AS5132
360 Step (8.5 bit) Programmable High Speed Magnetic Rotary Encoder
www.ams.com Revision 1.4 1 - 27
1 General Description
The AS5132 is a contactless magnetic rotary encoder for accurate
angular measurement over a full turn of 360 degrees. It is a system-
on-chip, combining integrated Hall elements, analog frontend and
digital signal processing in a single device.
To measure the angle, only a simple two-pole magnet, rotating over
the center of the chip is required.
The absolute angle measurement provides instant indication of the
magnet’s angular position with a resolution of 8.5 bit = 360 positions
per revolution. This digital data is available as serial output over the
interface and as a pulse width modulated (PWM) signal.
An additional U,V,W output can be used for a block commutation for
a brushless DC motor. An incremental signal is available as an
option.
In addition to the angle information, the strength of the magnetic field
is also available as a 5-bit code.
A software programmable (OTP) zero position simplifies assembly
as the zero position. The magnet does not need to be mechanically
aligned.
2 Key Features
360º contactless angular position sensing
Two digital absolute outputs (8.5 bit):
- Serial interface
- PWM output
Incremental output with adjustable number of pulses
BLDC Output UVW, selectable for 1,2,3,4,5,6 pole pairs
Supports external PWM clock mode
Static and dynamic pre-commutation feature
User programmable zero position and sensitivity
High speed: up to 72,900 rpm
Direct measurement of magnetic field strength allows exact
determination of vertical magnet distance
Incremental Outputs ABI Quadrature: 90ppr, step direction:
180ppr, fixed pulse width 360ppr
9-bit multi turn counter
Wide magnetic field input range: 20 – 80 mT (typical)
Wide temperature range: -40ºC to +150ºC
Thin Small Pb-free package: SSOP 20
Fully automotive qualified to AEC-Q100, grade 0
3 Applications
The AS5132 is suitable for contactless rotary position sensing, rotary
switches (human machine interface), AC/DC motor position control
and Brushless DC motor position control.
Figure 1. AS5132 Block Diagram
VDDP
TC
Tracking ADC &
Angle Decoder
OTP
DIO
PWM
CLK
PROG
CSN
PWM Decoder
AGC
Mag Angle
Commutation
Interface
U_A
V_B
W_I
VDD5V
GND
Pre-Commutation DIR
COM/INC
Diag
Diagnostic
Test(3:0)
Zero
Adder
Step Mode S
AS5132
Hall Array &
Frontend
Amplifier
Absolute
Serial
Interface
(SSI)
www.ams.com Revision 1.4 2 - 27
AS5132
Datasheet - Contents
Contents
1 General Description .................................................................................................................................................................. 1
2 Key Features............................................................................................................................................................................. 1
3 Applications............................................................................................................................................................................... 1
4 Pin Assignments ....................................................................................................................................................................... 3
4.1 Pin Descriptions.................................................................................................................................................................................... 3
5 Absolute Maximum Ratings ...................................................................................................................................................... 4
6 Electrical Characteristics........................................................................................................................................................... 5
6.1 Operating Conditions............................................................................................................................................................................ 5
6.2 System Parameters .............................................................................................................................................................................. 5
6.3 Magnet Specifications .......................................................................................................................................................................... 5
6.4 Programming Parameters .................................................................................................................................................................... 5
6.5 DC Characteristics of Digital Inputs...................................................................................................................................................... 6
6.6 DC Characteristics of Digital Outputs ................................................................................................................................................... 6
6.7 Timing Characteristics .......................................................................................................................................................................... 6
7 Detailed Description.................................................................................................................................................................. 7
7.1 Synchronous Serial Interface (SSI) ...................................................................................................................................................... 7
7.1.1 Commands of the SSI in Normal Mode ....................................................................................................................................... 9
7.1.2 Extended Synchronous Serial Interface Mode .......................................................................................................................... 10
7.1.3 Programming Verification .......................................................................................................................................................... 13
7.2 Pulse Width Modulation (PWM) Output.............................................................................................................................................. 14
7.2.1 PWM External Clock.................................................................................................................................................................. 15
7.3 Incremental Outputs ........................................................................................................................................................................... 16
7.3.1 Quadrature A/B Output .............................................................................................................................................................. 16
7.3.2 Step Output Mode...................................................................................................................................................................... 17
7.3.3 Pre-Commutation Function........................................................................................................................................................ 17
7.3.4 Commutation Output UVW ........................................................................................................................................................ 18
7.3.5 Hysteresis of the Incremental Outputs....................................................................................................................................... 19
7.3.6 Multi Turn Counter ..................................................................................................................................................................... 20
7.3.7 High Speed Operation ............................................................................................................................................................... 20
7.3.8 Propagation Delay ..................................................................................................................................................................... 20
7.3.9 Error Detection........................................................................................................................................................................... 20
8 Application Information ........................................................................................................................................................... 21
8.1 Physical Placement of the Magnet ..................................................................................................................................................... 21
9 Package Drawings and Markings ........................................................................................................................................... 23
9.1 Recommended PCB Footprint............................................................................................................................................................ 24
10 Ordering Information............................................................................................................................................................. 26
www.ams.com Revision 1.4 3 - 27
AS5132
Datasheet - Pin Assignments
4 Pin Assignments
Figure 2. Pin Assignments (Top Vie w)
4.1 Pin Descriptions
Table 1. Pin Descriptions
Pin Number Pin Name Pin Type Description
1 VDDP Supply Supply voltage for the selected pins1
1. VDDP can be customized to the voltage levels of the peripheral circuitry to economize voltage level drivers.
2S
Digital output
Step output (8mA, VDDP)
3W_I Commutation output or incremental output
4V_B
5PROG Supply
Programming voltage input
6VSS Supply ground
7 U_A Digital output Commutation output or incremental output
8 VDD Supply Positive supply voltage
9 COM / INC Digital input / Schmitt-Trigger Selection of the output mode. This pin is also used for external
clock mode (VDDP)
10 TC Analog input Test pin. Set to low in application
11 Test0
Analog input /output Test pin, selection of output format for incremental or step mode
12 Test1
13 Test2
14 Test3
15 DIO Bi-directional digital Data I/O for serial interface (VDDP)
16 CSN
Digital input / Schmitt-Trigger
Chip select input (active low) (VDDP)
17 CLK Clock input for serial interface (VDDP)
18 DIR Input signal for the pre-commutation at start-up (VDDP)
19 Diag Digital output / Open Drain Diagnostic output (open drain)
20 PWM Digital output PWM output (8mA, VDDP)
2
3
4
5
6
7
8
1
VDDP
AS5132
10
9
17
16
15
14
13
12
11
19
18
20
S
U_A
VSS
PROG
V_B
W_I
TC
COM/INC
VDD
PWM
Diag
Test3
DIO
CSN
CLK
DIR
Test0
Test1
Test2
www.ams.com Revision 1.4 4 - 27
AS5132
Datasheet - Absolute Maximum Ratings
5 Absolute Maximum Ratings
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of
the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 5 is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Table 2. Absolute Maximum Ratings
Parameter Min Max Units Comments
Electrical Parameters
Supply voltage (VDD) -0.3 7 V Except during OTP programming
DC supply voltage (VDDP) 0.3 7 V Cannot be higher than VDD+0.3
Input Pin Voltage (VIN) VSS-0.5 VDD V
Input Current (latch up immunity), (Iscr)-100 100 mA Norm: EIA/JESD78 Class II Level A
Electrostatic Discharge
ESD ±2 kV Norm: JESD22-A114E
Temperature Ranges and Storage Conditions
Storage Temperature (Tstrg)-55 150 ºC
Body temperature (Tbody)260 ºC
The reflow peak soldering temperature (body
temperature) specified is in accordance with IPC/
JEDEC J-STD-020 “Moisture/Re flow Sensiti vity
Classification for Non-Hermetic Solid State Surface
Mount Devices”.
The lead finish for Pb-free leaded packages is matte tin
(100% Sn).
Humidity non-condensing 5 85 %
Moisture Sensitive Level (MSL) 3 Represents a maximum floor time of 168h
www.ams.com Revision 1.4 5 - 27
AS5132
Datasheet - Electrical Characteristics
6 Electrical Characteristics
TAMB = -40ºC to 150ºC, VDD = 4.5V to 5.5V, all voltages referenced to VSS, unless otherwise noted.
6.1 Operating Conditions
6.2 System Parameters
6.3 Magnet Specifications
6.4 Programming Parameters
Symbol Parameter Conditions Min Typ Max Units
VDD Positive Supply Voltage 4.5 5.5 V
VDDP Positive Supply Voltage Periphery 3.0 5.5 V
IDD Operating Current No load on outputs. Supply current can
be reduced by using stronger magnets. 15 22 mA
Symbol Parameter Conditions Min Typ Max Units
NResolution 8.5 Bit
1Deg
TPwrUp Power Up Time 4100 µs
tsTracking rate Step rate of tracking ADC;
1 step = 1º 5.2 µs/step
INLcm Accuracy Centered Magnet -2 2 Deg
Within horizontal displacement radius -3 3
tdelay Propagation delay Internal signal processing time 22 µs
TN Transition noise peak-peak 1.41 Deg
Symbol Parameter Conditions Min Typ Max Units
BZMagnetic Input Range At die surface 20 80 mT
ViMagnet rotation speed To maintain locked state1
1. Maximum rotation speed is dependent on the internal time reference.
Maximum value is calculated with lowest sequence over all operating conditions.
72,900 rpm
Symbol Parameter Conditions Min Typ Max Units
VPROG Programming voltage Static voltage at pin PROG 8 8.5 V
IPROG Programming current
During programming 100 mA
TambPROG Programming ambient temperature 0 85 ºC
tPROG Programming time 24µs
VR,prog Analog readback voltage During analog readback mode at pin PROG 0.5 V
VR,unprog 23.5
www.ams.com Revision 1.4 6 - 27
AS5132
Datasheet - Electrical Characteristics
6.5 DC Characteristics of Digital Inputs
CMOS Inputs COM/INC, CSN, CLK, DIO, DIR
6.6 DC Characteristics of Digital Outputs
CMOS Outputs S, U_A, V_B, W_I, PWM, DIO
6.7 Timing Characteristics
Symbol Parameter Min Typ Max Units Note
VIH High level input voltage 0.7*VDDP VDDP V COM/INC refer to VDD
VIL Low level input voltage 0 0.3*VDDP V
ILEAK Input leakage current 1 µA
Symbol Parameter Min Typ Max Units Note
VOH High level output voltage VDDP-0.5 VDDP V
PWM and S have 8mA output load,
DIO has 4mA output load.
VDD-0.5 VDD U_A, V_B, W_I have 4mA output load.
VOL Low level output voltage 0 VSS+0.4 V PWM and S have 8mA output load,
DIO, U_A, V_B, W_I has 4mA output load.
CL Capacitive load 35 pF
Symbol Parameter Conditions Min Typ Max Units
fCLK Clock Frequency Normal operation 5 6 MHz
fCLKP Clock Frequency programming During OTP programming 200 650 kHz
t1 Chip select to positive edge of CLK 15 ns
t2 Setup time command bit,
Data valid to positive edge of CLK 30 ns
t3 Hold time command bit,
Data valid after positive edge of CLK 30 ns
t4 Float time,
Last command bit to negative edge of CLK 30 ns
t5 Transfer time,
Negative edge to valid data 30 ns
t6 Last CLK to positive edge CSN 30 ns
tCLK Clock period 167 200 ns
www.ams.com Revision 1.4 7 - 27
AS5132
Datasheet - Detailed Description
7 Detailed Description
Figure 3. Typical Arrangement of AS5132 and Magnet
7.1 Synchronous Serial Interface (SSI)
The absolute angle data can be read out over the synchronous serial interface using the pins CSN, DIO and CLK. It is a bidirectional interface
therefore a read or write access is possible. The organization of the protocol is byte wise and starts with the command byte followed by the data
information.
Figure 4. Read / Write Serial Data Transmission
Figure 4 shows the connection of the AS5132 to a micro controller. Depending on the command byte are different access types possible. In
normal mode the number of clocks is equal the number of data bits.
Micro
Controller 100nF
CSN
CLK
DIO
+5V
VDD
VSS
VSS
VDD
VDD
VSS
I/O
Output
Output
AS5132
VDDP*
* DIO output pin is connected internally to the VDDP voltage domain. VDD and VDDP can be separately connected too.
www.ams.com Revision 1.4 8 - 27
AS5132
Datasheet - Detailed Description
Figure 5. Data Organization of the SSI Protocol 16-Bit Data
Figure 5 shows the organization of the data. The first section is used to setup the operating mode and the address. During write mode the micro
controller drives the data line and generates in addition the CSN and CLK signal. Figure 6 shows this operation.
Figure 6. SSI Timing in Write Mode
Figure 7. SSI Timing in Read Mode
Figure 7 shows the read mode. The first 8 command data bits are written by the microcontroller. After the command data the device takes over
the DIO line and writes the data information. A high impedance phase must be considered before the device drives the output line.
Command Byte R/ W Data
MSB LSB MSB LSB
76543210 01234
15 14 13 12 11 10
CMD 6
CLK
CSN
DIO D15
command phase data phase
D14 D0
t1
12 3
CMD 7 D1
tCLK
8
7
CMD 0
91011 24
23
D13
CMD 5
t2
t3
t6
CMD 6
CLK
CSN
DIO D15
command phase data phase
D14 D0
t1
123
CMD 7 D1
tCLK
8
7
CMD 0
91011 24
23
D13
CMD 5 Z
t2
t3
t4
t5
t6
www.ams.com Revision 1.4 9 - 27
AS5132
Datasheet - Detailed Description
7.1.1 Commands of the SSI in Normal Mode
Note: Gray bits can be ignored by the user.
GEN RST: A HI generates a reset of the AS5132. GEN RST must be set to LO after reset.
Hyst_Dis: Hysteresis disable.
PRE_COM_DYN <5:0>: Absolute dynamic pre-commutation value. Depending on the setup of the pole pairs, a mechanical angle offset can be
adjusted. The range is 0 to 63 mechanical degrees (LSBs).
MT-COUNTER <8:0>: The multiturn counter can be set or read over the interface.
EN PROG: This command with this data enables the access to the OTP register in extended mode. OTP Programming mode is only possible in
extended mode with special connection (see Figure 11).
EZ ERR: Indicates a wrong operation of the OTP memory after programming at room temperature.
ANGLE <8:0>: Absolute angle information with angular true resolution (360 steps).
LOCK ADC: Indicates a locked ADC. An angle value is only valid in case of a locked ADC. During sleep mode is the LOCK ADC bit LO.
AGC <5:1>: Automatic gain control value indicates the magnetic field strength.
P: Parity information of the 15 data bits. Odd parity.
Table 3. Read/Write Interface Commands in Normal Mode
Command
Name Command
Data Access
Mode MSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 LSB
0
WRITE
CONFIG 0001_0111 write GEN
RST
Hyst
Dis PRE_COM_DYN<5:0> MTC2 MTC1
SET MT
COUNTER 0001_0100 write MT - COUNTER <8:0>
EN PROG 1000_0100 write 0 1 1001010 1 1 1000 0
RD MT
COUNTER 0000_0100 read MT - COUNTER <8:0> EZ
ERR P
RD_ANGLE 0000_0000 read ANGLE <8:0> LOCK
ADC AGC <5:1> P
www.ams.com Revision 1.4 10 - 27
AS5132
Datasheet - Detailed Description
7.1.2 Extended Synchronous Serial Interface Mode
The absolute angle data can be read out over the synchronous serial interface using the pins CSN, DIO and CLK. It is a bidirectional interface
therefore a read or write access is possible. The organization of the protocol is byte wise and starts with the command byte followed by the data
information.
Figure 8. Connectivity During Programming in Extended Mode
Figure 9. SSI Timing in Extended Write Mode
CMD6
CSN
D63
command phase extended data phase
t1
123
CMD7
tCLK
8
7
CMD0
91011
CMD5
t2
t3
t6
D62 D1 D0
12 13 67 68 69 70 72
71
DIO
DCLK
www.ams.com Revision 1.4 11 - 27
AS5132
Datasheet - Detailed Description
Figure 10. Timing in Extended Read Mode
In extended mode the digital interface requires four clocks per data bit. During this time the device is able to handle internal signals for special
access.
Note: TST is pre-programed by ams and used for test purpose.
Table 4. Read / Write Interface Commands in Extended Mode
Command
Name Command
Data Access
Mode MSB
63 ... 17 16 15 14 13 12 11 10 9 8 ... LSB
0
WRITE
OTP 0001_1111 ext. write TST<46:0> SENSITIVITY
<1:0> ext. CLK EN PRE_COM_STAT
<1:0>
UVW
<2:0>
ZERO ANGLE
<8:0>
PROG
OTP 0001_1001 ext. write TST<46:0> SENSITIVITY
<1:0> ext. CLK EN PRE_COM_STAT
<1:0>
UVW
<2:0>
ZERO ANGLE
<8:0>
READ
OTP 0000_1111 ext. write TST<46:0> SENSITIVITY
<1:0> ext. CLK EN PRE_COM_STAT
<1:0>
UVW
<2:0>
ZERO ANGLE
<8:0>
READ
ANA 0000_1001 ext. read TST<46:0> SENSITIVITY
<1:0> ext. CLK EN PRE_COM_STAT
<1:0>
UVW
<2:0>
ZERO ANGLE
<8:0>
CMD6
CSN
D63
command phase extended data phase
t1
123
CMD7
tCLK
8
7
CMD0
91011
CMD5
t2
t3
t6
D62 D1 D0
12 13 67 68 69 70 7271
DIO
DCLK
Z
t4 t5
www.ams.com Revision 1.4 12 - 27
AS5132
Datasheet - Detailed Description
Programming Parameters.
ZERO ANGLE <8:0>: Zero position value. This value is permanent added to the internal absolute position. Use range 0 to 359.
UVW <2:0>: Setup of the number of pole pairs. In the step mode configuration, the bit UVW<2> is used to invert the step mode output signal.
Ext. CLK EN: Enables the external CLK mode for the PWM output. The external CLK mode is only possible in commutation mode. The state of
the pin COM/INC is not considered in this case for mode selection.
Configuration of the Number of Pole Pairs
UVW <2:0> Number of Pole Pairs
000 1
001 2
010 3
011 4
100 5
101 6
110 6
111 6
Setup of the Sensitivity
SENSITIVITY <1:0> Sensitivity Setting
Min Typ Max
0 0 1.6 1.65 1.75
0 1 1.79 1.88 1.98
1 0 2.01 2.11 2.22
1 1 2.23 2.35 2.47
Setup Parameters for the Static Pre-Commutation
PRE_COM_STAT <1:0> Static Pre-commutation Value in
Mechanical Degrees
00 0
01 2
10 4
11 8
www.ams.com Revision 1.4 13 - 27
AS5132
Datasheet - Detailed Description
Figure 11. OTP Programming Connection
Note: The maximum capacitive load at PROG in normal operation should be less than 20pF. However, during programming the capacitors
C1+C2 are needed to buffer the programming voltage during current spikes, but they must be removed for normal operation. To
overcome this contradiction, the recommendation is to add a diode (4148 or similar) between PROG and VDD as shown in Figure 11
(special case setup), if the capacitors can not be removed at final assembly.
Due to D1, the capacitors C1+C2 are loaded with VDD-0.7V at startup, hence not influencing the readout of the internal OTP registers.
During programming the OTP, the diode ensures that no current is flowing from PROG (8V to 8.5V) to VDD (5V).
In the standard case (see Figure 11), the verification of a correct OTP readout must be done by analog readback. The special case
setup provides the analog readback of the OTP as well.
As long as the PROG pin is accessible it is recommended to use standard setup. In case the PROG pin is not accessible at final
assembly, the special setup is recommended.
7.1.3 Programming Verification
After programming, the programmed OTP bits must be verified using the following methods:
Digital Read Out (Mandatory): After sending a READ OTP command, the readback information must be the same as programmed
information. Otherwise, it indicates that the programming was not performed correctly.
Note: Either “Digital Verification” or “Analog Verification” must be carried out in addition to the “Digital Read Out”.
Digital Verification: Checking the EZ ERR bit (0 = OK, 1 = error)
i) At room temperature
ii) Right after the programming
Analog Verification: By switching into Extended Mode and sending a READ ANA command, the pin PROG becomes an output sending an
analog voltage with each clock representing a sequence of the bits in the OTP register (starting with D61). A voltage of <500mV indicates a
correctly programmed bit (“1”) while a voltage level between 2V and 3.5V indicates a correctly unprogrammed bit (“0”). Any voltage level in
between indicates incorrect programming.
VDD
VSUPPLY
PROG
GND
C1 C2
100nF 10µF
Vzapp Vprog
PROM Cell
Maximum
parasitic cable
inductance
L<50nH
Standard Case
VDD
VSUPPLY
PROG
GND
C1 C2
100nF 10µF
Vzapp Vprog
PROM Cell
L<50nH
Special Case
Remove for normal operation
www.ams.com Revision 1.4 14 - 27
AS5132
Datasheet - Detailed Description
Figure 12. Analog OTP Verification
7.2 Pulse Width Modulation (PWM) Output
The AS5132 provides a pulse width modulated output (PWM), whose duty cycle is proportional to the absolute angle position. Figure 15 shows
the output format. In case of an internal error the high pulse contains 12 steps. An error can be easily identified by the external microcontroller.
The zero degree angle position is build with 16 steps (12 + 4) high and 359 steps low followed by 8 exit steps.
Figure 13. PWM Output
+5V
VDD
AS5132
Micro Controller
VDD
CSN
CLK
DIO
VSS
VSS
100nF
VSS
VDD
I/O
Output
Output
PROG
V
VDDP*
+5V
VDD
AS5132
Micro Controller
VDD
PWM
VSS
VSS
100nF
VSS
VDD
Input
VDDP*
* PWM output pin is connected internally to the VDDP voltage domain. VDD and VDDP can be separately connected.
www.ams.com Revision 1.4 15 - 27
AS5132
Datasheet - Detailed Description
7.2.1 PWM External Clock
The PWM period depends on the setting of the OTP bit Ext. CLK EN. By default the internal clock source is used as a reference. An external
clock can be connected to the pin COM/INC.
In case Ext. CLK EN is set, the output-mode which is determined by the states of {COM/INC, Test3, Test2, Test1, Test0} (see Table 6) during
start-up is overwritten and U,V,W commutation mode signals are activated.
After internal power on reset (POR_en), the OTP is read out. When the Ext. CLK EN is programmed successfully, the COM/INC pin is used as
external clock for the PWM block. After 4 clock cycles of Ext. CLK EN, the reset of TADC (TADC_rst) and the PWM block is released.
Figure 14. Start-up Procedure
The reset for the PWM block is synchronized to the external PWM clock. This ensures a save reset also in case the external clock on COM/INC
is already running during start-up.
Figure 15. PWM Output Signal
Table 5. PWM Timing with Internal and External CLK Source
Symbol Parameter Min Typ Max Unit Note
TPWMint PWM Period internal 600 750 900 µs Internal clock source
TPWMext PWM Period external 383 / CLKPWM µs External clock provided over
COM / INC pin
CLKPWM Clock external mode 0 766 kHz
POR_en
system_state
Ext. CLK EN
TADC_rst
OTP_readout RUN
258*Tclk_sys 4*Tclk_sys
Init (Error)
Zero degree Angle Position
16 clocks 359 clocks
exit
8 clocks
T-high T-low
www.ams.com Revision 1.4 16 - 27
AS5132
Datasheet - Detailed Description
7.3 Incremental Outputs
Two different incremental output modes are possible. Quadrature A/B mode and selectable Step Mode can be selected by the pins TEST0,
TEST1, TEST2, TEST3 and COM / INC.
Note: The pin setting COM / INC has priority. In case of a low state the device is exclusively in the commutation mode. Not specified states of
TEST3, TEST2, TEST1 and TEST0 in incremental mode will enable the quadrature A/B/I mode. This configuration is only read once at
startup. It is not recommended to change the state during operation.
7.3.1 Quadrature A/B Output
Figure 16. Incremental Output of the AS5132
Figure 16 shows the two-channel quadrature output. The index position is mapped to the absolute mechanical zero position. The phase shift
between channel A and B indicates the direction of the magnet movement. Channel A leads channel B at a clockwise rotation of the magnet (top
view) by 90 electrical degrees. Channel B leads channel A at a counter-clockwise rotation.
Table 6. Configuration of the Incremental Output Modes
COM / INC TEST3 TEST2 TEST1 TEST0 Output Mode Pin Assignment
1 0 0 0 0 Quadrature A/B/I Mode 90 pulses per channel
A U_A
B V_B
I W_I
‘0’ S
1 0 0 0 1 Stepmode 24 pulses and Index width 2
‘0’ U_A
‘0’ V_B
‘0’ W_I
S_24_2 S
1 0 0 1 0 Stepmode 60 pulses and Index width 2
‘0’ U_A
‘0’ V_B
‘0’ W_I
S_60_2 S
1 0 0 1 1 Stepmode 90 pulses and Index width 2
‘0’ U_A
‘0’ V_B
‘0’ W_I
S_90_2 S
1 0 1 0 0 Stepmode 180 pulses and Index width 2
‘0’ U_A
‘0’ V_B
‘0’ W_I
S_180_2 S
00000 U,V,W Commutation Mode
(OTP setting)
U U_A
V V_B
W W_I
‘0’ S
Absolute position
A
B
I
0
1
2
3
359
358
357
356
www.ams.com Revision 1.4 17 - 27
AS5132
Datasheet - Detailed Description
7.3.2 Step Output Mode
Step Output mode provides a specific combination of the A incremental signal and the index signal I. The number of pulse can be configured with
the input pattern of the test input pins.
Figure 17. Step Mode of the AS5132 with Different Number of Pulses
7.3.3 Pre-Commutatio n Function
This feature can be used to optimize the torque characteristic at a certain speed of the BLDC motor. The output signals U, V and W can be
shifted by a specific number of degrees back and forward. The AS5132 distinguish between the static and dynamic pre commutation value. The
static value is similar to an additional zero programming and can be programmed only once. The dynamic value is stored in the interface register
and can be changed during operation.
The pin DIR defines if the value of pre-commutation is added or subtracted. The dynamic commutation register will be set to zero after a rotation
change indicated by the external pin DIR. Due to internal synchronization, the outputs U,V,W will change 3 internal clock cycles after the change
of DIR input signal.
Table 7. Definition of the Pre-Commutation Direction
DIR Rotation Consequence
0 Clock wise PRE_COM values added to absolute angle
1 Counter clock wise PRE_COM values subtracted from absolute angle
Absolute position
STEP
S_180_2
0
1
2
3
359
358
357
356
180
12
123179178177
176175 654
Absolute position
STEP
S_90_2
0
1
2
3
359
358
357
356
123490898887
12
567
Absolute position
S_60_2
0
1
2
3
359
358
357
356
STEP 126059 358
12
4 5
Absolute position
S_24_2
0
1
2
3
359
358
357
356
STEP 1224 3
4
5
6
7
8
9
355
354
353
352
10
11
1 2
www.ams.com Revision 1.4 18 - 27
AS5132
Datasheet - Detailed Description
Figure 18. Block Diagram of the Pre-Commutation Function
Note: The dynamic pre-commutation is set to zero always if the direction is changed over the pin DIR. A new value PRE_COM_DYN must be
written again. The static pre-commutation is always enabled and will shift the output.
7.3.4 Commutation Output UVW
The pre-commutation function is used only at the U,V,W output. Figure 19 shows the transition on the outputs U,V,W in case of a two pole pair
configuration. The static pre-commutation value was set to 12 degrees.
Figure 19. UVW Output Transitions with Pre-Commutation
PC Adder stat.
Dir
PC Adder dyn.
Dir
Tracking ADC
ANGLE<8:0>
DIR
SSI value
PRE_COM_DYN<6:0>
Zero Angle
Adder
OTP value
zero_ang<8:0>
+/- +/-
SSI Read Angle
PWM
PWM ENC
U, V, W
ABI ENC A, B, Index
UVW ENC
OTP value
PRE_COM_STAT<2:0>
0° mech.
0° electr.
30° mech.
60° electr.
60° mech.
120° electr.
90° mech.
180° electr.
120° mech.
240° electr.
150° mech.
300° electr.
180° mech.
0° electr.
210° mech.
60° electr.
240° mech.
120° electr.
270° mech.
180° electr.
300° mech.
240° electr.
330° mech.
300° electr.
-12° mech.
0° electr.
18° mech.
60° electr.
48° mech.
120° electr.
78° mech.
180° electr.
108° mech.
240° electr.
138° mech.
300° electr.
168° mech.
0° electr.
198° mech.
60° electr.
228° mech.
120° electr.
258° mech.
180° electr.
318° mech.
300° electr.
288° mech.
240° electr.
Counter Clockwise rotation
12° static pre-commutation
Clockwise rotation
12° static pre-commutation
0° mech.
0° electr.
30° mech.
60° electr.
60° mech.
120° electr.
90° mech.
180° electr.
120° mech.
240° electr.
150° mech.
300° electr.
180° mech.
0° electr.
210° mech.
60° electr.
240° mech.
120° electr.
270° mech.
180° electr.
300° mech.
240° electr.
330° mech.
300° electr.
12° mech.
0° electr.
42° mech.
60° electr.
72° mech.
120° electr.
102° mech.
180° electr.
132° mech.
240° electr.
162° mech.
300° electr.
192° mech.
0° electr.
222° mech.
60° electr.
252° mech.
120° electr. 282° mech.
180° electr.
342° mech.
300° electr.
312° mech.
240° electr.
rotation
rotation
-12°
+12°
www.ams.com Revision 1.4 19 - 27
AS5132
Datasheet - Detailed Description
Figure 20. Dynamic and Static Pre-Commutation
7.3.5 Hysteresis of the Incremental Outputs
A hysteresis is implemented to get a stable output value at the SSI command and to reduce jitter at the PWM and UVW outputs. At start up the
hysteresis counter is at 0, the range is ±1 LSB. The hysteresis can be deactivated by setting OTP bit Hyst_dis.
Figure 21. Hysteresis of the Outputs
120 180
2 pole pairs, Counter Clockwise rotation
electrical angle
mechanical angle
060 180 240 300 60120 0
2 pole pairs, Clockwise rotation
electrical angle
mechanical angle
060 180 240 300 60 120 180120
030 90 120 150 210 240 27060
0
180
Dynamic pre-commutation 0x00 … 0x3F
Static pre-commutation 0x00...0x06
Dynamic pre-commutation 0x00 … 0x3F
Static pre-commutation 0x00… 0x06
030 90 120 150 210 240 27060 180
U
V
W
U
V
W
Effect of Hysteresis
CW rotation
CCW rotation
0
Magnet Position
Angle Output
123456
0
1
2
3
4
5
aN
aN
-1 0 1
Hysteresis counter startup value
Counter Range: 3 LSB
www.ams.com Revision 1.4 20 - 27
AS5132
Datasheet - Detailed Description
7.3.6 Multi Turn Counter
A 9-bit register is used for counting the magnet’s revolutions. With each zero transition in any direction, the output of a special counter is
incremented or decremented. The initial value after reset is 0 LSB. Clockwise rotation gives increasing angle values and positive turn count.
Counter clockwise rotation exhibits decreasing angle values and a negative turn count respectively.
The counter output can be reset by using command 20 – SET MT Counter. It is immediately reset by the rising clock edge of this bit. Any zero
crossing between the clock edge and the next counter readout changes the counter value.
7.3.7 High Speed Operation
The AS5132 is using a fast tracking ADC (TADC) to determine the angle of the magnet. The TADC is tracking the angle of the magnet with cycle
time of 2μs (typ. 1.4). Once the TADC is synchronized with the angle, it sets the LOCK bit in the status register. Once it is locked, it requires only
one cycle [2μs (typ. 1.4)] to track the moving magnet. The AS5132 can operate in locked mode at rotational speeds up to max.72,900 rpm.
7.3.8 Propagation Delay
The propagation delay is the time required from reading the magnetic field by the Hall sensors to calculating the angle and making it available on
the serial or PWM interface. While the propagation delay is usually negligible on low speeds, it is an important parameter at high speeds. The
longer the propagation delay, the larger becomes the angle error for a rotating magnet as the magnet is moving while the angle is calculated. The
position error increases linearly with speed.
7.3.9 Error Detection
The following errors are detected by the system:
Lock bit the TADC has not yet found a valid angular position
AGC alarm the AGC value is 63, magnetic field is too weak
By default, Lock bit error should activate the error condition at the outputs. The AGC alarm is permanently available at the DIAG pin.
Error condition at commutation and incremental outputs:
U, V and W outputs all ‘0’
A, B and I outputs all ‘1’
www.ams.com Revision 1.4 21 - 27
AS5132
Datasheet - Application Information
8 Application Information
The benefits of AS5132 are as follows:
Complete system-on-chip, no angle calibration required
Flexible system solution provides absolute serial, PWM and incremental output formats
Ideal for applications in harsh environments due to magnetic sensing principle
High reliability due to non-contact sensing
Robust system, tolerant to horizontal misalignment, airgap variations, temperature variations and external magnetic fields
External clock mode for PWM output
8.1 Physical Placement of the Magnet
The best linearity can be achieved by placing the center of the magnet exactly over the defined center of the IC package as shown in Figure 22.
Figure 22. Defined IC Center and Magnet Displacement Radius
The centre of the Hall sensor array is shifted by a constant value in x axis indicated by the blue circle. In the application it is important to refer to
this point.
Y
X
Z
PIN 1 Identification
4.1 ± 0. 235
www.ams.com Revision 1.4 22 - 27
AS5132
Datasheet - Application Information
Figure 23. Vertical Cross Section of SSOP-20
Notes:
1. All dimensions in mm.
2. Die is slightly off centered.
www.ams.com Revision 1.4 23 - 27
AS5132
Datasheet - Package Drawings and Markings
9 Package Drawings and Markings
The device is available in a 20-Lead Shrink Small Outline package.
Figure 24. Package Drawings and Dimensions
Notes:
1. Dimensions and tolerancing conform to ASME Y14.5M-1994.
2. All dimensions are in millimeters. Angles are in degrees.
Marking: @YYWWMZZ.
@YY WW MZZ
Sublot identifier Last two digits of the manufacturing year Manufacturing week Plant identifier Assembly traceability code
Symbol Min Nom Max
A 1.73 1.86 1.99
A1 0.05 0.13 0.21
A2 1.68 1.73 1.78
b 0.22 0.30 0.38
c 0.09 0.17 0.25
D 6.90 7.20 7.50
E 7.40 7.80 8.20
E1 5.00 5.30 5.60
e - 0.65 BSC -
L 0.55 0.75 0.95
L1 - 1.25 REF -
L2 - 0.25 BSC -
R0.09 - -
Θ
N20
YYWWMZZ
AS5132 @
www.ams.com Revision 1.4 24 - 27
AS5132
Datasheet - Package Drawings and Markings
9.1 Recommended PCB Footprint
Figure 25. PCB Footp r int
Recommended Footprint Data
Symbol mm inch
A 9.02 0.355
B 6.16 0.242
C 0.46 0.018
D 0.65 0.025
E 6.31 0.248
www.ams.com Revision 1.4 25 - 27
AS5132
Datasheet - Revision History
Revision History
Note: Typos may not be explicitly mentioned under revision history.
Revision Date Owner Description
0.11 Initial draft
0.18 16 Dec, 2010
mub
Updates across datasheet according to 0.18 specification document.
0.19 17 Dec, 2010 Updated System Parameters, Ext. CLK EN under Programming Parameters,
Pre-Commutation Function.
0.20 22 Mar, 2011
Added OTP Programming Connection, Programming Verification, Analog
OTP Verification. Updated Package Drawings and Markings and Ordering
Information.
0.21 06 Apr, 2011 Updated Programming Verification.
0.22 07 Apr, 2011 Added PWM External Clock, updated Ordering Information.
0.23
27 Jul, 2011 Updated Absolute Maximum Ratings.
04 Aug, 2011 Updated Key Features, DC Characteristics of Digital Inputs, Package
Drawings and Markings.
0.24 25 Nov, 2011 Updated Vertical Cross Section of SSOP-20 (page 22) and Marking info.
Added Figure 9, Figure 10.
1.0 30 Mar, 2012 ekno
Datasheet release
1.1 06 Sep, 2012 Text corrections; updated Table 4
1.2 26 Mar, 2013
mub
VDDP pin added in Figure 4 and Figure 13, IDD max corrected in Section 6.1,
addded Load condition VOL/VOH in Section 6.6 and sentences corrected
from 8 steps to 16 steps in Section 7.2.
1.3 12 Apr, 2013 Package Marking change, added note in Section 6.6 for VOL and
VDDP pin added in Figure 8 and Figure 12.
1.4 28 Jun, 2013 Clarification of the Revision History (page 25) in versions 1.2 & 1.3.
www.ams.com Revision 1.4 26 - 27
AS5132
Datasheet - Ordering Information
10 Ordering Information
The devices are available as the standard products shown in Table 8.
Note: All products are RoHS compliant and ams green.
Buy our products or get free samples online at www.ams.com/ICdirect
Technical Support is available at www.ams.com/Technical-Support
For further information and requests, email us at sales@ams.com
(or) find your local distributor at www.ams.com/distributor
Table 8. Ordering Information
Ordering Code Description Delivery Form Package
AS5132-HSST 360 Step Programmable High Speed Magnetic Rotary Encoder Tape & Reel 20-pin SSOP
AS5132-HSSM 360 Step Programmable High Speed Magnetic Rotary Encoder Tape & Reel 20-pin SSOP
www.ams.com Revision 1.4 27 - 27
AS5132
Datasheet - Copyrights
Copyrights
Copyright © 1997-2013, ams AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights
reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the
copyright owner.
All products and companies mentioned are trademarks or registered trademarks of their respective companies.
Disclaimer
Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. ams AG makes no
warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described
devices from patent infringement. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior
to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in normal
commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability
applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing
by ams AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard
production flow, such as test flow or test location.
The information furnished here by ams AG is believed to be correct and accurate. However, ams AG shall not be liable to recipient or any third
party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or
indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the
technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other
services.
Contact Information
Headquarters
ams AG
Tobelbaderstrasse 30
A-8141 Unterpremstaetten, Austria
Tel : +43 (0) 3136 500 0
Fax : +43 (0) 3136 525 01
For Sales Offices, Distributors and Representatives, please visit:
http://www.ams.com/contact
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
ams:
AS5132-PB