37h)
D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration
time steps and maximum values depend on the ODR chosen.
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X Low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Table 62. INT2_SRC description (continued)
Table 63. INT2_THS register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 64. INT2_THS description
THS6 - THS0
Interrupt 2 threshold. Default value: 000 0000
1LSb = 16mg @FS=2g;
1LSb = 32mg @FS=4g;
1LSb = 62mg @FS=8g;
1LSb = 186mg @ FS=16g
Table 65. INT2_DURATION register
0 D6D5D4D3D2D1D0
Table 66. INT2_DURATION description
D6-D0 Duration value. Default value: 000 0000
1 LSb = 1/ODR(1)
1. Duration time is measured in N/ODR, where N is the content of the duration register.
Registers Description LIS2DH
44/49 Doc ID 022516 Rev 1
7.27 CLICK_CFG (38h)
7.28 CLICK_SRC (39h)
Table 67. CLICK_CFG register
-- -- ZD ZS YD YS XD XS
Table 68. CLICK_CFG description
ZD Enable interrupt double tap-tap on Z axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
ZS Enable interrupt single tap-tap on Z axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YD Enable interrupt double tap-tap on Y axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YS Enable interrupt single tap-tap on Y axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XD Enable interrupt double tap-tap on X axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XS Enable interrupt single tap-tap on X axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
Table 69. CLICK_SRC register
IA DClick SClick Sign Z Y X
Table 70. CLICK_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
DClick Double Click-Click enable. Default value: 0 (0:double Click-Click detection disable, 1:
double tap-tap detection enable)
Stap Single Click-Click enable. Default value: 0 (0:Single Click-Click detection disable, 1: sin-
gle Click-Click detection enable)
Sign Click-Click Sign. 0: positive detection, 1: negative detection
Z Z Click-Click detection. Default value: 0
(0: no interrupt, 1: Z High event has occurred)
LIS2DH Registers Description
Doc ID 022516 Rev 1 45/49
7.29 CLICK_THS (3Ah)
7.30 TIME_LIMIT (3Bh)
7.31 TIME_LATENCY (3Ch)
7.32 TIME WINDOW(3Dh)
Y Y Click-Click detection. Default value: 0
(0: no interrupt, 1: Y High event has occurred)
X X Click-Click detection. Default value: 0
(0: no interrupt, 1: X High event has occurred)
Table 70. CLICK_SRC description (continued)
Table 71. CLICK_THS register
- Ths6 Ths5 Ths4 Ths3 Ths2 Ths1 Ths0
Table 72. CLICK_SRC description
Ths6-Ths0 Click-Click threshold. Default value: 000 0000
Table 73. TIME_LIMIT register
- TLI6 TLI5 TLI4 TLI3 TLI2 TLI1 TLI0
Table 74. TIME_LIMIT description
TLI7-TLI0 Click-Click Time Limit. Default value: 000 0000
Table 75. TIME_LATENCY register
TLA7 TLA6 TLA5 TLA4 TLA3 TLA2 TLA1 TLA0
Table 76. TIME_LATENCY description
TLA7-TLA0 Click-Click Time Latency. Default value: 000 0000
Table 77. TIME_WINDOW register
TW7TW6TW5TW4TW3TW2TW1TW0
Registers Description LIS2DH
46/49 Doc ID 022516 Rev 1
7.33 Act_THS(3Eh)
7.34 Act_DUR (3Fh)
Table 78. TIME_WINDOW description
TW7-TW0 Click-Click Time Window
Table 79. TIME_WINDOW register
-- Acth6 Acth5 Acth4 Acth3 Acth2 Acth1 Acth0
Table 80. TIME_WINDOW description
Acth[6-0] Sleep to wake, return to Sleep activation threshold in Low power mode
1LSb = 16mg @FS=2g
1LSb = 32 mg @FS=4g
1LSb = 62 mg @FS=8g
1LSb = 186 mg @FS=16g
Table 81. Act_DUR register
ActD7 ActD6 ActD5 ActD4 ActD3 ActD2 ActD1 ActD0
Table 82. Act_DUR description
ActD[7-0] Sleep to Wake, Return to Sleep duration
1LSb = (8*1[LSb]+1)/ODR
LIS2DH Package information
Doc ID 022516 Rev 1 47/49
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Figure 12. LGA-14 2x2x1 mechanical drawing
Table 83. LGA-14 2x2x1 mechanical dimensions
Ref. Min. Typ. Max.
A1 1
A2 0.785
A3 0.200
D1 1.850 2.000 2.150
E1 1.850 2.000 2.150
L1 0.900
L2 1.250
N1 0.350
T1 0.275
T2 0.200
P1 0.850
P2 0.850
d0.150
M0.100
K0.050
8224765_A
Revision history LIS2DH
48/49 Doc ID 022516 Rev 1
9 Revision history
Table 84. Document revision history
Date Revision Changes
25-Nov-2011 1 Initial release.
LIS2DH
Doc ID 022516 Rev 1 49/49
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
LIS2DHTR