data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Maximum Ratings / Hochstzulassige Werte Parameter Condition Input Rectifier Bridge Gleichrichter Repetitive peak reverse voltage Periodische Ruckw. Spitzensperrspannung Forward current per diode Dauergrenzstrom Surge forward current Stostrom Grenzwert I2t-value Grenzlastintegral Power dissipation per Diode DC current Th=80C; Tc=80C tp=10ms Tj=25C V IFAV A IFSM 30 40-limited by wires 200 A 200 A2s 37 W 2 It Tj=150C Th=80C Tc=80C Ptot 51,2 VCE 600 V 9 A Tj=150C Th=80C, IC tp=1ms Tc=80C Th=80C Icpuls 18 A Tj=150C Th=80C Ptot 28 W VGE 20 V 10 us 14 A 12,1 Tc=80C Verlustleistung pro IGBT Gate-emitter peak voltage Gate-Emitter-Spitzenspannung SC withstand time 1600 Tj=25C Kollektor-Dauergleichstrom Repetitive peak collector current Periodischer Kollektorspitzenstrom Power dissipation per IGBT 43 Tj150C VGE=15V VCE=VCEBR tSC Kurzschluverhalten Diode Inverter Diode Wechselrichter DC forward current Tj=150C Th=80C, IF tp=1ms Tc=80C Th=80C Dauergleichstrom Repetitive peak forward current Periodischer Spitzenstrom Power dissipation per Diode Verlustleistung pro Diode copyright by Tyco Electronics Datasheet values Unit max. VRRM tp=10ms Verlustleistung pro Diode Transistor Inverter Transistor Wechselrichter Collector-emitter break down voltage Kollektor-Emitter-Sperrspannung DC collector current Symbol Tj=150C Th=80C Tc=80C Rupert-Mayer-Str. 44, D81359 Munchen 18,3 IFRM 27 A Ptot 21 W 32,3 power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Maximum Ratings / Hochstzulassige Werte Parameter Condition Symbol Thermal properties Thermische Eigenschaften max. Chip temperature max. Chiptemperatur Storage temperature Lagertemperatur Operation temperature Betriebstemperatur Insulation properties Modulisolation Insulation voltage Isolationsspannung Creepage distance Kriechstrecke Clearance Luftstrecke copyright by Tyco Electronics t=1min Rupert-Mayer-Str. 44, D81359 Munchen Datasheet values Unit max. Tjmax 150 C Tstg -40...+125 C Top -40...+125 C Vis 4000 Vdc min 12,7 mm min 12,7 mm power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C flow PIM(R) 0+E, 600V Characteristic values Description Symbol Conditions T(C) Input Rectifier Bridge Gleichrichter Forward voltage Durchlapannung Threshold voltage (for power loss calc. only) Schleusenspannung Slope resistance (for power loss calc. only) Ersatzwiderstand Reverse current Sperrstrom Thermal resistance chip to heatsink per chip Warmewiderstand Chip-Kuhlkorper pro Chip Thermal resistance chip to case per chip Warmewiderstand Chip-Gehause pro Chip Transistor Inverter Transistor Wechselrichter Gate emitter threshold voltage Gate-Schwellenspannung Collector-emitter saturation voltage Kollektor-Emitter Sattigungsspannung Collector-emitter cut-off current incl. Diode Kollektor-Emitter Reststrom Gate-emitter leakage current Gate-Emitter Reststrom Integrated Gate resistor Integrirter Gate Widerstand Turn-on delay time Einschaltverzogerungszeit Rise time Anstiegszeit Turn-off delay time Abschaltverzogerungszeit Fall time Fallzeit Turn-on energy loss per pulse Einschaltverlustenergie pro Puls Turn-off energy loss per pulse Abschaltverlustenergie pro Puls Input capacitance Eingangskapazitat Output capacitance Ausgangskapazitat Reverse transfer capacitance Ruckwirkungskapazitat Gate charge Gate Ladung Thermal resistance chip to heatsink per chip Warmewiderstand Chip-Kuhlkorper pro Chip Thermal resistance chip to case per chip Warmewiderstand Chip-Gehause pro Chip Coupled thermal resistance inverter diode-transistor Gekoppelte Warmewiderstand Wechselrichter Diode-Transistor copyright by Tyco Electronics VF Vto rt Ir Datasheet values Other conditions (Rgon-Rgoff) VR(V) IC(A) VCE(V) IF(A) VDS(V) Id(A) VGE(V) VGS(V) Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=150C Min 30 30 30 Unit Typ Max 1,23 1,22 0,92 0,81 0,01 0,014 1,4 1200 V V Ohm 0,01 3 mA RthJH Thermal grease thickness50um 1,9 K/W RthJC Warmeleitpaste Dicke50um = 0,61 W/mK 1,3 K/W VGE(th) VCE(sat) ICES IGES Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C VCE=VGE 0,0002 15 7 0 600 25 0 Rgint td(on) tr td(off) tf Eon Eoff Cies Coss Crss QGate RthJH RthJC RthJH 3 4 5 V 2,16 2,55 2,85 V 0,06 0,7 200 mA Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Rgon=80Ohm Rgof=40Ohm Rgon=80Ohm Rgof=40Ohm Rgon=80Ohm Rgof=40Ohm Rgon=80Ohm Rgof=40Ohm Rgon=80Ohm Rgof=40Ohm Rgon=80Ohm Rgof=40Ohm f=1MHz 15 300 nA Ohm 7 ns 15 15 300 7 ns 18 15 300 7 ns 200 15 300 7 ns 25 15 300 7 mWs 0,159 15 300 7 mWs 0 25 0,136 0,35 f=1MHz 0 25 0,038 0,046 nF f=1MHz 0 25 0,023 0,028 nF 15 480 32 42 nC Thermal grease thickness50um Warmeleitpaste Dicke50um = 0,61 W/mK Thermal grease thickness50um Warmeleitpaste Dicke50um = 0,61 W/mK Rupert-Mayer-Str. 44, D81359 Munchen 6 0,42 nF 2,5 K/W 1,7 K/W 0,7 K/W power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C flow PIM(R) 0+E, 600V Characteristic values Description Symbol Conditions T(C) Diode Inverter Diode Wechselrichter Diode forward voltage Durchlaspannung Peak reverse recovery current Ruckstromspitze Reverse recovery time Sperreverzogerungszeit Reverse recovered charge Sperrverzogerungsladung Reverse recovered energy Sperrverzogerungsenergie Thermal resistance chip to heatsink per chip Warmewiderstand Chip-Kuhlkorper pro Chip Thermal resistance chip to case per chip Warmewiderstand Chip-Gehause pro Chip Coupled thermal resistance inverter transistor-diode VF IRM trr Qrr Erec Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C copyright by Tyco Electronics Other conditions (Rgon-Rgoff) VGE(V) VGS(V) Min 7 Rgon=80Ohm 15 300 RthJC Rgon=80Ohm Rgon=80Ohm Rgon=80Ohm DR/R Tc=100C R100=1503Ohm Tj=25C V 15 300 7 ns 15 300 7 uC 15 300 7 mWs 0,04 Tol. 5% B(25/100) 2,2 0,034 Tj=25C Tj=25C 1,53 1,26 65 R25 P Max Unit 9,4 Thermal grease thickness50um Warmeleitpaste Dicke50um = 0,61 W/mK RthJH Typ 7 Thermal grease thickness50um Warmeleitpaste Dicke50um = 0,61 W/mK RthJH Gekoppelte Warmewiderstand Wechselrichter Transistor-Diode NTC-Thermistor NTC-Widerstand Rated resistance Nennwiderstand Deviation of R100 Abweichung von R100 Power dissipation given Epcos-Typ Verlustleistung Epcos-Typ angeben B-value B-Wert Datasheet values VR(V) IC(A) VCE(V) IF(A) VDS(V) Id(A) Tol. 3% Rupert-Mayer-Str. 44, D81359 Munchen 20,9 3,3 K/W 2,2 K/W 0,6 K/W 22 23,1 kOhm 2,9 %/K 210 mW 3980 K power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Output inverter Figure 1. Typical output characteristics Figure 2. Typical output characteristics Output inverter IGBT Output inverter IGBT Ic= f(VCE) Ic= f(VCE) 20 IC (A) IC (A) 20 18 18 16 16 14 14 12 12 10 10 8 8 6 6 4 4 2 2 0 0 0 1 2 3 4 VCE (V) 0 5 1 2 3 4 VCE (V) 5 parameter: tp = 250 s Tj = 25 C VGE parameter: from: 6 V to 16 V in 1 V steps parameter: tp = 250 s Tj = 125 C VGE parameter: from: 6 V to 16 V in 1 V steps Figure 3. Typical transfer characteristics Figure 4. Output inverter IGBT Typical diode forward current as a function of forward voltage Ic= f(VGE) Output inverter FRED 14 IF=f(VF) IC (A) IF (A) 14 12 12 10 10 8 8 6 6 125 oC 4 25oC 4 125 oC 25 2 2 0 0 0 2 4 6 parameter: tp = 250 s copyright by Tyco Electronics 8 VCE = V GE (V) 10 0 0,5 14 V Rupert-Mayer-Str. 44, D81359 Munchen 1 1,5 2 2,5 VF (V) 3 parameter: tp = 250 s power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Output inverter Figure 5. Typical switching energy losses Figure 6. Typical switching energy losses as a function of gate resistor Output inverter IGBT as a function of collector current Output inverter IGBT E = f (RG) E (mWs) E (mWs) E = f (Ic) 0,3 0,25 0,3 0,25 Eon Eoff 0,2 Eoff Eon 0,2 0,15 0,15 0,1 0,1 Erec Erec 0,05 0,05 0 0 0 2 4 6 8 10 12 I C (A) 14 0 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V RGon = 2*RGoff = 80 100 200 300 R G ( ) 400 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V Ic = 7A Figure 7. Typical switching times as a Figure 8. function of collector current Output inverter IGBT Typical switching times as a function of gate resistor Output inverter IGBT t = f (Ic) t = f (RG) 1 t ( s) t ( s) 1 tdoff tdoff 0,1 0,1 tf tf tr tr tdon 0,01 0,01 tdon 0,001 0,001 0 2 4 6 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V RGon = 2*RGoff = 80 copyright by Tyco Electronics 8 10 12 14 IC (A) 0 50 100 150 200 250 300 G () R350 400 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V Ic = 7A Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Output inverter Figure 9. Typical reverse recovery time Figure 10. Typical reverse recovery current as a function of gate resistor Output inverter FRED diode trr = f (Rgon) IRRM = f (Rgon) t rr( s) 0,14 0,2*In 1,8*In 0,12 Irr M (A) as a function of gate resistor Output inverter FRED diode In 20 18 16 0,1 14 12 0,08 10 0,06 8 1,8*In In 6 0,04 4 0,2*In 0,02 2 0 0 0 50 100 Tj = VR = In= 150 200 250 300 350 400 RG ( ) 0 50 125 C 300 V 7A 100 Tj = VR = In= Figure 11. Typical reverse recovery charge 200 250 300 350 400 RG ( ) 125 C 300 V 7A Figure 12. Typical diode peak rate of fall of as a function of gate resistor Output inverter FRED diode forward and reverse recovery current as a function of gate resistor Output inverter FRED diode di0/dt,dIrec/dt= f (Rgon) Qrr = f (Rgon) 0,6 direc / dt (A/ s) Qrr ( C) 150 0,5 800 700 600 0,4 500 0,3 0,2 In 1,8*In 400 0,2*In 300 dI0/dt 200 0,1 dIrec/dt 100 0 0 0 50 Tj = VR = In= 100 150 125 C 300 V 7A copyright by Tyco Electronics 200 250 300 350 400 RG ( ) 0 50 100 150 200 250 300 350 400 RG ( ) Tj = VR = In= Rupert-Mayer-Str. 44, D81359 Munchen 125 C 300 V 7A power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Output inverter Figure 13. IGBT transient thermal impedance Figure 14. FRED transient thermal impedance as a function of pulse width as a function of pulse width ZthJH = f(tp) ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 10 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 10-4 10-3 10-2 Parameter: D = tp / T 10-1 100 t p (s) RthJH= 2,5 K/W 101 0 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -5 10 10 -4 -3 10 10 Parameter: D = tp / T FRED thermal model values R (C/W) R (C/W) copyright by Tyco Electronics Tau (s) 1,2E+02 1,7E+00 2,0E-01 0,06 0,20 Rupert-Mayer-Str. 44, D81359 Munchen 10 -1 0 10 t p (s) 1 10 RthJH= 3,3 K/W IGBT thermal model values 0,05 0,16 0,65 -2 Tau (s) 9,3E+01 1,3E+00 power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Output inverter Figure 16. Collector current as a function of heatsink temperature Output inverter IGBT function of heatsink temperature Output inverter IGBT Ptot = f (Th) Ic = f (Th) 25 80 IC (A) Ptot (W) Figure 15. Power dissipation as a 70 20 60 50 15 40 10 30 20 5 10 0 0 0 20 40 60 80 100 120 Th140 ( o C) 0 160 20 40 60 80 100 120 parameter: Tj = 150C parameter: Tj = 150C 15 V VGE= Figure 17. Power dissipation as a Figure 18. Forward current as a o ( C) Th 140 function of heatsink temperature Output inverter FRED function of heatsink temperature Output inverter FRED Ptot = f (Th) IF = f (Th) 160 25 IF (A) Ptot (W) 60 50 20 40 15 30 10 20 5 10 0 0 0 20 40 60 parameter: Tj = 150C copyright by Tyco Electronics 80 100 120 140 160 Th ( C) o 0 20 40 60 80 100 120 140 160 Th ( o C) parameter: Tj = 150C Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Input rectifier bridge Figure 37. Typical diode forward current as a function of forward voltage Rectifier diode Figure 38. Diode transient thermal impedance as a function of pulse width IF=f(VF) ZthJH = f(tp) 60 ZthJC (K/W) IF (A) 101 50 100 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 30 125C 25C 10-1 20 10 0 10 0 0,5 1 1,5 VF (V) 2 -2 10 -5 10 -4 10 -3 10 -2 10 parameter: tp = 250 s Parameter: D = tp / T Figure 39. Power dissipation as a Figure 40. Forward current as a -1 10 0 t p (s) 1 RthJH= 1,9 K/W function of heatsink temperature Rectifier diode function of heatsink temperature Rectifier diode Ptot = f (Th) IF = f (Th) 100 10 IF (A) Ptot (W) 45 40 80 35 30 60 25 20 40 15 10 20 5 0 0 50 parameter: Tj = 150C copyright by Tyco Electronics 100 150 Th ( o C) 0 200 0 20 40 60 80 100 120 Th 140 ( o C) 160 parameter: Tj = 150C Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycoelectronics.com V23990-P442-C data sheet version 02/03 (R) flow PIM 0+E, 600V Thermistor Figure 41. Typical NTC characteristic as afunction of temperature NTC RT / R25 = f (T) RT/R25 NTC-typical temperature characteristic 20 15 10 5 0 25 45 copyright by Tyco Electronics 65 85 105 125 T (C) 145 Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Output inverter application General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Rgon= Figure 1. Typical avarage static loss as a function of output current IGBT Figure 2. Ploss (W) Ploss (W) Rgoff= 40 ohms Typical avarage static loss as a function of output current FRED Ploss=f(Iout) 25 80 ohms Ploss=f(Iout) 10 9 8 20 7 Mi*cosfi=1 Mi*cosfi=-1 6 15 5 4 10 3 2 5 1 Mi*cosfi=1 Mi*cosfi=-1 0 0 0 2 4 6 8 10 0 12 14 Iout (A) Conditions: Tj=125C Modulation index * cosfi parameter Mi*cosfi from -1,00 to in 0,20 steps 4 6 8 10 12 14 Iout (A) Conditions: Tj=125C Modulation index * cosfi parameter Mi*cosfi from -1,00 to in 0,20 steps 1,00 Figure 3. Typical avarage switching loss as a function of output current IGBT 2 Figure 4. Typical avarage switching loss as a function of output current FRED Ploss=f(Iout) Ploss (W) Ploss=f(Iout) 1,00 5,0 5,0 Ploss (W) 0,6 0,6 4,5 4,5 fsw=16kHz 0,5 0,5 4,0 4,0 fsw=16kHz 3,5 3,5 0,4 0,4 3,0 3,0 0,3 0,3 2,5 2,5 2,0 2,0 0,2 0,2 1,5 1,5 1,0 1,0 0,1 0,1 0,5 0,5 fsw=2kHz fsw=2kHz 0,0 0,0 0,0 0,0 00 22 44 Conditions: Switching freq. parameter copyright by Tyco Electronics 66 88 Tj=125C DC link= fsw from in 10 12Iout (A) 14 00 22 44 Conditions: 320 V 2 kHz to * 2 steps 16 kHz Switching freq. parameter Rupert-Mayer-Str. 44, D81359 Munchen 66 88 Tj=125C DC link= fsw from in 10 12 320 V 2 kHz to * 2 steps Iout (A) 14 16 kHz power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Output inverter application General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Rgon= Figure 5. Typical available 50Hz output current as a function of Mi*cosfi Phase Figure 6. Iout (A) Iout (A) 18 40 ohms Iout=f(fsw) 20 18 Th=60C Th=60C 16 Rgoff= Typical available 50Hz output current as a function of switching frequency Phase Iout=f(Mi*cosfi) 20 80 ohms 16 14 14 12 12 10 10 8 8 Th=100C Th=100C 6 6 4 4 2 2 0 -1,0 0 -0,8 -0,6 -0,4 -0,2 Conditions: 0,0 0,2 Tj=125C DC link= fsw= Th from in Heatsink temp. parameter 0,4 0,6 0,8 1,0 Mi*cosfi 1 10 Conditions: 320 16 60 5 V kHz C to 100 C C steps Heatsink temp. parameter Figure 7. Typical available 50Hz output current as a function of Mi*cosfi and fsw Phase Figure 8. Iout (Apeak) -0,80 100 320 V 0,8 60 C to 100 C 5 C steps Typical available 0Hz output current as a function of switching frequency Phase Iout=f(Mi*cosfi) -1,00 Tj=125C DC link= Mi*cosfi= Th from in fsw (kHz) Ioutpeak=f(fsw) 20 18 -0,60 16 -0,40 14 -0,20 12 18-20 16-18 14-16 12-14 0,00 10-12 8 0,40 6 0,60 4 0,80 2 1,00 32 64 fsw (kHz) 0 6-8 2 Conditions: copyright by Tyco Electronics 4 8 Tj=125C DC link= Th= 16 10 0,20 8-10 1 Mi*cosfi Th=60C Iout (A) Th=100C 1 10 Conditions: 320 V 80 C Heatsink temp. parameter Rupert-Mayer-Str. 44, D81359 Munchen Tj=125C DC link= Th from in fsw (kHz) 100 320 V 60 C to 100 C 5 C steps power.switches@tycoelectronics.com data sheet version 02/03 V23990-P442-C (R) flow PIM 0+E, 600V Output inverter application General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Figure 9. Typical available electric peak output power as a function of heatsink temperature 80 ohms Rgoff= Inverter Pout=f(Th) 4,5 4,0 3,5 40 ohms Figure 10. Typical efficiency as a function of output power efficiency (%) Pout (kW) Inverter Rgon= efficiency=f(Pout) 98,5 98,0 97,5 3,0 97,0 2kHz 2,5 96,5 2,0 2kHz 16kHz 96,0 1,5 95,5 1,0 95,0 0,5 0,0 16kHz 94,5 60 65 70 75 80 85 90 95 o 100 Th ( C) Conditions: Tj=125C DC link= 320 V Modulation index Mi= 1 cosfi= 0,80 Switching freq. fsw from 2 kHz to parameter in * 2 steps 0 1 2 3 4 Conditions: 16 kHz Tj=125C DC link= 320 V Modulation index Mi= 1 cosfi= 0,80 Switching freq. fsw from 2 kHz to parameter in * 2 steps Pout (kW) 16 kHz Figure 11. Typical available overload factor as a function of motor power and switching frequency Overload (%) Inverter Ppeak/Pnom=f(Pnom,fsw) Conditions: Tj=125C DC link= Modulation index Mi= cosfi= Switching freq. fsw from parameter in Heatsink temperature= Motor efficiency= 500 450 400 350 320 V 1 0,8 1 kHz to * 2 steps 80 C 1 16 kHz 300 250 200 Switching frequency (kHz) 150 100 Motor nominal power (HP) 5 7,5 1 717,696 718 478,464 478 358,848 359 239,232 239 179,424 179 119,616 120 0,5 0,75 1 1,5 2 0 0 2 711,81 712 474,54 475 355,905 356 237,27 237 177,953 178 118,635 119 0 0 4 700,193 700 466,795 467 350,096 350 233,398 233 175,048 175 116,699 117 0 0 8 677,569 678 451,712 452 338,784 339 225,856 226 169,392 169 112,928 113 0 0 0 0 635 423,141 423 317,356 317 211,571 212 158,678 159 16 634,712 copyright by Tyco Electronics 3 0 Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycoelectronics.com