BYV54V BYV541V (R) HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES FEATURES n n n n n n SUITED FOR SMPS VERY LOW FORWARD LOSSES NEGLIGIBLE SWITCHING LOSSES HIGH SURGE CURRENT CAPABILITY HIGH AVALANCHE ENERGY CAPABILITY INSULATED : Insulating voltage = 2500 VRMS Capacitance = 45 pF K2 A2 A2 K1 K1 A1 K2 A1 BYV541V-200 c u d DESCRIPTION Dual rectifier suited for switchmode power supply and high frequency DC to DC converters. Packaged in ISOTOPTM this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications. ) s ( ct ABSOLUTE MAXIMUM RATINGS Symbol IF(RMS) u d o RMS forward current so r P e IFSM Surge non repetitive forward current Tstg Tj Storage and junction temperature range Symbol Parameter t e l o Repetitive peak reverse voltage Tc=90C ) s t( o r P ISOTOP (Plastic) Parameter Average forward current = 0.5 VRRM e t le b O - IF(AV) s b O BYV54V-200 Value Unit Per diode 100 A Per diode 50 A 1000 A - 40 to + 150 - 40 to + 150 C C tp=10ms Per diode sinusoidal BYV54V / BYV541V Unit 200 V ISOTOP is a trademark of STMicroelectronics. May 2000 - Ed : 2E 1/5 BYV54V / BYV541V THERMAL RESISTANCE Symbol Rth (j-c) Rth (c) Parameter Junction to case Value Unit Per diode 1.2 C/W Total 0.85 0.1 Coupling C/W When the diodes 1 and 2 are used simultaneously : Tj-Tc (diode 1) = P(diode 1) x Rth(j-c)(Per diode) + P(diode 2) x Rth(c) ELECTRICAL CHARACTERISTICS (Per diode) STATIC CHARACTERISTICS Symbol IR * Test Conditions Tj = 25C Min. Typ. Tj = 125C IF = 50 A Tj = 125C IF = 100 A Tj = 25C IF = 100 A Pulse test : * tp = 5 ms, duty cycle < 2 % ** tp = 380 s, duty cycle < 2 % d o r P e let r P e Symbol t e l o Tj = 25C s b O mA 0.85 V Test Conditions Unit A 1.00 o s b O - u d o RECOVERY CHARACTERISTICS trr ) s ( ct 5 uc VR = VRRM Tj = 100C VF ** 50 ) s t( Max. 1.15 Min. Typ. Max. Unit ns IF = 0.5A IR = 1A Irr = 0.25A 40 IF = 1A VR = 30V dIF/dt = -50A/s 60 tfr Tj = 25C IF = 1A VFR = 1.1 x VF tr = 5 ns 10 ns VFP Tj = 25C IF = 1A tr = 5 ns 1.5 V 2/5 BYV54V / BYV541V Fig.1 : Average forward power dissipation versus average forward current. 45 P F(av)(W) Fig.2 : Peak current versus form factor. 1000 40 =0.1 T =1 =0.5 =0.2 IM(A) P=30W 800 35 I =0.05 M 30 =tp/T 600 25 20 tp P=15W 400 T 15 P=45W 10 200 5 I F(av)(A) =tp/T P=60W tp 50 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fig.3 : Forward voltage drop versus forward current (maximum values). Fig.4 : Relative variation of thermal impedance junction to case versus pulse duration. 0 0 5 10 15 20 25 30 35 40 45 1.0 VFM(V) K Zth(j-c) (tp. K = Rth(j-c) 1.8 1.6 o s b O =0.2 1.0 =0.1 0.8 0.6 ) s ( ct 0.4 0.2 IFM(A) u d o 0.0 1 10 100 0.2 500 r P e Fig.5 : Non repetitive surge peak forward current versus overload duration. t e l o IM(A) s b O 400 o r P =0.5 0.5 1.2 ) e t le Tj=125 oC 1.4 c u d ) s t( T Single pulse =tp/T tp(s) 0.1 1.0E-03 1.0E-02 1.0E-01 1.0E+00 Fig.6 : Average current versus temperature. (duty cycle : 0.5) 60 tp ambient I F(av)(A) 50 Rth(j-a)=Rth(j-c) 300 40 200 Tc=25 oC 30 Tc=50 o C 20 =0.5 100 IM 0 0.001 Tc=90 o C t =0.5 10 t(s) 0.01 T =tp/T 0.1 1 0 0 20 Tamb( o C) tp 40 60 80 100 120 140 160 3/5 BYV54V / BYV541V Fig.7 : Junction capacitance versus reverse voltage applied (Typical values). 42 0 C(pF) QRR(nC) F=1Mhz Tj=25 oC 40 0 38 0 36 0 34 0 32 0 30 0 28 0 26 0 VR(V) 24 0 1 10 1 00 20 0 Fig.9 : Peak reverse current versus dIF/dt. 4.0 1 20 11 0 90%CONFIDENCE IF=IF(av) 1 00 Tj=100 OC 90 80 70 60 Tj=25 O C 50 40 30 20 10 dIF/dt(A/us) 0 1 10 3.2 1 00 ) s t( Fig.10 : Dynamic parameters versus junction temperature. c u d o r P QRR;IRM[Tj]/QRR;IRM[Tj=125 oC] IRM(A) 3.6 1.50 90%CONFIDENCE IF=IF(av) e t le 1.25 Tj=100 OC 2.8 1.00 2.4 2.0 0.75 1.6 so b O - IRM QRR 0.50 1.2 Tj=25 O C 0.8 0.4 (s) dIF/dt(A/us) 0.0 1 20 t c u 10 d o r P e t e l o s b O 4/5 Fig.8 : Recovery charges versus dIF/dt. 1 00 0.25 0.00 0 Tj( oC) 25 50 75 100 125 150 BYV54V / BYV541V PACKAGE MECHANICAL DATA ISOTOP DIMENSIONS n n n n Marking : Type number Cooling method : C Weight : 27 g Epoxy meets UL94, V0 ) s ( ct REF. Millimeters Inches A A1 B C C2 D D1 E E1 E2 G G1 G2 F F1 P P1 S Min. Max. 11.80 12.20 8.90 9.10 7.8 8.20 0.75 0.85 1.95 2.05 37.80 38.20 31.50 31.70 25.15 25.50 23.85 24.15 24.80 typ. 14.90 15.10 12.60 12.80 3.50 4.30 4.10 4.30 4.60 5.00 4.00 4.30 4.00 4.40 30.10 30.30 Min. Max. 0.465 0.480 0.350 0.358 0.307 0.323 0.030 0.033 0.077 0.081 1.488 1.504 1.240 1.248 0.990 1.004 0.939 0.951 0.976 typ. 0.587 0.594 0.496 0.504 0.138 0.169 0.161 0.169 0.181 0.197 0.157 0.69 0.157 0.173 1.185 1.193 e t le o r P c u d ) s t( o s b O - u d o r P e t e l o s b O Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 2000 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 5/5