Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
MSP430F14x, MSP430F14x1, MSP430F13x Mixed-Signal Microcontrollers
1 Device Overview
1
1.1 Features
1
Low Supply Voltage Range, 1.8 V to 3.6 V
Ultra-Low Power Consumption:
Active Mode: 280 µA at 1 MHz, 2.2 V
Standby Mode: 1.6 µA
Off Mode (RAM Retention): 0.1 µA
Five Power-Saving Modes
Wakeup From Standby Mode in Less Than 6 µs
16-Bit RISC Architecture, 125-ns Instruction Cycle
Time
12-Bit Analog-to-Digital Converter (ADC) With
Internal Reference, Sample-and-Hold, and
Autoscan Feature
16-Bit Timer_B With Seven Capture/Compare-
With-Shadow Registers
16-Bit Timer_A With Three Capture/Compare
Registers
On-Chip Comparator
Serial Onboard Programming, No External
Programming Voltage Needed, Programmable
Code Protection by Security Fuse
Serial Communication Interface (USART),
Functions as Asynchronous UART or Synchronous
SPI Interface
Two USARTs (USART0, USART1) On
MSP430F14x and MSP430F14x1 Devices
One USART (USART0) On MSP430F13x
Devices
Family Members (Also See Device Comparison)
MSP430F133
8KB + 256 Bytes of Flash Memory,
256 Bytes of RAM
MSP430F135
16KB + 256 Bytes of Flash Memory,
512 Bytes of RAM
MSP430F147, MSP430F1471
32KB + 256 Bytes of Flash Memory,
1KB of RAM
MSP430F148, MSP430F1481
48KB + 256 Bytes of Flash Memory,
2KB of RAM
MSP430F149, MSP430F1491
60KB + 256 Bytes of Flash Memory,
2KB of RAM
1.2 Applications
Sensor Systems
Industrial Controls Hand-Held Meters
1.3 Description
The Texas Instruments MSP430™ family of ultra-low-power microcontrollers (MCUs) consist of several
devices featuring different sets of peripherals targeted for various applications. The architecture, combined
with five low-power modes is optimized to achieve extended battery life in portable measurement
applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators
that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from
low-power modes to active mode in less than 6 µs.
The MSP430F13x, MSP430F14x, and MSP430F14x1 MCUs support two built-in 16-bit timers, a fast 12-bit
ADC on the MSP430F13x and the MSP430F14x devices, one USART on the MSP430F13x devices or
two USARTs on the MSP430F14x and MSP430F14x1 devices, and 48 I/O pins. The hardware multiplier
enhances the performance and offers a broad code and hardware-compatible family solution.
For complete module descriptions, see the MSP430x1xx Family User’s Guide.
Oscillator ACLK
SMCLK
CPU
Incl. 16 Reg.
Bus
Conv
MCB
XIN XOUT P3 P4P2
XT2IN
XT2OUT
TMS
TCK
MDB, 16 Bit
MAB, 16 Bit
MCLK
4
TDI/TCLK
TDO/TDI
P5 P6
MAB,
4 Bit
DVCC DVSS AVCC AVSS RST/NMI
System
Clock
ROSC
P1
16KB Flash
8KB Flash
512B RAM
256B RAM
ADC12
12-Bit
8 Channels
<10µs Conv.
Watchdog
Timer
15/16-Bit
Timer_B3
3 CC Reg
Shadow
Reg
Timer_A3
3 CC Reg
Test
JTAG
Emulation
Module
I/O Port 1/2
16 I/Os,
with
Interrupt
Capability
I/O Port 3/4
16 I/Os
POR Comparator
A
USART0
UART Mode
SPI Mode
I/O Port 5/6
16 I/Os
MDB, 8 Bit
MDB, 16-Bit
MAB, 16-Bit
8 8 8 8 8 8
2
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Device Overview Copyright © 2000–2018, Texas Instruments Incorporated
(1) For the most current device, package, and ordering information, see the Package Option Addendum in Section 8, or see the TI website
at www.ti.com.
(2) The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8.
Device Information(1)
PART NUMBER PACKAGE BODY SIZE(2)
MSP430F149IPM LQFP (64) 10 mm × 10 mm
MSP430F149IPAG TQFP (64) 10 mm × 10 mm
MSP430F1491IRTD VQFN (64) 9 mm × 9 mm
1.4 Functional Block Diagrams
Figure 1-1 shows the functional block diagram for the MSP430F13x MCUs.
Figure 1-1. Functional Block Diagram, MSP430F13x
Oscillator ACLK
SMCLK
CPU
Incl. 16 Reg.
Bus
Conv
MCB
XIN XOUT P3 P4P2
XT2IN
XT2OUT
TMS
TCK
MDB, 16 Bit
MAB, 16 Bit
MCLK
4
TDI/TCLK
TDO/TDI
P5 P6
MAB,
4 Bit
DVCC DVSS AVCC AVSS RST/NMI
System
Clock
ROSC
P1
Hardware
Multiplier
MPY, MPYS
MAC, MACS
60KB Flash
48KB Flash
32KB Flash
2KB RAM
2KB RAM
1KB RAM
Watchdog
Timer
15/16-Bit
Timer_B7
7 CC Reg
Shadow
Reg
Timer_A3
3 CC Reg
Test
JTAG
Emulation
Module
I/O Port 1/2
16 I/Os,
with
Interrupt
Capability
I/O Port 3/4
16 I/Os
POR Comparator
A
USART0
UART Mode
SPI Mode
USART1
UART Mode
SPI Mode
I/O Port 5/6
16 I/Os
MDB, 8 Bit
MDB, 16-Bit
MAB, 16-Bit
8 8 8 8 8 8
Oscillator ACLK
SMCLK
CPU
Incl. 16 Reg.
Bus
Conv
MCB
XIN XOUT P3 P4P2
XT2IN
XT2OUT
TMS
TCK
MDB, 16 Bit
MAB, 16 Bit
MCLK
4
TDI/TCLK
TDO/TDI
P5 P6
MAB,
4 Bit
DVCC DVSS AVCC AVSS RST/NMI
System
Clock
ROSC
P1
Hardware
Multiplier
MPY, MPYS
MAC, MACS
60KB Flash
48KB Flash
32KB Flash
2KB RAM
2KB RAM
1KB RAM
ADC12
12-Bit
8 Channels
<10µs Conv.
Watchdog
Timer
15/16-Bit
Timer_B7
7 CC Reg
Shadow
Reg
Timer_A3
3 CC Reg
Test
JTAG
Emulation
Module
I/O Port 1/2
16 I/Os,
with
Interrupt
Capability
I/O Port 3/4
16 I/Os
POR Comparator
A
USART0
UART Mode
SPI Mode
USART1
UART Mode
SPI Mode
I/O Port 5/6
16 I/Os
MDB, 8 Bit
MDB, 16-Bit
MAB, 16-Bit
8 8 8 8 8 8
3
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Device OverviewCopyright © 2000–2018, Texas Instruments Incorporated
Figure 1-2 shows the functional block diagram for the MSP430F14x MCUs.
Figure 1-2. Functional Block Diagram, MSP430F14x
Figure 1-3 shows the functional block diagram for the MSP430F14x1 MCUs.
Figure 1-3. Functional Block Diagram, MSP430F14x1
4
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Table of Contents Copyright © 2000–2018, Texas Instruments Incorporated
Table of Contents
1 Device Overview ......................................... 1
1.1 Features .............................................. 1
1.2 Applications........................................... 1
1.3 Description............................................ 1
1.4 Functional Block Diagrams........................... 2
2 Revision History ......................................... 5
3 Device Comparison ..................................... 6
3.1 Related Products ..................................... 6
4 Terminal Configuration and Functions.............. 7
4.1 Pin Diagrams ......................................... 7
4.2 Signal Descriptions.................................. 10
5 Specifications........................................... 16
5.1 Absolute Maximum Ratings......................... 16
5.2 ESD Ratings ........................................ 16
5.3 Recommended Operating Conditions............... 16
5.4 Supply Current Into AVCC and DVCC Excluding
External Current..................................... 17
5.5 Thermal Resistance Characteristics ................ 18
5.6 Schmitt-Trigger Inputs Ports P1, P2, P3, P4, P5,
and P6............................................... 18
5.7 Standard Inputs RST/NMI, JTAG (TCK, TMS,
TDI/TCLK, TDO/TDI) ............................... 18
5.8 Inputs Px.y, TAx, TBx ............................ 18
5.9 Leakage Current .................................... 19
5.10 Outputs Ports P1, P2, P3, P4, P5, and P6 ....... 19
5.11 Output Frequency .................................. 19
5.12 Typical Characteristics Ports P1, P2, P3, P4, P5,
and P6 Outputs ..................................... 20
5.13 Wake-up Time From LPM3 ......................... 21
5.14 RAM ................................................. 21
5.15 Comparator_A....................................... 21
5.16 Typical Characteristics Comparator_A............ 22
5.17 PUC and POR ...................................... 23
5.18 DCO Frequency..................................... 24
5.19 DCO When Using ROSC............................. 25
5.20 Crystal Oscillator, LFXT1 ........................... 26
5.21 Crystal Oscillator, XT2 .............................. 26
5.22 USART0, USART1.................................. 26
5.23 12-Bit ADC, Power Supply and Input Range
Conditions ........................................... 27
5.24 12-Bit ADC, External Reference .................... 27
5.25 12-Bit ADC, Built-In Reference...................... 28
5.26 12-Bit ADC, Timing Parameters .................... 30
5.27 12-Bit ADC, Linearity Parameters................... 30
5.28 12-Bit ADC, Temperature Sensor and Built-In VMID 31
5.29 Flash Memory....................................... 31
5.30 JTAG Interface...................................... 32
5.31 JTAG Fuse ......................................... 32
6 Detailed Description ................................... 33
6.1 CPU ................................................. 33
6.2 Instruction set ....................................... 34
6.3 Operating Modes.................................... 34
6.4 Interrupt Vector Addresses.......................... 35
6.5 Bootloader (BSL).................................... 35
6.6 JTAG Fuse Check Mode............................ 36
6.7 Memory.............................................. 36
6.8 Peripherals .......................................... 40
6.9 Input/Output Diagrams .............................. 48
7 Device and Documentation Support ............... 59
7.1 Getting Started and Next Steps..................... 59
7.2 Device Nomenclature ............................... 59
7.3 Tools and Software ................................. 61
7.4 Documentation Support............................. 62
7.5 Related Links........................................ 63
7.6 Community Resources.............................. 63
7.7 Trademarks.......................................... 63
7.8 Electrostatic Discharge Caution..................... 64
7.9 Export Control Notice ............................... 64
7.10 Glossary............................................. 64
8 Mechanical, Packaging, and Orderable
Information .............................................. 65
5
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Revision HistoryCopyright © 2000–2018, Texas Instruments Incorporated
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from February 12, 2009 to May 23, 2018 Page
Document format and organization changes throughout........................................................................ 1
Added Section 1.2,Applications.................................................................................................... 1
Added Section 3,Device Comparison ............................................................................................ 6
Added Section 5.2,ESD Ratings.................................................................................................. 16
Removed note (2) with duplicate information from the fLFXT1 parameter in Section 5.3,Recommended Operating
Conditions ........................................................................................................................... 16
Removed duplicate conditions "XTS = 0, SELM = 0 or 1" from the second row of Test Conditions on the I(AM)
parameter in Section 5.4,Supply Current Into AVCC and DVCC Excluding External Current.............................. 17
Added Section 5.5,Thermal Resistance Characteristics ...................................................................... 18
Removed ADC12DIV from the equation in the TYP value of the tCONVERT parameter (because ADC12CLK is
after division) in Section 5.26,12-Bit ADC, Timing Parameters .............................................................. 30
Changed all instances of bootstrap loader to bootloader throughout document............................................ 35
Added Section 7,Device and Documentation Support......................................................................... 59
6
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Device Comparison Copyright © 2000–2018, Texas Instruments Incorporated
(1) For the most current package and ordering information, see the Package Option Addendum in Section 8, or see the TI website at
www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
3 Device Comparison
Table 3-1 summarizes the features of the device variants in this data sheet.
Table 3-1. Device Comparison(1)(2)
Device Flash SRAM Timer_A(3) Timer_B(4) USART COMP_A ADC12
(Channels) I/Os Package
MSP430F149 60KB 2KB 3 7 2 1 8 48 64-pin PM
64-pin PAG
64-pin RTD
MSP430F1491 60KB 2KB 3 7 2 1 8 48 64-pin PM
64-pin RTD
MSP430F148 48KB 2KB 3 7 2 1 8 48 64-pin PM
64-pin PAG
64-pin RTD
MSP430F1481 48KB 2KB 3 7 2 1 8 48 64-pin PM
64-pin RTD
MSP430F147 32KB 1KB 3 7 2 1 8 48 64-pin PM
64-pin PAG
64-pin RTD
MSP430F1471 32KB 1KB 3 7 2 1 8 48 64-pin PM
64-pin RTD
MSP430F135 16KB 512 bytes 3 3 1 1 8 48 64-pin PM
64-pin PAG
64-pin RTD
MSP430F133 8KB 256 bytes 3 3 1 1 8 48 64-pin PM
64-pin PAG
64-pin RTD
3.1 Related Products
For information about other devices in this family of products or related products, see the following links.
TI 16-bit and 32-bit microcontrollers High-performance, low-power solutions to enable the autonomous
future
Products for MSP430 ultra-low-power microcontrollers One platform. One ecosystem. Endless
possibilities.
Products for other MSP430 microcontrollers MCUs for metrology, monitoring, system control, and
communications
Companion Products for MSP430F149 Review products that are frequently purchased or used with this
product.
Reference Designs The TI Designs Reference Design Library is a robust reference design library that
spans analog, embedded processor, and connectivity. Created by TI experts to help you
jump start your system design, all TI Designs include schematic or block diagrams, BOMs,
and design files to speed your time to market.
17 18 19
P5.4/MCLK
P5.3
P5.2
P5.1
P5.0
P4.7/TBCLK
P4.6
P4.5
P4.4
P4.3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7
P3.6
P3.5/URXD0
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
DVCC
P6.3/A3
P6.4/A4
P6.5/A5
P6.6/A6
P6.7/A7
VREF+
XIN
XOUT
VeREF+
VREF−/VeREF−
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
21 22 23 24
P5.6/ACLK
TDO/TDI
63 62 61 60 5964 58
AV
P6.2/A2
P6.1/A1
P6.0/A0
RST/NMI
TCK
TMS
P2.6/ADC12CLK
P2.7/TA0
P3.0/STE0
P3.1/SIMO0
P1.7/TA2
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/Rosc
56 55 5457
25 26 27 28 29
53 52
P1.5/TA0
XT2IN
XT2OUT
51 50 49
30 31 32
P3.2/SOMI0
P3.3/UCLK0
P3.4/UTXD0
P5.7/TBOUTH
TDI/TCLK
P5.5/SMCLK
AV
DV
P1.6/TA1
P2.0/ACLK
CC
SS
SS
7
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Terminal Configuration and FunctionsCopyright © 2000–2018, Texas Instruments Incorporated
4 Terminal Configuration and Functions
4.1 Pin Diagrams
Figure 4-1 shows the pinout for the MSP430F133 and MSP430F135 MCUs in the 64-pin PM, PAG, and
RTD packages.
Figure 4-1. 64-Pin PM, PAG, or RTD Package (Top View) for MSP430F133 and MSP430F135
17 18 19
P5.4/MCLK
P5.3/UCLK1
P5.2/SOMI1
P5.1/SIMO1
P5.0/STE1
P4.7/TBCLK
P4.6/TB6
P4.5/TB5
P4.4/TB4
P4.3/TB3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7/URXD1
P3.6/UTXD1
P3.5/URXD0
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
DVCC
P6.3/A3
P6.4/A4
P6.5/A5
P6.6/A6
P6.7/A7
VREF+
XIN
XOUT
VeREF+
VREF−/VeREF−
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
21 22 23 24
P5.6/ACLK
TDO/TDI
63 62 61 60 5964 58
AV
P6.2/A2
P6.1/A1
P6.0/A0
RST/NMI
TCK
TMS
P2.6/ADC12CLK
P2.7/TA0
P3.0/STE0
P3.1/SIMO0
P1.7/TA2
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/Rosc
56 55 5457
25 26 27 28 29
53 52
P1.5/TA0
XT2IN
XT2OUT
51 50 49
30 31 32
P3.2/SOMI0
P3.3/UCLK0
P3.4/UTXD0
P5.7/TBOUTH
TDI/TCLK
P5.5/SMCLK
AV
DV
P1.6/TA1
P2.0/ACLK
CC
SS
SS
8
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Terminal Configuration and Functions Copyright © 2000–2018, Texas Instruments Incorporated
Figure 4-2 shows the pinout for the MSP430F147, MSP430F148, and MSP430F149 MCUs in the 64-pin
PM, PAG, and RTD packages.
Figure 4-2. 64-Pin PM, PAG, or RTD Package (Top View) for MSP430F147, MSP430F148, and MSP430F149
17 18 19
P5.4/MCLK
P5.3/UCLK1
P5.2/SOMI1
P5.1/SIMO1
P5.0/STE1
P4.7/TBCLK
P4.6/TB6
P4.5/TB5
P4.4/TB4
P4.3/TB3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7/URXD1
P3.6/UTXD1
P3.5/URXD0
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
DVCC
P6.3
P6.4
P6.5
P6.6
P6.7
Reserved
XIN
XOUT
DVSS
DVSS
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
21 22 23 24
P5.6/ACLK
TDO/TDI
63 62 61 60 5964 58
AV
P6.2
P6.1
P6.0
RST/NMI
TCK
TMS
P2.6
P2.7/TA0
P3.0/STE0
P3.1/SIMO0
P1.7/TA2
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/Rosc
56 55 5457
25 26 27 28 29
53 52
P1.5/TA0
XT2IN
XT2OUT
51 50 49
30 31 32
P3.2/SOMI0
P3.3/UCLK0
P3.4/UTXD0
P5.7/TBOUTH
TDI/TCLK
P5.5/SMCLK
AV
DV
P1.6/TA1
P2.0/ACLK
CC
SS
SS
9
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Terminal Configuration and FunctionsCopyright © 2000–2018, Texas Instruments Incorporated
Figure 4-3 shows the pinout for the MSP430F1471, MSP430F1481, and MSP430F1491 MCUs in the 64-
pin PM and RTD packages.
Figure 4-3. 64-Pin PM or RTD Package (Top View) for MSP430F1471, MSP430F1481, and MSP430F1491
10
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Terminal Configuration and Functions Copyright © 2000–2018, Texas Instruments Incorporated
4.2 Signal Descriptions
Table 4-1 describes the signals for the MSP430F13x and MSP430F14x MCUs. See Table 4-2 for the
MSP430F14x1 signal descriptions.
Table 4-1. Signal Descriptions for MSP430F13x and MSP430F14x
SIGNAL NAME PIN NO. I/O DESCRIPTION
AVCC 64 Analog supply voltage, positive terminal. Supplies the analog portion of the ADC.
AVSS 62 Analog supply voltage, negative terminal. Supplies the analog portion of the ADC.
DVCC 1 Digital supply voltage, positive terminal. Supplies all digital parts.
DVSS 63 Digital supply voltage, negative terminal. Supplies all digital parts.
P1.0/TACLK 12 I/O General-purpose digital I/O pin
Timer_A, clock signal TACLK input
P1.1/TA0 13 I/O General-purpose digital I/O pin
Timer_A, capture: CCI0A input, compare: Out0 output
BSL transmit
P1.2/TA1 14 I/O General-purpose digital I/O pin
Timer_A, capture: CCI0A input, compare: Out0 output
BSL transmit
P1.3/TA2 15 I/O General-purpose digital I/O pin
Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK 16 I/O General-purpose digital I/O pin
SMCLK signal output
P1.5/TA0 17 I/O General-purpose digital I/O pin
Timer_A, compare: Out0 output
P1.6/TA1 18 I/O General-purpose digital I/O pin
Timer_A, compare: Out1 output
P1.7/TA2 19 I/O General-purpose digital I/O pin
Timer_A, compare: Out2 output/
P2.0/ACLK 20 I/O General-purpose digital I/O pin
ACLK output
P2.1/TAINCLK 21 I/O General-purpose digital I/O pin
Timer_A, clock signal at INCLK
P2.2/CAOUT/TA0 22 I/O General-purpose digital I/O pin
Comparator_A output
Timer_A, capture: CCI0B input
BSL receive
P2.3/CA0/TA1 23 I/O General-purpose digital I/O pin
Timer_A, compare: Out1 output
Comparator_A input
P2.4/CA1/TA2 24 I/O General-purpose digital I/O pin
Timer_A, compare: Out2 output
Comparator_A input
P2.5/ROSC 25 I/O General-purpose digital I/O pin
input for external resistor defining the DCO nominal frequency
P2.6/ADC12CLK 26 I/O General-purpose digital I/O pin
Conversion clock for ADC
P2.7/TA0 27 I/O General-purpose digital I/O pin
Timer_A, compare: Out0 output
P3.0/STE0 28 I/O General-purpose digital I/O pin
Slave transmit enable for USART0 in SPI mode
P3.1/SIMO0 29 I/O General-purpose digital I/O pin
Slave in/master out of USART0 in SPI mode
P3.2/SOMI0 30 I/O General-purpose digital I/O pin
Slave out/master in of USART0 in SPI mode
P3.3/UCLK0 31 I/O General-purpose digital I/O
USART0 clock: external input in UART or SPI mode, output in SPI mode
P3.4/UTXD0 32 I/O General-purpose digital I/O pin
Transmit data out for USART0 in UART mode
11
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Terminal Configuration and FunctionsCopyright © 2000–2018, Texas Instruments Incorporated
Table 4-1. Signal Descriptions for MSP430F13x and MSP430F14x (continued)
SIGNAL NAME PIN NO. I/O DESCRIPTION
(1) MSP430F14x devices only
P3.5/URXD0 33 I/O General-purpose digital I/O pin
Receive data in for USART0 in UART mode
P3.6/UTXD1(1) 34 I/O General-purpose digital I/O pin
Transmit data out for USART1 in UART mode
P3.7/URXD1(1) 35 I/O General-purpose digital I/O pin
Receive data in for USART1 in UART mode
P4.0/TB0 .36 I/O General-purpose digital I/O pin
Timer_B, capture: CCI0A or CCI0B input, compare: Out0 output
P4.1/TB1 37 I/O General-purpose digital I/O pin
Timer_B, capture: CCI1A or CCI1B input, compare: Out1 output
P4.2/TB2 38 I/O General-purpose digital I/O pin
Timer_B, capture: CCI2A or CCI2B input, compare: Out2 output
P4.3/TB3(1) 39 I/O General-purpose digital I/O pin
Timer_B, capture: CCI3A or CCI3B input, compare: Out3 output
P4.4/TB4(1) 40 I/O General-purpose digital I/O pin
Timer_B, capture: CCI4A or CCI4B input, compare: Out4 output
P4.5/TB5(1) 41 I/O General-purpose digital I/O pin
Timer_B, capture: CCI5A or CCI5B input, compare: Out5 output
P4.6/TB6(1) 42 I/O General-purpose digital I/O pin
Timer_B, capture: CCI6A or CCI6B input, compare: Out6 output
P4.7/TBCLK 43 I/O General-purpose digital I/O pin
Timer_B, clock signal TBCLK input
P5.0/STE1(1) 44 I/O General-purpose digital I/O pin
Slave transmit enable for USART1 in SPI mode
P5.1/SIMO1(1) 45 I/O General-purpose digital I/O pin
Slave in/master out of USART1 in SPI mode
P5.2/SOMI1(1) 46 I/O General-purpose digital I/O pin
Slave out/master in of USART1 in SPI mode
P5.3/UCLK1(1) 47 I/O General-purpose digital I/O pin
USART1 clock: external input in UART or SPI mode, output in SPI mode
P5.4/MCLK 48 I/O General-purpose digital I/O pin
Main system clock MCLK output
P5.5/SMCLK 49 I/O General-purpose digital I/O pin
Submain system clock SMCLK output
P5.6/ACLK 50 I/O General-purpose digital I/O pin
Auxiliary clock ACLK output
P5.7/TBOUTH 51 I/O General-purpose digital I/O pin
Switch all PWM digital output ports to high impedance for Timer_B7 (TB0 to TB6)
P6.0/A0 59 I/O General-purpose digital I/O pin
Analog input A0 for ADC
P6.1/A1 60 I/O General-purpose digital I/O pin
Analog input A1 for ADC
P6.2/A2 61 I/O General-purpose digital I/O pin
Analog input A2 for ADC
P6.3/A3 2 I/O General-purpose digital I/O pin
Analog input A3 for ADC
P6.4/A4 3 I/O General-purpose digital I/O pin
Analog input A4 for ADC
P6.5/A5 4 I/O General-purpose digital I/O pin
Analog input A5 for ADC
P6.6/A6 5 I/O General-purpose digital I/O pin
Analog input A6 for ADC
P6.7/A7 6 I/O General-purpose digital I/O pin
Analog input A7 for ADC
12
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Terminal Configuration and Functions Copyright © 2000–2018, Texas Instruments Incorporated
Table 4-1. Signal Descriptions for MSP430F13x and MSP430F14x (continued)
SIGNAL NAME PIN NO. I/O DESCRIPTION
RST/NMI 58 I Reset input
Nonmaskable interrupt input port
Bootloader start
TCK 57 I Test clock, the clock input port for device programming test and bootloader start
TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to
TDI/TCLK.
TDO/TDI 54 I/O Test data output or programming data input
TMS 56 I Test mode select, used as an input port for device programming and test
VeREF+ 10 I Input for an external reference voltage to the ADC
VREF+ 7 O Output of positive terminal of the reference voltage in the ADC
VREF/VeREF11 I Negative terminal for the ADC reference voltage for both sources, the internal
reference voltage or an external applied reference voltage
XIN 8 I Input port for crystal oscillator XT1, standard or watch crystals can be connected
XOUT 9 O Output terminal of crystal oscillator XT1
XT2IN 53 I Input port for crystal oscillator XT2, only standard crystals can be connected
XT2OUT 52 O Output terminal of crystal oscillator XT2
QFN Pad NA NA QFN package pad, connect to DVSS
13
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Terminal Configuration and FunctionsCopyright © 2000–2018, Texas Instruments Incorporated
Table 4-2 describes the signals for the MSP430F14x1 MCUs. See Table 4-1 for the MSP430F13x and
MSP430F14x signal descriptions.
Table 4-2. Signal Descriptions for MSP430F14x1
SIGNAL NAME PIN NO. I/O DESCRIPTION
AVCC 64 Analog supply voltage positive terminal
AVSS 62 Analog supply voltage negative terminal
DVCC 1 Digital supply voltage, positive terminal. Supplies all digital parts.
DVSS 63 Digital supply voltage, negative terminal. Supplies all digital parts.
P1.0/TACLK 12 I/O General-purpose digital I/O pin
Timer_A, clock signal TACLK input
P1.1/TA0 13 I/O General-purpose digital I/O pin
Timer_A, capture: CCI0A input, compare: Out0 output
BSL transmit
P1.2/TA1 14 I/O General-purpose digital I/O pin
Timer_A, capture: CCI1A input, compare: Out1 output
P1.3/TA2 15 I/O General-purpose digital I/O pin
Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK 16 I/O General-purpose digital I/O pin
SMCLK signal output
P1.5/TA0 17 I/O General-purpose digital I/O pin
Timer_A, compare: Out0 output
P1.6/TA1 18 I/O General-purpose digital I/O pin
Timer_A, compare: Out1 output
P1.7/TA2 19 I/O General-purpose digital I/O pin
Timer_A, compare: Out2 output
P2.0/ACLK 20 I/O General-purpose digital I/O pin
ACLK output
P2.1/TAINCLK 21 I/O General-purpose digital I/O pin
Timer_A, clock signal at INCLK
P2.2/CAOUT/TA0 22 I/O General-purpose digital I/O pin
Timer_A, capture: CCI0B input
Comparator_A output
BSL receive
P2.3/CA0/TA1 23 I/O General-purpose digital I/O pin
Timer_A, compare: Out1 output
Comparator_A input
P2.4/CA1/TA2 24 I/O General-purpose digital I/O pin
Timer_A, compare: Out2 output
Comparator_A input
P2.5/ROSC 25 I/O General-purpose digital I/O pin
Input for external resistor defining the DCO nominal frequency
P2.6 26 I/O General-purpose digital I/O pin
P2.7/TA0 27 I/O General-purpose digital I/O pin
Timer_A, compare: Out0 output
P3.0/STE0 28 I/O General-purpose digital I/O pin
Slave transmit enable for USART0 in SPI mode
P3.1/SIMO0 29 I/O General-purpose digital I/O pin
Slave in/master out of USART0 in SPI mode
P3.2/SOMI0 30 I/O General-purpose digital I/O pin
Slave out/master in of USART0 in SPI mode
P3.3/UCLK0 31 I/O General-purpose digital I/O
USART0 clock: external input in UART or SPI mode, output in SPI mode
P3.4/UTXD0 32 I/O General-purpose digital I/O pin
Transmit data out for USART0 in UART mode
P3.5/URXD0 33 I/O General-purpose digital I/O pin
Receive data in for USART0 in UART mode
14
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Terminal Configuration and Functions Copyright © 2000–2018, Texas Instruments Incorporated
Table 4-2. Signal Descriptions for MSP430F14x1 (continued)
SIGNAL NAME PIN NO. I/O DESCRIPTION
P3.6/UTXD1 34 I/O General-purpose digital I/O pin
Transmit data out for USART1 in UART mode
P3.7/URXD1 35 I/O General-purpose digital I/O pin
Receive data in for USART1 in UART mode
P4.0/TB0 .36 I/O General-purpose digital I/O pin
Timer_B, capture: CCI0A or CCI0B input, compare: Out0 output
P4.1/TB1 37 I/O General-purpose digital I/O pin
Timer_B, capture: CCI1A or CCI1B input, compare: Out1 output
P4.2/TB2 38 I/O General-purpose digital I/O pin
Timer_B, capture: CCI2A or CCI2B input, compare: Out2 output
P4.3/TB3 39 I/O General-purpose digital I/O pin
Timer_B, capture: CCI3A or CCI3B input, compare: Out3 output
P4.4/TB4 40 I/O General-purpose digital I/O pin
Timer_B, capture: CCI4A or CCI4B input, compare: Out4 output
P4.5/TB5 41 I/O General-purpose digital I/O pin
Timer_B, capture: CCI5A or CCI5B input, compare: Out5 output
P4.6/TB6 42 I/O General-purpose digital I/O pin
Timer_B, capture: CCI6A or CCI6B input, compare: Out6 output
P4.7/TBCLK 43 I/O General-purpose digital I/O pin
Timer_B, clock signal TBCLK input
P5.0/STE1 44 I/O General-purpose digital I/O pin
Slave transmit enable for USART1 in SPI mode
P5.1/SIMO1 45 I/O General-purpose digital I/O pin
Slave in/master out of USART1 in SPI mode
P5.2/SOMI1 46 I/O General-purpose digital I/O pin
Slave out/master in of USART1 in SPI mode
P5.3/UCLK1 47 I/O General-purpose digital I/O pin
USART1 clock: external input in UART or SPI mode, output in SPI mode
P5.4/MCLK 48 I/O General-purpose digital I/O pin
Main system clock MCLK output
P5.5/SMCLK 49 I/O General-purpose digital I/O pin
Submain system clock SMCLK output
P5.6/ACLK 50 I/O General-purpose digital I/O pin
Auxiliary clock ACLK output
P5.7/TBOUTH 51 I/O General-purpose digital I/O pin
Switch all PWM digital output ports to high impedance for Timer_B7 (TB0 to TB6)
P6.0 59 I/O General-purpose digital I/O pin
P6.1 60 I/O General-purpose digital I/O pin
P6.2 61 I/O General-purpose digital I/O pin
P6.3 2 I/O General-purpose digital I/O pin
P6.4 3 I/O General-purpose digital I/O pin
P6.5 4 I/O General-purpose digital I/O pin
P6.6 5 I/O General-purpose digital I/O pin
P6.7 6 I/O General-purpose digital I/O pin
RST/NMI 58 I Reset input
Nonmaskable interrupt input port
Bootloader start
TCK 57 I Test clock, the clock input port for device programming test and bootloader start
TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to
TDI/TCLK.
TDO/TDI 54 I/O Test data output or programming data input
TMS 56 I Test mode select, used as an input port for device programming and test
DVSS 10 I Connect to DVSS
Reserved 7 Reserved, do not connect externally
15
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Terminal Configuration and FunctionsCopyright © 2000–2018, Texas Instruments Incorporated
Table 4-2. Signal Descriptions for MSP430F14x1 (continued)
SIGNAL NAME PIN NO. I/O DESCRIPTION
DVSS 11 I Connect to DVSS
XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT 9 O Output terminal of crystal oscillator XT1
XT2IN 53 I Input port for crystal oscillator XT2. Only standard crystals can be connected.
XT2OUT 52 O Output terminal of crystal oscillator XT2
QFN Pad NA NA QFN package pad, connect to DVSS
16
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Specifications Copyright © 2000–2018, Texas Instruments Incorporated
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to VSS, unless otherwise noted. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute
maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse.
5 Specifications
5.1 Absolute Maximum Ratings(1)
over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT
Voltage applied at VCC to VSS 0.3 4.1 V
Voltage applied to any pin (2) 0.3 VCC + 0.3 V
Diode current at any device terminal ±2 mA
Storage temperature Programmed device 40 85 °C
Unprogrammed device 55 150
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000
V may actually have higher performance.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V
may actually have higher performance.
5.2 ESD Ratings
VALUE UNIT
V(ESD) Electrostatic discharge
ratings Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
(1) In LF mode, the LFXT1 oscillator requires a watch crystal. TI recommends a 5.1-MΩresistor from XOUT to VSS when VCC < 2.5 V.
In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 4.15 MHz at VCC 2.2 V.
In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 8 MHz at VCC 2.8 V.
5.3 Recommended Operating Conditions
Typical values are specified at VCC = 3.3 V and TA= 25°C (unless otherwise noted) MIN NOM MAX UNIT
VCC Supply voltage (AVCC = DVCC = VCC)During program execution 1.8 3.6 V
During flash memory programming 2.7 3.6
VSS Supply voltage (AVSS = DVSS = VSS) 0 0 V
TAOperating free-air temperature –40 85 °C
fLFXT1 LFXT1 crystal frequency(1) LF selected, XTS = 0, watch crystal 32768 Hz
XT1 selected, XTS = 1, ceramic resonator 450 8000 kHz
XT1 selected, XTS = 1, crystal 1000 8000
fXT2 XT2 crystal frequency(1) Ceramic resonator 450 8000 kHz
Crystal 1000 8000
fSYSTEM Processor frequency (signal MCLK) VCC = 1.8 V DC 4.15 MHz
VCC = 3.6 V DC 8
Processor Frequency (MHz)
1.8
4.15
8.0
Supply Voltage (V)
Supply voltage range during
flash memory programming
or program execution
Supply voltage range
during program
execution
2.7 3.2 3.6
17
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
SpecificationsCopyright © 2000–2018, Texas Instruments Incorporated
Figure 5-1. Frequency vs Supply Voltage
(1) Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
(2) Timer_B is clocked by f(ACLK) = 32768 Hz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The current
consumption in LPM2 and LPM3 are measured with ACLK selected.
5.4 Supply Current Into AVCC and DVCC Excluding External Current
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS TAVCC MIN TYP MAX UNIT
I(AM) Active mode supply
current(1)
f(MCLK) = f(SMCLK) = 1 MHz,
f(ACLK) = 32768 Hz,
XTS = 0, SELM = 0 or 1 –40°C to 85°C 2.2 V 280 360
µA
3 V 420 560
f(MCLK) = f(SMCLK) = f(ACLK) = 4096 Hz,
XTS = 0, SELM = 3 –40°C to 85°C 2.2 V 2.5 7
3 V 9 20
I(LPM0) Low-power mode 0
(LPM0) supply current(1) –40°C to 85°C 2.2 V 32 45 µA
3 V 55 70
I(LPM2) Low-power mode 2
(LPM2) supply current f(MCLK) = f(SMCLK) = 0 MHz,
f(ACLK) = 32768 Hz, SCG0 = 0 –40°C to 85°C 2.2 V 11 14 µA
3 V 17 22
I(LPM3) Low-power mode 3
(LPM3) supply current f(MCLK) = f(SMCLK) = 0 MHz,
f(ACLK) = 32768 Hz, SCG0 = 1(2)
–40°C 2.2 V 0.8 1.5
µA
25°C 0.9 1.5
85°C 1.6 2.8
40°C 3 V 1.8 2.2
25°C 1.6 1.9
85°C 2.3 3.9
I(LPM4) Low-power mode 4
(LPM4) supply current f(MCLK) = f(SMCLK) = f(ACLK) = 0 MHz,
SCG0 = 1
40°C 2.2 V 0.1 0.5
µA
25°C 0.1 0.5
85°C 0.8 2.5
40°C 3 V 0.1 0.5
25°C 0.1 0.5
85°C 0.8 2.5
Current consumption of active mode versus system frequency
I(AM) = I(AM) [1 MHz] × f(System) [MHz]
Current consumption of active mode versus supply voltage
I(AM) = I(AM) [3 V] + 175 µA/V × (VCC 3 V)
18
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Specifications Copyright © 2000–2018, Texas Instruments Incorporated
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC
standards:
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
(3) N/A = not applicable
5.5 Thermal Resistance Characteristics
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
THERMAL METRIC(1) VALUE(2)
UNIT
64-PIN
PM 64-PIN
PAG 64-PIN
RTD
RθJA Junction-to-ambient thermal resistance, still air 52.0 52.7 25.0 °C/W
RθJC(TOP) Junction-to-case (top) thermal resistance 14.4 11.2 14.2 °C/W
RθJB Junction-to-board thermal resistance 23.0 23.4 9.6 °C/W
ΨJB Junction-to-board thermal characterization parameter 22.7 23.1 9.5 °C/W
ΨJT Junction-to-top thermal characterization parameter 0.6 0.3 0.2 °C/W
RθJC(BOTTOM) Junction-to-case (bottom) thermal resistance N/A(3) N/A(3) 1.3 °C/W
5.6 Schmitt-Trigger Inputs Ports P1, P2, P3, P4, P5, and P6
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER VCC MIN MAX UNIT
VIT+ Positive-going input threshold voltage 2.2 V 1.1 1.5 V
3 V 1.5 1.9
VIT– Negative-going input threshold voltage 2.2 V 0.4 0.9 V
3 V 0.9 1.3
Vhys Input voltage hysteresis (VIT+ VIT–)2.2 V 0.3 1.1 V
3 V 0.5 1
5.7 Standard Inputs RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER VCC MIN MAX UNIT
VIL Low-level input voltage 2 2 V, 3 V VSS VSS + 0.6 V
VIH High-level input voltage 0.8 × VCC VCC V
(1) The external signal sets the interrupt flag every time the minimum t(int) cycle and time parameters are met. It may be set even with
trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in MCLK
cycles.
(2) Seven Timer_B capture/compare registers in MSP430F14x and MSP430F14x devices, and three Timer_B capture/compare registers in
MSP430F13x devices.
5.8 Inputs Px.y, TAx, TBx
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
t(int) External interrupt timing Port P1.x and P2.x, External trigger pulse
duration to set interrupt flag(1)
2.2 V, 3 V 1.5 cycle
2.2 V 62 ns
3 V 50
t(cap) Timer A or Timer B capture timing TA0, TA1, TA2,
TB0, TB1, TB2, TB3, TB4, TB5, TB6(2) 2.2 V 62 ns
3 V 50
f(TAext),
f(TBext) Timer_A or Timer_B clock frequency
externally applied to pin TACLK, TBCLK, INCLK: t(H)= t(L) 2.2 V 8 MHz
3 V 10
19
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
SpecificationsCopyright © 2000–2018, Texas Instruments Incorporated
Inputs Px.y, TAx, TBx (continued)
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
f(TAint),
f(TBint) Timer_A or Timer_B clock frequency SMCLK or ACLK signal selected 2.2 V 8 MHz
3 V 10
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin, unless otherwise noted.
(2) The port pin must be set as input, and the optional pullup or pulldown resistor must be disabled.
5.9 Leakage Current
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
Ilkg(P1.x) Leakage current(1) Port P1 V(P1.x) (2)
2.2 V, 3 V ±50 nAIlkg(P2.x) Port P2 V(P2.3), V(P2.4)(2) ±50
Ilkg(P6.x) Port P6 V(P6.x) (2) ±50
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, must not exceed ±6 mA to hold the maximum voltage drop
specified.
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, must not exceed ±24 mA to hold the maximum voltage drop
specified.
5.10 Outputs Ports P1, P2, P3, P4, P5, and P6
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
VOH High-level output voltage
I(OHmax) = –1 mA(1) 2.2 V VCC 0.25 VCC
V
I(OHmax) = –6 mA(2) VCC 0.60 VCC
I(OHmax) = 1 mA(1) 3 V VCC 0.25 VCC
I(OHmax) = –6 mA(2) VCC 0.60 VCC
VOL Low-level output voltage
I(OLmax) = 1.5 mA(1) 2.2 V VSS VSS + 0.25
V
I(OLmax) = 6 mA(2) VSS VSS + 0.6
I(OLmax) = 1.5 mA(1) 3 V VSS VSS + 0.25
I(OLmax) = 6 mA(2) VSS VSS + 0.6
(1) The limits of the system clock MCLK must be met; the MCLK frequency must not exceed the limits. MCLK and SMCLK frequencies can
be different.
5.11 Output Frequency
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fTAx Timer_A or Timer_B output
frequency Internal clock source, SMCLK signal applied(1),
TA0 to TA2, TB0 to TB6, CL= 20 pF DC fSYSTEM MHz
fACLK Clock output frequency Measured at P5.6/ACLK CL= 20 pF fSYSTEM MHzfMCLK Measured at P5.4/MCLK fSYSTEM
fSMCLK Measured at P5.5/SMCLK fSYSTEM
tXdc Duty cycle of output
frequency
Measured at P2.0/ACLK,
CL= 20 pF,
VCC = 2.2 V or 3 V
fACLK = fLFXT1 = fXT1 40% 60%
fACLK = fLFXT1 = fLF 30% 70%
fACLK = fLFXT1/n 50%
Measured at P1 4/SMCLK,
CL= 20 pF,
VCC = 2.2 V or 3 V
fSMCLK = fLFXT1 = fXT1 40% 60%
fSMCLK = fLFXT1 = fLF 35% 65%
fSMCLK = fLFXT1/n 50%
15 ns 50% 50% +
15 ns
fSMCLK = fDCOCLK 50%
15 ns 50% 50% +
15 ns
−30
−25
−20
−15
−10
−5
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
I , High-Level Output Current (mA)
OH
V = 3 V
CC
P2.7
T = 85°C
A
T = 25°C
A
V , High-Level Output Voltage (V)
OH
V , Low-Level Output Voltage (V)
OL
0
2
4
6
8
10
12
14
16
0.0 0.5 1.0 1.5 2.0 2.5
I , Low-Level Output Current (mA)
OL
V = 2.2 V
CC
P2.7 T = 25°C
A
T = 85°C
A
0
5
10
15
20
25
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
V = 3 V
CC
P2.7
T = 25°C
A
I , Low-Level Output Current (mA)
OL
T = 85°C
A
V , Low-Level Output Voltage (V)
OL
20
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Specifications Copyright © 2000–2018, Texas Instruments Incorporated
5.12 Typical Characteristics Ports P1, P2, P3, P4, P5, and P6 Outputs
Figure 5-2. Typical Low-Level Output Current vs Low-Level
Output Voltage Figure 5-3. Typical Low-Level Output Current vs Low-Level
Output Voltage
Figure 5-4. Typical High-Level Output Current vs High-Level
Output Voltage Figure 5-5. Typical High-Level Output Current vs High-Level
Output Voltage
21
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
SpecificationsCopyright © 2000–2018, Texas Instruments Incorporated
5.13 Wake-up Time From LPM3
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
t(LPM3) Wake-up time from LPM3 f = 1 MHz 2.2 V, 3 V 6µsf = 2 MHz 6
f = 3 MHz 6
(1) This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution
should take place during this supply voltage condition.
5.14 RAM
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
VRAMh Minimum supply voltage(1) CPU halted 1.6 V
(1) The leakage current for the Comparator_A terminals is identical to the IlkgPx.x) specification.
(2) The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.The
two successive measurements are then summed together.
5.15 Comparator_A(1)
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
I(DD) Supply current CAON = 1 CARSEL = 0 CAREF = 0 2.2 V 25 40 µA
3 V 45 60
I(Refladder/Refdiode) Reference ladder supply
current CAON = 1, CARSEL = 0,
CAREF 1, 2, or 3, No load at
P2.3/CA0/TA1 and P2.4/CA1/TA2
2.2 V 30 50 µA
3 V 45 71
V(IC) Common-mode input
voltage CAON = 1 2.2 V, 3 V 0 VCC 1 V
V(Ref025) Ratio of (voltage at
0.25 VCC node) / VCC
PCA0 = 1, CARSEL = 1, CAREF = 1,
No load at P2.3/CA0/TA1 and
P2.4/CA1/TA2 2.2 V, 3 V 0.23 0.24 0.25
V(Ref050) Ratio of (voltage at
0.5 VCC node) / VCC
PCA0 = 1, CARSEL = 1, CAREF = 2,
No load at P2.3/CA0/TA1 and
P2.4/CA1/TA2 2.2 V, 3 V 0.47 0.48 0.5
V(RefVT) Reference voltage (see
Figure 5-6 and Figure 5-
7)
PCA0 = 1, CARSEL = 1, CAREF = 3,
No load at P2.3/CA0/TA1 and
P2.4/CA1/TA2, TA= 85°C
2.2 V 390 480 540 mV
3 V 400 490 550
V(offset) Offset voltage(2) 2.2 V, 3 V –30 30 mV
Vhys Input hysteresis CAON = 1 2.2 V, 3 V 0 0.7 1.4 mV
t(response LH) Low-to-high response
time
TA= 25°C, Overdrive = 10 mV,
Without filter: CAF = 0 2.2 V 130 210 300 ns
3 V 80 150 240
TA= 25°C, Overdrive = 10 mV,
Without filter: CAF = 1 2.2 V 1.4 1.9 3.4 µs
3 V 0.9 1.5 2.6
t(response HL) High-to-low response
time
TA= 25°C, Overdrive = 10 mV,
Without filter: CAF = 0 2.2 V 130 210 300 ns
3 V 80 150 240
TA= 25°C, Overdrive = 10 mV,
Without filter: CAF = 1 2.2 V 1.4 1.9 3.4 µs
3 V 0.9 1.5 2.6
Overdrive VCAOUT
t(response)
V+
V−
400 mV
_
+
CAON
0
1
V+ 0
1
CAF
Low-pass filter
τ 2.0 µs
To internal modules
Set CAIFG flag
CAOUT
V−
VCC
1
0 V
0
400
450
500
550
600
650
−45 −25 −5 15 35 55 75 95
T , Free-Air Temperature (°C)
A
V , Reference Voltage (mV)
(REFVT)
V = 2.2 V
CC
Typical
T , Free-Air Temperature (°C)
A
400
450
500
550
600
650
−45 −25 −5 15 35 55 75 95
V = 3 V
CC
V , Reference Voltage (mV)
(REFVT)
Typical
22
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Specifications Copyright © 2000–2018, Texas Instruments Incorporated
5.16 Typical Characteristics Comparator_A
Figure 5-6. V(RefVT) vs Temperature, VCC = 3 V Figure 5-7. V(RefVT) vs Temperature, VCC = 2.2 V
Figure 5-8. Block Diagram of Comparator_A Module
Figure 5-9. Overdrive Definition
1.2 V
1.8 V
0.8 V
1.4 V
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
−40 −20 0 20 40 60 8025
T , Temperature (°C)
A
V (V)
POR
1.1 V
1.5 V
VCC
POR
Voltage
Time
VPOR
V(min)
POR
No POR
23
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
SpecificationsCopyright © 2000–2018, Texas Instruments Incorporated
(1) VCC rise time dV/dt 1 V/ms
(2) When driving VCC low to generate a POR condition, drive VCC to 200 mV or lower with a dV/dt equal to or less than 1 V/ms. The
corresponding rising VCC must also meet the dV/dt requirement equal to or greater than +1 V/ms.
5.17 PUC and POR
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
t(POR_Delay) Internal time delay to release POR
2.2 V, 3 V
150 250 µs
VPOR VCC threshold at which POR release delay
time begins(1)
TA=40°C 1.4 1.8 VTA= 25°C 1.1 1.5
TA= 85°C 0.8 1.2
V(min) VCC threshold required to generate a POR(2) VCC |dV/dt| 1 V/ms 2.2 V, 3 V 0.2 V
t(reset) RST/NMI low time for PUC or POR Reset is accepted internally 2.2 V, 3 V 2 µs
Figure 5-10. VPOR vs Supply Voltage
Figure 5-11. VPOR vs Temperature
24
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Specifications Copyright © 2000–2018, Texas Instruments Incorporated
(1) The DCO frequency may not exceed the maximum system frequency defined by the processor frequency parameter, fSYSTEM.
(2) This parameter is not production tested.
5.18 DCO Frequency(1)
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
fDCO(03) Rsel = 0, DCO = 3, MOD = 0, DCOR = 0, TA= 25°C 2.2 V, 3 V 0.08 0.12 0.15 MHz
0.08 0.13 0.16
fDCO(13) Rsel = 1, DCO = 3, MOD = 0, DCOR = 0, TA= 25°C 2.2 V, 3 V 0.14 0.19 0.23 MHz
0.14 0.18 0.22
fDCO(23) Rsel = 2, DCO = 3, MOD = 0, DCOR = 0, TA= 25°C 2.2 V, 3 V 0.22 0.30 0.36 MHz
0.22 0.28 0.34
fDCO(33) Rsel = 3, DCO = 3, MOD = 0, DCOR = 0, TA= 25°C 2.2 V, 3 V 0.37 0.49 0.59 MHz
0.37 0.47 0.56
fDCO(43) Rsel = 4, DCO = 3, MOD = 0, DCOR = 0, TA= 25°C 2.2 V, 3 V 0.61 0.77 0.93 MHz
0.61 0.75 0.90
fDCO(53) Rsel = 5, DCO = 3, MOD = 0, DCOR = 0, TA= 25°C 2.2 V, 3 V 1 1.2 1.5 MHz
1 1.3 1.5
fDCO(63) Rsel = 6, DCO = 3, MOD = 0, DCOR = 0, TA= 25°C 2.2 V, 3 V 1.6 1.9 2.2 MHz
1.69 2.0 2.29
fDCO(73) Rsel = 7, DCO = 3, MOD = 0, DCOR = 0, TA= 25°C 2.2 V, 3 V 2.4 2.9 3.4 MHz
2.7 3.2 3.65
fDCO(47) Rsel = 4, DCO = 7, MOD = 0, DCOR = 0, TA= 25°C 2.2 V, 3 V fDCO40
× 1.7 fDCO40
× 2.1 fDCO40
× 2.5 MHz
fDCO(77) Rsel = 7, DCO = 7, MOD = 0, DCOR = 0, TA= 25°C 2.2 V, 3 V 4 4.5 4.9 MHz
4.4 4.9 5.4
SRsel SRsel = fRsel+1 / fRsel 2.2 V, 3 V 1.35 1.65 2
SDCO SDCO = fDCO+1 / fDCO 2.2 V, 3 V 1.07 1.12 1.16
DtTemperature drift(2), Rsel = 4, DCO = 3, MOD = 0 2.2 V, 3 V –0.31 –0.36 –0.40 %/°C
–0.33 –0.38 –0.43
DVDrift with VCC variation(2), Rsel = 4, DCO = 3, MOD = 0 2.2 V, 3 V 0 5 10 %/V
2.2 3
fDCO_0
Max
Min
Max
Min
fDCO_7
DCO
01 2 345 6 7
1/fDCOCLK
Supply Voltage (V)
Frequency Variance
25
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
SpecificationsCopyright © 2000–2018, Texas Instruments Incorporated
DCO Characteristics (see Figure 5-12)
Individual devices have a minimum and maximum operation frequency. The specified parameters for
fDCO(x0) to fDCO(x7) are valid for all devices.
All ranges selected by Rsel(n) overlap with Rsel(n+1); for example, Rsel0 overlaps with Rsel1, and
Rsel6 overlaps with Rsel7.
DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter SDCO.
Modulation control bits MOD0 to MOD4 select how often fDCO+1 is used within the period of 32
DCOCLK cycles. The frequency f(DCO) is used for the remaining cycles. The frequency is an average
equal to f(DCO) × 2MOD/32 .
Figure 5-12. DCO Characteristics
(1) ROSC = 100 kΩ, metal film resistor, type 0257, 0.6 W, 1% tolerance, TK= ±50 ppm/°C
5.19 DCO When Using ROSC
over recommended operating supply voltage and free-air temperature (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
fDCO DCO output frequency Rsel = 4, DCO = 3, MOD = 0, DCOR = 1,
TA= 25°C 2.2 V 1.8 ±15% MHz
3 V 1.95 ±15%
DtTemperature drift Rsel = 4, DCO = 3, MOD = 0, DCOR = 1 2.2 V, 3 V ±0.1 %/°C
DvDrift with VCC variation Rsel = 4, DCO = 3, MOD = 0, DCOR = 1 2.2 V, 3 V 10 %/°V
26
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Specifications Copyright © 2000–2018, Texas Instruments Incorporated
(1) The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.
(2) Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.
5.20 Crystal Oscillator, LFXT1
over recommended operating supply voltage and free-air temperature (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
CXIN Integrated input capacitance XTS = 0, LF oscillator selected 2.2 V, 3 V 12 pF
XTS = 1, XT1 oscillator selected 2
CXOUT Integrated output capacitance XTS = 0, LF oscillator selected 2.2 V, 3 V 12 pF
XTS = 1, XT1 oscillator selected 2
VIL Low-level input voltage at XIN(2) 2.2 V, 3 V VSS 0.2 × VCC V
VIH High-level input voltage at XIN(2) 2.2 V, 3 V 0.8 x VCC VCC V
(1) The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.
(2) Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.
5.21 Crystal Oscillator, XT2
over recommended operating supply voltage and free-air temperature (unless otherwise noted)(1)
PARAMETER VCC MIN TYP MAX UNIT
CXT2IN Input capacitance 2.2 V, 3 V 2 pF
CXT2OUT Output capacitance 2.2 V, 3 V 2 pF
VIL Low-level input voltage at XT2IN(2) 2.2 V, 3 V VSS 0.2 × VCC V
VIH High-level input voltage at XT2IN(2) 2.2 V, 3 V 0.8 x VCC VCC V
(1) The signal applied to the USART0 USART1 receive terminal (URXD0 or URXD1) must meet the timing requirements of t(τ)to ensure
that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum timing condition of t(τ). The operating
conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative
transitions on the URXD0 or URXD1 line.
5.22 USART0, USART1
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER VCC MIN TYP MAX UNIT
t(τ)USART0 or USART1 deglitch time(1) 2.2 V 200 430 800 ns
3 V 150 280 500
27
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
SpecificationsCopyright © 2000–2018, Texas Instruments Incorporated
(1) The leakage current is defined in the leakage current table.
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VRfor valid conversion results.
(3) The internal reference supply current is not included in current consumption parameter IADC12.
(4) The internal reference current is supplied through the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting a conversion.
(5) Not production tested, limits verified by design.
5.23 12-Bit ADC, Power Supply and Input Range Conditions
over recommended operating supply voltage and free-air temperature (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
AVCC Analog supply voltage AVCC and DVCC are connected together,
AVSS and DVSS are connected together,
V(AVSS) = V(DVSS) = 0 V 2.2 3.6 V
V(P6.x/Ax) Analog input voltage (2) All P6.0/A0 to P6.7/A7 terminals, analog
inputs selected in ADC12MCTLx register
and P6Sel.x = 1,
0x7, V(AVSS) V(P6.x/Ax) V(AVCC)
0 VAVCC V
IADC12 ADC operating supply current
into AVCC terminal(3) fADC12CLK = 5.0 MHz,
ADC12ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC12DIV = 0
2.2 V 0.65 1.3 mA
3 V 0.8 1.6
IREF+ REF operating supply current
into AVCC terminal(4)
fADC12CLK = 5.0 MHz, ADC12ON = 0,
REFON = 1, REF2_5V = 1 3 V 0.5 0.8 mA
fADC12CLK = 5.0 MHz, ADC12ON = 0,
REFON = 1, REF2_5V = 0 2.2 V 0.5 0.8
3 V 0.5 0.8
CIInput capacitance(5) Only one P6.x/Ax terminal can be selected
at one time 2.2 V 40 pF
RIInput MUX ON resistance(5) 0 V VAx VAVCC 3 V 2000 Ω
(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
(2) The accuracy requirements limit the minimum positive external reference voltage. Lower reference voltage levels may be applied with
reduced accuracy requirements
(3) The accuracy requirements limit the maximum negative external reference voltage. Higher reference voltage levels may be applied with
reduced accuracy requirements.
(4) The accuracy requirements limit the minimum external differential reference voltage. Lower differential reference voltage levels may be
applied with reduced accuracy requirements.
5.24 12-Bit ADC, External Reference
over recommended operating supply voltage and free-air temperature (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
VVeREF+ Positive external reference input voltage VVeREF+ > VVREF-/VeREF-(2) 1.4 VAVCC V
VVREF-/VeREF- Negative external reference input voltage VVeREF+ > VVREF-/VeREF-(3) 0 1.2 V
VVeREF+
VVREF-/VeREF- Differential external reference input voltage VVeREF+ > VVREF-/VeREF-(4) 1.4 VAVCC V
IVeREF+ Static input current, VeREF+ 0 V VVeREF+ VAVCC 2.2 V, 3 V ±1 µA
IVREF-/VeREF- Static input current, VeREF0 V VVeREFVAVCC 2.2 V, 3 V ±1 µA
C , Capacitance at VREF+
VREF+
1 µF
0
1 ms 10 ms 100 ms
t . Setting Time
REFON
t 0.66 × C [ms], with C in µF
REFON VREF+ VREF+
100 µF
10 µF
28
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Specifications Copyright © 2000–2018, Texas Instruments Incorporated
(1) Not production tested, limits characterized
(2) Not production tested, limits verified by design
(3) The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two
capacitors between pins VREF+ and AVSS and VREF/VeREFand AVSS: 10-µF tantalum and 100-nF ceramic.
(4) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external
capacitive load.
5.25 12-Bit ADC, Built-In Reference
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
VREF+ Positive built-in reference
voltage output
REF2_5V = 1 for 2.5 V,
IVREF+ IVREF+(max) 3 V 2.4 2.5 2.6 V
REF2_5V = 0 for 1.5 V,
IVREF+ IVREF+(max) 2.2 V, 3 V 1.44 1.5 1.56
AVCC(min) AVCC minimum voltage,
positive built-in reference
active
REF2_5V = 0, IVREF+ 1 mA 2.2 VREF2_5V = 1, IVREF+ 0.5 mA VREF+ + 0.15
REF2_5V = 1, IVREF+ 1 mA VREF+ + 0.15
IVREF+ Load current out of VREF+
terminal 2.2 V 0.01 –0.5 mA
3 V –1
IL(VREF)+ Load-current regulation, VREF+
terminal(1)
IVREF+ = 500 µA ±100 µA,
Analog input voltage 0.75 V,
REF2_5V = 0
2.2 V ±2 LSB
3 V ±2
IVREF+ = 500 µA ±100 µA,
Analog input voltage 1.25 V,
REF2_5V = 1 3 V ±2 LSB
IDL(VREF)+ Load-current regulation,
VREF+ terminal(2) IVREF+ = 100 µA to 90 µA,
CVREF+ = 5 µF, VAx 0 5 × VREF+,
Error of conversion result 1 LSB 3 V 20 ns
CVREF+ Capacitance at VREF+
terminal(3) REFON = 1,
0 mA IVREF+ IVREF+(max) 2.2 V, 3 V 5 10 µF
TREF+ Temperature coefficient of
built-in reference(1) IVREF+ is constant in the range of
0 mA IVREF+ 1 mA 2.2 V, 3 V ±100 ppm/°C
tREFON Settling time of reference
voltage(4)(1) (see Figure 5-13)IVREF+ = 0.5 mA, CVREF+ = 10 µF,
VVREF+ = 1.5 V, VAVCC = 2.2 V 17 ms
Figure 5-13. Typical Settling Time of Internal Reference (tREFON) vs External Capacitor on VREF+
+
+
10 µF
From power supply +
Apply external reference (VeREF+)
or use internal reference (VREF+)
Reference is internally
switched to AVSS
100 nF
10 µF 100 nF
10 µF 100 nF
AVSS
AVCC
DVSS
DVCC
VREF+ or VeREF+
VREF−/VeREF−
+
AVSS
+
+
AVCC
DVSS
DVCC
+
VREF+ or VeREF+
VREF−/VeREF−
From power supply
Apply external reference (VeREF+)
or use internal reference (VREF+)
Apply external reference
10 µF 100 nF
10 µF 100 nF
10 µF 100 nF
10 µF 100 nF
29
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
SpecificationsCopyright © 2000–2018, Texas Instruments Incorporated
Figure 5-14. Supply Voltage and Reference Voltage Design, VREF/VeREFExternal Supply
Figure 5-15. Supply Voltage and Reference Voltage Design, VREF-/VeREF- = AVSS, Internally Connected
30
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Specifications Copyright © 2000–2018, Texas Instruments Incorporated
(1) Not production tested, limits verified by design
(2) The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already
settled.
(3) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB:
tSample = ln(2n+1) × (RS+ RI) × CI+ 800 ns, where n = ADC resolution = 12, RS= external source resistance
5.26 12-Bit ADC, Timing Parameters
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
fADC12CLK ADC clock frequency For specified performance of ADC12 linearity
parameters 2.2 V, 3 V 0.45 5 6.3 MHz
fADC12OSC Internal ADC12 oscillator ADC12DIV = 0, fADC12CLK = fADC12OSC 2.2 V, 3 V 3.7 6.3 MHz
tCONVERT Conversion time
CVREF+ 5 µF, internal oscillator,
fADC12OSC = 3.7 MHz to 6.3 MHz 2.2 V, 3 V 2.06 3.51 µs
External fADC12CLK from ACLK, MCLK or
SMCLK, ADC12SSEL 013 ×
1/fADC12CLK
tADC12ON Turn-on settling time of
the ADC(1) See (2) 100 ns
tSample Sampling time(1) RS= 400 , RI= 1000 , CI= 30 pF,
τ= [RS+ RI] × CI(3) 3 V 1220 ns
2.2 V 1400
5.27 12-Bit ADC, Linearity Parameters
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
EIIntegral
linearity error 1.4 V (VVeREF+ VVREF-/VeREF-)min 1.6 V 2.2 V, 3 V ±2 LSB
1.6 V < (VVeREF+ VVREF-/VeREF-)min VAVCC ±1.7
EDDifferential
linearity error (VVeREF+ VVREF-/VeREF-)min (VVeREF+ VVREF-/VeREF-),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V, 3 V ±1 LSB
EOOffset error (VVeREF+ VVREF-/VeREF-)min (VVeREF+ VVREF-/VeREF-),
Internal impedance of source RS< 100 ,
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V, 3 V ±2 ±4 LSB
EGGain error (VVeREF+ VVREF-/VeREF-)min (VVeREF+ VVREF-/VeREF-),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V, 3 V ±1.1 ±2 LSB
ETTotal unadjusted
error (VVeREF+ VVREF-/VeREF-)min (VVeREF+ VVREF-/VeREF-),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V, 3 V ±2 ±5 LSB
31
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
SpecificationsCopyright © 2000–2018, Texas Instruments Incorporated
(1) The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON = 1), or (ADC12ON = 1 AND INCH = 0Ah and sample signal is
high). Therefore, it includes the constant current through the sensor and the reference.
(2) Not production tested, limits characterized
(3) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor on-time, tSENSOR(on).
(4) No additional current is needed. The VMID is used during sampling.
(5) N/A = Not applicable
(6) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
5.28 12-Bit ADC, Temperature Sensor and Built-In VMID
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
ISENSOR Operating supply current into
AVCC terminal(1) REFON = 0, INCH = 0Ah,
ADC12ON = N/A, TA= 25°C 2.2 V 40 120 µA
3 V 60 160
VSENSOR Sensor output voltage(2) ADC12ON = 1, INCH = 0Ah,
TA= 0°C 2.2 V 986 986 ±5% mV
3 V 986 986 ±5%
TCSENSOR Temperature coefficient of
sensor output voltage(2) ADC12ON = 1, INCH = 0Ah 2.2 V 3.55 3.55 ±3% mV/°C
3 V 3.55 3.55 ±3%
tSENSOR(sample) Sample time required if
channel 10 is selected(2)(3) ADC12ON = 1, INCH = 0Ah,
Error of conversion result 1 LSB 2.2 V 30 µs
3 V 30
IVMID Current into divider at
channel 11 (4) ADC12ON = 1, INCH = 0Bh 2.2 V N/A(5) µA
3 V N/A
VMID AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh,
VMID 0.5 × VAVCC
2.2 V 1.1 1.1 ±0.04 V
3 V 1.5 1.5 ±0.04
tVMID(sample) Sample time required if
channel 11 is selected(6) ADC12ON = 1, INCH = 0Bh,
Error of conversion result 1 LSB 2.2 V 1400 ns
3 V 1220
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
methods: individual word or byte write and block write modes.
(2) The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297 × 1/fFTG, maximum = 5297 × 1/476 kHz).
To achieve the required cumulative mass erase time the flash controller mass erase operation can be repeated until this time is met. A
worst case minimum of 19 cycles are required.
(3) These values are hardwired into the flash controller state machine (tFTG = 1/fFTG).
5.29 Flash Memory
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCC(PGM/ERASE) Program and erase supply voltage 2.7 3.6 V
fFTG Flash timing generator frequency 257 476 kHz
IPGM Supply current from DVCC during program VCC = 2.7 V or 3.6 V 3 5 mA
IERASE Supply current from DVCC during erase VCC = 2.7 V or 3.6 V 3 7 mA
tCPT Cumulative program time(1) VCC = 2.7 V or 3.6 V 4 ms
tCMErase Cumulative mass erase time(2) VCC = 2.7 V or 3.6 V 200 ms
Program and erase endurance(3) 104105cycles
tRetention Data retention duration(3) TJ= 25°C 100 years
tWord Word or byte program time(3) 35 tFTG
tBlock, 0 Block program time for first byte or word(3) 30 tFTG
tBlock, 1-63 Block program time for each additional byte or word(3) 21 tFTG
tBlock, End Block program end-sequence wait time(3) 6 tFTG
tMass Erase Mass erase time(3) 5297 tFTG
tSeg Erase Segment erase time(3) 4819 tFTG
32
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Specifications Copyright © 2000–2018, Texas Instruments Incorporated
(1) fTCK may be restricted to meet the timing requirements of the module selected.
5.30 JTAG Interface
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER VCC MIN TYP MAX UNIT
fTCK TCK input frequency(1) 2.2 V 0 5 MHz
3 V 0 10
Rinternal Internal pullup resistance on TMS, TCK, TDI/TCLK 2.2 V, 3 V 25 60 90 kΩ
(1) After the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to
bypass mode.
5.31 JTAG Fuse (1)
over recommended operating supply voltage and free-air temperature (unless otherwise noted)
PARAMETER TAMIN MAX UNIT
VCC(FB) Supply voltage during fuse blow 25°C 2.5 V
VFB Voltage level on TDI/TCLK for fuse blow 6 7 V
IFB Supply current into TDI/TCLK during fuse blow 100 mA
tFB Time to blow fuse 1 ms
Program Counter PC/R0
Stack Pointer SP/R1
Status Register SR/CG1/R2
Constant Generator CG2/R3
General-Purpose Register R4
General-Purpose Register R5
General-Purpose Register R6
General-Purpose Register R7
General-Purpose Register R8
General-Purpose Register R9
General-Purpose Register R10
General-Purpose Register R11
General-Purpose Register R12
General-Purpose Register R13
General-Purpose Register R15
General-Purpose Register R14
33
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
6 Detailed Description
6.1 CPU
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All
operations, other than program-flow instructions, are performed as register operations in conjunction with
seven addressing modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-
register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are
dedicated as program counter, stack pointer, status register, and constant generator, respectively. The
remaining registers are general-purpose registers (see Figure 6-1).
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all
instructions.
The instruction set consists of the original 51 instructions with three formats and seven address modes
and additional instructions for the expanded address range. Each instruction can operate on word and
byte data.
Figure 6-1. CPU Registers
34
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
6.2 Instruction set
The instruction set consists of 51 instructions with three formats and seven address modes. Each
instruction can operate on word and byte data. Table 6-1 lists examples of the three types of instruction
formats, and Table 6-2 lists the address modes.
Table 6-1. Instruction Word Formats
INSTRUCTION FORMAT EXAMPLE OPERATION
Dual operands, source-destination ADD R4, R5 R4 + R5 R5
Single operands, destination only CALL R8 PC (TOS), R8 PC
Relative jump, unconditional or conditional JNE Jump-on-equal bit = 0
(1) S = source, D = destination
Table 6-2. Address Mode Descriptions
ADDRESS MODE S(1) D(1) SYNTAX EXAMPLE OPERATION
Register MOV Rs, Rd MOV R10, R11 R10 R11
Indexed MOV X(Rn), Y(Rm) MOV 2(R5), 6(R6) M(2+R5) M(6+R6)
Symbolic (PC relative) MOV EDE, TONI M(EDE) M(TONI)
Absolute MOV &MEM, &TCDAT M(MEM) M(TCDAT)
Indirect MOV @Rn, Y(Rm) MOV @R10, Tab(R6) M(R10) M(Tab+R6)
Indirect autoincrement MOV @Rn+, Rm MOV @R10+, R11 M(R10) R11
R10 + 2 R10
Immediate MOV #X, TONI MOV #45, TONI #45 M(TONI)
6.3 Operating Modes
The MSP430F13x, MSP430F14x, and MSP430F14x1 MCUs support one active mode and five software-
selectable low-power modes of operation. An interrupt event can wake up the MCU from any of the low-
power modes, service the request, and restore back to the low-power mode on return from the interrupt
program.
The following operating modes can be configured by software:
Active mode (AM)
All clocks are active
Low-power mode 0 (LPM0)
CPU is disabled
ACLK and SMCLK remain active
MCLK is disabled
Low-power mode 1 (LPM1)
CPU is disabled
ACLK and SMCLK remain active
MCLK is disabled
DC generator of the DCO is disabled if
DCO not used in active mode
Low-power mode 2 (LPM2)
CPU is disabled
MCLK and SMCLK are disabled
DC generator of the DCO remains
enabled
ACLK remains active
Low-power mode 3 (LPM3)
CPU is disabled
MCLK and SMCLK are disabled
DC generator of the DCO is disabled
ACLK remains active
Low-power mode 4 (LPM4)
CPU is disabled
ACLK is disabled
MCLK and SMCLK are disabled
DC generator of the DCO is disabled
Crystal oscillator is stopped
35
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
(1) Multiple source flags
(2) (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable it.
(3) Timer_B7 in the MSP430F14x(1) MCUs has 7 CCRs, and Timer_B3 in the MSP430F13x MCUs has 3 CCRs. In Timer_B3, there are
only interrupt flags TBCCR0, TBCCR1, and TBCCR2 CCIFGs and the interrupt-enable bits TBCCTL0, TBCCTL1, and TBCCTL2 CCIEs.
(4) Interrupt flags are located in the module.
(5) ADC12 is not implemented on the MSP430F14x1 devices.
6.4 Interrupt Vector Addresses
The interrupt vectors and the power-up starting address are in the address range 0FFFFh to 0FFE0h. The
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
Table 6-3. Interrupt Sources, Flags, and Vectors
INTERRUPT SOURCE INTERRUPT FLAG SYSTEM
INTERRUPT WORD
ADDRESS PRIORITY
Power up
External reset
Watchdog
Flash memory
WDTIFG
KEYV(1) Reset 0FFFEh 15, highest
NMI
Oscillator fault
Flash memory access violation
NMIIFG
OFIFG
ACCVIFG(1) (Non)maskable(2) 0FFFCh 14
Timer_B7(3) TBCCR0 CCIFG(4) Maskable 0FFFAh 13
Timer_B7(3) TBCCR1 to 6 CCIFGs,
TBIFG(1)(4) Maskable 0FFF8h 12
Comparator_A CAIFG Maskable 0FFF9h 11
Watchdog timer WDTIFG Maskable 0FFF4h 10
USART0 receive URXIFG0 Maskable 0FFF2h 9
USART0 transmit UTXIFG0 Maskable 0FFF0h 8
ADC12(5) ADC12IFG(1)(4) Maskable 0FFEEh 7
Timer_A3 TACCR0 CCIFG(4) Maskable 0FFECh 6
Timer_A3 TACCR1 CCIFG,
TACCR2 CCIFG,
TAIFG(1)(4) Maskable 0FFEAh 5
I/O port P1 (eight flags) P1IFG.0 to P1IFG.7(1)(4) Maskable 0FFE8h 4
USART1 receive URXIFG1 Maskable 0FFE6h 3
USART1 transmit UTXIFG1 Maskable 0FFE4h 2
I/O port P2 (eight flags) P2IFG.0 to P2IFG.7(1)(4) Maskable 0FFE2h 1
0FFE0h 0, lowest
6.5 Bootloader (BSL)
The MSP430 BSL lets users program the flash memory or RAM using a UART serial interface. Access to
the MSP430 memory through the BSL is protected by a user-defined password. For complete description
of the features of the BSL and its implementation, see the MSP430™ Flash Device Bootloader (BSL)
User's Guide.Table 6-4 lists the pin requirements for the BSL.
Table 6-4. BSL Pin Requirements and Functions
BSL FUNCTION PM, PAG, AND RTD PACKAGE
PINS
Data transmit 13 - P1.1
Data receive 22 - P2.2
Time TMS goes low after POR
TMS
ITF
ITDI/TCLK
36
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
6.6 JTAG Fuse Check Mode
MSP430 MCUs that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the
continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When
activated, a fuse check current (ITF) of 1 mA at 3 V or 2.5 mA at 5 V can flow from the TDI/TCLK pin to
ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode
and increasing overall system power consumption.
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if
the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the
fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs.
After each POR the fuse check mode has the potential to be activated.
The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state
(see Figure 6-2). Therefore, the additional current flow can be prevented by holding the TMS pin high
(default condition).
Figure 6-2. Fuse Check Mode Current
6.7 Memory
Table 6-5 summarizes the memory map of all device variants.
Table 6-5. Memory Organization
MSP430F133 MSP430F135 MSP430F147
MSP430F1471 MSP430F148
MSP430F1481 MSP430F149
MSP430F149
Memory (flash) Size 8KB 16KB 32KB 48KB 60KB
Main: interrupt vector Flash 0FFFFh to
0FFE0h 0FFFFh to
0FFE0h 0FFFFh to
0FFE0h 0FFFFh to
0FFE0h 0FFFFh to
0FFE0h
Main: code memory Flash 0FFFFh to
0E000h 0FFFFh to
0C000h 0FFFFh to
08000h 0FFFFh to
04000h 0FFFFh to
01100h
Information memory Size 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes
Flash 010FFh to 01000h 010FFh to 01000h 010FFh to 01000h 010FFh to 01000h 010FFh to 01000h
Boot memory Size 1KB 1KB 1KB 1KB 1KB
Flash 0FFFh to 0C00h 0FFFh to 0C00h 0FFFh to 0C00h 0FFFh to 0C00h 0FFFh to 0C00h
RAM Size 256 bytes 512 bytes 1KB 2KB 2KB
RAM 02FFh to 0200h 03FFh to 0200h 05FFh to 0200h 09FFh to 0200h 09FFh to 0200h
Peripherals 16-bit 01FFh to 0100h 01FFh to 0100h 01FFh to 0100h 01FFh to 0100h 01FFh to 0100h
8-bit 0FFh to 010h 0FFh to 010h 0FFh to 010h 0FFh to 010h 0FFh to 010h
8-bit SFR 0Fh to 00h 0Fh to 00h 0Fh to 00h 0Fh to 00h 0Fh to 00h
Segment 0
with interrupt vectors
Segment 1
Segment 2
Segment n-1
Segment n
Segment A
Segment B
Main memory
Information memory
8KB
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
16KB
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
32KB
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
48KB
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
60KB
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
0E400h
0E3FFh
0E200h
0E1FFh
0E000h
010FFh
01080h
0107Fh
01000h
0C400h
0C3FFh
0C200h
0C1FFh
0C000h
010FFh
01080h
0107Fh
01000h
08400h
083FFh
08200h
081FFh
08000h
010FFh
01080h
0107Fh
01000h
04400h
043FFh
04200h
041FFh
04000h
010FFh
01080h
0107Fh
01000h
01400h
013FFh
01200h
011FFh
01100h
010FFh
01080h
0107Fh
01000h
37
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
6.7.1 Flash Memory
The flash memory can be programmed through the JTAG port, the bootloader, or in-system by the CPU.
The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash
memory include:
Flash memory has n segments of main memory and two segments of information memory (A and B) of
128 bytes each. Each segment in main memory is 512 bytes in size.
Segments 0 to n may be erased in one step, or each segment may be individually erased.
Segments A and B can be erased individually, or as a group with segments 0 to n. Segments A and B
are also called information memory.
New devices may have some bytes programmed in the information memory (needed for test during
manufacturing). The user should perform an erase of the information memory prior to the first use.
Figure 6-3. Flash Memory
38
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
6.7.2 Special Function Registers
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register
bits not allocated to a functional purpose are not physically present in the device. This arrangement
provides simple software access.
Figure 6-4. Interrupt Enable 1 Bit Register
76543210
UTXIE0 URXIE0 ACCVIE NMIIE Reserved OFIE WDTIE
R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0
Table 6-6. Interrupt Enable 1 Register Field Descriptions
Bit Field Type Reset Description
7 UTXIE0 R/W 0 USART0: UART and SPI transmit interrupt enable
6 URXIE0 R/W 0 USART0: UART and SPI receive interrupt enable
5 ACCVIE R/W 0 Flash access violation interrupt enable
4 NMIIE R/W 0 Nonmaskable interrupt enable
3-2 Reserved R 0
1 OFIE R/W 0 Oscillator-fault interrupt enable
0 WDTIE R/W 0 Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog
timer is configured in interval timer mode.
Figure 6-5. Interrupt Enable 2 Bit Register
76543210
Reserved UTXIE1 URXIE1 Reserved
R-0 R/W-0 R/W-0 R-0
Table 6-7. Interrupt Enable 2 Register Field Descriptions
Bit Field Type Reset Description
7-6 Reserved R 0
5 UTXIE1 R/W 0 USART1: UART and SPI receive interrupt enable
4 URXIE1 R/W 0 USART1: UART and SPI transmit interrupt enable
3-0 Reserved R/W 0
Figure 6-6. Interrupt Flag 1 Bit Register
76543210
UTXIFG0 URXIFG0 Reserved NMIIFG Reserved OFIFG WDTIFG
R/W-1 R/W-0 R-0 R/W-0 R-0 R/W-1 R/W-(0)
Table 6-8. Interrupt Flag 1 Register Field Descriptions
Bit Field Type Reset Description
7 UTXIFG0 R/W 1 USART0: UART and SPI transmit flag
6 URXIFG0 R/W 0 USART0: UART and SPI receive flag
5 Reserved R 0
4 NMIIFG R/W 0 Set by RST/NMI pin
3-2 Reserved R 0
1 OFIFG R/W 1 Flag set on oscillator fault
0 WDTIFG R/W (0) Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC
power up or a reset condition at the RST/NMI pin in reset mode.
39
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
Figure 6-7. Interrupt Flag 2 Bit Register
76543210
Reserved UTXIFG1 URXIFG1 Reserved
R-0 R/W-1 R/W-0 R-0
Table 6-9. Interrupt Flag 2 Register Field Descriptions
Bit Field Type Reset Description
7-6 Reserved R 0
5 UTXIFG1 R/W 1 USART1: UART and SPI transmit flag
4 URXIFG1 R/W 0 USART1: UART and SPI receive flag
3-0 Reserved R 0
Figure 6-8. Module Enable 1 Bit Register
76543210
UTXE0 URXE0
USPIE0 Reserved
R/W-0 R/W-0 R-0
Table 6-10. Module Enable 1 Bit Register Field Descriptions
Bit Field Type Reset Description
7 UTXE0 R/W 0 USART0: UART transmit enable
6 URXE0
USPIE0 R/W 0 USART0: UART receive enable
USART0: SPI (synchronous peripheral interface) transmit and receive enable
5-0 Reserved R 0
Figure 6-9. Module Enable 2 Bit Register
76543210
Reserved UTXE1 URXE1
USPIE1 Reserved
R-0 R/W-0 R/W-0 R-0
Table 6-11. Module Enable 2 Bit Register Field Descriptions
Bit Field Type Reset Description
7-6 Reserved R 0
5 R/W 0 USART1: UART transmit enable
4 URXE1
USPIE1 R/W 0 USART1: UART receive enable
USART1: SPI (synchronous peripheral interface) transmit and receive enable
3-0 Reserved R 0
40
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
6.8 Peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using
all instructions. For complete module descriptions, see the MSP430x1xx Family User’s Guide.
6.8.1 Digital I/O
Six 8-bit I/O ports are implemented: ports P1 to P6:
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
Read and write access to port-control registers is supported by all instructions.
6.8.2 Oscillator and System Clock
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch
crystal oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator.
The basic clock module is designed to meet the requirements of both low system cost and low power
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The
basic clock module provides the following clock signals:
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal
Main clock (MCLK), the system clock used by the CPU
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules
6.8.3 Watchdog Timer (WDT)
The primary function of the WDT module is to perform a controlled system restart after a software problem
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can be configured as an interval timer and can generate interrupts at
selected time intervals.
6.8.4 Hardware Multiplier (MSP430F14x and MSP430F14x1 Only)
The multiplication operation is supported by a dedicated peripheral module. The module performs 16 × 16,
16 × 8, 8 × 16, and 8 × 8 bit operations. The module is capable of supporting signed and unsigned
multiplication as well as signed and unsigned multiply and accumulate operations. The result of an
operation can be accessed immediately after the operands have been loaded into the peripheral registers.
No additional clock cycles are required.
6.8.5 USART0
The hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module is used
for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous
UART communication protocols, using double-buffered transmit and receive channels.
6.8.6 USART1 (MSP430F14x and MSP430F14x1 Only)
The MSP430F14x(1) has a second hardware universal synchronous/asynchronous receive transmit
(USART1) peripheral module that is used for serial data communication. The USART supports
synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered
transmit and receive channels. Operation of USART1 is identical to USART0.
6.8.7 Comparator_A
The primary function of the Comparator_A module is to support precision slope analog-to-digital
conversions, battery-voltage supervision, and monitoring of external analog signals.
41
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
6.8.8 ADC12 (MSP430F14x and MSP430F13x Only)
The ADC12 module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit
SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored
without CPU intervention.
6.8.9 Timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple
capture/compares, PWM outputs, and interval timing (see Table 6-12). Timer_A3 also has extensive
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each
of the capture/compare registers.
Table 6-12. Timer_A3 Signal Connections
INPUT PIN NUMBER DEVICE INPUT
SIGNAL MODULE INPUT
NAME MODULE BLOCK MODULE OUTPUT
SIGNAL OUTPUT PIN
NUMBER
12 - P1.0 TACLK TACLK
Timer NA
ACLK ACLK
SMCLK SMCLK
21 - P2.1 TAINCLK INCLK
13 - P1.1 TA0 CCI0A
CCR0 TA0
13 - P1.1
22 - P2.2 TA0 CCI0B 17 - P1.5
DVSS GND 27 - P2.7
DVCC VCC
14 - P1.2 TA1 CCI1A
CCR1 TA1
CAOUT (internal) CCI1B
DVSS GND
DVCC VCC
15 - P1.3 TA2 CCI2A
CCR2 TA2
ACLK (internal) CCI2B
DVSS GND
DVCC VCC
6.8.10 Timer_B3 (MSP430F13x Only)
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple
capture/compares, PWM outputs, and interval timing (see Table 6-13). Timer_B3 also has extensive
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each
of the capture/compare registers.
6.8.11 Timer_B7 (MSP430F14x and MSP430F14x1 Only)
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple
capture/compares, PWM outputs, and interval timing (see Table 6-13). Timer_B7 also has extensive
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each
of the capture/compare registers.
42
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
(1) Timer_B3 implements three capture/compare blocks (CCR0, CCR1 and CCR2).
Table 6-13. Timer_B3 and Timer_B7 Signal Connections(1)
INPUT PIN NUMBER DEVICE INPUT
SIGNAL MODULE INPUT
NAME MODULE BLOCK MODULE OUTPUT
SIGNAL OUTPUT PIN
NUMBER
43 - P4.7 TBCLK TBCLK
Timer NA
ACLK ACLK
SMCLK SMCLK
43 - P4.7 TBCLK INCLK
36 - P4.0 TB0 CCI0A
CCR0 TB0
36 - P4.0
36 - P4.0 TB0 CCI0B ADC12 (internal)
DVSS GND
DVCC VCC
37 - P4.1 TB1 CCI1A
CCR1 TB1
37 - P4.1
37 - P4.1 TB1 CCI1B ADC12 (internal)
DVSS GND
DVCC VCC
38 - P4.2 TB2 CCI2A
CCR2 TB2
38 - P4.2
38 - P4.2 TB2 CCI2B
DVSS GND
DVCC VCC
39 - P4.3 TB3 CCI3A
CCR3 TB3
39 - P4.3
39 - P4.3 TB3 CCI3B
DVSS GND
DVCC VCC
40 - P4.4 TB4 CCI4A
CCR4 TB4
40 - P4.4
40 - P4.4 TB4 CCI4B
DVSS GND
DVCC VCC
41 - P4.5 TB5 CCI5A
CCR5 TB5
41 - P4.5
41 - P4.5 TB5 CCI5B
DVSS GND
DVCC VCC
42 - P4.6 TB6 CCI6A
CCR6 TB6
42 - P4.6
ACLK (internal) CCI6B
DVSS GND
DVCC VCC
43
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
(1) Timer_B7 only, reserved for Timer_B3
6.8.12 Peripheral File Map
Table 6-14 lists the peripheral register that support word access. See Table 6-15 for the regsiters with byte
access.
Table 6-14. Peripherals With Word Access
MODULE REGISTER NAME ACRONYM ADDRESS
Watchdog Watchdog timer control WDTCTL 0120h
Timer_B7, Timer_B3
Timer_B interrupt vector TBIV 011Eh
Timer_B control TBCTL 0180h
Timer_B capture/compare control 0 TBCCTL0 0182h
Timer_B capture/compare control 1 TBCCTL1 0184h
Timer_B capture/compare control 2 TBCCTL2 0186h
Timer_B capture/compare control 3(1) TBCCTL3 0188h
Timer_B capture/compare control 4(1) TBCCTL4 018Ah
Timer_B capture/compare control 5(1) TBCCTL5 018Ch
Timer_B capture/compare control 6(1) TBCCTL6 018Eh
Timer_B counter TBR 0190h
Timer_B capture/compare 0 TBCCR0 0192h
Timer_B capture/compare 1 TBCCR1 0194h
Timer_B capture/compare 2 TBCCR2 0196h
Timer_B capture/compare 3(1) TBCCR3 0198h
Timer_B capture/compare 4(1) TBCCR4 019Ah
Timer_B capture/compare 5(1) TBCCR5 019Ch
Timer_B capture/compare 6(1) TBCCR6 019Eh
Timer_A3
Timer_A interrupt vector TAIV 012Eh
Timer_A control TACTL 0160h
Timer_A capture/compare control 0 TACCTL0 0162h
Timer_A capture/compare control 1 TACCTL1 0164h
Timer_A capture/compare control 2 TACCTL2 0166h
Reserved 0168h
Reserved 016Ah
Reserved 016Ch
Reserved 016Eh
Timer_A counter TAR 0170h
Timer_A capture/compare 0 TACCR0 0172h
Timer_A capture/compare 1 TACCR1 0174h
Timer_A capture/compare 2 TACCR2 0176h
Reserved 0178h
Reserved 017Ah
Reserved 017Ch
Reserved 017Eh
44
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
Table 6-14. Peripherals With Word Access (continued)
MODULE REGISTER NAME ACRONYM ADDRESS
Hardware multiplier
(MSP430F14x and
MSP430F14x1 only)
Sum extend SUMEXT 013Eh
Result high word RESHI 013Ch
Result low word RESLO 013Ah
Operand 2 OP2 0138h
Multiply signed and accumulate operand 1 MACS 0136h
Multiply and accumulate operand 1 MAC 0134h
Multiply signed operand 1 MPYS 0132h
Multiply unsigned operand 1 MPY 0130h
Flash Flash control 3 FCTL1 012Ch
Flash control 2 FCTL2 012Ah
Flash control 1 FCTL1 0128h
45
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
Table 6-14. Peripherals With Word Access (continued)
MODULE REGISTER NAME ACRONYM ADDRESS
ADC12 (not in MSP430F14x1)
Conversion memory 15 ADC12MEM15 015Eh
Conversion memory 14 ADC12MEM14 015Ch
Conversion memory 13 ADC12MEM13 015Ah
Conversion memory 12 ADC12MEM12 0158h
Conversion memory 11 ADC12MEM11 0156h
Conversion memory 10 ADC12MEM10 0154h
Conversion memory 9 ADC12MEM9 0152h
Conversion memory 8 ADC12MEM8 0150h
Conversion memory 7 ADC12MEM7 014Eh
Conversion memory 6 ADC12MEM6 014Ch
Conversion memory 5 ADC12MEM5 014Ah
Conversion memory 4 ADC12MEM4 0148h
Conversion memory 3 ADC12MEM3 0146h
Conversion memory 2 ADC12MEM2 0144h
Conversion memory 1 ADC12MEM1 0142h
Conversion memory 0 ADC12MEM0 0140h
Interrupt vector word ADC12IV 01A8h
Interrupt enable ADC12IE 01A6h
Interrupt flag ADC12IFG 01A4h
ADC control 1 ADC12CTL1 01A2h
ADC control 0 ADC12CTL0 01A0h
ADC memory control 15 ADC12MCTL15 08Fh
ADC memory control 14 ADC12MCTL14 08Eh
ADC memory control 13 ADC12MCTL13 08Dh
ADC memory control 12 ADC12MCTL12 08Ch
ADC memory control 11 ADC12MCTL11 08Bh
ADC memory control 10 ADC12MCTL10 08Ah
ADC memory control 9 ADC12MCTL9 089h
ADC memory control 8 ADC12MCTL8 088h
ADC memory control 7 ADC12MCTL7 087h
ADC memory control 6 ADC12MCTL6 086h
ADC memory control 5 ADC12MCTL5 085h
ADC memory control 4 ADC12MCTL4 084h
ADC memory control 3 ADC12MCTL3 083h
ADC memory control 2 ADC12MCTL2 082h
ADC memory control 1 ADC12MCTL1 081h
ADC memory control 0 ADC12MCTL0 080h
46
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
Table 6-15 lists the peripheral register that support byte access. See Table 6-14 for the regsiters with word
access.
Table 6-15. Peripherals With Byte Access
MODULE REGISTER NAME ACRONYM ADDRESS
USART1 (MSP430F14x and
MSP430F14x1 only)
Transmit buffer U1TXBUF 07Fh
Receive buffer U1RXBUF 07Eh
Baud rate 1 U1BR1 07Dh
Baud rate 0 U1BR0 07Ch
Modulation control U1MCTL 07Bh
Receive control U1RCTL 07Ah
Transmit control U1TCTL 079h
USART control U1CTL 078h
USART0
Transmit buffer U0TXBUF 077h
Receive buffer U0RXBUF 076h
Baud rate 1 U0BR1 075h
Baud rate 0 U0BR0 074h
Modulation control U0MCTL 073h
Receive control U0RCTL 072h
Transmit control U0TCTL 071h
USART control U0CTL 070h
Comparator_A Comparator_A port disable CAPD 05Bh
Comparator_A control 2 CACTL2 05Ah
Comparator_A control 1 CACTL1 059h
Basic Clock Basic clock system control 2 BCSCTL2 058h
Basic clock system control 1 BCSCTL1 057h
DCO clock frequency control DCOCTL 056h
Port P6
Port P6 selection P6SEL 037h
Port P6 direction P6DIR 036h
Port P6 output P6OUT 035h
Port P6 input P6IN 034h
Port P5
Port P5 selection P5SEL 033h
Port P5 direction P5DIR 032h
Port P5 output P5OUT 031h
Port P5 input P5IN 030h
Port P4
Port P4 selection P4SEL 01Fh
Port P4 direction P4DIR 01Eh
Port P4 output P4OUT 01Dh
Port P4 input P4IN 01Ch
Port P3
Port P3 selection P3SEL 01Bh
Port P3 direction P3DIR 01Ah
Port P3 output P3OUT 019h
Port P3 input P3IN 018h
47
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
Table 6-15. Peripherals With Byte Access (continued)
MODULE REGISTER NAME ACRONYM ADDRESS
Port P2
Port P2 selection P2SEL 02Eh
Port P2 interrupt enable P2IE 02Dh
Port P2 interrupt edge select P2IES 02Ch
Port P2 interrupt flag P2IFG 02Bh
Port P2 direction P2DIR 02Ah
Port P2 output P2OUT 029h
Port P2 input P2IN 028h
Port P1
Port P1 selection P1SEL 026h
Port P1 interrupt enable P1IE 025h
Port P1 interrupt edge select P1IES 024h
Port P1 interrupt flag P1IFG 023h
Port P1 direction P1DIR 022h
Port P1 output P1OUT 021h
Port P1 input P1IN 020h
Special Functions
SFR module enable 2 ME2 005h
SFR module enable 1 ME1 004h
SFR interrupt flag 2 IFG2 003h
SFR interrupt flag 1 IFG1 002h
SFR interrupt enable 2 IE2 001h
SFR interrupt enable 1 IE1 000h
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
P1.5/TA0
P1.6/TA1
P1.7/TA2
P1IN.x
Module X IN
Pad Logic
Interrupt
Flag
Interrupt
Edge
Select
P1SEL.x
P1IES.x
P1IFG.x
P1IE.xP1IRQ.x
EN
D
Set
EN
Q
P1OUT.x
P1DIR.x
P1SEL.x
Module X OUT
Direction Control
From Module
0
1
0
1
48
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
(1) Signal from or to Timer_A
6.9 Input/Output Diagrams
6.9.1 Port P1, Input/Output With Schmitt Trigger
Figure 6-10. Port P1 (P1.0 to P1.7) Diagram
Table 6-16. Port P1 (P1.0 to P1.7) Pin Functions
PnSel.x PnDIR.x
DIRECTION
CONTROL
FROM
MODULE
PnOUT.x MODULE X
OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x
P1Sel.0 P1DIR.0 P1DIR.0 P1OUT.0 DVSS P1IN.0 TACLK(1) P1IE.0 P1IFG.0 P1IES.0
P1Sel.1 P1DIR.1 P1DIR.1 P1OUT.1 Out0 signal(1) P1IN.1 CCI0A(1) P1IE.1 P1IFG.1 P1IES.1
P1Sel.2 P1DIR.2 P1DIR.2 P1OUT.2 Out1 signal(1) P1IN.2 CCI1A(1) P1IE.2 P1IFG.2 P1IES.2
P1Sel.3 P1DIR.3 P1DIR.3 P1OUT.3 Out2 signal(1) P1IN.3 CCI2A(1) P1IE.3 P1IFG.3 P1IES.3
P1Sel.4 P1DIR.4 P1DIR.4 P1OUT.4 SMCLK P1IN.4 unused P1IE.4 P1IFG.4 P1IES.4
P1Sel.5 P1DIR.5 P1DIR.5 P1OUT.5 Out0 signal(1) P1IN.5 unused P1IE.5 P1IFG.5 P1IES.5
P1Sel.6 P1DIR.6 P1DIR.6 P1OUT.6 Out1 signal(1) P1IN.6 unused P1IE.6 P1IFG.6 P1IES.6
P1Sel.7 P1DIR.7 P1DIR.7 P1OUT.7 Out2 signal(1) P1IN.7 unused P1IE.7 P1IFG.7 P1IES.7
P2IN.x
P2OUT.x
Pad Logic
P2DIR.x
P2SEL.x
Module X OUT
Edge
Select
Interrupt
P2SEL.x
P2IES.x
P2IFG.x
P2IE.x
P2IRQ.x
Direction Control
P2.0/ACLK
P2.1/TAINCLK
P2.2/CAOUT/TA0
P2.6/ADC12CLK
P2.7/TA0
0
1
0
1
Interrupt
Flag
Set
EN
Q
Module X IN
EN
D
Bus Keeper
CAPD.X
0: Input
1: Output
From Module
49
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
(1) Signal to Timer_A
(2) Signal from Comparator_A
(3) ADC12CLK signal is output of the 12-bit ADC module
(4) Signal from Timer_A
6.9.2 Port P2, Input/Output With Schmitt Trigger
Figure 6-11. Port P2 (P2.0 to P2.2, P2.6, and P2.7) Diagram
Table 6-17. Port P2 (P2.0 to P2.2, P2.6, and P2.7) Pin Functions
PnSel.x PnDIR.x
DIRECTION
CONTROL
FROM
MODULE
PnOUT.x MODULE X
OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x
P2Sel.0 P2DIR.0 P2DIR.0 P2OUT.0 ACLK P2IN.0 unused P2IE.0 P2IFG.0 P2IES.0
P2Sel.1 P2DIR.1 P2DIR.1 P2OUT.1 DVSS P2IN.1 INCLK(1) P2IE.1 P2IFG.1 P2IES.1
P2Sel.2 P2DIR.2 P2DIR.2 P2OUT.2 CAOUT(2) P2IN.2 CCI0B(1) P2IE.2 P2IFG.2 P2IES.2
P2Sel.6 P2DIR.6 P2DIR.6 P2OUT.6 ADC12CLK(3) P2IN.6 unused P2IE.6 P2IFG.6 P2IES.6
P2Sel.7 P2DIR.7 P2DIR.7 P2OUT.7 Out0 signal(4) P2IN.7 unused P2IE.7 P2IFG.7 P2IES.7
Bus Keeper
P2IN.3
P2OUT.3
Pad Logic
P2DIR.3
P2SEL.3
Module X OUT
Interrupt
Edge
Select
P2SEL.3
P2IES.3
P2IFG.3
P2IE.3P2IRQ.3
Direction Control
From Module
P2.3/CA0/TA1
0
1
0
1
Interrupt
Flag
Set
EN
Q
Module X IN
EN
D
P2IN.4
P2OUT.4
Pad Logic
P2DIR.4
P2SEL.4
Module X OUT
P2SEL.4
P2IES.4
P2IFG.4
P2IE.4P2IRQ.4
Direction Control
From Module
P2.4/CA1/TA2
0
1
0
1
Interrupt
Flag
Set
EN
Q
Module X IN
EN
D
Comparator_A
+
Reference Block
CCI1B
CAF
CAREF
P2CA
CAEX
CAREF
Bus Keeper
CAPD.3
CAPD.4
To Timer_A3
0: Input
1: Output
0: Input
1: Output
Interrupt
Edge
Select
50
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
(1) Signal from Timer_A
Figure 6-12. Port P2 (P2.3 and P2.4) Diagram
Table 6-18. Port P2 (P2.3 and P2.4) Pin Functions
PnSel.x PnDIR.x
DIRECTION
CONTROL
FROM
MODULE
PnOUT.x MODULE X
OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x
P2Sel.3 P2DIR.3 P2DIR.3 P2OUT.3 Out1 signal(1) P2IN.3 unused P2IE.3 P2IFG.3 P2IES.3
P2Sel.4 P2DIR.4 P2DIR.4 P2OUT.4 Out2 signal(1) P2IN.4 unused P2IE.4 P2IFG.4 P2IES.4
P2IN.5
P2OUT.5
Pad Logic
P2DIR.5
P2SEL.5
Module X OUT
Edge
Select
Interrupt
P2SEL.5
P2IES.5
P2IFG.5
P2IE.5P2IRQ.5
Direction Control
P2.5/ROSC
0
1
0
1
Interrupt
Flag
Set
EN
Q
DCOR
Module X IN
EN
D
to
01
DC Generator
Bus Keeper
CAPD.5
DCOR: Control bit from Basic Clock module. If it is set, P2.5 is disconnected from P2.5 pad.
Internal to
Basic Clock
Module
VCC
0: Input
1: Output
From Module
51
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
Figure 6-13. Port P2 (P2.5) Diagram
Table 6-19. Port P2 (P2.5) Pin Functions
PnSel.x PnDIR.x
DIRECTION
CONTROL
FROM
MODULE
PnOUT.x MODULE X
OUT PnIN.x MODULE X
IN PnIE.x PnIFG.x PnIES.x
P2Sel.5 P2DIR.5 P2DIR.5 P2OUT.5 DVSS P2IN.5 unused P2IE.5 P2IFG.5 P2IES.5
P3.1/SIMO0
P3IN.1
Pad Logic
EN
D
P3OUT1
P3DIR.1
P3SEL.1
(SI)MO0
From USART0
0
1
0
1
DCM_SIMO
SYNC
MM
STE
STC
SI(MO)0
To USART0
0: Input
1: Output
P3.0/STE0
P3.4/UTXD0
P3.5/URXD0
P3.6/UTXD1
P3.7/URXD1
P3IN.x
Module X IN
Pad Logic
EN
D
P3OUT.x
P3DIR.x
P3SEL.x
Module X OUT
Direction Control
From Module
0
1
0
1
0: Input
1: Output
52
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
(1) Output from USART0 module
(2) Input to USART0 module
(3) Output from USART1 module in MSP430F14x and MSP430F14x1 devices, DVSS in MSP430F13x devices
(4) Input to USART1 module in MSP430F14x and MSP430F14x1 devices, unused in MSP430F13x devices
6.9.3 Port P3, Input/Output With Schmitt Trigger
Figure 6-14. Port P3 (P3.0 and 3.4 to 3.7) Diagram
Table 6-20. Port P3 (P3.0 and 3.4 to 3.7) Pin Functions
PnSel.x PnDIR.x DIRECTION
CONTROL FROM
MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN
P3Sel.0 P3DIR.0 DVSS P3OUT.0 DVSS P3IN.0 STE0
P3Sel.4 P3DIR.4 DVCC P3OUT.4 UTXD0(1) P3IN.4 Unused
P3Sel.5 P3DIR.5 DVSS P3OUT.5 DVSS P3IN.5 URXD0(2)
P3Sel.6 P3DIR.6 DVCC P3OUT.6 UTXD1(3) P3IN.6 unused
P3Sel.7 P3DIR.7 DVSS P3OUT.7 DVSS P3IN.7 URXD1(4)
Figure 6-15. Port P3 (P3.1) Diagram
P3.3/UCLK0
P3IN.3
Pad Logic
EN
D
P3OUT.3
P3DIR.3
P3SEL.3
UCLK.0
From USART0
0
1
0
1
DCM_UCLK
SYNC
MM
STE
STC
UCLK0
To USART0
0: Input
1: Output
P3.2/SOMI0
P3IN.2
Pad Logic
EN
D
P3OUT.2
P3DIR.2
P3SEL.2
0
1
0
1
DCM_SOMI
SYNC
MM
STE
STC
SO(MI)0
From USART0
(SO)MI0
To USART0
0: Input
1: Output
53
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
Figure 6-16. Port P3 (P3.2) Diagram
NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, P3.3/UCLK0 is
always an input.
SPI slave mode: The clock applied to UCLK0 is used to shift data in and out.
SPI master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave
mode).
Figure 6-17. Port P3 (P3.3) Diagram
P4.7/TBCLK
P4IN.7
Timer_B,
TBCLK
Pad Logic
EN
D
P4OUT.7
P4DIR.7
P4SEL.7
0
1
0
1
0: Input
1: Output
DVSS
P4.0/TB0
P4.1/TB1
P4.2/TB2
P4.3/TB3
P4.4/TB4
P4.5/TB5
P4.6/TB6
P4IN.x
Module X IN
Pad Logic
EN
D
P4OUT.x
P4DIR.x
P4SEL.x
Module X OUT
Direction Control
From Module
0
1
0
1
Bus Keeper
TBOUTH
0: Input
1: Output
P5SEL.7
Module X IN
54
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
(1) Signal from Timer_B
(2) Signal to Timer_B
6.9.4 Port P4, Input/Output With Schmitt Trigger
Figure 6-18. Port P4 (P4.0 to P4.6) Diagram
Table 6-21. Port P4 (P4.0 to P4.6) Pin Functions
PnSel.x PnDIR.x DIRECTION
CONTROL FROM
MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN
P4Sel.0 P4DIR.0 P4DIR.0 P4OUT.0 Out0 signal(1) P4IN.0 CCI0A / CCI0B(2)
P4Sel.1 P4DIR.1 P4DIR.1 P4OUT.1 Out1 signal(1) P4IN.1 CCI1A / CCI1B(2)
P4Sel.2 P4DIR.2 P4DIR.2 P4OUT.2 Out2 signal(1) P4IN.2 CCI2A / CCI2B(2)
P4Sel.3 P4DIR.3 P4DIR.3 P4OUT.3 Out3 signal(1) P4IN.3 CCI3A / CCI3B(2)
P4Sel.4 P4DIR.4 P4DIR.4 P4OUT.4 Out4 signal(1) P4IN.4 CCI4A / CCI4B(2)
P4Sel.5 P4DIR.5 P4DIR.5 P4OUT.5 Out5 signal(1) P4IN.5 CCI5A / CCI5B(2)
P4Sel.6 P4DIR.6 P4DIR.6 P4OUT.6 Out6 signal(1) P4IN.6 CCI6A(2)
Figure 6-19. Port P4 (P4.7) Diagram
P5.1/SIMO1
P5IN.1
Pad Logic
EN
D
P5OUT.1
P5DIR.1
P5SEL.1
0
1
0
1
DCM_SIMO
SYNC
MM
STE
STC
(SI)MO1
From USART1
SI(MO)1
To USART1
0: Input
1: Output
P5.0/STE1
P5.4/MCLK
P5.5/SMCLK
P5.6/ACLK
P5.7/TBOUTH
P5IN.x
Module X IN
Pad Logic
EN
D
P5OUT.x
P5DIR.x
P5SEL.x
Module X OUT
Direction Control
From Module
0
1
0
1
0: Input
1: Output
55
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
(1) The TBOUTH signal is used by port module P4, pins P4.0 to P4.6. The function of TBOUTH is most useful when used with Timer_B7.
6.9.5 Port P5, Input/Output With Schmitt Trigger
Figure 6-20. Port P5 (P5.0 and P5.4 to P5.7) Diagram
Table 6-22. Port P5 (P5.0 and P5.4 to P5.7) Pin Functions
PnSel.x PnDIR.x DIRECTION
CONTROL FROM
MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN
P5Sel.0 P5DIR.0 DVSS P5OUT.0 DVSS P5IN.0 STE.1
P5Sel.4 P5DIR.4 DVCC P5OUT.4 MCLK P5IN.4 unused
P5Sel.5 P5DIR.5 DVCC P5OUT.5 SMCLK P5IN.5 unused
P5Sel.6 P5DIR.6 DVCC P5OUT.6 ACLK P5IN.6 unused
P5Sel.7 P5DIR.7 DVSS P5OUT.7 DVSS P5IN.7 TBOUTH(1)
Figure 6-21. Port P5 (P5.1) Diagram
P5.3/UCLK1
P5IN.3
Pad Logic
EN
D
P5OUT.3
P5DIR.3
P5SEL.3
0
1
0
1
DCM_SIMO
SYNC
MM
STE
STC
UCLK1
From USART1
UCLK1
To USART1
0: Input
1: Output
P5.2/SOMI1
P5IN.2
Pad Logic
EN
D
P5OUT.2
P5DIR.2
P5SEL.2
0
1
0
1
DCM_SOMI
SYNC
MM
STE
STC
SO(MI)1
From USART1
(SO)MI1
To USART1
0: Input
1: Output
56
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
Figure 6-22. Port P5 (P5.2) Diagram
NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, P5.3/UCLK1 is
always an input.
SPI slave mode: The clock applied to UCLK1 is used to shift data in and out.
SPI master mode: The clock to shift data in and out is supplied to connected devices on pin P5.3/UCLK1 (in slave
mode).
Figure 6-23. Port P5 (P5.3) Diagram
P6.0
P6.1
P6.2
P6.3
P6.4
P6.5
P6.6
P6.7
P6IN.x
Module X IN
Pad Logic
EN
D
P6OUT.x
P6DIR.x
P6SEL.x
Module X OUT
Direction Control
From Module
0
1
0
1
Bus Keeper
To ADC
From ADC
0: Input
1: Output
Note: Not implemented in the MSP430F14x1 devices
57
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed DescriptionCopyright © 2000–2018, Texas Instruments Incorporated
(1) The signal at pins P6.x/Ax is used by the 12-bit ADC module.
6.9.6 Port P6, Input/Output With Schmitt Trigger
NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The
throughput current flows if the analog signal is in the range of transitions 01 or 10. The value of the throughput
current depends on the driving capability of the gate. For MSP430 MCUs, the current is approximately 100 µA.
Use P6SEL.x = 1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used
by the ADC12.
Figure 6-24. Port P6 (P6.0 to P6.7) Diagram
Table 6-23. Port P6 (P6.0 to P6.7) Pin Functions(1)
PnSel.x PnDIR.x DIRECTION
CONTROL FROM
MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN
P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused
P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused
P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused
P6Sel.3 P6DIR.3 P6DIR.3 P6OUT.3 DVSS P6IN.3 unused
P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused
P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused
P6Sel.6 P6DIR.6 P6DIR.6 P6OUT.6 DVSS P6IN.6 unused
P6Sel.7 P6DIR.7 P6DIR.7 P6OUT.7 DVSS P6IN.7 unused
TDI
TDO
TMS
TCK
JTAG
Test and
Emulation
Module
Burn and
Test Fuse
Controlled by JTAG
Controlled by JTAG
Controlled
by JTAG DVCC
During programming activity and during blowing of the fuse, the TDO/TDI pin is used
to apply the test input data for JTAG circuitry.
TDO/TDI
TDI/TCLK
TMS
TCK
Fuse
DVCC
DVCC
DVCC
58
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated
6.9.7 Port JTAG (TMS, TCK, TDI/TCLK, TDO/TDI), Input/Output With Schmitt Trigger
Figure 6-25. JTAG (TMS, TCK, TDI/TCLK, TDO/TDI) Diagram
59
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Device and Documentation SupportCopyright © 2000–2018, Texas Instruments Incorporated
7 Device and Documentation Support
7.1 Getting Started and Next Steps
For more information on the MSP430 family of devices and the tools and libraries that are available to
help with your development, visit the Getting Started page.
7.2 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS.
These prefixes represent evolutionary stages of product development from engineering prototypes (XMS)
through fully qualified production devices (MSP).
XMS Experimental device that is not necessarily representative of the final device's electrical
specifications
MSP Fully qualified production device
XMS devices are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
MSP devices have been characterized fully, and the quality and reliability of the device have been
demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production
devices. TI recommends that these devices not be used in any production system because their expected
end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
temperature range, package type, and distribution format. Figure 7-1 provides a legend for reading the
complete device name.
Processor Family CC = Embedded RF Radio
MSP = Mixed-Signal Processor
XMS = Experimental Silicon
PMS = Prototype Device
MCU Platform 430 = MSP430 low-power microcontroller platform
Device Type Memory Type
C = ROM
F = Flash
FR = FRAM
G = Flash or FRAM (Value Line)
L = No Nonvolatile Memory
Specialized Application
AFE = Analog Front End
BQ = Contactless Power
CG = ROM Medical
FE = Flash Energy Meter
FG = Flash Medical
FW = Flash Electronic Flow Meter
Series 1 = Up to 8 MHz
2 = Up to 16 MHz
3 = Legacy
4 = Up to 16 MHz with LCD
5 = Up to 25 MHz
6 = Up to 25 MHz with LCD
0 = Low-Voltage Series
Feature Set Various levels of integration within a series
Optional: A = Revision N/A
Optional: Temperature Range S = 0°C to 50 C
C to 70 C
I = 40 C to 85 C
T = –40 C to 105 C
°
C = 0° °
° °
° °
Packaging http://www.ti.com/packaging
Optional: Tape and Reel T = Small reel
R = Large reel
No markings = Tube or tray
Optional: Additional Features -EP = Enhanced Product ( 40°C to 105°C)
-HT = Extreme Temperature Parts ( 55°C to 150°C)
-Q1 = Automotive Q100 Qualified
MSP 430 F5438 AIZQW T-EP
Processor Family
Series Optional: Temperature Range
MCU Platform
Packaging
Device Type
Optional: A = Revision
Optional: Tape and Reel
Feature Set
Optional: Additional Features
60
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Device and Documentation Support Copyright © 2000–2018, Texas Instruments Incorporated
NOTE: This figure does not represent a complete list of the available features and options, and it does not indicate that all of
these features and options are available for a given device or family.
Figure 7-1. Device Nomenclature Part Number Decoder
61
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Device and Documentation SupportCopyright © 2000–2018, Texas Instruments Incorporated
7.3 Tools and Software
Table 7-1 lists the debug features supported by the MSP430F14x, MSP430F14x1, and MSP430F13x
microcontrollers. See the Code Composer Studio for MSP430 User's Guide for details on the available
features.
Table 7-1. Hardware Features
MSP430
ARCHITECTURE 4-WIRE
JTAG 2-WIRE
JTAG BREAK-
POINTS
RANGE
BREAK-
POINTS
CLOCK
CONTROL STATE
SEQUENCER TRACE
BUFFER
LPMx.5
DEBUGGING
SUPPORT
MSP430 Yes No 3 Yes No No No No
Design Kits and Evaluation Modules
64-pin Target Development Board and MSP-FET Programmer Bundle - MSP430F1x, MSP430F2x,
MSP430F4x MCUs The MSP-FET430U64 is a powerful flash emulation tool that includes
the hardware and software required to quickly begin application development on the
MSP430 MCU. It includes a ZIF socket target board (MSP-TS430PM64) and a USB
debugging interface (MSP-FET) used to program and debug the MSP430 in-system through
the JTAG interface. The flash memory can be erased and programmed in seconds with only
a few keystrokes, and because the MSP430 flash is ultra-low power, no external power
supply is required.
MSP-TS430PM64 - 64-pin Target Development Board for MSP430F1x, MSP430F2x and MSP430F4x
MCUs
The MSP-TS430PM64 is a standalone ZIF socket target board used to program and debug
the MSP430 MCU in-system through the JTAG interface.
Software
MSP430Ware™ Software MSP430Ware software is a collection of code examples, data sheets, and
other design resources for all MSP430 devices delivered in a convenient package. In
addition to providing a complete collection of existing MSP430 MCU design resources,
MSP430Ware software also includes a high-level API called MSP Driver Library. This library
makes it easy to program MSP430 hardware. MSP430Ware software is available as a
component of CCS or as a stand-alone package.
MSP430F13x, MSP430F14x, MSP430F15x, MSP430F16x Code Examples C Code examples are
available for every MSP device that configures each of the integrated peripherals for various
application needs.
Bootloader (BSL) for MSP low-power microcontrollers The bootloader (BSL) is an application built into
MSP low-power microcontrollers. It lets the user communicate with the device to read from
and write to its memory. This feature is primarily used for programming the device, during
prototyping, final production, and in service. Both the programmable memory (flash memory)
and the data memory (RAM) can be modified as required.
Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly
optimized and high-precision mathematical functions for C programmers to seamlessly port a
floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These
routines are typically used in computationally intensive real-time applications where optimal
execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and
Qmath libraries, it is possible to achieve execution speeds considerably faster and energy
consumption considerably lower than equivalent code written using floating-point math.
Development Tools
Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers Code
Composer Studio (CCS) integrated development environment (IDE) supports all MSP
microcontroller devices. CCS comprises a suite of embedded software utilities used to
develop and debug embedded applications. CCS includes an optimizing C/C++ compiler,
source code editor, project build environment, debugger, profiler, and many other features.
Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming
MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire
(SBW) communication. MSP Flasher can download binary files (.txt or .hex) directly to the
MSP microcontroller without an IDE.
62
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Device and Documentation Support Copyright © 2000–2018, Texas Instruments Incorporated
MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool often
called a debug probe which lets users quickly begin application development on MSP low-
power MCUs. Creating MCU software usually requires downloading the resulting binary
program to the MSP device for validation and debugging.
MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device
programmer that can program up to eight identical MSP430 or MSP432 flash or FRAM
devices at the same time. The MSP Gang Programmer connects to a host PC using a
standard RS-232 or USB connection and provides flexible programming options that let the
user fully customize the process.
7.4 Documentation Support
The following documents describe the MSP430F14x, MSP430F14x1, and MSP430F13x MCUs. Copies of
these documents are available on the Internet at www.ti.com.
Receiving Notification of Document Updates
To receive notification of documentation updates—including silicon errata—go to the product folder for
your device on ti.com (for links to product folders, see Section 7.5). In the upper right corner, click the
"Alert me" button. This registers you to receive a weekly digest of product information that has changed (if
any). For change details, check the revision history of any revised document.
Errata
MSP430F149 Device Erratasheet Describes the known exceptions to the functional specifications.
MSP430F1491 Device Erratasheet Describes the known exceptions to the functional specifications.
MSP430F148 Device Erratasheet Describes the known exceptions to the functional specifications.
MSP430F1481 Device Erratasheet Describes the known exceptions to the functional specifications.
MSP430F147 Device Erratasheet Describes the known exceptions to the functional specifications.
MSP430F1471 Device Erratasheet Describes the known exceptions to the functional specifications.
MSP430F135 Device Erratasheet Describes the known exceptions to the functional specifications.
MSP430F133 Device Erratasheet Describes the known exceptions to the functional specifications.
User's Guides
MSP430x1xx Family User's Guide Detailed description of all modules and peripherals available in this
device family.
MSP430 Flash Device Bootloader (BSL) User's Guide The MSP430™ bootloader (BSL) lets users
communicate with embedded memory in the MSP430 microcontroller (MCU) during the
prototyping phase, final production, and in service. Both the programmable memory (flash
memory) and the data memory (RAM) can be modified as required.
MSP430 Programming With the JTAG Interface This document describes the functions that are
required to erase, program, and verify the memory module of the MSP430 flash-based and
FRAM-based microcontroller families using the JTAG communication port. In addition, it
describes how to program the JTAG access security fuse that is available on all MSP430
devices. This document describes device access using both the standard 4-wire JTAG
interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430
Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultra-
low-power microcontroller. Both available interface types, the parallel port interface and the
USB interface, are described.
63
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Device and Documentation SupportCopyright © 2000–2018, Texas Instruments Incorporated
Application Reports
MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board
layout are important for a stable crystal oscillator. This application report summarizes crystal
oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-
low-power operation. In addition, hints and examples for correct board layout are given. The
document also contains detailed information on the possible oscillator tests to ensure stable
oscillator operation in mass production.
Software Coding Techniques for MSP430™ MCUs This application report describes software
techniques and related topics of interest to programmers of MSP430 MCUs.
General Oversampling of MSP ADCs for Higher Resolution Multiple MSP430 ultra-low-power
microcontrollers offer ADCs to convert physical quantities into digital numbers, a function that
is widely used across numerous applications. There are times, however, when a customer
design demands a higher resolution than the ADC of the selected MSP can offer. This
application report describes how an oversampling method can be incorporated to increase
ADC resolution past the currently available number of bits.
MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding
with silicon technology scaling towards lower voltages and the need for designing cost-
effective and ultra-low-power components. This application report addresses three different
ESD topics to help board designers and OEMs understand and design robust system-level
designs.
7.5 Related Links
Table 7-2 lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to order now.
Table 7-2. Related Links
PARTS PRODUCT FOLDER ORDER NOW TECHNICAL
DOCUMENTS TOOLS &
SOFTWARE SUPPORT &
COMMUNITY
MSP430F149 Click here Click here Click here Click here Click here
MSP430F1491 Click here Click here Click here Click here Click here
MSP430F148 Click here Click here Click here Click here Click here
MSP430F1481 Click here Click here Click here Click here Click here
MSP430F147 Click here Click here Click here Click here Click here
MSP430F1471 Click here Click here Click here Click here Click here
MSP430F135 Click here Click here Click here Click here Click here
7.6 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E™ Community
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At
e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow
engineers.
TI Embedded Processors Wiki
Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded
processors from Texas Instruments and to foster innovation and growth of general knowledge about the
hardware and software surrounding these devices.
7.7 Trademarks
MSP430, MSP430Ware, Code Composer Studio, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
64
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
SLAS272H JULY 2000REVISED MAY 2018
www.ti.com
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Device and Documentation Support Copyright © 2000–2018, Texas Instruments Incorporated
7.8 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
7.9 Export Control Notice
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data
(as defined by the U.S., EU, and other Export Administration Regulations) including software, or any
controlled product restricted by other applicable national regulations, received from disclosing party under
nondisclosure obligations (if any), or any direct product of such technology, to any destination to which
such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior
authorization from U.S. Department of Commerce and other competent Government authorities to the
extent required by those laws.
7.10 Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
65
MSP430F149
,
MSP430F148
,
MSP430F147
MSP430F1491
,
MSP430F1481
,
MSP430F1471
MSP430F135, MSP430F133
www.ti.com
SLAS272H JULY 2000REVISED MAY 2018
Submit Documentation Feedback
Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471
MSP430F135 MSP430F133
Mechanical, Packaging, and Orderable InformationCopyright © 2000–2018, Texas Instruments Incorporated
8 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the
most current data available for the designated devices. This data is subject to change without notice and
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
MSP430F133IPAG ACTIVE TQFP PAG 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-4-260C-72 HR -40 to 85 M430F133
MSP430F133IPM ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F133
MSP430F133IPMR ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F133
MSP430F133IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F133
MSP430F133IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F133
MSP430F135IPAG ACTIVE TQFP PAG 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-4-260C-72 HR -40 to 85 M430F135
REV #
MSP430F135IPM ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F135
REV #
MSP430F135IPMR ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F135
REV #
MSP430F135IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F135
MSP430F135IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F135
MSP430F1471IPM ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F1471
REV #
MSP430F1471IPMR ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F1471
REV #
MSP430F1471IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F1471
MSP430F1471IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F1471
MSP430F147IPAG ACTIVE TQFP PAG 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-4-260C-72 HR -40 to 85 M430F147
REV #
MSP430F147IPM ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F147
REV #
MSP430F147IPMR ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F147
REV #
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
MSP430F147IPMR-KAM ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F147
REV #
MSP430F147IPMRG4 ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F147
REV #
MSP430F147IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F147
MSP430F147IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F147
MSP430F1481IPM ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F1481
MSP430F1481IPMR ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F1481
MSP430F1481IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F1481
MSP430F1481IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F1481
MSP430F148IPAG ACTIVE TQFP PAG 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-4-260C-72 HR -40 to 85 M430F148
MSP430F148IPM ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F148
REV #
MSP430F148IPMG4 ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F148
REV #
MSP430F148IPMR ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F148
REV #
MSP430F148IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F148
MSP430F148IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F148
MSP430F1491IPM ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F1491
MSP430F1491IPMG4 ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F1491
MSP430F1491IPMR ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F1491
MSP430F1491IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F1491
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 3
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
MSP430F1491IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F1491
MSP430F149IPAG ACTIVE TQFP PAG 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-4-260C-72 HR -40 to 85 M430F149
REV #
MSP430F149IPAGR ACTIVE TQFP PAG 64 1500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-4-260C-72 HR -40 to 85 M430F149
REV #
MSP430F149IPM ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F149
REV #
MSP430F149IPMG4 ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F149
REV #
MSP430F149IPMR ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F149
REV #
MSP430F149IPMRG4 ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F149
REV #
MSP430F149IRTDR ACTIVE VQFN RTD 64 2500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F149
MSP430F149IRTDRG4 ACTIVE VQFN RTD 64 2500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F149
MSP430F149IRTDT ACTIVE VQFN RTD 64 250 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 M430F149
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 4
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
MSP430F133IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F133IRTDR VQFN RTD 64 2500 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F133IRTDT VQFN RTD 64 250 180.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F135IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F135IRTDR VQFN RTD 64 2500 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F135IRTDT VQFN RTD 64 250 180.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F1471IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F1471IRTDR VQFN RTD 64 2500 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F1471IRTDT VQFN RTD 64 250 180.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F147IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F147IRTDR VQFN RTD 64 2500 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F147IRTDT VQFN RTD 64 250 180.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F1481IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F1481IRTDR VQFN RTD 64 2500 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F1481IRTDT VQFN RTD 64 250 180.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F148IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F148IRTDR VQFN RTD 64 2500 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F148IRTDT VQFN RTD 64 250 180.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
PACKAGE MATERIALS INFORMATION
www.ti.com 19-Mar-2015
Pack Materials-Page 1
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
MSP430F1491IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F1491IRTDR VQFN RTD 64 2500 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F1491IRTDT VQFN RTD 64 250 180.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F149IPAGR TQFP PAG 64 1500 330.0 24.4 13.0 13.0 1.5 16.0 24.0 Q2
MSP430F149IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F149IRTDR VQFN RTD 64 2500 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
MSP430F149IRTDT VQFN RTD 64 250 180.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
MSP430F133IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F133IRTDR VQFN RTD 64 2500 367.0 367.0 38.0
MSP430F133IRTDT VQFN RTD 64 250 210.0 185.0 35.0
MSP430F135IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F135IRTDR VQFN RTD 64 2500 367.0 367.0 38.0
MSP430F135IRTDT VQFN RTD 64 250 210.0 185.0 35.0
MSP430F1471IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F1471IRTDR VQFN RTD 64 2500 367.0 367.0 38.0
MSP430F1471IRTDT VQFN RTD 64 250 210.0 185.0 35.0
MSP430F147IPMR LQFP PM 64 1000 336.6 336.6 41.3
PACKAGE MATERIALS INFORMATION
www.ti.com 19-Mar-2015
Pack Materials-Page 2
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
MSP430F147IRTDR VQFN RTD 64 2500 367.0 367.0 38.0
MSP430F147IRTDT VQFN RTD 64 250 210.0 185.0 35.0
MSP430F1481IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F1481IRTDR VQFN RTD 64 2500 367.0 367.0 38.0
MSP430F1481IRTDT VQFN RTD 64 250 210.0 185.0 35.0
MSP430F148IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F148IRTDR VQFN RTD 64 2500 367.0 367.0 38.0
MSP430F148IRTDT VQFN RTD 64 250 210.0 185.0 35.0
MSP430F1491IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F1491IRTDR VQFN RTD 64 2500 367.0 367.0 38.0
MSP430F1491IRTDT VQFN RTD 64 250 210.0 185.0 35.0
MSP430F149IPAGR TQFP PAG 64 1500 367.0 367.0 45.0
MSP430F149IPMR LQFP PM 64 1000 336.6 336.6 41.3
MSP430F149IRTDR VQFN RTD 64 2500 367.0 367.0 38.0
MSP430F149IRTDT VQFN RTD 64 250 210.0 185.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 19-Mar-2015
Pack Materials-Page 3
MECHANICAL DATA
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PAG (S-PQFP-G64) PLASTIC QUAD FLATPACK
0,13 NOM
0,25
0,45
0,75
Seating Plane
0,05 MIN
4040282/C 11/96
Gage Plane
33
0,17
0,27
16
48
1
7,50 TYP
49
64
SQ
9,80
1,05
0,95
11,80
12,20
1,20 MAX
10,20 SQ
17
32
0,08
0,50 M
0,08
0°–7°
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
MECHANICAL DATA
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PM (S-PQFP-G64) PLASTIC QUAD FLATPACK
4040152/C 11/96
32
17 0,13 NOM
0,25
0,45
0,75
Seating Plane
0,05 MIN
Gage Plane
0,27
33
16
48
1
0,17
49
64
SQ
SQ
10,20
11,80
12,20
9,80
7,50 TYP
1,60 MAX
1,45
1,35
0,08
0,50 M
0,08
0°–7°
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
D. May also be thermally enhanced plastic with leads connected to the die pads.
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
MSP430F147IPM MSP430F147IPMR MSP430F147IPAG MSP430F147IPMRG4 MSP430F147IRTDR
MSP430F147IRTDT MSP430F147IPMR-KAM MSP430A025IPM MSP430A050IPMR