ST7SCR1E4, ST7SCR1R4 8-bit low-power, full-speed USB MCU with 16-Kbyte Flash, 768-byte RAM, smartcard interface and timer Datasheet - production data Features Memories Up to 16 Kbytes of ROM or High Density Flash (HDFlash) program memory with read/write protection, HDFlash In-Circuit and In-Application Programming. 100 write/erase cycles guaranteed, data retention: 40 years at 55C SO24 LQFP64 14x14 QFN24 ISO7816-3 UART interface 4 MHz clock generation Synchronous/Asynchronous protocols (T=0, T=1) Clock, reset and supply management Automatic retry on parity error Low voltage reset 2 power saving modes: Halt and Wait modes Programmable baud rate from 372 clock pulses up to 11.625 clock pulses (D=32/F=372) PLL for generating 48 MHz USB clock using a 4 MHz crystal Card Insertion/Removal Detection Up to 768 bytes of RAM including up to 128 bytes stack and 256 bytes USB buffer Smartcard power supply Interrupt management Selectable card VCC 1.8V, 3V, and 5V Internal step-up converter for 5V supplied Smartcards (with a current of up to 55mA) using only two external components. Programmable Smartcard Internal Voltage Regulator (1.8V to 3.0V) with current overload protection and 4 KV ESD protection (Human Body Model) for all Smartcard Interface I/Os Nested Interrupt controller USB (Universal Serial Bus) interface 256-byte buffer for full speed bulk, control and interrupt transfer types compliant with USB specification (version 2.0) On-Chip 3.3V USB voltage regulator and transceivers with software power-down 7 USB endpoints: - One 8-byte Bidirectional Control Endpoint - One 64-byte In Endpoint, - One 64-byte Out Endpoint - Four 8-byte In Endpoints 35 or 4 I/O ports Up to 4 LED outputs with software programmable constant current (3 or 7 mA). 2 General purpose I/Os programmable as interrupts Up to 8 line inputs programmable as interrupts Up to 20 outputs 1 line assigned by default as static input after reset July 2012 This is information on a product in full production. One 8-bit timer Time Base Unit (TBU) for generating periodic interrupts. Development tools Full hardware/software development package ECOPACK(R) packages Table 1. Device summary Reference Part number ST7SCR1R4 ST7FSCR1T1, ST7SCR1T1 ST7SCR1E4 ST7FSCR1M1, ST7SCR1M1, ST7SCR1U1 Doc ID 8951 Rev 6 1/121 www.st.com 1 Contents ST7SCR1E4, ST7SCR1R4 Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5 6 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.4 ICP (In-circuit programming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.5 IAP (In-application programming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 Program memory read-out protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.7 Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.1 6.2 7 2/121 Clock system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.1.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.1.2 External clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.2 Masking and processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.3 Interrupts and low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 8 9 Contents 7.4 Concurrent and nested management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.5 Interrupt register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.2 Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.3 Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.3 I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9.4 9.3.1 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9.3.2 Ports B and D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9.3.3 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10 Miscellaneous registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 11 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 12 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 12.1 12.2 Watchdog timer (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 12.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 12.1.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 12.1.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 12.1.4 Software watchdog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 12.1.5 Hardware watchdog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 12.1.6 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 12.1.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 12.1.8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Time base unit (TBU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 12.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 12.2.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 12.2.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 12.2.4 Programming example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Doc ID 8951 Rev 6 3/121 Contents ST7SCR1E4, ST7SCR1R4 12.3 12.4 13 13.2 12.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 12.2.7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 USB interface (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 12.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 12.3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 12.3.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 12.3.4 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Smartcard interface (CRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 12.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 12.4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 12.4.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 12.4.4 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 CPU addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 13.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 13.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 13.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 13.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 13.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 13.1.6 Indirect indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 13.1.7 Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 14.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 14.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 14.3 Supply and reset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 14.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.5 4/121 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 13.1 14 12.2.5 14.4.1 General timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.4.2 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.4.3 Crystal resonator oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 14.5.1 RAM and hardware registers 14.5.2 FLASH memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Doc ID 8951 Rev 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 ST7SCR1E4, ST7SCR1R4 14.6 Smartcard supply supervisor electrical characteristics . . . . . . . . . . . . . 103 14.7 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 14.8 14.7.1 Functional EMS (Electro magnetic susceptibility) . . . . . . . . . . . . . . . . 105 14.7.2 Electro magnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . 106 14.7.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 106 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 107 14.8.1 15 16 USB - Universal bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 15.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 15.2 Recommended reflow oven profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Device configuration and ordering information . . . . . . . . . . . . . . . . . 111 16.0.1 17 Contents Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 16.1 Device ordering information and transfer of customer code . . . . . . . . . . 112 16.2 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 16.3 ST7 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 16.4 Important notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 16.4.1 Unexpected reset fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 16.4.2 Flash devices only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 16.4.3 Smart card UART automatic repetition and retry . . . . . . . . . . . . . . . . . 119 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Doc ID 8951 Rev 6 5/121 List of tables ST7SCR1E4, ST7SCR1R4 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. 6/121 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Detailed device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Hardware register memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Sectors available in FLASH devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Recommended values for 4 MHz crystal resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Interrupt software priority levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Current interrupt software priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Interrupt vectors and corresponding bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Dedicated interrupt instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I/O pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Port A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Port B and D description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Port C description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 I/O ports register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Watchdog timing (fCPU = 8 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Transmission status encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Reception status encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Transmission status encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Reception status encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 USB register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 CPU addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Instructions supporting direct, indexed, indirect and indirect indexed addressing modes . 91 Instruction set overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Current injection on i/o port and control pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I/O port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 LED pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Low voltage detector and supervisor (LVDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Typical crystal resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Dual voltage flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Smartcard supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 USB: Full speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 ST7 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Device identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. ST7SCR block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 64-pin LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 24-Pin SO package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 24-lead QFN package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Smartcard interface reference application - 24-pin SO package . . . . . . . . . . . . . . . . . . . . 14 Smartcard interface reference application - 64-Pin LQFP package . . . . . . . . . . . . . . . . . . 15 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Memory map and sector address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Typical ICP interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Stack manipulation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Clock, reset and supply block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 External clock source connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Crystal resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LVD RESET sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Watchdog RESET sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Interrupt processing flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Priority decision process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Concurrent interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Nested interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 WAIT mode flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 HALT mode flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 PA0, PA1, PA2, PA3, PA4, PA5 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 PA6 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Port B and D configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Port C configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 TBU block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 USB block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Endpoint buffer size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Smartcard interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Compensation mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Waiting time counter example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Card detection block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Card deactivation sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Card voltage selection and power OFF block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Power off timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Card clock selection block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Smartcard I/O pin structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Typical application with an external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Typical application with a crystal resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Two typical applications with VPP pin1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 USB: Data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 64-pin low profile quad flat package (14x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 24-pin plastic small outline package, 300-mil width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Sales type coding rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ST7SCR microcontroller option list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Revision marking on box label and device marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Doc ID 8951 Rev 6 7/121 Description 1 ST7SCR1E4, ST7SCR1R4 Description The ST7SCR and ST7FSCR devices are members of the ST7 microcontroller family designed for USB applications. All devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set. The ST7SCR ROM devices are factory-programmed and are not reprogrammable. The ST7FSCR versions feature dual-voltage Flash memory with Flash Programming capability. They operate at a 4 MHz external oscillator frequency. Under software control, all devices can be placed in WAIT or HALT mode, reducing power consumption when the application is in idle or stand-by state. The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes. The devices include an ST7 core, up to 16 Kbytes of program memory, up to 512 bytes of user RAM, up to 35 I/O lines and the following on-chip peripherals: Table 2. USB full speed interface with 7 endpoints, programmable in/out configuration and embedded 3.3V voltage regulator and transceivers (no external components are needed). ISO7816-3 UART interface with programmable baud rate from 372 clock pulses up to 11.625 clock pulses Smartcard Supply Block able to provide programmable supply voltage and I/O voltage levels to the smartcards Low voltage reset ensuring proper power-on or power-off of the device (selectable by option) Watchdog timer 8-bit timer (TBU) Detailed device summary ST7SCR1R4 ST7SCR1E4 Features Program memory ST7FSCR1T1 ST7SCR1T1 ST7FSCR1M1 16 Kbytes FLASH 16 Kbytes ROM 16 Kbytes FLASH User RAM (stack) bytes Peripherals 16 Kbytes ROM 16 Kbytes ROM USB full-speed (7 Ep), TBU, Watchdog timer, ISO7816-3 interface 4.0 to 5.5V CPU frequency 4 or 8 MHz Operating temperature 8/121 ST7SCR1U1 768 (128) Operating supply Package ST7SCR1M1 0C to +70C LQFP64 SO24 Doc ID 8951 Rev 6 QFN24 ST7SCR1E4, ST7SCR1R4 Figure 1. Description ST7SCR block diagram OSCIN 4MHz OSCILLATOR OSCOUT PORT A PLL 48 MHz DIVIDER USBDP USBDM USBVCC USB WATCHDOG ADDRESS AND DATA BUS USB DATA BUFFER (256 bytes) 8 MHz or 4 MHz PA[5:0] PORT B PB[7:0] PORT C PC[7:0] PORT D LED PD[7:0] LED[3:0] ISO7816 UART SUPPLY MANAGER 8-BIT TIMER DIODE SELF PA6 CONTROL DC/DC VPP 8-BIT CORE ALU CONVERTER CRDVCC CRDDET CRDIO LVD CRDC4 RAM (512 Bytes) PROGRAM MEMORY (16K Bytes) Doc ID 8951 Rev 6 CRDC8 3V/1.8V Vreg CRDRST CRDCLK 9/121 Pin description 2 ST7SCR1E4, ST7SCR1R4 Pin description Figure 2. 64-pin LQFP package pinout CRDVCC GND GNDA DIODE SELF1 SELF2 PA5 PA4 NC NC LED3 LED2 LED1 VDD VDDA USBVcc NC = Not Connected 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 CRDDET VDD WAKUP2/ICCDATA/PA0 WAKUP2/ICCCLK/PA1 WAKUP2/PA2 WAKUP2/PA3 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 OSCIN OSCOUT CRDRST NC CRDCLK NC C4 CRDIO C8 GND PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 Figure 3. 10/121 24-Pin SO package pinout SELF VDD VDDA DIODE GNDA GND 1 24 2 23 3 22 CRDVCC 4 21 CRDRST CRDCLK C4 CRDIO 5 20 USBVcc DP 6 19 DM 7 18 8 17 LED0 PA6 C8 CRDDET 9 16 VPP 10 15 ICCDATA/WAKUP2/PA0 11 14 ICCCLK/WAKUP2/PA1 12 13 OSCOUT OSCIN NC Doc ID 8951 Rev 6 NC DP DM LED0 PA6 VPP PC7/WAKUP1 PC6/WAKUP1 PC5/WAKUP1 PC4/WAKUP1 PC3/WAKUP1 PC2/WAKUP1 PC1/WAKUP1 PC0/WAKUP1 GND VDD ST7SCR1E4, ST7SCR1R4 GND GNDA DIODE SELF VDD VDDA 24-lead QFN package pinout 24 23 22 21 20 19 2 17 DP CRDCLK 3 16 DM C4 4 15 LED0 CRDIO 5 14 PA6 C8 6 13 GND 7 8 9 10 11 12 OSCOUT CRDRST OSCIN USBVCC NC 18 ICCCLK/WAKUP2/PA1 1 ICCDATA/WAKUP2/PA0 CRDVCC CRDDET Figure 4. Pin description Legend / Abbreviations: Type: I = input, O = output, S = supply In/Output level: CT = CMOS 0.3VDD/0.7VDD with input trigger Output level: HS = 10mA high sink (on N-buffer only) Port and control configuration: Input:float = floating, wpu = weak pull-up, int = interrupt, ana = analog Output: OD = open drain, PP = push-pull Refer to "I/O ports" on page 40 for more details on the software configuration of the I/O ports. Pin description 2 3 CRDRST O CT X PP Output int Input OD Port / Control wpu 5 Output 2 Input SO24 1 Pin name Type QFN24 Level LQFP64 Pin n VCARD supplied Table 3. X NC 3 6 CRDCLK Main function (after reset) Alternate function Smartcard Reset Not Connected O CT X X Doc ID 8951 Rev 6 Smartcard Clock 11/121 Pin description Pin description (continued) 4 PP Output int Input OD Port / Control wpu Output Input Pin name Type Level SO24 QFN24 LQFP64 Pin n VCARD supplied Table 3. ST7SCR1E4, ST7SCR1R4 NC Main function (after reset) Not Connected 5 4 7 C4 O 6 5 8 CRDIO I/O CT 7 6 9 C8 O 3 GND S 9 PB0 O CT X X Port B0 (1) 10 PB1 O CT X X Port B1 (1) 11 PB2 O CT X X Port B2 (1) 12 PB3 O CT X X Port B3 (1) 13 PB4 O CT X X Port B4 (1) 14 PB5 O CT X X Port B5 (1) 15 PB6 O CT X X Port B6 (1) 16 PB7 O CT X X Port B7 (1) 10 CRDDET I VDD S 8 17 7 18 Alternate function CT X X CT X X X X Smartcard C4 Smartcard I/O X Smartcard C8 Ground CT X Smartcard Detection Power Supply voltage 4V-5.5V 19 8 11 PA0/WAKUP2/ ICCDATA I/O CT X X X X Port A0 Interrupt, In-Circuit Communication Data Input 20 9 12 PA1/WAKUP2/ ICCCLK I/O CT X X X X Port A1 Interrupt, In-Circuit Communication Clock Input PA2/WAKUP2 I/O CT X X X X Port A2 (1) Interrupt X Port A3 (1) Interrupt (1) 21 22 PA3/WAKUP2 X I/O CT X X 23 PD0 O CT X X Port D0 24 PD1 O CT X X Port D1 (1) 25 PD2 O CT X X Port D2 (1) 26 PD3 O CT X X Port D3 (1) 27 PD4 O CT X X Port D4 (1) 28 PD5 O CT X X Port D5 (1) 29 PD6 O CT X X Port D6 (1) 30 PD7 O CT X X Port D7 (1) 31 11 14 OSCIN 32 12 15 OSCOUT 33 12/121 VDD CT Input/Output Oscillator pins. These pins connect a 4MHz parallel-resonant crystal, or an external source to the on-chip oscillator. CT S Power Supply voltage 4V-5.5V Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Pin description (continued) 34 GND S 35 PC0/WAKUP1 I PP Output int Input OD Port / Control wpu Output Input Pin name Type Level SO24 QFN24 LQFP64 Pin n VCARD supplied Table 3. Pin description Main function (after reset) Alternate function Ground CT X X PC0 (1) External interrupt (1) External interrupt 36 PC1/WAKUP1 I CT X X PC1 37 PC2/WAKUP1 I CT X X PC2 (1) External interrupt X PC3 (1) External interrupt PC4 (1) External interrupt (1) External interrupt 38 PC3/WAKUP1 39 PC4/WAKUP1 I I CT X X CT X 40 PC5/WAKUP1 I CT X X PC5 41 PC6/WAKUP1 I CT X X PC6 (1) External interrupt X PC7 (1) External interrupt 42 PC7/WAKUP1 43 16 VPP 13 GND I X CT S Flash programming voltage. Must be held low in normal operating mode. S Must be held low in normal operating mode. 44 14 17 PA6 I 45 15 18 LED0 O 46 16 19 DM I/O CT USB Data Minus line 47 17 20 DP I/O CT USB Data Plus line 48 CT PA6 HS X Constant Current Output NC Not Connected 3.3 V Output for USB 49 18 21 USBVCC O CT 50 19 22 VDDA S power Supply voltage 4V-5.5V 51 20 23 VDD S power Supply voltage 4V-5.5V 52 LED1 O HS X Constant Current Output 53 LED2 O HS X Constant Current Output 54 LED3 O HS X Constant Current Output 55 NC Not Connected 56 NC Not Connected 57 PA4 I/O CT X X X X Port A4 58 PA5 I/O CT X X X X Port A5 59 21 24 SELF2 O CT 60 21 24 SELF1 O CT 61 22 1 S CT DIODE An External inductance must be connected to these pins for the step up converter (refer to Figure 5 to choose the right capacitance) An External diode must be connected to this pin for the step up converter (refer to Figure 5 to choose the right component) Doc ID 8951 Rev 6 13/121 Pin description Pin description (continued) 63 24 3 GND S 64 1 4 CRDVCC O PP S Output OD GNDA Input int SO24 2 Port / Control wpu QFN24 23 Input LQFP64 62 Pin name Output Level Type Pin n VCARD supplied Table 3. ST7SCR1E4, ST7SCR1R4 Main function (after reset) Alternate function Ground 1. CT X Smartcard Supply pin Keyboard interface Note: It is mandatory to connect all available VDD and VDDA pins to the supply voltage and all VSS and VSSA pins to ground. Figure 5. Smartcard interface reference application - 24-pin SO package VDD C1 L1 D1 C3 SELF VDD VDDA DIODE GNDA GND CRDVCC C4 CRDRST CRDCLK C4 CRDIO C5 C6 C8 CRDDET PA0 PA1 USBVcc DP C2 R D+ D- DM LED0 PA6 VPP OSCOUT OSCIN NC Mandatory values for the external components : C1 : 4.7 F 1) C2 : 100nF 1) C3 : 1 nF C4 : 4.7 F,ESR 0.5 Ohm C5 : 470 pF C6 : 100 pF R : 1.5kOhm L1 : 10 H, 2 Ohm Crystal 4.0 MHz, Impedance max100 Ohm Cl1, Cl2 2) D1: BAT42 SHOTTKY 14/121 VDD Doc ID 8951 Rev 6 LED VDD CL1 CL2 ST7SCR1E4, ST7SCR1R4 Note: Pin description C1 and C2 must be located close to the chip. Refer to Section 6: Supply, reset and clock management & Section 14.4.3 Crystal resonator oscillators. Figure 6. Smartcard interface reference application - 64-Pin LQFP package D1 C3 L1 VDD C1 C4 VDD 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 C5 C6 C2 R LED D+ DVDD CL1 C7 C8 CL2 Mandatory values for the external components : C1 : 4.7 F 1) C2 : 100nF 1) C3 : 1 nF C4 : 4.7 F,ESR 0.5 Ohm C5 : 470 C6 : 100 C7 : 100 C8 : 100 pF pF nF 1) nF 1) R : 1.5kOhm L1 : 10 H, 2 Ohm Crystal 4.0 MHz, Impedance max100 Ohm Cl1, Cl2 2) D1: BAT42 SHOTTKY Note: C1, C2, C7 and C8 must be located close to the chip. Refer to Section 6: Supply, reset and clock management and Section 14.4.3 Crystal resonator oscillators. Doc ID 8951 Rev 6 15/121 Register and memory map 3 ST7SCR1E4, ST7SCR1R4 Register and memory map As shown in Figure 7, the MCU is capable of addressing 64K bytes of memories and I/O registers. The available memory locations consist of 40 bytes of register locations, up to 512 bytes of RAM and up to 16K bytes of user program memory. The RAM space includes up to 128 bytes for the stack from 0100h to 017Fh. The highest address bytes contain the user reset and interrupt vectors. IMPORTANT: Memory locations noted "Reserved" must never be accessed. Accessing a reserved area can have unpredictable effects on the device. Figure 7. Memory map 0000h HW Registers (see Table 4) 003Fh 0040h 0040h RAM 00FFh 0100h (512 Bytes) 017Fh 0180h Stack (128 Bytes) 023Fh 0240h 16-bit Addressing RAM ( 192 Bytes) USB RAM 033Fh 023Fh 256 Bytes Unused C000h Program Memory (16K Bytes) FFDFh FFE0h Interrupt & Reset Vectors FFFFh 16/121 Short Addressing RAM (192 Bytes) (see Table 11) Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Table 4. Address Register and memory map Hardware register memory map Block Register label 0000h 0001h 0002h 0003h 0004h 0005h 0006h 0007h 0008h 0009h 000Ah 000Bh 000Ch 000Dh CRD 000Eh Watchdog WDGCR 0011h 0012h 0013h 0014h CRDCR CRDSR CRDCCR CRDETU1 CRDETU0 CRDGT1 CRDGT0 CRDWT2 CRDWT1 CRDWT0 CRDIER CRDIPR CRDTXB CRDRXB Register name Reset status Remarks Smartcard Interface Control Register Smartcard Interface Status Register Smartcard Contact Control Register Smartcard Elementary Time Unit 1 Smartcard Elementary Time Unit 0 Smartcard Guard time 1 Smartcard Guard time 0 Smartcard Character Waiting Time 2 Smartcard Character Waiting Time 1 Smartcard Character Waiting Time 0 Smartcard Interrupt Enable Register Smartcard Interrupt Pending Register Smartcard Transmit Buffer Register Smartcard Receive Buffer Register 00h 80h xxh 01h 74h 00h 0Ch 00h 25h 80h 00h 00h 00h 00h R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R R/W R Watchdog Control Register 00h R/W Port A PADR PADDR PAOR PAPUCR Port A Data Register Port A Data Direction Register Option Register Pull up Control Register 00h 00h 00h 00h R/W R/W R/W R/W 0015h 0016h 0017h Port B PBDR PBOR PBPUCR Port B Data Register Option Register Pull up Control Register 00h 00h 00h R/W R/W R/W 0018h Port C PCDR Port C Data Register 00h R/W Port D PDDR PDOR PDPUCR Port D Data Register Option Register Pull up Control Register 00h 00h 00h R/W R/W R/W MISC MISCR1 MISCR2 MISCR3 MISCR4 Miscellaneous Register 1 Miscellaneous Register 2 Miscellaneous Register 3 Miscellaneous Register 4 00h 00h 00h 00h R/W R/W R/W R/W 0019h 001Ah 001Bh 001Ch 001Dh 001Eh 001Fh Doc ID 8951 Rev 6 17/121 Register and memory map Table 4. Address 0020h 0021h 0022h 0023h 0024h 0025h 0026h 0027h 0028h 0029h 002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h 0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Eh 18/121 ST7SCR1E4, ST7SCR1R4 Hardware register memory map (continued) Block Register label Register name Reset status Remarks USB USBISTR USBIMR USBCTLR DADDR USBSR EPOR CNT0RXR CNT0TXR EP1TXR CNT1TXR EP2RXR CNT2RXR EP2TXR CNT2TXR EP3TXR CNT3TXR EP4TXR CNT4TXR EP5TXR CNT5TXR ERRSR USB Interrupt Status Register USB Interrupt Mask Register USB Control Register Device Address Register USB Status Register Endpoint 0 Register EP 0 Reception Counter Register EP 0 Transmission Counter Register EP 1 Transmission Register EP 1 Transmission Counter Register EP 2 Reception Register EP 2 Reception Counter Register EP 2 Transmission Register EP 2 Transmission Counter Register EP 3 Transmission Register EP 3 Transmission Counter Register EP 4 Transmission Register EP 4 Transmission Counter Register EP 5 Transmission Register EP 5 Transmission Counter Register Error Status Register 00h 00h 06h 00h 00h 0xh 00h 00h 00h 00h 00h 0xh 00h 00h 00h 00h 00h 00h 00h 00h 00h R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W TBU TBUCV TBUCSR Timer counter value Timer control status 00h 00h R/W R/W ITC ITSPR0 ITSPR1 ITSPR2 ITSPR3 Interrupt Software Priority Register 0 Interrupt Software Priority Register 1 Interrupt Software Priority Register 2 Interrupt Software Priority Register 3 FFh FFh FFh FFh R/W R/W R/W R/W LED_CTRL LED Control Register 00h R/W Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Flash program memory 4 Flash program memory 4.1 Introduction The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a Byte-byByte basis using an external VPP supply. The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming). The array matrix organization allows each sector to be erased and reprogrammed without affecting other sectors. 4.2 Main features 4.3 Three Flash programming modes: - Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased. - ICP (In-Circuit Programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board. - IAP (In-Application Programming) In this mode, all sectors except Sector 0, can be programmed or erased without removing the device from the application board and while the application is running. ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM Read-out protection Register Access Security System (RASS) to prevent accidental programming or erasing Structure The Flash memory is organized in sectors and can be used for both code and data storage. Depending on the overall FLASH memory size in the microcontroller device, there are up to three user sectors (see Table 5). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required. The first two sectors have a fixed size of 4 Kbytes (see Figure 8). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh). Table 5. Sectors available in FLASH devices Flash Memory Size (bytes) Available Sectors 4K Sector 0 8K Sectors 0,1 > 8K Sectors 0,1, 2 Doc ID 8951 Rev 6 19/121 Flash program memory Figure 8. ST7SCR1E4, ST7SCR1R4 Memory map and sector address 16K USER FLASH MEMORY SIZE C000h ex.: user program 8 Kbytes SECTOR 2 DFFFh E000h EFFFh F000h FFFFh 4.4 ex.: user data + library 4 Kbytes SECTOR 1 4 Kbytes SECTOR 0 ex.: user system library + IAP BootLoader ICP (In-circuit programming) To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool. Depending on the ICP code downloaded in RAM, Flash memory programming can be fully customized (number of bytes to program, program locations, or selection serial communication interface for downloading). When using an STMicroelectronics or third-party programming tool that supports ICP and the specific microcontroller device, the user needs only to implement the ICP hardware interface on the application board (see Figure 9). For more details on the pin locations, refer to the device pinout description. ICP needs six signals to be connected to the programming tool. These signals are: VSS: device power supply ground VDD: for reset by LVD OSCIN: to force the clock during power-up ICCCLK: ICC output serial clock pin ICCDATA: ICC input serial data pin VPP: ICC mode selection and programming voltage. If ICCCLK or ICCDATA are used for other purposes in the application, a serial resistor has to be implemented to avoid a conflict in case one of the other devices forces the signal level. Note: To develop a custom programming tool, refer to the ST7 FLASH Programming and ICC Reference Manual which gives full details on the ICC protocol hardware and software. 4.5 IAP (In-application programming) This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP mode or by plugging the device in a programming tool). This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored, etc.). For example, it is 20/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Flash program memory possible to download code from the USB interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation. Figure 9. Typical ICP interface PROGRAMMING TOOL ICC CONNECTOR ICC Cable ICP PROGRAMMING TOOL CONNECTOR HE10 CONNECTOR TYPE 9 7 5 3 1 10 8 6 4 2 APPLICATION BOARD TO I PL AP CL2 E TH 10k CL1 ICCCLK ICCDATA VPP VDD VSS OSCIN OSCOUT ST7 N IO AT C 4.7k Note: If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to implemented in case another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values. 4.6 Program memory read-out protection The read-out protection is enabled through an option bit. For Flash devices, when this option is selected, the program and data stored in the Flash memory are protected against read-out (including a re-write protection). When this protection is removed by reprogramming the Option Byte, the entire Flash program memory is first automatically erased and the device can be reprogrammed. Refer to the Option Byte description for more details. 4.7 Related documentation For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming Reference Manual and to the ST7 ICC Protocol Reference Manual. Doc ID 8951 Rev 6 21/121 Flash program memory 4.8 ST7SCR1E4, ST7SCR1R4 Register description FLASH control/status register (FCSR) Read/Write Reset Value: 0000 0000 (00h) 7 0 0 0 0 0 0 0 0 0 This register is reserved for use by Programming Tool software. It controls the FLASH programming and erasing operations. For details on customizing FLASH programming methods and In-Circuit Testing, refer to the ST7 FLASH Programming and ICC Reference Manual. 22/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Central processing unit 5 Central processing unit 5.1 Introduction This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8bit data manipulation. 5.2 5.3 Main features Enable executing 63 basic instructions Fast 8-bit by 8-bit multiply 17 main addressing modes (with indirect addressing mode) Two 8-bit index registers 16-bit stack pointer Low power HALT and WAIT modes Priority maskable hardware interrupts Non-maskable software/hardware interrupts CPU registers The 6 CPU registers shown in Figure 10 are not present in the memory mapping and are accessed by specific instructions. Accumulator (A) The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data. Index registers (X and Y) These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.) The Y register is not affected by the interrupt automatic procedures. Program counter (PC) The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB). Doc ID 8951 Rev 6 23/121 Central processing unit ST7SCR1E4, ST7SCR1R4 Figure 10. CPU registers 7 0 ACCUMULATOR RESET VALUE = XXh 7 0 X INDEX REGISTER RESET VALUE = XXh 7 0 Y INDEX REGISTER RESET VALUE = XXh 15 PCH PCL 8 7 0 PROGRAM COUNTER RESET VALUE = RESET VECTOR @ FFFEh-FFFFh 7 0 1 1 I1 H I0 N Z C CONDITION CODE REGISTER RESET VALUE = 1 1 1 X 1 X X X 15 8 7 0 STACK POINTER RESET VALUE = STACK HIGHER ADDRESS X = Undefined Value Condition code register (CC) Read/Write Reset Value: 111x1xxx 7 1 0 1 I1 H I0 N Z C The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions. These bits can be individually tested and/or controlled by specific instructions. Arithmetic management bits Bit 4 = H Half carry. This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions. 0: No half carry has occurred. 1: A half carry has occurred. This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines. Bit 2 = N Negative. This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It's a copy of the result 7th bit. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative (i.e. the most significant bit is a logic 1). This bit is accessed by the JRMI and JRPL instructions. 24/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Central processing unit Bit 1 = Z Zero. This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from zero. 1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test instructions. Bit 0 = C Carry/borrow. This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred. This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions. Interrupt Management Bits Bit 5,3 = I1, I0 Interrupt The combination of the I1 and I0 bits gives the current interrupt software priority. Interrupt Software Priority I1 I0 Level 0 (main) 1 0 Level 1 0 1 Level 2 0 0 Level 3 (= interrupt disable) 1 1 These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions. See the interrupt management chapter for more details. Stack Pointer (SP) Read/Write Reset Value: 017Fh 15 0 8 0 0 0 0 0 0 7 SP7 1 0 SP6 SP5 SP4 SP3 SP2 SP1 SP0 The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 11). Doc ID 8951 Rev 6 25/121 Central processing unit ST7SCR1E4, ST7SCR1R4 Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address. The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction. Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow. The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 11. When an interrupt is received, the SP is decremented and the context is pushed on the stack. On return from interrupt, the SP is incremented and the context is popped from the stack. A subroutine call occupies two locations and an interrupt five locations in the stack area. Figure 11. Stack manipulation example CALL Subroutine PUSH Y Interrupt Event POP Y RET or RSP IRET @ 0100h SP SP Y CC A CC A SP @ 017Fh SP X X X PCH PCH PCH SP PCL PCL PCL PCH PCH PCH PCH PCH PCL PCL PCL PCL PCL Stack Higher Address = 017Fh Stack Lower Address = 0100h 26/121 CC A Doc ID 8951 Rev 6 SP ST7SCR1E4, ST7SCR1R4 Supply, reset and clock management 6 Supply, reset and clock management 6.1 Clock system 6.1.1 General description The MCU accepts either a 4 MHz crystal or an external clock signal to drive the internal oscillator. The internal clock (fCPU) is derived from the internal oscillator frequency (fOSC), which is 4 MHz. After reset, the internal clock (fCPU) is provided by the internal oscillator (4 MHz frequency). To activate the 48-MHz clock for the USB interface, the user must turn on the PLL by setting the PLL_ON bit in the MISCR4 register. When the PLL is locked, the LOCK bit is set by hardware. The user can then select an internal frequency (fCPU) of either 4 MHz or 8 MHz by programming the CLK_SEL bit in the MISCR4 register (refer to Section 10: Miscellaneous registers). The PLL provides a signal with a duty cycle of 50%. The internal clock signal (fCPU) is also routed to the on-chip peripherals. The CPU clock signal consists of a square wave with a duty cycle of 50%. Figure 12. Clock, reset and supply block diagram MISCR4 4 MHz (fOSC) - PLL X 12 PLL_ CLK_ ON SEL - - - - - 4 MHz 48 MHz DIV 48 MHz LOCK 8 MHz INTERNAL CLOCK (fCPU) USB The internal oscillator is designed to operate with an AT-cut parallel resonant quartz in the frequency range specified for fosc. The circuit shown in Figure 14 is recommended when using a crystal, and Table 6 lists the recommended capacitance. The crystal and associated components should be mounted as close as possible to the input pins in order to minimize output distortion and start-up stabilization time. The LOCK bit in the MISCR4 register can also be used to generate the fCPU directly from fOSC if the PLL and the USB interface are not active. Doc ID 8951 Rev 6 27/121 Supply, reset and clock management Table 6. ST7SCR1E4, ST7SCR1R4 Recommended values for 4 MHz crystal resonator 20 56pF 56pF RSMAX COSCIN COSCOUT 25 47pF 47pF 70 22pF 22pF Note: RSMAX is the equivalent serial resistor of the crystal (see crystal specification). 6.1.2 External clock An external clock may be applied to the OSCIN input with the OSCOUT pin not connected, as shown on Figure 13. Figure 13. External clock source connections OSCOUT OSCIN NC EXTERNAL CLOCK Figure 14. Crystal resonator OSCIN OSCOUT COSCIN 6.2 Reset sequence manager (RSM) 6.2.1 Introduction COSCOUT The reset sequence manager has two reset sources: 6.2.2 Internal LVD reset (Low Voltage Detection) which includes both a power-on and a voltage drop reset Internal watchdog reset generated by an internal watchdog counter underflow as shown in Figure 16. Functional description The reset service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map. The basic reset sequence consists of 3 phases as shown in Figure 15. 28/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Supply, reset and clock management 1. A first delay of 30s + 127 tCPU cycles during which the internal reset is maintained. 2. A second delay of 512 tCPU cycles after the internal reset is generated. It allows the oscillator to stabilize and ensures that recovery has taken place from the Reset state. 3. Reset vector fetch (duration: 2 clock cycles) Low voltage detector The low voltage detector generates a reset when VDD11 I1:0<>11 ? Pop CC from the Stack RIM SIM POP CC I1 H 1 I0 N Z C 0 I1 H I0 N Z C Mem => CC I1 H I0 N Z C Enable interrupt (level 0 set) Load 10 in I1:0 of CC 1 0 Disable interrupt (level 3 set) Load 11 in I1:0 of CC 1 1 Doc ID 8951 Rev 6 35/121 Interrupts ST7SCR1E4, ST7SCR1R4 Table 10. Dedicated interrupt instruction set (continued) Instruction New description TRAP Software trap WFI Note: Function/Example Software NMI Wait for interrupt I1 H I0 1 1 1 0 N Z During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI instructions change the current software priority up to the next IRET instruction or one of the previously mentioned instructions. In order not to lose the current software priority level, the RIM, SIM, HALT, WFI and POP CC instructions should never be used in an interrupt routine. Table 11. N Interrupt mapping Source block RESET TRAP 0 ICP Description Register Priority label order Reset Software Interrupt Exit from HALT Address vector yes FFFEhFFFFh FFFChFFFDh N/A FLASH Start programming NMI interrupt (TLI) FFFAhFFFBh no UART 2 USB 3 WAKUP1 External Interrupt Port C yes FFF4hFFF5h 4 WAKUP2 External Interrupt Port A yes FFF2hFFF3h 5 TIM no FFF0hFFF1h CARDDET 1) ISO7816-3 UART Interrupt USB Communication Interrupt UIC FFF8hFFF9h 1 6 Highest Priority USBIST R TBU Timer Interrupt TBUSR Smartcard Insertion/Removal Interrupt 1) USCUR End suspend Interrupt USBIST R FFF6hFFF7h Lowest Priority FFEEhFFEFh yes Note: 36/121 C 7 ESUSP 8 Not used FFEChFFEDh no This interrupt can be used to exit from USB suspend mode. Doc ID 8951 Rev 6 FFEAhFFEBh ST7SCR1E4, ST7SCR1R4 Power saving modes 8 Power saving modes 8.1 Introduction To give a large measure of flexibility to the application in terms of power consumption, two main power saving modes are implemented in the ST7. After a RESET the normal operating mode is selected by default (RUN mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency. From Run mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status. 8.2 Wait mode WAIT mode places the MCU in a low power consumption mode by stopping the CPU. This power saving mode is selected by calling the "WFI" ST7 software instruction. All peripherals remain active. During WAIT mode, the I bit of the CC register is forced to 0, to enable all interrupts. All other registers and memory remain unchanged. The MCU remains in WAIT mode until an interrupt or Reset occurs, whereupon the Program Counter branches to the starting address of the interrupt or Reset service routine. The MCU will remain in WAIT mode until a Reset or an Interrupt occurs, causing it to wake up. Refer to Figure 21. Doc ID 8951 Rev 6 37/121 Power saving modes ST7SCR1E4, ST7SCR1R4 Figure 21. WAIT mode flow chart WFI INSTRUCTION OSCILLATOR PERIPH. CLOCK CPU CLOCK I-BIT ON ON OFF CLEARED N RESET N Y INTERRUPT Y OSCILLATOR PERIPH. CLOCK CPU CLOCK I-BIT ON ON ON SET IF RESET 512 CPU CLOCK CYCLES DELAY FETCH RESET VECTOR OR SERVICE INTERRUPT Note: Before servicing an interrupt, the CC register is pushed on the stack. The I-Bit is set during the interrupt routine and cleared when the CC register is popped. 8.3 Halt mode The HALT mode is the MCU lowest power consumption mode. The HALT mode is entered by executing the HALT instruction. The internal oscillator is then turned off, causing all internal processing to be stopped, including the operation of the on-chip peripherals. Note: The PLL must be disabled before a HALT instruction. When entering HALT mode, the I bit in the Condition Code Register is cleared. Thus, any of the external interrupts (ITi or USB end suspend mode), are allowed and if an interrupt occurs, the CPU clock becomes active. The MCU can exit HALT mode on reception of either an external interrupt on ITi, an end suspend mode interrupt coming from USB peripheral, or a reset. The oscillator is then turned on and a stabilization time is provided before releasing CPU operation. The stabilization time is 512 CPU clock cycles. 38/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Power saving modes After the start up delay, the CPU continues operation by servicing the interrupt which wakes it up or by fetching the reset vector if a reset wakes it up. Figure 22. HALT mode flow chart HALT INSTRUCTION OSCILLATOR PERIPH. CLOCK CPU CLOCK OFF OFF OFF CLEARED I-BIT N RESET N EXTERNAL INTERRUPT* Y Y OSCILLATOR PERIPH. CLOCK CPU CLOCK I-BIT ON ON ON SET 512 CPU CLOCK CYCLES DELAY FETCH RESET VECTOR OR SERVICE INTERRUPT Note: Before servicing an interrupt, the CC register is pushed on the stack. The I-Bit is set during the interrupt routine and cleared when the CC register is popped. Doc ID 8951 Rev 6 39/121 I/O ports ST7SCR1E4, ST7SCR1R4 9 I/O ports 9.1 Introduction The I/O ports offer different functional modes: transfer of data through digital inputs and outputs and for specific pins: alternate signal input/output for the on-chip peripherals. external interrupt detection An I/O port is composed of up to 8 pins. Each pin can be programmed independently as digital input (with or without interrupt generation) or digital output. 9.2 Functional description Each port is associated to 4 main registers: Data Register (DR) Data Direction Register (DDR) Option Register (OR) Pull Up Register (PU) Each I/O pin may be programmed using the corresponding register bits in DDR register: bit X corresponding to pin X of the port. The same correspondence is used for the DR register. Table 12. I/O pin functions DDR MODE 0 Input 1 Output Input modes The input configuration is selected by clearing the corresponding DDR register bit. In this case, reading the DR register returns the digital value applied to the external I/O pin. Note: All the inputs are triggered by a Schmitt trigger. When switching from input mode to output mode, the DR register should be written first to output the correct value as soon as the port is configured as an output. Interrupt function When an I/O is configured in Input with Interrupt, an event on this I/O can generate an external Interrupt request to the CPU. The interrupt sensitivity is given independently according to the description mentioned in the ITRFRE interrupt register. Each pin can independently generate an Interrupt request. Each external interrupt vector is linked to a dedicated group of I/O port pins (see Interrupts section). If more than one input pin is selected simultaneously as interrupt source, this is logically ORed. For this reason if one of the interrupt pins is tied low, it masks the other ones. 40/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 I/O ports Output Mode The pin is configured in output mode by setting the corresponding DDR register bit (see Table 7). In this mode, writing "0" or "1" to the DR register applies this digital value to the I/O pin through the latch. Then reading the DR register returns the previously stored value. Note: In this mode, the interrupt function is disabled. Digital Alternate Function When an on-chip peripheral is configured to use a pin, the alternate function is automatically selected. This alternate function takes priority over standard I/O programming. When the signal is coming from an on-chip peripheral, the I/O pin is automatically configured in output mode (push-pull or open drain according to the peripheral). When the signal is going to an on-chip peripheral, the I/O pin has to be configured in input mode. In this case, the pin's state is also digitally readable by addressing the DR register. Note: Input pull-up configuration can cause an unexpected value at the input of the alternate peripheral input. When the on-chip peripheral uses a pin as input and output, this pin must be configured as an input (DDR = 0). Warning: 9.3 The alternate function must not be activated as long as the pin is configured as input with interrupt, in order to avoid generating spurious interrupts. I/O port implementation The hardware implementation on each I/O port depends on the settings in the DDR register and specific feature of the I/O port such as true open drain. 9.3.1 Port A Table 13. Port A description I/O PORT A Input Output PA[5:0] without pull-up * push-pull or open drain with software selectable pull-up PA6 without pull-up - *Reset State Doc ID 8951 Rev 6 41/121 I/O ports ST7SCR1E4, ST7SCR1R4 Figure 23. PA0, PA1, PA2, PA3, PA4, PA5 configuration ALTERNATE 1 OUTPUT ALTERNATE ENABLE VDD 0 P-BUFFER DR PULL-UP 1) DATA BUS LATCH VDD ALTERNATE ENABLE DDR LATCH PAD DDR SEL N-BUFFER DR SEL ALTERNATE INPUT DIODES 1 ALTERNATE ENABLE 0 VSS CMOS SCHMITT TRIGGER Note 1: selectable by PAPUCR register Figure 24. PA6 configuration VDD DATA BUS DR SEL PAD CMOS SCHMITT TRIGGER DIODES 9.3.2 Ports B and D Table 14. Port B and D description PORTS B AND D Output * PB[7:0] push-pull or open drain with software selectable pull-up PD[7:0] *Reset State = open drain 42/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 I/O ports Figure 25. Port B and D configuration ALTERNATE ENABLE ALTERNATE 1 OUTPUT 0 VDD 1 `0' P-BUFFER 0 DR PULL-UP 1) DATA BUS LATCH VDD ALTERNATE ENABLE OM LATCH PAD PULL_UP LATCH N-BUFFER DIODES DR SEL ALTERNATE ENABLE VSS Note 1: selectable by PAPUCR register 9.3.3 Port C Table 15. Port C description PORT C Input PC[7:0] with pull-up Figure 26. Port C configuration VDD PULL-UP VDD DATA BUS DR SEL PAD CMOS SCHMITT TRIGGER DIODES ALTERNATE INPUT 9.4 Register description Data registers (PxDR) Port A Data Register (PADR): 0011h Port B Data Register (PBDR): 0015h Port C Data Register (PCDR): 0018h Doc ID 8951 Rev 6 43/121 I/O ports ST7SCR1E4, ST7SCR1R4 Port D Data Register (PCDR): 0019h Read/Write Reset Value Port A: 0000 0000 (00h) Reset Value Port B: 0000 0000 (00h) Reset Value Port C: 0000 0000 (00h) Reset Value Port D: 0000 0000 (00h) 7 0 D7 D6 D5 D4 D3 D2 D1 D0 Bits 7:0 = D[7:0] Data Register 8 bits. The DR register has a specific behavior according to the selected input/output configuration. Writing the DR register is always taken in account even if the pin is configured as an input. Reading the DR register returns either the DR register latch content (pin configured as output) or the digital value applied to the I/O pin (pin configured as input). DATA DIRECTION REGISTER (PADDR) Port A Data Direction Register (PADDR): 0012h Read/Write Reset Value Port A: 0000 0000 (00h) 7 DD7 0 DD6 DD5 DD4 DD3 DD2 DD1 DD0 Bits 7:0 = DD7-DD0 Data Direction Register 8 bits. The DDR register gives the input/output direction configuration of the pins. Each bits is set and cleared by software. 0: Input mode 1: Output mode OPTION REGISTER (PxOR) Port x Option Register PxOR with x = A, B, or D Port A Option Register (PAOR): 0013h Port B Option Register (PBOR): 0016h Port D Option Register (PDOR): 001Ah Read/Write Reset Value: 0000 0000 (00h) 7 OM7 44/121 0 OM6 OM5 OM4 Doc ID 8951 Rev 6 OM3 OM2 OM1 OM0 ST7SCR1E4, ST7SCR1R4 I/O ports Bits 7:0 = OM[7:0] Option register 8 bits. The OR register allows to distinguish in output mode if the push-pull or open drain configuration is selected. Each bit is set and cleared by software. 0: Output open drain 1: Output push-pull PULL UP CONTROL REGISTER (PxPUCR) Port x Pull Up Register PxPUCR with x = A, B, or D Port A Pull up Register (PAPUCR): 0014h Port B Pull up Register (PBPUCR): 0017h Port D Pull up Register (PDPUCR): 001Bh Read/Write Reset Value: 0000 0000 (00h) 7 PU7 0 PU6 PU5 PU4 PU3 PU2 PU1 PU0 Bits 7:0 = PU[7:0] Pull up register 8 bits. The PU register is used to control the pull up. Each bit is set and cleared by software. 0: Pull up inactive 1: Pull up active Table 16. Address I/O ports register map Register label 7 6 5 4 3 2 1 0 11 PADR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 12 PADDR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 13 PAOR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 14 PAPUCR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 15 PBDR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 16 PBOR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 (Hex.) Doc ID 8951 Rev 6 45/121 I/O ports Table 16. Address ST7SCR1E4, ST7SCR1R4 I/O ports register map (continued) Register label 7 6 5 4 3 2 1 0 17 PBPUCR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 18 PCDR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 19 PDDR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 1A PDOR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 1B PDPUCR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 (Hex.) 46/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 10 Miscellaneous registers Miscellaneous registers Miscellaneous register 1 (MISCR1) Reset Value: 0000 0000 (00h) Read/Write 7 ITM7 0 ITM6 ITM5 ITM4 ITM3 ITM2 ITM1 ITM0 Writing the ITIFREC register enables or disables external interrupt on Port C. Each bit can be masked independently. The ITMx bit masks the external interrupt on PC.x. Bits[7:0] = ITM [7:0] Interrupt Mask 0: external interrupt disabled 1: external interrupt enabled Miscellaneous register 2 (MISCR2) Reset Value: 0000 0000 (00h) Read/Write 7 - 0 CRD IRM ITM14 ITM13 ITM12 ITM11 ITM10 ITM9 Writing the ITIFREA register enables or disables external interrupt on port A. Bit 7 = Reserved. Bit 6 = CRDIRM CRD Insertion/Removal Interrupt Mask 0: CRDIR interrupt disabled 1: CRDIR interrupt enabled Bits [5:0] = ITM [14:9] Interrupt Mask Bit x of MISCR2 masks the external interrupt on port A.x. Bit x = ITM n Interrupt Mask n 0: external interrupt disabled on PA.x. 1: external interrupt enabled on PA.x. Miscellaneous register 3 (MISCR3) Reset Value: 0000 0000 (00h) Doc ID 8951 Rev 6 47/121 Miscellaneous registers ST7SCR1E4, ST7SCR1R4 Read/Write 7 CTRL1_A 0 CTRL0_A CTRL1_C CTRL0_C - - - - This register is used to configure the edge and the level sensitivity of the Port A and Port C external interrupt. This means that all bits of a port must have the same sensitivity. If a write access modifies bits 7:4, it clears the pending interrupts. CTRL0_C, CTRL1_C: Sensitivity on port C CTRL0_A, CTRL1_A: Sensitivity on port A CTRL1_X CTRL0_X External interrupt sensitivity 0 0 Falling edge & low level 0 1 Rising edge only 1 0 Falling edge only 1 1 Rising and falling edge Miscellaneous register 4 (MISCR4) Reset Value: 0000 0000 (00h). Read/Write 7 - 0 PLL_ON CLK_SEL - - Bit 7 = Reserved. Bit 6 = PLL_ON PLL Activation 0: PLL disabled 1: PLL enabled Note: The PLL must be disabled before a HALT instruction. Bit 5 = CLK_SEL Clock Selection This bit is set and cleared by software. 0: CPU frequency = 4MHz 1: CPU frequency = 8MHz Bits 4:1 = Reserved. Bit 0 = LOCK PLL status bit 0: PLL not locked. fCPU = fOSC external clock frequency. 1: PLL locked. fCPU = 4 or 8 MHz depending on CLKSEL bit. 48/121 Doc ID 8951 Rev 6 - - LOCK ST7SCR1E4, ST7SCR1R4 Table 17. Address Miscellaneous registers Register map and reset values s Register label 7 6 5 4 3 2 1 0 001C MISCR1 Reset Value ITM7 0 ITM6 0 ITM5 0 ITM4 0 ITM3 0 ITM2 0 ITM1 0 ITM0 0 001D MISCR2 Reset Value 0 0 ITM14 0 ITM13 0 ITM12 0 ITM11 0 ITM10 0 ITM9 0 001E MISCR3 CTRL1_A CTRL0_A CTRL1_C CTRL0_C Reset Value 0 0 0 0 0 0 0 0 001Fh MISCR4 Reset Value 0 0 0 LOCK 0 (Hex.) 0 PLL_ON 0 RST_IN 0 CLK_SE 0L Doc ID 8951 Rev 6 49/121 LEDs 11 ST7SCR1E4, ST7SCR1R4 LEDs Each of the four available LEDs can be selected using the LED_CTRL register. Two types of LEDs are supported: 3mA and 7mA. LED_CTRL register Reset Value: 0000 0000 (00h) Read/Write 7 LD3 0 LD2 LD1 LD0 Bits 7:4 = LDx LED Enable 0: LED disabled 1: LED enabled Bits 3:0 = LDx_I Current selection on LDx 0: 3mA current on LDx pad 1: 7mA current on LDx pad 50/121 Doc ID 8951 Rev 6 LD3_I LD2_I LD1_I LD0_I ST7SCR1E4, ST7SCR1R4 On-chip peripherals 12 On-chip peripherals 12.1 Watchdog timer (WDG) 12.1.1 Introduction The Watchdog timer is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The Watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the counter's contents before the T6 bit becomes cleared. 12.1.2 12.1.3 Main features Programmable free-running downcounter (64 increments of 65536 CPU cycles) Programmable reset Reset (if watchdog activated) when the T6 bit reaches zero Hardware Watchdog selectable by option byte Watchdog Reset indicated by status flag Functional description The counter value stored in the CR register (bits T[6:0]), is decremented every 65,536 machine cycles, and the length of the timeout period can be programmed by the user in 64 increments. If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the reset pin for typically 500ns. The application program must write in the CR register at regular intervals during normal operation to prevent an MCU reset. This downcounter is free-running: it counts down even if the watchdog is disabled. The value to be stored in the CR register must be between FFh and C0h (see Table 18). The WDGA bit is set (watchdog enabled) The T6 bit is set to prevent generating an immediate reset The T[5:0] bits contain the number of increments which represents the time delay before the watchdog produces a reset. Table 18. .) Watchdog timing (fCPU = 8 MHz) CR register initial value WDG timeout period (ms) Max FFh 524.288 Min C0h 8.192 Doc ID 8951 Rev 6 51/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 Figure 27. Watchdog block diagram RESET WATCHDOG CONTROL REGISTER (CR) WDGA T6 T5 T4 T3 T2 T1 T0 7-BIT DOWNCOUNTER CLOCK DIVIDER /65536 fCPU 12.1.4 Software watchdog option If Software Watchdog is selected by option byte, the watchdog is disabled following a reset. Once activated it cannot be disabled, except by a reset. The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared). 12.1.5 Hardware watchdog option If Hardware Watchdog is selected by option byte, the watchdog is always active and the WDGA bit in the CR is not used. 12.1.6 Low power modes WAIT Instruction No effect on Watchdog. HALT Instruction Halt mode can be used when the watchdog is enabled. When the oscillator is stopped, the WDG stops counting and is no longer able to generate a reset until the microcontroller receives an external interrupt or a reset. If an external interrupt is received, the WDG restarts counting after 514 CPU clocks. In the case of the Software Watchdog option, if a reset is generated, the WDG is disabled (reset state). Recommendations 52/121 Make sure that an external event is available to wake up the microcontroller from Halt mode. Before executing the HALT instruction, refresh the WDG counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller. When using an external interrupt to wake up the microcontroller, reinitialize the corresponding I/O as Input before executing the HALT instruction. The main reason for Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals this is that the I/O may be wrongly configured due to external interference or by an unforeseen logical condition. 12.1.7 The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction due to a program counter failure, it is advised to clear all occurrences of the data value 0x8E from memory. For example, avoid defining a constant in ROM with the value 0x8E. As the HALT instruction clears the I bit in the CC register to allow interrupts, the user may choose to clear all pending interrupt bits before executing the HALT instruction. This avoids entering other peripheral interrupt routines after executing the external interrupt routine corresponding to the wake-up event (reset or external interrupt). Interrupts None. 12.1.8 Register description Control register (CR) Read/Write Reset Value: 0111 1111 (7Fh) 7 WDGA 0 T6 T5 T4 T3 T2 T1 T0 Bit 7 = WDGA Activation bit. This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset. 0: Watchdog disabled 1: Watchdog enabled Note: This bit is not used if the hardware watchdog option is enabled by option byte. Bit 6:0 = T[6:0] 7-bit timer (MSB to LSB). These bits contain the decremented value. A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared). 12.2 Time base unit (TBU) 12.2.1 Introduction The Timebase unit (TBU) can be used to generate periodic interrupts. Doc ID 8951 Rev 6 53/121 On-chip peripherals 12.2.2 12.2.3 ST7SCR1E4, ST7SCR1R4 Main features 8-bit upcounter Programmable prescaler Period between interrupts: max. 8.1ms (at 8 MHz fCPU ) Maskable interrupt Functional description The TBU operates as a free-running upcounter. When the TCEN bit in the TBUCSR register is set by software, counting starts at the current value of the TBUCV register. The TBUCV register is incremented at the clock rate output from the prescaler selected by programming the PR[2:0] bits in the TBUCSR register. When the counter rolls over from FFh to 00h, the OVF bit is set and an interrupt request is generated if ITE is set. The user can write a value at any time in the TBUCV register. 12.2.4 Programming example In this example, timer is required to generate an interrupt after a delay of 1 ms. Assuming that fCPU is 8 MHz and a prescaler division factor of 256 will be programmed using the PR[2:0] bits in the TBUCSR register, 1 ms = 32 TBU timer ticks. In this case, the initial value to be loaded in the TBUCV must be (256-32) = 224 (E0h). ld ld ld ld A, E0h TBUCV, A ; Initialize counter value A 1Fh ; TBUCSR, A; Prescaler factor = 256, ; interrupt enable, ; TBU enable Figure 28. TBU block diagram 1 MSB LSB 0 TBU 8-BIT UPCOUNTER (TBUCV REGISTER) TBU PRESCALER fCPU 0 0 OVF ITE TCEN PR2 PR1 PR0 TBUCSR REGISTER INTERRUPT REQUEST TBU 54/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 12.2.5 On-chip peripherals Low power modes Mode 12.2.6 Description WAIT No effect on TBU HALT TBU halted. Interrupts Interrupt event Event flag Counter Overflow Event OVF Enable control bit Exit from Wait ITE Yes Exit from Halt No Note: The OVF interrupt event is connected to an interrupt vector (see Interrupts chapter). It generates an interrupt if the ITE bit is set in the TBUCSR register and the I-bit in the CC register is reset (RIM instruction). 12.2.7 Register description TBU counter value register (TBUCV) Read/Write Reset Value: 0000 0000 (00h) 7 CV7 CV6 CV5 CV4 CV3 CV2 CV1 0 CV0 Bits 7:0 = CV[7:0] Counter Value This register contains the 8-bit counter value which can be read and written anytime by software. It is continuously incremented by hardware if TCEN=1. TBU control/status register (TBUCSR) Read/Write Reset Value: 0000 0000 (00h) 7 0 0 OVF ITE TCEN PR2 PR1 0 PR0 Bits [7:6] = Reserved. Forced by hardware to 0. Bit 5 = OVF Overflow Flag This bit is set only by hardware, when the counter value rolls over from FFh to 00h. It is cleared by software reading the TBUCSR register. Writing to this bit does not change the bit value. 0: No overflow 1: Counter overflow Doc ID 8951 Rev 6 55/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 Bit 4 = ITE Interrupt enabled. This bit is set and cleared by software. 0: Overflow interrupt disabled 1: Overflow interrupt enabled. An interrupt request is generated when OVF=1. Bit 3 = TCEN TBU Enable. This bit is set and cleared by software. 0: TBU counter is frozen and the prescaler is reset. 1: TBU counter and prescaler running. Bits 2:0 = PR[2:0] Prescaler Selection These bits are set and cleared by software to select the prescaling factor. PR2 PR1 PR0 Prescaler Division Factor 0 0 0 2 0 0 1 4 0 1 0 8 0 1 1 16 1 0 0 32 1 0 1 64 1 1 0 128 1 1 1 256 12.3 USB interface (USB) 12.3.1 Introduction The USB Interface implements a full-speed function interface between the USB and the ST7 microcontroller. It is a highly integrated circuit which includes the transceiver, 3.3 voltage regulator, SIE and USB Data Buffer interface. No external components are needed apart from the external pull-up on USBDP for full speed recognition by the USB host. 12.3.2 56/121 Main features USB Specification Version 1.1 Compliant Supports Full-Speed USB Protocol Seven Endpoints (including default endpoint) CRC generation/checking, NRZI encoding/decoding and bit-stuffing USB Suspend/Resume operations On-Chip 3.3V Regulator On-Chip USB Transceiver Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 12.3.3 On-chip peripherals Functional description The block diagram in Figure 29, gives an overview of the USB interface hardware. For general information on the USB, refer to the "Universal Serial Bus Specifications" document available at http//:www.usb.org. Serial interface engine The SIE (Serial Interface Engine) interfaces with the USB, via the transceiver. The SIE processes tokens, handles data transmission/reception, and handshaking as required by the USB standard. It also performs frame formatting, including CRC generation and checking. Endpoints The Endpoint registers indicate if the microcontroller is ready to transmit/receive, and how many bytes need to be transmitted. Data transfer to/from USB data buffer memory When a token for a valid Endpoint is recognized by the USB interface, the related data transfer takes place to/from the USB data buffer. At the end of the transaction, an interrupt is generated. Interrupts By reading the Interrupt Status register, application software can know which USB event has occurred. Figure 29. USB block diagram 48 MHz ENDPOINT REGISTERS USBDM Transceiver BUFFER SIE USBDP INTERFACE CPU Address, data busses and interrupts USBVCC 3.3V Voltage Regulator USB REGISTERS USB DATA BUFFER USBGND USB endpoint RAM buffers There are seven Endpoints including one bidirectional control Endpoint (Endpoint 0), five IN Endpoints (Endpoint 1, 2, 3, 4, 5) and one OUT endpoint (Endpoint 2). Endpoint 0 is 2 x 8 bytes in size, Endpoint 1, 3, 4, and Endpoint 5 are 8 bytes in size and Endpoint 2 is 2 x 64 bytes in size. Doc ID 8951 Rev 6 57/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 Figure 30. Endpoint buffer size 12.3.4 Endpoint 0 Buffer OUT 8 Bytes Endpoint 0 Buffer IN 8 Bytes Endpoint 1 Buffer IN 8 Bytes Endpoint 2 Buffer OUT 64 Bytes Endpoint 2 Buffer IN 64 Bytes Endpoint 3 Buffer IN 8 Bytes Endpoint 4 Buffer IN 8 Bytes Endpoint 5 Buffer IN 8 Bytes Register description Interrupt status register (USBISTR) Read/Write Reset Value: 0000 0000 (00h) 7 CTR 0 SOVR ERROR SUSP ESUSP RESET 0 SOF These bits cannot be set by software. When an interrupt occurs these bits are set by hardware. Software must read them to determine the interrupt type and clear them after servicing. Note: The CTR bit (which is an OR of all the endpoint CTR flags) cannot be cleared directly, only by clearing the CTR flags in the Endpoint registers. Bit 7 = CTR Correct Transfer. This bit is set by hardware when a correct transfer operation is performed. This bit is an OR of all CTR flags (CTR0 in the EP0R register and CTR_RX and CTR_TX in the EPnRXR and EPnTXR registers). By looking in the USBSR register, the type of transfer can be determined from the PID[1:0] bits for Endpoint 0. For the other Endpoints, the Endpoint number on which the transfer was made is identified by the EP[1:0] bits and the type of transfer by the IN/OUT bit. 0: No Correct Transfer detected 1: Correct Transfer detected Note: 58/121 A transfer where the device sent a NAK or STALL handshake is considered not correct (the host only sends ACK handshakes). A transfer is considered correct if there are no errors in the PID and CRC fields, if the DATA0/DATA1 PID is sent as expected, if there were no data overruns, bit stuffing or framing errors. Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals Bit 6 = Reserved, forced by hardware to 0. Bit 5 = SOVR Setup Overrun. This bit is set by hardware when a correct Setup transfer operation is performed while the software is servicing an interrupt which occurred on the same Endpoint (CTR0 bit in the EP0R register is still set when SETUP correct transfer occurs). 0: No SETUP overrun detected 1: SETUP overrun detected When this event occurs, the USBSR register is not updated because the only source of the SOVR event is the SETUP token reception on the Control Endpoint (EP0). Bit 4 = ERR Error. This bit is set by hardware whenever one of the errors listed below has occurred: 0: No error detected 1: Timeout, CRC, bit stuffing, nonstandard framing or buffer overrun error detected Note: Refer to the ERR[2:0] bits in the USBSR register to determine the error type. Bit 3 = SUSP Suspend mode request. This bit is set by hardware when a constant idle state is present on the bus line for more than 3 ms, indicating a suspend mode request from the USB. The suspend request check is active immediately after each USB reset event and is disabled by hardware when suspend mode is forced (FSUSP bit in the USBCTLR register) until the end of resume sequence. Bit 2 = ESUSP End Suspend mode. This bit is set by hardware when, during suspend mode, activity is detected that wakes the USB interface up from suspend mode. This interrupt is serviced by a specific vector, in order to wake up the ST7 from HALT mode. 0: No End Suspend detected 1: End Suspend detected Bit 1 = RESET USB reset. This bit is set by hardware when the USB reset sequence is detected on the bus. 0: No USB reset signal detected 1: USB reset signal detected Note: The DADDR, EP0R, EP1RXR, EP1TXR, EP2RXR and EP2TXR registers are reset by a USB reset. Doc ID 8951 Rev 6 59/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 Bit 0 = SOF Start of frame. This bit is set by hardware when a SOF token is received on the USB. 0: No SOF received 1: SOF received Note: To avoid spurious clearing of some bits, it is recommended to clear them using a load instruction where all bits which must not be altered are set, and all bits to be cleared are reset. Avoid read-modify-write instructions like AND, XOR... Interrupt mask register (USBIMR) Read/Write Reset Value: 0000 0000 (00h) 7 CTRM 0 0 SOVRM ERRM SUSPM ESUSP M RESETM SOFM These bits are mask bits for all the interrupt condition bits included in the USBISTR register. Whenever one of the USBIMR bits is set, if the corresponding USBISTR bit is set, and the Ibit in the CC register is cleared, an interrupt request is generated. For an explanation of each bit, please refer to the description of the USBISTR register. Control register (USBCTLR) Read/Write Reset value: 0000 0110 (06h) 7 RSM 0 USB_ RST 0 0 RESUME PDWN FSUSP FRES Bit 7 = RSM Resume Detected This bit shows when a resume sequence has started on the USB port, requesting the USB interface to wake-up from suspend state. It can be used to determine the cause of an ESUSP event. 0: No resume sequence detected on USB 1: Resume sequence detected on USB Bit 6 = USB_RST USB Reset detected. This bit shows that a reset sequence has started on the USB. It can be used to determine the cause of an ESUSP event (Reset sequence). 0: No reset sequence detected on USB 1: Reset sequence detected on USB Bits [5:4] = Reserved, forced by hardware to 0. 60/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals Bit 3 = RESUME Resume. This bit is set by software to wake-up the Host when the ST7 is in suspend mode. 0: Resume signal not forced 1: Resume signal forced on the USB bus. Software should clear this bit after the appropriate delay. Bit 2 = PDWN Power down. This bit is set by software to turn off the 3.3V on-chip voltage regulator that supplies the external pull-up resistor and the transceiver. 0: Voltage regulator on 1: Voltage regulator off Note: After turning on the voltage regulator, software should allow at least 3 s for stabilization of the power supply before using the USB interface. Bit 1 = FSUSP Force suspend mode. This bit is set by software to enter Suspend mode. The ST7 should also be put in Halt mode to reduce power consumption. 0: Suspend mode inactive 1: Suspend mode active When the hardware detects USB activity, it resets this bit (it can also be reset by software). Bit 0 = FRES Force reset. This bit is set by software to force a reset of the USB interface, just as if a RESET sequence came from the USB. 0: Reset not forced 1: USB interface reset forced. The USB is held in RESET state until software clears this bit, at which point a "USB-RESET" interrupt will be generated if enabled. Device address register (DADDR) Read/Write Reset Value: 0000 0000 (00h) 7 0 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 0 ADD0 Bit 7 = Reserved, forced by hardware to 0. Bits 6:0 = ADD[6:0] Device address, 7 bits. Software must write into this register the address sent by the host during enumeration. Doc ID 8951 Rev 6 61/121 On-chip peripherals Note: ST7SCR1E4, ST7SCR1R4 This register is also reset when a USB reset is received or forced through bit FRES in the USBCTLR register. USB status register (USBSR) Read only Reset Value: 0000 0000 (00h) 7 PID1 Note: PID0 IN/OUT 0 0 EP2 EP1 Bits 7:6 = PID[1:0] Token PID bits 1 & 0 for Endpoint 0 Control. USB token PIDs are encoded in four bits. PID[1:0] correspond to the most significant bits of the PID field of the last token PID received by Endpoint 0. The least significant PID bits have a fixed value of 01. When a CTR interrupt occurs on Endpoint 0 (see register USBISTR) the software should read the PID[1:0] bits to retrieve the PID name of the token received. The USB specification defines PID bits as: PID1 PID0 PID name 0 0 OUT 1 0 IN 1 1 SETUP Bit 5 = IN/OUT Last transaction direction for Endpoint 1, 2, 3, 4 or 5. This bit is set by hardware when a CTR interrupt occurs on Endpoint 1, 2, 3, 4 or 5. 0: OUT transaction 1: IN transaction Bits 4:3 = Reserved, forced by hardware to 0. Bits 2:0 = EP[2:0] Endpoint number. These bits identify the endpoint which required attention. 000 = Endpoint 0 001 = Endpoint 1 010 = Endpoint 2 011 = Endpoint 3 100 = Endpoint 4 101 = Endpoint 5 62/121 0 EP0 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals Error status register (ERRSR) Read only Reset Value: 0000 0000 (00h) 7 0 0 0 0 0 ERR2 ERR1 0 ERR0 Bits 7:3 = Reserved, forced by hardware to 0. Bits 2:0 = ERR[2:0] Error type. These bits identify the type of error which occurred. Note: ERR2 ERR1 ERR0 Meaning 0 0 0 No error 0 0 1 Bitstuffing error 0 1 0 CRC error 0 1 1 EOP error (unexpected end of packet or SE0 not followed by J-state) 1 0 0 PID error (PID encoding error, unexpected or unknown PID) 1 0 1 Memory over / underrun (memory controller has not answered in time to a memory data request) 1 1 1 Other error (wrong packet, timeout error) These bits are set by hardware when an error interrupt occurs and are reset automatically when the error bit (USBISTR bit 4) is cleared by software. Endpoint 0 register (EP0R) Read/Write Reset value: 0000 0000(00h) 7 CTR0 DTOG_TX STAT_ TX1 STAT_ TX0 0 DTOG_RX STAT_ RX1 0 STAT_ RX0 This register is used for controlling Endpoint 0. Bits 6:4 and bits 2:0 are also reset by a USB reset, either received from the USB or forced through the FRES bit in USBCTLR. Bit 7 = CTR0 Correct Transfer. This bit is set by hardware when a correct transfer operation is performed on Endpoint 0. This bit must be cleared after the corresponding interrupt has been serviced. 0: No CTR on Endpoint 0 1: Correct transfer on Endpoint 0 Doc ID 8951 Rev 6 63/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 Bit 6 = DTOG_TX Data Toggle, for transmission transfers. It contains the required value of the toggle bit (0=DATA0, 1=DATA1) for the next transmitted data packet. This bit is set by hardware on reception of a SETUP PID. DTOG_TX toggles only when the transmitter has received the ACK signal from the USB host. DTOG_TX and also DTOG_RX are normally updated by hardware, on receipt of a relevant PID. They can be also written by the user, both for testing purposes and to force a specific (DATA0 or DATA1) token. Bits 5:4 = STAT_TX [1:0] Status bits, for transmission transfers. These bits contain the information about the endpoint status, which are listed below Table 19. Transmission status encoding STAT_TX1 STAT_TX0 Meaning 0 0 DISABLED: no function can be executed on this endpoint and messages related to this endpoint are ignored. 0 1 STALL: the endpoint is stalled and all transmission requests result in a STALL handshake. 1 0 NAK: the endpoint is NAKed and all transmission requests result in a NAK handshake. 1 1 VALID: this endpoint is enabled (if an address match occurs, the USB interface handles the transaction). These bits are written by software. Hardware sets the STAT_TX and STAT_RX bits to NAK when a correct transfer has occurred (CTR=1) addressed to this endpoint; this allows software to prepare the next set of data to be transmitted. Bit 3 = Reserved, forced by hardware to 0. Bit 2 = DTOG_RX Data Toggle, for reception transfers. It contains the expected value of the toggle bit (0=DATA0, 1=DATA1) for the next data packet. This bit is cleared by hardware in the first stage (Setup Stage) of a control transfer (SETUP transactions start always with DATA0 PID). The receiver toggles DTOG_RX only if it receives a correct data packet and the packet's data PID matches the receiver sequence bit. Bits 1:0 = STAT_RX [1:0] Status bits, for reception transfers. These bits contain the information about the endpoint status, which are listed below: Table 20. 64/121 Reception status encoding STAT_RX1 STAT_RX0 Meaning 0 0 DISABLED: no function can be executed on this endpoint and messages related to this endpoint are ignored. 0 1 STALL: the endpoint is stalled and all reception requests result in a STALL handshake. Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Table 20. On-chip peripherals Reception status encoding STAT_RX1 STAT_RX0 Meaning 1 0 NAK: the endpoint is NAKed and all reception requests result in a NAK handshake. 1 1 VALID: this endpoint is enabled (if an address match occurs, the USB interface handles the transaction). These bits are written by software. Hardware sets the STAT_RX and STAT_TX bits to NAK when a correct transfer has occurred (CTR=1) addressed to this endpoint, so the software has the time to examine the received data before acknowledging a new transaction. Note: If a SETUP transaction is received while the status is different from DISABLED, it is acknowledged and the two directional status bits are set to NAK by hardware. When a STALL is answered by the USB device, the two directional status bits are set to STALL by hardware. Endpoint transmission register (EP1TXR, EP2TXR, EP3TXR, EP4TXR, EP5TXR) Read/Write Reset value: 0000 0000 (00h) 7 0 0 0 0 CTR_TX DTOG_TX STAT_ TX1 0 STAT_ TX0 This register is used for controlling Endpoint 1, 2, 3, 4 or 5 transmission. Bits 2:0 are also reset by a USB reset, either received from the USB or forced through the FRES bit in the USBCTLR register. Bits [7:4] = Reserved, forced by hardware to 0. Bit 3 = CTR_TX Correct Transmission Transfer. This bit is set by hardware when a correct transfer operation is performed in transmission. This bit must be cleared after the corresponding interrupt has been serviced. 0: No CTR in transmission on Endpoint 1, 2, 3, 4 or 5 1: Correct transfer in transmission on Endpoint 1, 2, 3, 4 or 5 Bit 2 = DTOG_TX Data Toggle, for transmission transfers. This bit contains the required value of the toggle bit (0=DATA0, 1=DATA1) for the next data packet. DTOG_TX toggles only when the transmitter has received the ACK signal from the USB host. DTOG_TX and DTOG_RX are normally updated by hardware, at the receipt of a relevant PID. They can be also written by the user, both for testing purposes and to force a specific (DATA0 or DATA1) token. Bits [1:0] = STAT_TX [1:0] Status bits, for transmission transfers. These bits contain the information about the endpoint status, which is listed below Doc ID 8951 Rev 6 65/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 Table 21. Transmission status encoding STAT_TX1 STAT_TX0 Meaning 0 0 DISABLED: transmission transfers cannot be executed. 0 1 STALL: the endpoint is stalled and all transmission requests result in a STALL handshake. 1 0 NAK: the endpoint is naked and all transmission requests result in a NAK handshake. 1 1 VALID: this endpoint is enabled for transmission. These bits are written by software, but hardware sets the STAT_TX bits to NAK when a correct transfer has occurred (CTR=1) addressed to this endpoint. This allows software to prepare the next set of data to be transmitted. Endpoint 2 reception register (EP2RXR) Read/Write Reset value: 0000 0000 (00h) 7 0 0 0 0 CTR_RX DTOG_RX STAT_ RX1 0 STAT_ RX0 This register is used for controlling Endpoint 2 reception. Bits 2:0 are also reset by a USB reset, either received from the USB or forced through the FRES bit in the USBCTLR register. Bits [7:4] = Reserved, forced by hardware to 0. Bit 3 = CTR_RX Reception Correct Transfer. This bit is set by hardware when a correct transfer operation is performed in reception. This bit must be cleared after that the corresponding interrupt has been serviced. Bit 2 = DTOG_RX Data Toggle, for reception transfers. It contains the expected value of the toggle bit (0=DATA0, 1=DATA1) for the next data packet. The receiver toggles DTOG_RX only if it receives a correct data packet and the packet's data PID matches the receiver sequence bit. Bits [1:0] = STAT_RX [1:0] Status bits, for reception transfers. These bits contain the information about the endpoint status, which is listed below: 66/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Table 22. On-chip peripherals Reception status encoding STAT_RX1 STAT_RX0 Meaning 0 0 DISABLED: reception transfers cannot be executed. 0 1 STALL: the endpoint is stalled and all reception requests result in a STALL handshake. 1 0 NAK: the endpoint is naked and all reception requests result in a NAK handshake. 1 1 VALID: this endpoint is enabled for reception. These bits are written by software, but hardware sets the STAT_RX bits to NAK when a correct transfer has occurred (CTR=1) addressed to this endpoint, so the software has the time to examine the received data before acknowledging a new transaction. Reception counter register (CNT0RXR) Read/Write Reset Value: 0000 0000 (00h) 7 0 0 0 0 CNT3 CNT2 CNT1 0 CNT0 This register contains the allocated buffer size for endpoint 0 reception, setting the maximum number of bytes the related endpoint can receive with the next OUT or SETUP transaction. At the end of a reception, the value of this register is the max size decremented by the number of bytes received (to determine the number of bytes received, the software must subtract the content of this register from the allocated buffer size). Transmission counter register (CNT0TXR, CNT1TXR, CNT3TXR, CNT4TXR, CNT5TXR) Read/Write Reset Value 0000 0000 (00h) 7 0 0 0 0 CNT3 CNT2 CNT1 0 CNT0 This register contains the number of bytes to be transmitted by Endpoint 0, 1, 3, 4 or 5 at the next IN token addressed to it. Reception counter register (CNT2RXR) Read/Write Reset Value: 0000 0000 (00h) 7 0 CNT6 CNT5 CNT4 CNT3 CNT2 CNT 0 CNT0 This register contains the allocated buffer size for endpoint 2 reception, setting the maximum number of bytes the related endpoint can receive with the next OUT transaction. Doc ID 8951 Rev 6 67/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 At the end of a reception, the value of this register is the max size decremented by the number of bytes received (to determine the number of bytes received, the software must subtract the content of this register from the allocated buffer size). Transmission counter register (CNT2TXR) Read/Write Reset Value 0000 0000 (00h) 7 0 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 0 CNT0 This register contains the number of bytes to be transmitted by Endpoint 2 at the next IN token addressed to it. Table 23. Address USB register map and reset values Register name 7 6 5 4 3 2 1 0 20 USBISTR Reset Value CTR 0 0 0 SOVR 0 ERR 0 SUSP 0 ESUSP 0 RESET 0 SOF 0 21 USBIMR Reset Value CTRM 0 0 0 SOVRM 0 ERRM 0 SUSPM 0 ESUSPM 0 RESETM 0 SOFM 0 22 USBCTLR Reset Value RSM 0 USB_RS T 0 0 0 RESUM E 0 PDWN 1 FSUSP 1 FRES 0 23 DADDR Reset Value 0 ADD6 0 ADD5 0 ADD4 0 ADD3 0 ADD2 0 ADD1 0 ADD0 0 24 USBSR Reset Value PID1 0 PID0 0 IN /OUT 0 0 0 EP2 0 EP1 0 EP0 0 25 EP0R Reset Value CTR0 0 DTOG_T X 0 STAT_TX 1 0 STAT_TX 0 0 0 0 DTOG_R X 0 STAT_RX 1 0 STAT_RX 0 0 26 CNT0RXR Reset Value 0 0 0 0 CNT3 0 CNT2 0 CNT1 0 CNT0 0 27 CNT0TXR Reset Value 0 0 0 0 CNT3 0 CNT2 0 CNT1 0 CNT0 0 28 EP1TXR Reset Value 0 0 0 0 CTR_TX 0 DTOG_T X 0 STAT_TX 1 0 STAT_TX 0 0 29 CNT1TXR Reset Value 0 0 0 0 CNT3 0 CNT2 0 CNT1 0 CNT0 0 2A EP2RXR Reset Value 0 0 0 0 CTR_RX 0 DTOG_R X 0 STAT_RX 1 0 STAT_RX 0 0 2B CNT2RXR Reset Value 0 CNT6 0 CNT5 0 CNT4 0 CNT3 0 CNT2 0 CNT1 0 CNT0 0 (Hex.) 68/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Table 23. Address On-chip peripherals USB register map and reset values (continued) Register name 7 6 5 4 3 2 1 0 2C EP2TXR Reset Value 0 0 0 0 CTR_TX 0 DTOG_T X 0 STAT_TX 1 0 STAT_TX 0 0 2D CNT2TXR Reset Value 0 CNT6 0 CNT5 0 CNT4 0 CNT3 0 CNT2 0 CNT1 0 CNT0 0 2E EP3TXR Reset Value 0 0 0 0 CTR_TX 0 DTOG_T X 0 STAT_TX 1 0 STAT_TX 0 0 2F CNT3TXR Reset Value 0 0 0 0 CNT3 0 CNT2 0 CNT1 0 CNT0 0 30 EP4TXR Reset Value 0 0 0 0 CTR_TX 0 DTOG_T X 0 STAT_TX 1 0 STAT_TX 0 0 31 CNT4TXR Reset Value 0 0 0 0 CNT3 0 CNT2 0 CNT1 0 CNT0 0 32 EP5TXR Reset Value 0 0 0 0 CTR_TX 0 DTOG_T X 0 STAT_TX 1 0 STAT_TX 0 0 33 CNT5TXR 0 0 0 0 CNT3 0 CNT2 0 CNT1 0 CNT0 0 34 ERRSR 0 0 0 0 0 ERR2 0 ERR1 0 ERR0 0 (Hex.) 12.4 Smartcard interface (CRD) 12.4.1 Introduction The Smartcard Interface (CRD) provides all the required signals for acting as a smartcard interface device. The interface is electrically compatible with (and certifiable to) the ISO7816, EMV, GSM and WHQL standards. Both synchronous (e.g. memory cards) and asynchronous smartcards (e.g. microprocessor cards) are supported. The CRD generates the required voltages to be applied to the smartcard lines. The power-off sequence is managed by the CRD. Card insertion or card removal is detected by the CRD using a card presence switch connected to the external CRDDET pin. If a card is removed, the CRD automatically deactivates the smartcard using the ISO7816 deactivation sequence. An maskable interrupt is generated when a card is inserted or removed. Doc ID 8951 Rev 6 69/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 Any malfunction is reported to the microcontroller via the Smartcard Interrupt Pending Register (CRDIPR) and Smartcard Status (CRDSR) Registers. 12.4.2 12.4.3 Main features Support for ISO 7816-3 standard Character mode 1 transmit buffer and 1 receive buffer 4-MHz fixed card clock 11-bit etu (elementary time unit) counter 9-bit guardtime counter 24-bit general purpose waiting time counter Parity generation and checking Automatic character repetition on parity error detection in transmission mode Automatic retry on parity error detection in reception mode Card power-off deactivation sequence generation Manual mode for driving the card I/O directly for synchronous protocols Functional description Figure 31 gives an overview of the smartcard interface. Figure 31. Smartcard interface block diagram CRDC4 4 MHz CRDC8 POWER-OFF LOGIC 11-BIT ETU COUNTER CRDVCC CRDCCR CLK SEL CRD CRD CRD CRD CRD CRD C4 C8 IO CLK RST VCC CRDRST COMMUNICATIONS CONTROL CLOCK CONTROL 9-BIT GUARDTIME COUNTER CRDCLK 24-BIT WAITING TIME COUNTER PARITY GENERATION/CHECKING 0 CRD INTERRUPT CRDIO 1 UART SHIFT REGISTER UART BIT UART RECEIVE BUFFER CRDRXB UART TRANSMIT BUFFER CARD DETECTION LOGIC CRDDET CRDTXB CARD INSERTION/REMOVAL INTERRUPT Power supply management Smartcard Power Supply Selection The Smartcard interface consists of a power supply output on the CRDVCC pin and a set of card interface I/Os which are powered by the same rail. 70/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals The card voltage (CRDVCC) is user programmable via the VCARD [1:0] bits in the CRDCR register (refer to the Smartcard Interface section). Four card supply voltages can be selected: 5 V, 3 V, 1.8 V or 0 V. The internal step-up converter must be activated to supply the 5 V card voltage. To enable the step-up converter, the user must turn on the PLL by setting the PLL_ON bit in the MISCR4 register. The stepup converter switching frequency is then of 750 kHz (fOSC = 4 MHz). Current Overload Detection and Card Removal For each voltage, when an overload current is detected (refer to section 12.4 on page 69), or when a card is removed, the CRDVCC power supply output is directly connected to ground. I/O driving modes Smartcard I/Os are driven in two principal modes: UART mode (i.e. when the UART bit of the CRDCR register is set) Manual mode, driven directly by software using the Smartcard Contact register (i.e. when the UART bit of the CRDCR register is reset). Card power-on activation must driven by software. Card deactivation is handled automatically by the Power-off functional state machine hardware. UART mode Two registers are connected to the UART shift register: CRDTXB for transmission and CRDRXB for reception. They act as buffers to off-load the CPU. A parity checker and generator is coupled to the shifter. Character repetition and retry are supported. The UART is in reception mode by default and switches automatically to transmission mode when a byte is written in the buffer. Priority is given to transmission. Elementary Time Unit Counter This 11-bit counter controls the working frequency of the UART. The operating frequency of the clock is the same as the card clock frequency (i.e. 4 MHz). A compensation mode can be activated via the COMP bit of the CRDETU1 register to allow a frequency granularity down to a half-etu. Note: The decimal value is limited to a half clock cycle. The bit duration is not fixed. It alternates between n clock cycles and n-1 clock cycles, where n is the value to be written in the CRDETU register. The character duration (10 bits) is also equal to 10*(n - 1/2) clock cycles This is precise enough to obtain the character duration specified by the ISO7816-3 standard. For example, if F=372 and D=32 (F being the clock rate conversion factor and D the baud rate adjustment), then etu =11.625 clock cycles. To achieve this clock rate, compensation mode must be activated and the etu duration must be programmed to 12 clock cycles. The result will be an average character duration of 11.5 clock cycles (for 10 bits). Doc ID 8951 Rev 6 71/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 See Figure 32. Guardtime counter The guardtime counter is a 9-bit counter which manages the character frame. It controls the duration between two consecutive characters in transmission. It is incremented at the etu rate. No guardtime is inserted for the first character transmitted. The guardtime between the last byte received from the card and the next byte transmitted by the reader must be handled by software. Figure 32. Compensation mode Parity bit Start bit Data bits CRDIO UART Working Clock 12cy 12cy 12cy 12cy 12cy 11cy 11cy 11cy 11cy 11cy F=372 D= 32 Waiting time counter The Waiting Time counter is a 24-bit counter used to generate a timeout signal. The elementary time unit counter acts as a prescaler to the Waiting Time counter which is incremented at the etu rate. The Waiting Time Counter can be used in both UART mode and Manual mode and acts in different ways depending on the selected mode. The CRDWT2, CRDWT1 and CRDWT0 are load registers only, the counter itself is not directly accessible. UART mode The load conditions are either: A Start bit is detected while UART bit =1 and the WTEN bit =1. or A write access to the CRDWT2 register is performed while the UART bit = 1 and the WTEN bit = 0. In this case, the Waiting Time counter can be used as a general purpose timer. In UART mode, if the WTEN bit of the CRDCR register is set, the counter is loaded automatically on start bit detection. Software can change the time out value on-the-fly by writing to the CRDWT registers. For example, in T=1 mode, software must load the Block Waiting Time (BWT) time-out in the CRDWT registers before the start bit of the last transmitted character. 72/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals Then, after transmission of this last character, signalled by the TXC interrupt, software must write the CWT value (Character Waiting Time) in the CRDWT registers. See example in Figure 33. Manual mode The load conditions are: A write access to the CRDWT2 register is performed while the UART bit = 0 and the WTEN bit = 0 In Manual mode, if the WTEN bit of the CRDCR register is reset, the timer acts as a general purpose timer. The timer is loaded when a write access to the CRDWT2 register occurs. The timer starts when the WTEN bit = 1. Interrupt generator The Smartcard Interface has 2 interrupt vectors: Card Insertion/Removal Interrupt CRD Interrupt The CRD interrupt is cleared when software reads the CRDIPR register. The Card Insertion/Removal is an external interrupt and is cleared automatically by hardware at the end of the interrupt service routine (IRET instruction). If an interrupt occurs while the CRDIPR register is being read, the corresponding bit will be set by hardware after the read access is done. Figure 33. Waiting time counter example Firmware must program BWT Firmware must program CWT Reader CHAR0 CHAR1 CHARn TXC Interrupt Smartcard CHAR0 CHAR1 BWT CWT Start bit Waiting Time Counter loaded on start bit Card detection mechanism The CRDDET bit in the CRDCR Register indicates if the card presence detector (card switch) is open or closed when a card is inserted. When the CRDIRF bit of the CRDSR is set, it indicates that a card is present. To be able to power-on the smartcard, card presence is mandatory. Removing the smartcard will automatically start the ISO7816-3 card deactivation sequence (see Section Card deactivation sequence). Doc ID 8951 Rev 6 73/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 There is no hardware debouncing: The CRDIRF bit changes whenever the level on the CRDDET pin changes. The card switch can generate an interrupt which can be used to wake up the device from suspend mode and for software debouncing. Three different cases can occur: The microcontroller is in run mode, waiting for card insertion: Card insertion generates an interrupt and the CRDIRF bit in the CRDSR register is set. Debouncing is managed by software. After the time required for debouncing, if the CRDIRF bit is set, the CRDVCC bit in the CRDCR register is set by software to apply the selected voltage to the CRDVCC pin The microcontroller is in suspend mode and a card is inserted: The ST7 is woken up by the interrupt. The card insertion is then handled in the same way as in the previous case. The card is removed: - The CRDIRF bit is reset without hardware debouncing - A Card Insertion/Removal interrupt is generated, (if enabled by the CRDIRM bit in the MISCR2 register) - The CRDVCC bit is immediately reset by hardware, starting the card deactivation sequence. Figure 34. Card detection block diagram SMARTCARD INTERFACE (CRD) Pull-up EDGE DETECTOR 1 CRDDET 0 CARD INSERTION/REMOVAL Interrupt Request 7 0 DET CNF CRDCR 7 0 CRD IRF CRDSR 0 7 CRD IRM MISCR2 74/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals Card deactivation sequence This sequence can be activated in two different ways: Automatically as soon as the card presence detector detects a card removal (via the CRDIRF bit in the CRDSR register, refer to Section ). By software, writing the CRDVCC bit in the CRDCR register, for example: - If there is a smartcard current overflow (i.e. when the IOVFF bit in the CRDSR register is set) - If the voltage is not within the specified range (i.e. when the VCARDOK bit in the CRDSR register is cleared), but software must clear the CRDVCC bit in the CRDCCR register to start the deactivation sequence. When the CRDVCC bit is cleared, this starts the deactivation sequence. CRDCLK, CRDIO, CRDC4 and CRDC8 pins are then deactivated as shown in Figure 35. Figure 35. Card deactivation sequence 8 CPU Clk cycles CRDVCC pin CRDRST pin CRDCLK pin CRDIO pin CRDC4 pin CRDC8 pin Doc ID 8951 Rev 6 75/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 Figure 36. Card voltage selection and power OFF block diagram 5V SMARTCARD POWER SUPPLY BLOCK CRDVCC Card voltage selection 2 2 2 0 7 CRD IRF 7 0 VCARD OK IOVF VCARDVCARD 1 0 CRDCR CRDSR 7 0 0 7 CRD VCC IOVM VCRD M CRDCCR CRDIER 7 0 POWER OFF BLOCK IOVP VCRD P CRDIPR VCARDOK Interrupt Request IOVF Interrupt Request Figure 37. Power off timing diagram VCARD[1:0] 00 11 00 11 Voltage Error Software Power-Off VCARDOK Power-On Power-On 0.4V CRDVCC tOFF tOFF tON tON VCRDP Interrupt VCRDP Interrupt VCARDOK Note: 76/121 Refer to the Electrical Characteristics section for the values of tON and tOFF. Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals Figure 38. Card clock selection block diagram POWER OFF BLOCK OSC PLL DIV 4 MHz ISOCLK 4 MHz 1 CRDCLK 0 CRDCCR CLK SEL 12.4.4 CRD CLK Register description Smartcard interface control register (CRDCR) Read/Write Reset Value: 0000 0000 (00h) 7 CRD RST 0 CRD DET VCARD 1 VCARD 0 U ART WT EN C REP CO NV Bit 7 = CRDRST Smartcard Interface Reset. This bit is set by software to reset the UART of the Smartcard interface. 0: No Smartcard UART Reset 1: Smartcard UART Reset Bit 6 = CRDDET Card Presence Detector. This bit is set and cleared by software to configure the card presence detector switch. 0: Switch open if no card is present 1: Switch closed if no card is present Bits [5:4] = VCARD[1:0] Card voltage selection. These bits select the card voltage. Bit 1 Bit 0 Vcard 0 0 0V 0 1 1.8V 1 0 3V 1 1 5V Bit 3 = UART UART Mode Selection. This bit is set and cleared by software to select UART or manual mode. 0: CRDIO pin is a copy of the CRDIO bit in the CRDCCR register (Manual mode). Doc ID 8951 Rev 6 77/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 1: CRDIO pin is the output of the smartcard UART (UART mode). Caution: Before switching from Manual mode to UART mode, software must set the CRDIO bit in the CRDCCR register. Bit 2 = WTEN Waiting Time Counter enable. 0: Waiting Time counter stopped. While WTEN = 0, a write access to the CRDWT2 register loads the Waiting time counter with the load value held in the CRDWT0, CRDWT1 and CRDWT2 registers. 1: Start counter. In UART mode, the counter is automatically reloaded on start bit detection. Bit 1 = CREP Automatic character repetition in case of parity error. 0: In reception mode: no parity error signal indication (no retry on parity error). In transmission mode: no error signal processing. No retransmission of a refused character on parity error. 1: Automatic parity management: In transmission mode: up to 4 character repetitions on parity error. In reception mode: up to 4 retries are made on parity error. The PARF parity error flag is set by hardware if a parity error is detected. If the transmitted character is refused, the PARF bit is set (but the TXCF bit is reset) and an interrupt is generated if the PARM bit is set. Note: If CREP=1, the PARF flag is set at the 5th error (after 4 character repetitions or 4 retries). If CREP=0, the PARF bit is set after the first parity error. Bit 0 = CONV ISO convention selection. 0: Direct convention, the B0 bit (LSB) is sent first, a '1' is a level 1 on the Card I/O pin, the parity bit is added after the B7 bit. 1: Inverse convention, the B7 bit (MSB) is sent first, a '1' is a level 0 on Card I/O pin, the parity bit is added after the B0 bit. Note: To detect the convention used by any card, apply the following rule. If a card uses the convention selected by the reader, an RXC event occurs at answer to reset. Otherwise a parity error also occurs. Smartcard interface status register (CRDSR) Read only (Read/Write on some bits) Reset Value: 1000 0000 (80h) 7 TXBEF 78/121 0 CRD IRF IOVF VCARD OK Doc ID 8951 Rev 6 WTF TXCF RXCF PAR F ST7SCR1E4, ST7SCR1R4 On-chip peripherals Bit 7 =TxBEF Transmit Buffer Empty Flag. - Read only 0: Transmit buffer is not empty 1: Transmit buffer is empty Bit 6 = CRDIRF Card Insertion/Removal Flag. - Read only 0: No card is present 1: A card is present Bit 5 = IOVF Card Overload Current Flag. - Read only 0: No card overload current 1: Card overload current Bit 4 = VCARDOK Card voltage status Flag. - Read only 0: The card voltage is not in the specified range 1: The card voltage is within the specified range Bit 3 = WTF Waiting Time Counter overflow Flag. - Read only 0: The WT Counter has not reached its maximum value 1: The WT Counter has reached its maximum value Bit 2 = TXCF Transmitted character Flag. - Read/Write This bit is set by hardware and cleared by software. 0: No character transmitted 1: A character has been transmitted Bit 1 = RXCF Received character Flag. - Read only This bit is set by hardware and cleared by hardware when the CRDRXB buffer is read. 0: No character received 1: A character has been received Doc ID 8951 Rev 6 79/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 Bit 0 = PARF Parity Error Flag. - Read/Write This bit is set by hardware and cleared by software. 0: No parity error 1: Parity error Note: When a character is received, the RXCF bit is always set.When a character is received with a parity error, the PARF bit is also set. Smartcard contact control register (CRDCCR) Read/Write Reset Value: 00xx xx00 (xxh) 7 CLK SEL Note: 0 - CRD C8 CRD C4 CRD IO CRD CLK CRD RST CRD VCC To modify the content of this register, the LD instruction must be used (do not use the BSET and BRES instructions). Bit 7 = CLKSEL Card clock selection. This bit is set and cleared by software. 0: The signal on the CRDCLK pin is a copy of the CRDCLK bit. 1: The signal on the CRDCLK pin is a 4MHz frequency clock. Note: To start the clock at a known level, the CRDCLK bit should be changed before the CLKSEL bit. Bit 6 = Reserved, must be kept cleared. Bit 5 = CRDC8 CRDC8 pin control. Reading this bit returns the value present on the CRDC8 pin. Writing this bit outputs the bit value on the pin. Bit 4 = CRDC4 CRDC4 pin control Reading this bit returns the value present on the CRDC4 pin. Writing this bit outputs the bit value on the pin. Bit 3 = CRDIO CRDIO pin control. This bit is active only if the UART bit in the CRDCR Register is reset. Reading this bit returns the value present on the CRDIO pin. If the UART bit is reset: 80/121 Writing "0" forces a low level on the CRDIO pin Writing "1" forces the CRDIO pin to open drain Hi-Z. Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals Bit 2 = CRDCLK CRDCLK pin control This bit is active only if the CLKSEL bit of the CRDCCR register is reset. Reading this bit returns the value present in the register (not the CRDCLK pin value). When the CLKSEL bit is reset: 0: Level 0 to be applied on CRDCLK pin. 1: Level 1 to be applied on CRDCLK pin. Note: To ensure that the clock stops at a given value, write the desired value in the CRDCLK bit prior to changing the CLKSEL bit from 1 to 0. Bit 1 = CRDRST CRDRST pin control. Reading this bit returns the value present on the CRDRST pin. Writing this bit outputs the bit value on the pin. Bit 0 = CRDVCC CRDVCC Pin Control. This bit is set and cleared by software and forced to 0 by hardware when no card is present (CRDIRF bit=0). 0: No voltage to be applied on the CRDVCC pin. 1: The selected voltage must be applied on the CRDVCC pin. Figure 39. Smartcard I/O pin structure CRDCCR REGISTER I/O PIN DATA BUS Smartcard elementary time unit register (CRDETUx) CRDETU1 Read/Write Reset Value: 0000 0001 (01h) 7 COMP 0 0 0 0 ETU10 ETU9 0 ETU8 Bit 7 = COMP Elementary Time Unit Compensation. 0: Compensation mode disabled. Doc ID 8951 Rev 6 81/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 1: Compensation mode enabled. To allow non integer value, one clock cycle is subtracted from the ETU value on odd bits. See Figure 32. Bit [6:3] = Reserved Bits 2:0 = ETU [10:8] ETU value in card clock cycles. Writing CRDETU1 register reloads the ETU counter. CRDETU0 Read/Write Reset Value: 0111 0100 (74h) 7 ETU7 ETU6 ETU5 ETU4 ETU3 ETU2 ETU1 0 ETU0 Bits 7:0 = ETU [7:0] ETU value in card clock cycles. Note: The value of ETU [10:0] must in the range 12 to 2047. To write 2048, clear all the bits. Guardtime register (CRDGTx) CRDGT1 Read/Write Reset Value: 0000 0000 (00h) 7 0 0 0 0 0 0 GT4 GT3 GT2 0 0 GT8 GT1 0 GT0 CRDGT0 Read/Write Reset Value: 0000 1100 (0Ch) 7 GT7 GT6 GT5 Software writes the Guardtime value in this register. The value is loaded at the end of the current Guard period. GT: Guard Time: Minimum time between two consecutive start bits in transmission mode. Value expressed in Elementary Time Units (from 11 to 511). The Guardtime between the last byte received from the card and the next byte transmitted by the reader must be handled by software. 82/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals Character waiting time register (CRDWTx) CRDWT2 Read/Write Reset Value: 0000 0000 (00h) . 7 WT 23 WT 22 WT 21 WT 20 WT 19 WT 18 WT 17 0 WT 16 WT 12 WT 11 WT 10 WT9 0 WT8 WT2 WT1 0 WT0 CRDWT1 Read/Write Reset Value: 0010 0101 (25h) 7 WT 15 WT 14 WT 13 CRDWT0 Read/Write Reset Value: 1000 0000 (80h) 7 WT 7 WT6 WT5 WT4 WT3 WT: Character waiting time value expressed in ETU (0 / 16777215). The CRDWT0, CRDWT1 and CRDWT2 registers hold the load value of the Waiting Time counter. Note: A read operation does not return the counter value. This counter can be used as a general purpose timer. If the WTEN bit of the CRDCR register is reset, the counter is reloaded when a write access in the CRDWT2 register occurs. It starts when the WTEN bit is set. If the WTEN bit in the CRDCR register is set and if UART mode is activated, the counter acts as an autoreload timer. The timer is reloaded when a start bit is sent or detected. An interrupt is generated if the timer overflows between two consecutive start bits. Note: When loaded with a 0 value, the Waiting Time counter stays at 0 and the WTF bit = 1. Smartcard interrupt enable register (CRDIER) Read/Write Reset Value: 0000 0000 (00h) 7 TXBEM - IOVFM VCRDM Doc ID 8951 Rev 6 WTM TXCM RXCM 0 PARM 83/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 Bit 7 = TXBEM Transmit buffer empty interrupt mask. This bit is set and cleared by software to enable or disable the TXBE interrupt. 0: TXBE interrupt disabled 1: TXBE interrupt enabled Bit 6 = Reserved. Bit 5 = IOVFM Card Overload Current Interrupt Mask. This bit is set and cleared by software to enable or disable the IOVF interrupt. 0: IOVF interrupt disabled 1: IOVF interrupt enabled Bit 4= VCRDM Card Voltage Error Interrupt Mask. This bit is set and cleared by software to enable or disable the VCRD interrupt. 0: VCRD interrupt disabled 1: VCRD interrupt enabled Bit 3 = WTM Waiting Timer Interrupt Mask. This bit is set and cleared by software to enable or disable the Waiting Timer overflow interrupt. 0: WT interrupt disabled 1: WT interrupt enabled Bit 2 =TXCM Transmitted Character Interrupt Mask This bit is set and cleared by software to enable or disable the TXC interrupt. 0: TXC interrupt disabled 1: TXC interrupt enabled Bit 1 =RXCM Received Character Interrupt Mask This bit is set and cleared by software to enable or disable the RXC interrupt. 0: RXC interrupt disabled 1: RXC interrupt enabled Bit 0 = PARM Parity Error Interrupt. Mask This bit is set and cleared by software to enable or disable the parity error interrupt for parity error. 0: PAR interrupt disabled 1: PAR error interrupt enabled 84/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 On-chip peripherals Smartcard interrupt pending register (CRDIPR) Read Only Reset Value: 0000 0000 (00h) 7 TXBEP - IOVFP VCRDP WTP TXCP RXCP 0 PARP This register indicates the interrupt source. It is cleared after a read operation. Bit 7 = TXBEP Transmit buffer empty interrupt pending. This bit is set by hardware when a TXBE event occurs and the TXBEM bit is set. 0: No TXBE interrupt pending 1: TXBE interrupt pending Bit 6 = Reserved. Bit 5 = IOVF Card Overload Current interrupt pending. This bit is set by hardware when a IOVF event occurs and the IOVFM bit is set. 0: No IOVF interrupt pending 1: IOVF interrupt pending Bit 4 = VCRDP Card Voltage Error interrupt pending. This bit is set by hardware when the VCARDOK bit goes from 1 to 0 while the VCRDM bit is set. 0: No VCRD interrupt pending. 1: VCRD interrupt pending. Bit 3 = WTP Waiting Timer Overflow interrupt pending. This bit is set by hardware when a WTP event occurs and the WTPM bit is set. 0: No WT interrupt pending 1: WT interrupt pending Bit 2 = TXCP Transmitted character interrupt pending. This bit is set by hardware when a character is transmitted and the TXCM bit is set. It indicates that the CRDTXB buffer can be loaded with the next character to be transmitted. 0: No TXC interrupt pending 1: TXC interrupt pending Bit 1 = RXCP Received character interrupt pending. This bit is set by hardware when a character is received and the RXCM bit is set. It indicates that the CRDRXB buffer can be read. Doc ID 8951 Rev 6 85/121 On-chip peripherals ST7SCR1E4, ST7SCR1R4 0: No RXC interrupt pending 1: RXC interrupt pending Bit 0 = PARP Parity Error interrupt pending. This bit is set by hardware when a PAR event occurs and the PARM bit is set. 0: No PAR interrupt pending 1: PAR interrupt pending Smartcard transmit buffer (CRDTXB) Read/Write Reset Value: 0000 0000 (00h) 7 TB7 TB6 TB5 TB4 TB3 TB2 TB1 0 TB0 RB1 0 RB0 This register is used to send a byte to the smartcard. Smartcard receive buffer (CRDRXB) Read Reset Value: 0000 0000 (00h) 7 RB7 RB6 RB5 RB4 RB3 RB2 This register is used to receive a byte from the smartcard. Table 24. Address (Hex.) 86/121 Register map and reset values Register label 7 6 5 4 3 2 1 0 00 CRDCR Reset Value CRDRS DETCN T F 0 0 VCAR D1 0 VCARD 0 0 UART 0 WTEN 0 CREP 0 CONV 0 01 CRDSR Reset Value TXBEF 1 CRDIR F 0 IOVF 0 VCARD OK 0 WTF 0 TXCF 0 RXCF 0 PARF 0 CRDC4 CRDIO x x 02 CRDCCR CLKSEL Reset 0 Value 0 CRDC 8 x 03 CRDETU1 Reset Value COMP 0 0 0 0 0 ETU10 1 ETU9 0 ETU8 0 04 CRDETU0 Reset Value ETU7 0 ETU6 1 ETU5 1 ETU4 1 ETU3 0 ETU2 1 ETU1 0 ETU0 0 Doc ID 8951 Rev 6 CRDCL CRDRS CRDVC K T C 0 x 0 ST7SCR1E4, ST7SCR1R4 Table 24. Address On-chip peripherals Register map and reset values (continued) Register label 7 6 5 4 3 2 1 0 05 CRDGT1 Reset Value 0 0 0 0 0 0 0 GT8 0 06 CRDGT0 Reset Value GT7 0 GT6 0 GT5 0 GT4 0 GT3 1 GT2 1 GT1 0 GT0 0 07 CRDWT2 Reset Value WT23 0 WT22 0 WT21 0 WT20 0 WT19 0 WT18 0 WT17 0 WT16 0 08 CRDWT1 Reset Value WT15 0 WT14 0 WT13 1 WT12 0 WT11 0 WT10 1 WT9 0 WT8 1 09 CRDWT0 Reset Value WT7 1 WT6 0 WT5 0 WT4 0 WT3 0 WT2 0 WT1 0 WT0 0 0A CRDIER Reset Value TXBEM 0 0 IOVM 0 VCRDM 0 WTM 0 TXCM 0 RXCM 0 PARM 0 0B CRDIPR Reset Value TXBEP 0 0 IOVP 0 VCRDP WTP 0 TXCP 0 RXCP 0 PARP 0 0C CRDTXB Reset Value TB7 0 TB6 0 TB5 0 TB4 0 TB3 0 TB2 0 TB1 0 TB0 0 0D CRDRXB Reset Value RB7 0 RB6 0 RB5 0 RB4 0 RB3 0 RB2 0 RB1 0 RB0 0 (Hex.) Doc ID 8951 Rev 6 87/121 Instruction set ST7SCR1E4, ST7SCR1R4 13 Instruction set 13.1 CPU addressing modes The CPU features 17 different addressing modes which can be classified in 7 main groups: Addressing mode Example Inherent nop Immediate ld A,#$55 Direct ld A,$55 Indexed ld A,($55,X) Indirect ld A,([$55],X) Relative jrne loop Bit operation bset byte,#5 The CPU Instruction set is designed to minimize the number of bytes required per instruction: To do so, most of the addressing modes may be subdivided in two sub-modes called long and short: Long addressing mode is more powerful because it can use the full 64-Kbyte address space, however it uses more bytes and more CPU cycles. Short addressing mode is less powerful because it can generally only access page zero (0000h - 00FFh range), but the instruction size is more compact, and faster. All memory to memory instructions use short addressing modes only (CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP) The ST7 Assembler optimizes the use of long and short addressing modes. Table 25. CPU addressing mode overview Mode Syntax Destination Pointer address Pointer size (Hex.) Length (bytes) Inherent nop +0 Immediate ld A,#$55 +1 Short Direct ld A,$10 00..FF +1 Long Direct ld A,$1000 0000..FFFF +2 No Offset Direct Indexed ld A,(X) 00..FF +0 Short Direct Indexed ld A,($10,X) 00..1FE +1 Long Direct Indexed ld A,($1000,X) 0000..FFFF +2 Short Indirect ld A,[$10] 00..FF 00..FF byte +2 Long Indirect ld A,[$10.w] 0000..FFFF 00..FF word +2 Short Indirect Indexed ld A,([$10],X) 00..1FE 00..FF byte +2 Long Indirect Indexed ld A,([$10.w],X) 0000..FFFF 00..FF word +2 Relative Direct jrne loop PC+/-127 88/121 Doc ID 8951 Rev 6 +1 ST7SCR1E4, ST7SCR1R4 Table 25. Instruction set CPU addressing mode overview (continued) Mode Syntax Relative Indirect jrne [$10] PC+/-127 Bit Direct bset $10,#7 00..FF Bit Indirect bset [$10],#7 00..FF Bit Direct Relative btjt $10,#7,skip 00..FF Bit Indirect Relative btjt [$10],#7,skip 00..FF 13.1.1 Pointer address Destination 00..FF Pointer size (Hex.) byte Length (bytes) +2 +1 00..FF byte +2 +2 00..FF byte +3 Inherent All Inherent instructions consist of a single byte. The opcode fully specifies all the required information for the CPU to process the operation. Inherent instruction Function NOP No operation TRAP S/W Interrupt WFI Wait For Interrupt (Low Power Mode) HALT Halt Oscillator (Lowest Power Mode) RET Sub-routine Return IRET Interrupt Sub-routine Return SIM Set Interrupt Mask (level 3) RIM Reset Interrupt Mask (level 0) SCF Set Carry Flag RCF Reset Carry Flag RSP Reset Stack Pointer LD Load CLR Clear PUSH/POP Push/Pop to/from the stack INC/DEC Increment/Decrement TNZ Test Negative or Zero CPL, NEG 1 or 2 Complement MUL Byte Multiplication SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations SWAP Swap Nibbles Doc ID 8951 Rev 6 89/121 Instruction set 13.1.2 ST7SCR1E4, ST7SCR1R4 Immediate Immediate instructions have two bytes, the first byte contains the opcode, the second byte contains the operand value. Immediate instruction 13.1.3 Function LD Load CP Compare BCP Bit Compare AND, OR, XOR Logical Operations ADC, ADD, SUB, SBC Arithmetic Operations Direct In Direct instructions, the operands are referenced by their memory address. The direct addressing mode consists of two sub-modes: Direct (short) The address is a byte, thus requires only one byte after the opcode, but only allows 00 - FF addressing space. Direct (long) The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after the opcode. 13.1.4 Indexed (No Offset, Short, Long) In this mode, the operand is referenced by its memory address, which is defined by the unsigned addition of an index register (X or Y) with an offset. The indirect addressing mode consists of three sub-modes: Indexed (No Offset) There is no offset, (no extra byte after the opcode), and allows 00 - FF addressing space. Indexed (Short) The offset is a byte, thus requires only one byte after the opcode and allows 00 - 1FE addressing space. Indexed (long) The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the opcode. 13.1.5 Indirect (Short, Long) The required data byte to do the operation is found by its memory address, located in memory (pointer). 90/121 Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Instruction set The pointer address follows the opcode. The indirect addressing mode consists of two submodes: Indirect (short) The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing space, and requires 1 byte after the opcode. Indirect (long) The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode. 13.1.6 Indirect indexed (Short, Long) This is a combination of indirect and short indexed addressing modes. The operand is referenced by its memory address, which is defined by the unsigned addition of an index register value (X or Y) with a pointer value located in memory. The pointer address follows the opcode. The indirect indexed addressing mode consists of two sub-modes: Indirect indexed (Short) The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE addressing space, and requires 1 byte after the opcode. Indirect indexed (Long) The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode. Table 26. Instructions supporting direct, indexed, indirect and indirect indexed addressing modes Long and short instructions Function LD Load CP Compare AND, OR, XOR Logical Operations ADC, ADD, SUB, SBC Arithmetic Additions/Subtractions operations BCP Bit Compare Short instructions only Function CLR Clear INC, DEC Increment/Decrement TNZ Test Negative or Zero CPL, NEG 1 or 2 Complement BSET, BRES Bit Operations Doc ID 8951 Rev 6 91/121 Instruction set 13.1.7 ST7SCR1E4, ST7SCR1R4 BTJT, BTJF Bit Test and Jump Operations SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations SWAP Swap Nibbles CALL, JP Call or Jump subroutine Relative mode (Direct, Indirect) This addressing mode is used to modify the PC register value, by adding an 8-bit signed offset to it. Available relative direct/indirect instructions Function JRxx Conditional Jump CALLR Call Relative The relative addressing mode consists of two sub-modes: Relative (Direct) The offset is following the opcode. Relative (Indirect) The offset is defined in memory, which address follows the opcode. 13.2 Instruction groups The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may be subdivided into 13 main groups as illustrated in the following table: 92/121 Load and Transfer LD CLR Stack operation PUSH POP Increment/Decrement INC DEC Compare and Tests CP TNZ BCP Logical operations AND OR XOR CPL NEG Bit Operation BSET BRES Conditional Bit Test and Branch BTJT BTJF Arithmetic operations ADC ADD SUB SBC MUL Shift and Rotates SLL SRL SRA RLC RRC SWAP SLA Unconditional Jump or Call JRA JRT JRF JP CALL CALLR NOP Conditional Branch JRxx Interruption management TRAP WFI HALT IRET Condition Code Flag modification SIM RIM SCF RCF Doc ID 8951 Rev 6 RSP RET ST7SCR1E4, ST7SCR1R4 Instruction set Using a pre-byte The instructions are described with one to four opcodes. In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede. The whole instruction becomes: PC-2End of previous instruction PC-1Prebyte PCopcode PC+1Additional word (0 to 2) according to the number of bytes required to compute the effective address These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are: PDY 90Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one. PIX 92Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode. It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode. PIY 91Replace an instruction using X indirect indexed addressing mode by a Y one. Table 27. Mnemo Instruction set overview Description Function/ Example Dst Src I1 H I0 N Z C ADC Add with Carry A=A+M+C A M H N Z C ADD Addition A=A+M A M H N Z C AND Logical And A=A.M A M N Z BCP Bit compare A, Memory tst (A . M) A M N Z BRES Bit Reset bres Byte, #3 M BSET Bit Set bset Byte, #3 M BTJF Jump if bit is false (0) btjf Byte, #3, Jmp1 M C BTJT Jump if bit is true (1) btjt Byte, #3, Jmp1 M C CALL Call subroutine CALLR Call subroutine relative CLR Clear CP Arithmetic Compare reg, M tst(Reg - M) Doc ID 8951 Rev 6 reg M 0 1 N Z C 93/121 Instruction set ST7SCR1E4, ST7SCR1R4 Table 27. Instruction set overview (continued) Mnemo 94/121 Description Function/ Example Dst Src I1 H I0 N Z CPL One Complement A = FFH-A reg, M N Z DEC Decrement dec Y reg, M N Z HALT Halt IRET Interrupt routine return Pop CC, A, X, PC N Z INC Increment inc X N Z JP Absolute Jump jp [TBL.w] JRA Jump relative always JRT Jump relative JRF Never jump JRIH Jump if ext. INT pin = (ext. INT pin high) 1 JRIL Jump if ext. INT pin = (ext. INT pin low) 0 JRH Jump if H = 1 H=1? JRNH Jump if H = 0 H=0? JRM Jump if I1:0 = 11 I1:0 = 11 ? JRNM Jump if I1:0 <> 11 I1:0 <> 11 ? JRMI Jump if N = 1 (minus) N = 1 ? JRPL Jump if N = 0 (plus) N=0? JREQ Jump if Z = 1 (equal) Z=1? JRNE Jump if Z = 0 (not equal) Z=0? JRC Jump if C = 1 C=1? JRNC Jump if C = 0 C=0? JRULT Jump if C = 1 Unsigned < 1 jrf * JRUGE Jump if C = 0 Jmp if unsigned >= JRUGT Jump if (C + Z = 0) Unsigned > Doc ID 8951 Rev 6 I1 reg, M C 1 0 H I0 C ST7SCR1E4, ST7SCR1R4 Mnemo Description Instruction set Function/ Example Dst Src I1 H I0 N Z C JRULE Jump if (C + Z = 1) Unsigned <= LD Load dst <= src reg, M M, reg MUL Multiply X,A = X * A A, X, Y X, Y, A NEG Negate (2's compl) neg $10 reg, M NOP No Operation OR OR operation A=A+M A M POP Pop from the Stack pop reg reg M pop CC CC M PUSH Push onto the Stack push Y M reg, CC RCF Reset carry flag C=0 RET Subroutine Return RIM Enable Interrupts I1:0 = 10 (level 0) RLC Rotate left true C C <= A <= C reg, M N Z C reg, M N Z C N Z C RRC Rotate right true C C => A => C RSP Reset Stack Pointer S = Max allowed SBC Subtract with Carry A=A-M-C SCF Set carry flag C=1 SIM Disable Interrupts I1:0 = 11 (level 3) SLA Shift left Arithmetic C <= A <= 0 N Z 0 I1 H 0 I0 N Z N Z N Z C C 0 1 A 0 M 1 1 1 reg, M N Z C SLL Shift left Logic C <= A <= 0 reg, M N Z C SRL Shift right Logic 0 => A => C reg, M 0 Z C SRA Shift right Arithmetic A7 => A => C reg, M SUB Subtraction A=A-M A SWAP SWAP nibbles A7-A4 <=> A3A0 reg, M TNZ Test for Neg & Zero tnz lbl1 TRAP S/W trap S/W interrupt WFI Wait for Interrupt XOR Exclusive OR A = A XOR M A Doc ID 8951 Rev 6 M M 1 1 1 0 N Z C N Z C N Z N Z N Z 95/121 Electrical characteristics ST7SCR1E4, ST7SCR1R4 14 Electrical characteristics 14.1 Absolute maximum ratings This product contains devices for protecting the inputs against damage due to high static voltages, however it is advisable to take normal precautions to avoid applying any voltage higher than the specified maximum rated voltages. For proper operation it is recommended that VI and VO be higher than VSS and lower than VDD. Reliability is enhanced if unused inputs are connected to an appropriate logic voltage level (VDD or VSS). Power Considerations. The average chip-junction temperature, TJ, in Celsius can be obtained from: TJ =TA + PD x RthJA Where:TA =Ambient Temperature. RthJA =Package thermal resistance junction-to ambient). PD = PINT + PPORT. PINT =IDD x VDD (chip internal power). PPORT =Port power dissipation determined by the user) Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions is not implied. Exposure to maximum rating for extended periods may affect device reliability. Symbol Value Unit 6.0 V Input voltage VSS - 0.3 to VDD + 0.3 V VOUT Output voltage VSS - 0.3 to VDD + 0.3 V ESD ESD susceptibility 2000 V ESDCard ESD susceptibility for card pads 4000 V IVDD_i Total current into VDD_i (source) 250 IVSS_i Total current out of VSS_i (sink) 250 VDD - VSS VIN Warning: 96/121 Ratings Supply voltage mA Direct connection to VDD or VSS of the I/O pins could damage the device in case of program counter corruption (due to unwanted change of the I/O configuration). To guarantee safe conditions, this connection has to be done through a typical 10K pull-up or pull-down resistor. Doc ID 8951 Rev 6 ST7SCR1E4, ST7SCR1R4 Table 28. Electrical characteristics Thermal characteristics Symbol Value Unit RthJA Package thermal resistanceLQFP64 SO24 QFN24 60 80 42 C/W TJmax Max. junction temperature 150 C TSTG Storage temperature range -65 to +150 C 600 500 mW PDmax 14.2 Ratings Power dissipationQFN24 SO24 Recommended operating conditions GENERAL Symbol VDD fOSC TA Parameter Conditions Supply voltage Min Typ 4.0 External clock source Max Unit 5.5 V 4 Ambient temperature range 0 MHz 70 C Max Unit 20 mA 20 mA (Operating conditions TA = 0 to +70C unless otherwise specified) Table 29. Symbol Current injection on i/o port and control pins Parameter Conditions IINJ+ Total positive injected current (1,2) VEXTERNAL > VDD (Standard I/Os) VEXTERNAL > VCRDVCC (Smartcard I/Os) IINJ- Total negative injected current (3) VEXTERNAL < VSS Digital pins Analog pins Note: Min Typ Positive injection The IINJ+ is done through protection diodes insulated from the substrate of the die. For SmartCard I/Os, VCRDVCC has to be considered. Negative injection The IINJ- is done through protection diodes NOT INSULATED from the substrate of the die. The drawback is a small leakage (few A) induced inside the die when a negative injection is performed. This leakage is tolerated by the digital structure, but it acts on the analog line according to the impedance versus a leakage current of few A (if the MCU has an AD converter). The effect depends on the pin which is submitted to the injection. Of course, external digital signals applied to the component must have a maximum impedance close to 50K. Location of the negative current injection: Doc ID 8951 Rev 6 97/121 Electrical characteristics ST7SCR1E4, ST7SCR1R4 Pure digital pins can tolerate 1.6mA. In addition, the best choice is to inject the current as far as possible from the analog input pins. Note: When several inputs are submitted to a current injection, the maximum IINJ is the sum of the positive (resp. negative) currents (instantaneous values). (TA=0 to +70oC, VDD-VSS=5.5V unless otherwise specified) Symbol Parameter Conditions Min Typ. Max Unit 10 15 mA 3 9 mA Supply current in RUN mode 1) Supply current in WAIT mode IDD 2) External ILOAD = 0mA Supply current in suspend mode (USB transceiver enabled) Supply current in HALT mode Note: fOSC = 4MHz 500 A External ILOAD = 0mA (USB transceiver disabled) 50 100 CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS; clock input (OSCIN) driven by external square wave. All I/O pins in input mode with a static value at VDD or VSS; clock input (OSCIN) driven by external square wave. T = 0... +70oC, voltages are referred to VSS unless otherwise specified: Table 30. I/O port pins Symbol Conditions VIL Input low level voltage VDD=5V VIH Input high level voltage VDD=5V VHYS VOL VOH IL RPU 98/121 Parameter Min D 400 Input leakage current mV I=-5mA 1.3 I=-2mA 0.4 I=3mA Doc ID 8951 Rev 6 V VDD0.8 VSS VDD-2.4 2 Vpad > VDD-2.4 for ROM device 5 6 8.4 ILsink High current Vpad > VDD-2.4 for FLASH device 5 7 8.4 Typ Max Unit 3.7 3.9 V 4 mA Supply and reset characteristics (T = 0 to +70oC, VDD - VSS = 5.5V unless otherwise specified) Table 32. Symbol Parameter Conditions VIT+ Reset release threshold (VDD rising) VIT- Reset generation threshold (VDD falling) Vhys Hysteresis VIT+ - VIT- 1) VtPOR Note: Low voltage detector and supervisor (LVDS) VDD rise time rate 1) Min 3.3 20 3.5 V 200 mV ms/V Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. Doc ID 8951 Rev 6 99/121 Electrical characteristics ST7SCR1E4, ST7SCR1R4 14.4 Clock and timing characteristics 14.4.1 General timings (Operating conditions TA = 0 to +70C unless otherwise specified) Symbol Parameter tc(INST) Instruction cycle time tv(IT) Conditions fCPU=4MHz Interrupt reaction time (2) tv(IT) = tc(INST) + 10 Min Typ (1) Max Unit 2 3 12 tCPU 500 750 3000 ns 10 22 tCPU 2.5 5.5 s fCPU=4MHz 1. Data based on typical application software. 2. Time measured between interrupt event and interrupt vector fetch. tc(INST) is the number of tCPU cycles needed to finish the current instruction execution. * tINST is the number of tCPU to finish the current instruction execution. 14.4.2 External clock source Symbol Parameter Conditions VOSCINH OSCIN input pin high level voltage VOSCINL OSCIN input pin low level voltage Min Typ 0.7xVD V 0.3xVD VSS D see Figure 40 tr(OSCIN) tf(OSCIN) IL 15 ns OSCIN rise or fall time (1) 15 VSSVINVDD OSCx Input leakage current 1 1. Data based on design simulation and/or technology characteristics, not tested in production. Figure 40. Typical application with an external clock source 90% VOSCINH 10% VOSCINL tr(OSCIN) tf(OSCIN) tw(OSCINH) tw(OSCINL) OSCOUT fOSC EXTERNAL CLOCK SOURCE OSCIN IL ST7XXX 100/121 Unit VDD D tw(OSCINH) OSCIN high or low time (1) tw(OSCINL) Max Doc ID 8951 Rev 6 A ST7SCR1E4, ST7SCR1R4 14.4.3 Electrical characteristics Crystal resonator oscillators The ST7 internal clock is supplied with one Crystal resonator oscillator. All the information given in this paragraph are based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Symbol fOSC Parameter Conditions Oscillator Frequency (1) Min MP: Medium power oscillator Typ Max Unit 4 MHz RF Feedback resistor 90 150 k CL1 CL2 Recommended load See Table 6: capacitances versus Recommended values equivalent serial resistance (MP oscillator) for 4 MHz crystal of the crystal resonator resonator on page 28 (RS) 22 56 pF 1.5 3.5 mA i2 VDD=5V VIN=VSS OSCOUT driving current (MP oscillator) 1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value. Refer to crystal resonator manufacturer for more details. Table 33. Crystal Oscil. Typical crystal resonator Reference MP JAUCH SS3-400-3030/30 CL1 Freq. Characteristic (1) 4MHz fOSC=[30ppm25C,30ppmTa], Typ. RS=60 CL2 [pF] [pF] 33 33 tSU(osc) [ms] (2) 7~10 1. Resonator characteristics given by the crystal resonator manufacturer. 2. tSU(OSC) is the typical oscillator start-up time measured between VDD=2.8V and the fetch of the first instruction (with a quick VDD ramp-up from 0 to 5V (<50s). Figure 41. Typical application with a crystal resonator WHEN RESONATOR WITH INTEGRATED CAPACITORS i2 fOSC CL1 OSCIN RESONATOR CL2 RF OSCOUT Doc ID 8951 Rev 6 ST7XXX 101/121 Electrical characteristics 14.5 ST7SCR1E4, ST7SCR1R4 Memory characteristics Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified. 14.5.1 RAM and hardware registers Symbol Parameter Conditions Min VRM Data retention mode (1) HALT mode (or RESET) 2 Typ Max Unit V 1. Minimum VDD supply voltage without losing data stored in RAM (in HALT mode or under RESET) or in hardware registers (only in HALT mode). Not tested in production. 14.5.2 FLASH memory Operating Conditions: fCPU = 8 MHz Table 34. Dual voltage flash memory (1) Symbol Parameter Conditions Min Typ Max Read mode 8 Write / Erase mode, TA=25C 8 Unit fCPU Operating Frequency VPP Programming Voltage IPP VPP Current tVPP Internal VPP Stabilization Time tRET Data Retention TA 55C 40 years NRW Write Erase Cycles TA=25C 100 cycles 4.0V VDD 5.5V MHz 11.4 Write / Erase 12.6 V 30 mA 10 s 1. Refer to the Flash Programming Reference Manual for the HDFlash typical programming and erase timing values. Warning: Do not connect 12V to VPP before VDD is powered on, as this may damage the device. Figure 42. Two typical applications with VPP pin1) VPP 10k ST72XXX 102/121 VPP PROGRAMMING TOOL Doc ID 8951 Rev 6 ST72XXX ST7SCR1E4, ST7SCR1R4 Electrical characteristics 14.6 Smartcard supply supervisor electrical characteristics Table 35. (TA = 0... +70oC, 4.0 < VDD - VSS < 5.5V unless otherwise specified) Smartcard supply supervisor Symbol Parameter Conditions Min Typ Max Unit 5.0 5.5 V 55 mA 5V regulator output (for IEC7816-3 Class A Cards) VCRDVCC ISC IOVDET SmartCard Power Supply Voltage 4.6 SmartCard Supply Current Current Overload Detection Detection time on Current Overload tOFF VCRDVCC Turn off Time (see Figure 37) CLOADmax 4.7uF tON VCRDVCCTurn on Time (see Figure 37) CLOADmax 4.7uF IVDD 170 (1) VCARD above minimum supply voltage 150 4.52 (1) (2) VDD supply current mA 1400 (1) s 750 s 500 s 4.76 (1) V 100 mA 3.3 V 50 mA 120 tIDET VCRDVCC (1) 3V regulator output (for IEC7816-3 Class B Cards) VCRDVCC ISC IOVDET SmartCard Power Supply Voltage 2.7 3.0 SmartCard Supply Current Current Overload Detection 100 tIDET Detection time on Current Overload tOFF VCRDVCC Turn off Time (see Figure 37) CLOADmax4.7uF tON VCRDVCC Turn on Time (see Figure 37) CLOADmax 4.7uF 170 (1) 150 (1) mA 1400 (1) us 750 us 500 s 1.95 V 20 mA 1.8V regulator output (for IEC7816-3 Class C Cards) VCRDVCC ISC IOVDET SmartCard Power Supply Voltage 1.65 SmartCard Supply Current Current Overload Detection 100 tIDET Detection time on Current Overload tOFF VCRDVCC Turn off Time (see Figure 37) CLOADmax 4.7uF tON VCRDVCC Turn on Time (see Figure 37) CLOADmax 4.7uF 170 (1) 150 (1) mA 1400 (1) us 750 us 500 s (3) V - V Smartcard CLKPin VOL Output Low Level Voltage I=-50uA - - VOH Output High Level Voltage I=50uA VCRDVCC-0.5 - Doc ID 8951 Rev 6 2) 0.4 103/121 Electrical characteristics Table 35. ST7SCR1E4, ST7SCR1R4 Smartcard supply supervisor (continued) Symbol Parameter (1) TOHL Output H-L Fall Time TOLH Output L-H Rise Time (1) FVAR FDUTY Frequency variation Duty cycle Min Max Unit Cl=30pF - 20 ns Cl=30pF - 20 ns - 1 % 45 55 % -0.25 0.4 V VCRDVCC-0.5 VCRDVCC+0.25 V (1) (1) (1) POL Signal low perturbation POH Signal high perturbation (1) ISGND Conditions Short-circuit to Ground (1) Typ 15 mA Smartcard I/O Pin VIL Input Low Level Voltage - - 0.5 (3) V VIH Input High Level Voltage 0.6VCRDVCC (3) - - V VOL Output Low Level Voltage I=-0.5mA - - (3) V VOH Output High Level Voltage I=20uA 0.8VCRDVCC (3) - VCRDVCC (3) V IL Input Leakage Current (1) VSS