ispGDX TM Family
In-System Programmable
Generic Digital CrosspointTM
ispgdx_08 1
Functional Block Diagram
Features
IN-SYSTEM PROGRAMMABLE GENERIC DIGITAL
CROSSPOINT FAMILY
Advanced Architecture Addresses Programmable
PCB Interconnect, Bus Interface Integration and
Jumper/Switch Replacement
— Three Device Options: 80 to 160 Programmable I/O
Pins
— “Any Input to Any Output” Routing
— Fixed HIGH or LOW Output Option for Jumper/DIP
Switch Emulation
— Space-Saving TQFP, PQFP and BGA Packaging
— Dedicated IEEE 1149.1-Compliant Boundary Scan
Test
— PCI Compliant Output Drive
HIGH PERFORMANCE E2CMOS® TECHNOLOGY
— 5V Power Supply
— 5.0ns Input-to-Output/5.0ns Clock-to-Output Delay
— Low-Power: 40mA Quiescent Icc
— Balanced 24mA Output Buffers with Programmable
Slew Rate Control
— Schmitt Trigger Inputs for Noise Immunity
— Electrically Erasable and Reprogrammable
— Non-Volatile E2CMOS Technology
— 100% Tested
ispGDX OFFERS THE FOLLOWING ADVANTAGES
— In-System Programmable
— Lattice ISP or JTAG Programming Interface
— Only 5V Power Supply Required
— Change Interconnects in Seconds
— Reprogram Soldered Devices
FLEXIBLE ARCHITECTURE
— Combinatorial/Latched/Registered Inputs or Outputs
— Individual I/O Tri-state Control with Polarity Control
— Dedicated Clock Input Pins (two or four) or
Programmable Clocks from I/O Pins (from 20 up to
40)
— Up to 4:1 Dynamic Path Selection
— Programmable Output Pull-up Resistors
— Outputs Tri-state During Power-up (“Live Insertion”
Friendly)
DESIGN SUPPORT THROUGH LATTICE’S ispGDX
DEVELOPMENT SOFTWARE
— MS Windows or NT / PC-Based or Sun O/S
— Easy Text-Based Design Entry
— Automatic Signal Routing
— Program up to 100 ISP Devices Concurrently
— Simulator Netlist Generation for Easy Board-Level
Simulation
Global Routing
Pool
(GRP)
I/O
Cells
I/O Pins B
Boundary
Scan
Control
I/O
Cells
ISP
Control
I/O Pins A
I/O Pins C
I/O Pins D
Description
The ispGDX architecture provides a family of fast, flexible
programmable devices to address a variety of system-
level digital signal routing and interface requirements
including:
Multi-Port Multiprocessor Interfaces
Wide Data and Address Bus Multiplexing
(e.g. 4:1 High-Speed Bus MUX)
Programmable Control Signal Routing
(e.g. Interrupts, DMAREQs, etc)
Board-Level PCB Signal Routing for Prototyping or
Programmable Bus Interfaces
The ispGDX Family consists of three members with 80,
120 and 160 Programmable I/Os. These devices are
available in packages ranging from the 100-pin TQFP to
the 208-pin PQFP. The devices feature fast operation,
with input-to-output signal delays (Tpd) of 5ns and clock-
to-output delays of 5ns.
The architecture of the devices consists of a series of
programmable I/O cells interconnected by a Global Rout-
Copyright © 2000 Lattice Semiconductor Corporation. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein
are subject to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. August 2000
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
2
Specifications ispGDX Family
Description (Continued)
ing Pool (GRP). All I/O pin inputs enter the GRP directly
or are registered or latched so they can be routed to the
required I/O outputs. I/O pin inputs are defined as four
sets (A,B,C,D) which have access to the four MUX inputs
found in each I/O cell. Each output has individual, pro-
grammable I/O tri-state control (OE), output latch clock
(CLK) and two multiplexer control (MUX0 and MUX1)
inputs. Polarity for these signals is programmable for
each I/O cell. The MUX0 and MUX1 inputs control a fast
4:1 MUX, allowing dynamic selection of up to four signal
sources for a given output. OE, CLK and MUX0 and
MUX1 inputs can be driven directly from selected sets of
I/O pins. Optional dedicated clock input pins give mini-
mum clock-to-output delays.
Through in-system programming, connections between
I/O pins and architectural features (latched or registered
inputs or outputs, output enable control, etc.) can be
defined. In keeping with its data path application focus,
the ispGDX devices contain no programmable logic
arrays. All input pins include Schmitt trigger buffers for
noise immunity. These connections are programmed
into the device using non-volatile E2CMOS technology.
Non-volatile technology means the device configuration
is saved even when the power is removed from the
device.
In addition, there are no pin-to-pin routing constraints for
1:1 or 1:n signal routing. That is,
any
I/O pin configured
as an input can drive one or more I/O pins configured as
outputs.
The device pins also have the ability to set outputs to
fixed HIGH or LOW logic levels (Jumper or DIP Switch
mode). Device outputs are specified for 24mA sink and
source current and can be tied together in parallel for
greater drive. Programmable output slew rate can be
defined independently for each I/O pin to reduce overall
ground bounce and switching noise.
All I/O pins are equipped with IEEE1149.1-compliant
Boundary Scan Test circuitry for enhanced testability. In
addition, in-system programming is supported through
the Test Access Port via a special set of private com-
mands or through Lattices industry-standard ISP protocol.
The BSCAN/ispEN pin is used to make this selection.
The ispGDX I/Os are designed to withstand live inser-
tion system environments. The I/O buffers are disabled
during power-up and power-down cycles. When design-
ing for live insertion, absolute maximum rating conditions
for the Vcc and I/O pins must still be met. For additional
information, an application note about using Lattice de-
vices in hot swap environments can be downloaded from
the Lattice web site at www.latticesemi.com.
Table 1. ispGDX Family Members
ispGDX DEVICE
ispGDX80A ispGDX120A ispGDX160/A
I/O Pins 80 120 160
I/O-OE Inputs* 20 30 40
I/O-Clk Inputs* 20 30 40
I/O-MUXsel1 Inputs* 20 30 40
I/O-MUXsel2 Inputs* 20 30 40
BSCAN / ISP Interface 4 4 4
RESET 111
Power/GND 12 25 33
Pin Count/Package 100-Pin TQFP 176-Pin TQFP/
160-Pin PQFP 208-Pin PQFP
272-Ball BGA
* The CLK, OE, MUX0 and MUX1 terminals on each I/O cell can each access 25% of the I/Os.
** MUXed with Y1.
TOE 1** 1 1
Dedicated Clock Pins 2 4 4
BSCAN / ispEN 111
3
Specifications ispGDX Family
Architecture
The ispGDX architecture is different from traditional PLD
architectures, in keeping with its unique application fo-
cus. The block diagram is shown below. The
programmable interconnect consists of a single Global
Routing Pool (GRP). Unlike ispLSI devices, there are no
programmable logic arrays on the device. Control signals
for OEs, Clocks and MUX Controls must come from
designated sets of I/O pins. The polarity of these signals
can be independently programmed in each I/O cell.
Each I/O cell drives a unique pin. The OE control for each
I/O pin is independent and may be driven via the GRP by
one of the designated I/O pins (I/O-OE set). The I/O-OE
set consists of 25% of the total I/O pins. Boundary Scan
test is supported by dedicated registers at each I/O pin.
The in-system programming process uses either a Bound-
ary Scan based or Lattice ISP protocol. The programming
protocol is selected by the BSCAN/ispEN pin as de-
scribed later.
The various I/O pin sets are also shown in the block
diagram below. The A, B, C, and D I/O pins are grouped
together with one group per side.
I/O Architecture
Each I/O cell contains a 4:1 dynamic MUX controlled by
two select lines called MUX0 and MUX1 as shown in
Figure 1. The four data inputs to the MUX (called MUXA,
MUXB, MUXC and MUXD) come from I/O signals found
in the GRP. Each MUX data input can access one quarter
of the total I/Os. For example, in a 160 I/O ispGDX, each
data input can connect to one of 40 I/O pins. MUX0 and
MUX1 can be driven by designated I/O pins called
MUXsel1 and MUXsel2. Each MUXsel input covers 25%
of the total I/O pins (e.g. 40 out of 160). MUX0 and MUX1
can be driven from either MUXsel1 or MUXsel2. The I/O
cell also includes a programmable flow-through latch or
register that can be placed in the input or output path and
bypassed for combinatorial outputs. As shown in Figure
1, when both register/latch control MUXes select the A
path, the register/latch gets its inputs from the 4:1 MUX
and drives the I/O output. When selecting the B path,
the register/latch is directly driven by the I/O input while
its output feeds the GRP. The programmable polarity
Clock to the latch or register can be connected to any
I/O in the I/O-Clock set (one-quarter of total I/Os) or to
one of the dedicated clock input pins (Yx). Use of the
dedicated clock inputs gives minimum clock-to-output
delays and minimizes delay variation with fanout. Com-
binatorial output mode may be implemented by a
dedicated architecture bit and bypass MUX. I/O cell
output polarity can be programmed as active high or
active low.
Figure 1. ispGDX I/O Cell and GRP Detail (160 I/O Device)
I/O 0
I/O 1
I/O 78
I/O 79
80 I/O Cells
Boundary
Scan Cell
Bypass Option
I/O Cell N
Register
or Latch I/O Pin
Prog.
Pull-up
Programmable
Slew Rate
D
A
BCLK
Reset
Q
4-to-1 MUX
160 Input GRP
Inputs Vertical
Outputs Horizontal
I/O 80
I/O 81
I/O 158
MUXA
MUXB
MUXC
MUXD MUX1MUX0
Global
Reset
I/O 159
80 I/O Cells
E
2
CMOS
Programmable
Interconnect
Logic "1"
160 I/O Inputs
C
R
Y0-Y3
Global
Clocks
I/O MUX Operation
MUX1 MUX0 DATA INPUT SELECTED
0 0 MUXA
0 1 MUXB
1 1 MUXC
1 0 MUXD
4
Specifications ispGDX Family
Applications
The ispGDX family architecture has been developed to
deliver an in-system programmable signal routing solu-
tion with high speed and high flexibility. The devices are
targeted for three similar but distinct classes of end-
system applications:
Programmable, Random Signal Interconnect (PRSI)
This class includes PCB-level programmable signal rout-
ing and may be used to provide arbitrary signal swapping
between chips. It opens up the possibilities of program-
mable system hardware. It is characterized by the need
to provide a large number of 1:1 pin connections which
are statically configured, i.e., the pin-to-pin paths do not
need to change dynamically in response to control in-
puts.
Programmable Data Path (PDP)
This application area includes system data path trans-
ceiver, MUX and latch functions. With todays 32- and
64-bit microprocessor buses, but standard data path glue
components still relegated primarily to eight bits, PCBs
are frequently crammed with a dozen or more data path
glue chips that use valuable real estate. Many of these
applications consist of on-board bus and memory inter-
faces that do not require the very high drive of standard
glue functions but can benefit from higher integration.
Therefore, there is a need for a flexible means to inte-
grate these on-board data path functions in an analogous
way to programmable logics solution to control logic
integration. Lattices ispLSI High-Density PLDs make an
ideal control logic complement to the ispGDX in-system
programmable data path devices as shown below.
Programmable Switch Replacement (PSR)
Includes solid-state replacement and integration of me-
chanical DIP Switch and jumper functions. Through
in-system programming, pins of the ispGDX devices can
be driven to HIGH or LOW logic levels to emulate the
traditional device outputs. PSR functions do not require
any input pin connections.
These applications actually require somewhat different
silicon features. PRSI functions require that the device
support arbitrary signal routing on-chip between any two
pins with no routing restrictions. The routing connections
are static (determined at programming time) and each
input-to-output path operates independently. As a result,
there is little need for dynamic signal controls (OE,
clocks, etc.). Because the ispGDX device will interface
with control logic outputs from other components (such
as ispLSI) on the board (which frequently change late in
the design process as control logic is finalized), there
must be no restrictions on pin-to-pin signal routing for this
type of application.
PDP functions, on the other hand, require the ability to
dynamically switch signal routing (MUXing) as well as
latch and tri-state output signals. As a result, the pro-
grammable interconnect is used to define
possible
signal
routes that are then selected dynamically by control
signals from an external MPU or control logic. These
functions are usually formulated early in the conceptual
design of a product. The data path requirements are
driven by the microprocessor, bus and memory architec-
ture defined for the system. This part of the design is the
earliest portion of the system design frozen, and will not
usually change late in the design because the result
would be total system and PCB redesign. As a result, the
ability to accommodate
arbitrary
any pin-to-any pin re-
routing is not a strong requirement as long as the designer
has the ability to define his functions with a reasonable
degree of freedom initially.
As a result, the ispGDX architecture has been defined to
support PSR and PRSI applications (including bidirec-
tional paths) with no restrictions, while PDP applications
(using dynamic MUXing) are supported with a minimal
number of restrictions as described below. In this way,
speed and cost can be optimized and the devices can still
support the system designers needs.
The following diagrams illustrate several ispGDX appli-
cations.
Data Path
Bus #1
Control
Inputs
(from µP)
Address
Inputs
(from µP)
Control
Outputs
System
Clock(s) Data Path
Bus #2
Configuration
(Switch)
Outputs
ISP/JTAG
Interface
ispLSI Device ispGDX Device
State Machines
Decoders
Buffers / Registers
Buffers / Registers
Figure 2. ispGDX Complements Lattice ispLSI
5
Specifications ispGDX Family
Figure 4. Data Bus Byte Swapper
Figure 5. Four-Port Memory Interface
Designing with the ispGDX
As mentioned earlier, this architecture satisfies the PRSI
class of applications without restrictions: any I/O pin as a
single input or bidirectional can drive any other I/O pin as
output.
For the case of PDP applications, the designer does have
to take into consideration the limitations on pins that can
be used as control (MUX0, MUX1, OE, CLK) or data
(MUXA-D) inputs. The restrictions on control inputs are
not likely to cause any major design issues because the
input possibilities span 25% of the total pins.
The MUXA-D input partitioning requires that designers
consciously assign pinouts so that MUX inputs are in the
appropriate, disjoint groups. For example, since the
MUXA group includes I/O0-19 (80 I/O device), it is not
possible to use I/O0 and I/O9 in the same MUX function.
As previously discussed, data path functions will be
assigned early in the design process and these restric-
tions are reasonable in order to optimize speed and cost.
User Electronic Signature
The ispGDX Family includes dedicated User Electronic
Signature (UES) E2CMOS storage to allow users to code
design-specific information into the devices to identify
particular manufacturing dates, code revisions, or the
like. The UES information is accessible through the
boundary scan or Lattice ISP programming port via a
specific command. This information can be read even
when the security cell is programmed.
Security Bit
The ispGDX Family includes a security bit feature that
prevents reading the device program once set. Even
when set, it does not inhibit reading the UES or device ID
code. It can be erased only via a device bulk erase.
Applications (Cont.)
Control Bus
Data Bus A
Data Bus B
OEA OEB
I/OA
D0-7
D8-15 D8-15
D0-7
I/OB
XCVR
OEA OEB
I/OA I/OB
XCVR
OEA OEB
I/OA I/OB
XCVR
OEA OEB
I/OA I/OB
XCVR
Bus 4
Bus 3
Bus 2
Bus 1
Port #1
OE1 Memory
Port
OEM
SEL0
SEL1
To
Memory
Port #2
OE2
Port #3
OE3
Note: All OE and SEL lines driven by external arbiter logic (not shown).
Port #4
OE4
4-to-1
16-Bit MUX
Bidirectional
Figure 3. Address Demultiplex/Data Buffering
Control Bus
Muxed Address Data Bus
DQ
CLK
OEA OEB
I/OA I/OB
Address
Buffered
Data
To Memory
/
Peripherals
XCVR
Address
Latch
6
Specifications ispGDX Family
Supply Voltage Commercial TA = 0°C to +70°C
Input Low Voltage
Input High Voltage
5.25
0.8
Vcc + 1
Absolute Maximum Ratings 1
Supply Voltage Vcc ................................. -0.5 to +7.0V
Input Voltage Applied........................-2.5 to VCC +1.0V
Off-State Output Voltage Applied .....-2.5 to VCC +1.0V
Storage Temperature................................ -65 to 150°C
Case Temp. with Power Applied .............. -55 to 125°C
Max. Junction Temp. (TJ) with Power Applied ... 150°C
1. Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. Functional
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification
is not implied (while programming, follow the programming specifications).
DC Recommended Operating Conditions
V
V
V
PARAMETER
SYMBOL MIN. MAX. UNITS
4.75
0
2.0
VCC
VIL1
VIH1
1. Typical 100mV of input hysteresis.
CSYMBOL
Table 2 - 0006
C
PARAMETER
Dedicated Clock Capacitance 10
UNITSTYPICAL TEST CONDITIONS
1
2
8I/O Capacitance pf
pf V = 5.0V, V = 2.0V
V = 5.0V, V = 2.0V
CC
CC Y
I/O
Capacitance (TA=25oC, f=1.0 MHz)
PARAMETER MINIMUM MAXIMUM UNITS
ispGDX Erase/Reprogram Cycles 10,000 Cycles
Erase/Reprogram Specifications
7
Specifications ispGDX Family
Switching Test Conditions
Output Load Conditions
TEST CONDITION R1 R2 CL
A 1609035pF
B
9035pF
1609035pF
Active High
Active Low
C160905pF
905pF
Active Low to Z
at V +0.5V
OL
Active High to Z
at V -0.5V
OH
Table 2 - 0004A
Output Low Voltage
Output High Voltage
Input or I/O Low Leakage Current
Input or I/O High Leakage Current
ispEN Input Low Leakage Current
I/O Active Pull-Up Current
Output Short Circuit Current
Quiescent Power Supply Current
Dynamic Power Supply Current
per Input Switching
V
V
µA
µA
µA
µA
mA
mA
mA/MHz
IOL =24 mA
IOH =-24 mA
0V VIN VIL (MAX.)
3.5V VIN VCC
0V VIN VIL (MAX.)
0V VIN VIL
VCC = 5V, VOUT = 0.5V, TA = 25˚C
VIL = 0.5V, VIH = VCC
One input toggling @ 50% duty cycle,
outputs open.
VOL
VOH
IIL
IIH
IIL-isp
IIL-PU
IOS1
ICCQ
ICC
25
See
Note 3
2.4
-100
1. One output at a time for a maximum duration of one second. V = 0.5V was selected to avoid test problems by tester ground
degradation. Characterized but not 100% tested.
2. T ypical values are at V = 5V and T = 25oC.
3. I / MHz = (0.0114 x I/O cell fanout) + 0.06
e.g. An input driving four I/O cells at 40 MHz results in a dynamic I of approximately ((0.0114 x 4) + 0.06) x 40 = 4.2 mA.
SYMBOL MIN. MAX.TYP.2
PARAMETER CONDITION UNITS
0.55
-10
10
-150
-150
-250
40
Input Pulse Levels GND to 3.0V
Input Rise and Fall Time 1.5ns 10% to 90%
Input Timing Reference Levels 1.5V
Output Timing Reference Levels 1.5V
Output Load See figure at right
3-state levels are measured 0.5V from steady-state
active level.
CC A
OUT
DC Electrical Characteristics
Over Recommended Operating Conditions
+ 5V
R1
R2CL*
Device
Output Test
Point
*CL includes Test Fixture and Probe Capacitance.
CC
CC
8
Specifications ispGDX Family
External Timing Parameters
Over Recommended Operating Conditions
ns
ns
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
111
4.0
4.0
0.0
3.5
3.5
10.0
5.0
6.5
5
8.5
6.0
9.5
6.0
6.0
9.0
9.0
14.0
5.0
0.5
80.0
5.5
5.5
0.0
5.0
5.0
14.0
7.0
9.0
7.0
11.0
9.0
13.0
8.5
8.5
12.0
12.0
18.0
7.0
0.5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
A
A
A
A
A
A
B
C
B
C
A
A
Data Propagation Delay from any I/O pin to any I/O pin
Data Propagation Delay from MUXsel Inputs to any Output
Clock Frequency with External Feedback
Input Latch or Register Setup Time before any Clk
Output Latch or Register MUX Data Setup Time before any Clk
Latch or Register Hold Time after any Clk
Output Latch or Register Clk (from Yx) to Output Delay
Input Latch or Register Clk (from Yx) to Output Delay
Output Latch or Register Clk (from I/O pin) to Output Delay
Input Latch or Register Clock (from I/O pin) to Output Delay
Input to Output Enable
Input to Output Disable
Test OE Output Enable
Test OE Output Disable
Clock Pulse Duration, High
Clock Pulse Duration, Low
Register Reset Delay from RESET Low
Reset pulse width
Output Delay Adder for Output Timings Using Slow Slew Rate
Output Skew (tgco1 across chip)
tpd
tsel
fmax(ext)
tsu1
tsu2
th
tgco1
tgco2
tco1
tco2
ten
tdis
ttoeen
ttoedis
twh
twl
trst
trw
tsl
tsk
DESCRIPTIONPARAMETER
TEST
1
COND.
#
( )
1
tsu2+tgco1
UNITS
-5
MIN. MAX.
-7
MIN. MAX.
1. All timings measured with one output switching, fast output slew rate setting, except tsl.
2
8
0104 203040506070
I/O Cell Fanout
GRP Delay (ns)
6
10
4
Maximum GRP Delay vs. I/O Cell FanoutispGDX timings are specified with a GRP load (fanout) of
four I/O cells. The figure at right shows the Maximum
GRP Delay with increased GRP loads. These deltas
apply to any signal path traversing the GRP (MUXA-D,
OE, CLK, MUXsel0-1). Global Clock signals, which do
not use the GRP, have no fanout delay adder.
9
Specifications ispGDX Family
-5 -7
PARAMETER #2 DESCRIPTION1MIN. MAX. MIN. MAX. UNITS
Inputs
tio 21 Input Buffer Delay 0.7 1.3 ns
GRP
tgrp 22 GRP Delay 2.0 2.5 ns
MUX
tmuxd 23 I/O Cell MUX A/B/C/D Data Delay 1.0 1.4 ns
tmuxs 24 I/O Cell MUX A/B/C/D Data Select 2.5 3.4 ns
Register
tiolat 25 I/O Latch Delay 1.6 2.2 ns
tiosu 26 I/O Register Setup Time Before Clock 1.6 1.8 ns
tioh 27 I/O Register Hold Time After Clock 2.4 3.6 ns
tioco 28 I/O Register Clock to Output Delay 1.6 2.2 ns
tior 29 I/O Reset to Output Delay 0.7 1.0 ns
Data Path
trfdbk 30 I/O Register Feedback Delay 0.2 0.3 ns
tiobp 31 I/O Register Bypass Delay 0.4 0.6 ns
tioob 32 I/O Register Output Buffer Delay 0.1 0.7 ns
tmuxc (Yx Clk) 33 I/O Register Data Input MUX Delay 1.1 1.2 ns
tmuxc (I/O Clk) 34 I/O Register Data Input MUX Delay 2.1 3.2 ns
tiod (Yx Clk) 35 I/O Register I/O Input MUX Delay 4.1 5.1 ns
tiod (I/O Clk) 36 I/O Register I/O Input MUX Delay 5.1 7.1 ns
Outputs
tob 37 Output Buffer Delay 0.9 1.3 ns
tobs 38 Output Buffer Delay, Slow Slew 5.9 8.3 ns
toen 39 I/O Cell OE to Output Enabled 0.8 1.1 ns
toedis 40 I/O Cell OE to Output Disabled 0.8 1.1 ns
tgoe 41 Global Output Enable Delay 2.5 3.6 ns
ttoe 42 Test OE Enable Delay 8.2 10.9 ns
Clocks
tcio 43 I/O Clock Delay 0.7 1.0 ns
tgy0/1/2/3 44 Clock Delay, Y0/1/2/3 2.4 2.8 ns
Global Reset
tgr 45 Global Reset to I/O Register/Latch 12.3 15.0 ns
Internal Timing Parameters1
Over Recommended Operating Conditions
1. Internal T iming Parameters are not tested and are for reference only.
2. Refer to the T iming Model in this data sheet for further details.
10
Specifications ispGDX Family
ispGDX Timing Model
I/O Pin
Reset
TOE
Y0,1,2,3 tgy0/1/2/3 #44
MUX0
MUX1
tgrp #22
GRP
D
C
B
A
OE tgoe #41
tiobp #31
tioob #32
tmuxd #23
tmuxs #24
tiod #35, #36
tgr #45
0902/gdx
tio #21
trfdbk #30
tmuxc #33, #34
tcio #43
tiolat #25
tiosu #26
tioh #27
tioco #28
tior #29
tob #37
tobs #38
toen #39
toedis #40
ttoe #42
Clock
DQ
Switching Waveforms
Clock Width
CLK
(I/O INPUT)
twl
twh
COMBINATORIAL
I/O OUTPUT
VALID INPUT
DATA (I/O INPUT)
t
pd
t
sel
VALID INPUT
MUXSEL (I/O INPUT)
Combinatorial Output
COMBINATORIAL
I/O OUTPUT
OE (I/O INPUT)
ten
tdis
I/O Output Enable/Disable
DATA
(I/O INPUT)
REGISTERED
I/O OUTPUT
CLK
VALID INPUT
tsu1
tco2
th
tsu2
tco1
1/
fmax
(external fdbk)
tgco1
tgco2
Registered Output
Reset
REGISTERED
I/O OUTPUT
trst
RESET
trw
11
Specifications ispGDX Family
ispGDX Development System
Lattice's ispGDX Development System Interface
The ispGDX Development System supports ispGDX
design using a simple language syntax and an easy-to-
use Graphical User Interface (GUI) called Design
Manager. From creation to In-System Programming, the
ispGDX system is an easy-to-use, self-contained design
tool delivered on CD-ROM media.
Features
Easy-to-use Text Entry System
ispGDX Design Compiler
- Design Rule Checker
- I/O Connectivity Checker
- Automatic Compiler Function
Industry Standard JEDEC File for Programming
Min / Max Timing Report
Interfaces To Popular Timing Simulators
User Electronic Signature (UES) Support
Detailed Log and Report Files For Easy Design Debug
On-Line Help
Windows 3.1x, WIN95, and NT Compatible Graphical
User Interface
SUN O/S, Command Line Driven version available
PC Version
With the ispGDX GUI for the PC, command line entry is
not required. The tools run under Microsoft Windows 3.1,
Windows 95 and Windows NT. When the ispGDX
software is invoked, the Design Manager and an accom-
panying message window are displayed. The Design
Manager consists of the Menu Bar, Tool Bar, Status Bar
and the work area. The figure below shows these
elements of the ispGDX GUI.
The Menu Bar displays topics related to functions used in
the design process. Access the various drop-down
menus and submenus by using the mouse or hot keys.
The menu items available in the ispGDX system are
FILE, EDIT, DEVICE, INVOKE, INTERFACES, VIEW,
WINDOW and HELP.
The Tool Bar is a quick and easy way to perform many of
the functions found in the menus with a single click of the
mouse. File, Edit, Undo, Redo, Find, Print Download and
Compiler are just some of the Icons found in the ispGDX
Tool Bar. For instance, the Compiler Icon performs the
same function as the Invoke => Compiler menu com-
mands, including design analysis and rule checking and
the fitting operation.
The Status Bar displays action prompts and the line and
column numbers reflect the location of the cursor within
the message window or the work area.
Workstation Version
The ispGDX software is also available for use under the
Sun O/S 4.1.x or Solaris 2.4 or 2.5. The Sun version of
the ispGDX software is invoked from the command line
under the UNIX operating system. A GUI is not sup-
ported in this environment.
In the UNIX environment, the ispGDX Design File (GDF)
must be created using a text editor. Once the GDF has
been created, invoke the ispGDX workstation software
from the UNIX command line. The following is an ex-
ample of how to invoke ispGDX software.
Usage:
ispGDX
[-i input_file]
[-of[edif|orcad|viewlogic|verilog|vhdl]]
[-p part name]
[-r par_file]
-i input_file name ispGDX design file
-of [edif | orcad | viewlogic | verilog | vhdl]
output format
-p part_name ispGDX part number
-r par_file read parameters from parameter file
12
Specifications ispGDX Family
The GDF File
The GDF file is a simple text description of the design
function, device and pin parameters. The file has four
parts: device selection, set and constant statements, a
pin section and a connection section. A sample file looks
like this:
//32-bit data exchange from A-bus to B-bus
DESIGN a2bexch
PART ispGDX160-5Q208;
PARAM SECURITY ON;
PARAM PULLUP OFF;
SET busA [dataA0..dataA31];
SET busB [dataB0..dataB31];
BIDI busA {A0..A31} PULLUP SLOWSLEW;
BIDI busB {B0..B31} PULLUP SLOWSLEW;
INPUT [oe0] {C1};
BEGIN busA.oe = oe0;
busB.oe = !oe0;
busA.m1 = busB;
busA.s0 = VCC;
busA.s1 = GND;
busB.m0 = busA;
busB.s0 = GND;
busB.s1 = GND;
END
This example shows a simple, but complete, 32-bit A-bus
to B-bus data exchange design. Once completed, the
compiler takes over.
Powerful Syntax
Lattices ispGDX Design System uses simple, but power-
ful, syntax to easily define a design. The !(bang) operator
controls pin polarity and can be used in both the pin and
connection sections of the design definition. Dot exten-
sions define data inputs, select controls for the 4:1
multiplexor, and control inputs of sequential elements
and tri-state buffers. Dot extensions are .M# (MUX
Input), .S# (MUX Select), and control functions, such as
.CLK, .EN, .OE (shown in adjacent table). Pin Attributes
are assigned in the pin section of the GDF as well.
SLOWSLEW selects the slow slew rate for an output
buffer. PULLUP fixes the on-chip pullup resistor for a
particular pin. The COMB attribute distinguishes the
structure for bidirectional pins. If COMB is used, the input
register, or latch, of an output buffer will be applied to
bidirectional pins.
Please consult the ispGDX Development System Manual
for full details.
The ispGDX Design System Compiler
After the GDF file is created, the compiler checks the
syntax and provides helpful hints and the location of any
syntax errors. The compiler performs design rule checks,
such as, clock and enable designations, the use of input/
output/BIDI usage, and the proper use of attributes. I/O
connectivity is also checked to ensure polarity, MUX
selection controls, and connections are properly made.
Compilation is completed automatically and report and
programming files are saved.
Reports Generated
When the ispGDX system compiles a design and gener-
ates the specified netlists, the following output files are
created:
Report Files
.log - Compiler History
.rpt - Compiler Report
.rt1 - Minimum Delay Timing Report
.rt2 - Maximum Delay Timing Report
Simulation File
.sim - Post-Route Simulation With LAC Format
Netlists
.edo - EDIF Output
.vlo - Verilog Output
.edo - Viewlogic EDIF-format Output
.ifo - OrCAD Output
.vho - VHDL non-VITAL with Maximum Delays Output
.vhn - VHDL non-VITAL with Maximum Delays Output
.vto - VHDL VITAL Output
TYPE DOT EXT. DESCRIPTION
MUX
Input
MUX
Selection
Control
.M0 MUXA Data input to 4-1 MUX
.M1 MUXB Data input to 4-1 MUX
MUX0 Selection input to 4-1 MUX
MUX1 Selection input to 4-1 MUX
.M2 MUXC Data Input to 4-1 MUX
.M3
.S0
.S1
MUXD Data Input to 4-1 MUX
.CLK Clock for a register signal
.EN Latch enable for a latch signal
.OE Output enable for 3-state output
or bidirectional signal
ispGDX Dot Ext
ispGDX GDF File Dot Extensions
13
Specifications ispGDX Family
Download
.jed - JEDEC Device Programming File
Third-Party Timing Simulation
The ispGDX Design System will generate simulation
netlists as specified by a user. The simulation netlist
formats available are: EDIF, Verilog (OVI compliant),
VHDL (VITAL compliant), Viewlogic, and OrCAD.
For In-System Programming, Lattices ispGDX devices
may be programmed, alone or in a chain with up to 100
other Lattice ISP devices, using Lattices ISP Daisy
Chain Download software. This powerful Windows-
based tool can be launched from the Tool Bar or by
Invoking the Download option from the drop down menu
within the ispGDX Design System. ISP Daisy Chain
Download version 5.0 or above supports the ispGDX
Family devices.
Figure 5. ISP Device Programming Interface
ispGDX
80A
SDO
SDI
MODE
SCLK
ispEN
5-wire
Programming
Interface
ispGDX
120A ispGDX
160/A
BSCAN/ispEN BSCAN/ispEN BSCAN/ispEN
Figure 6. ispJTAG Device Programming Interface
ispGDX
80A
TDO
TDI
TMS
TCK
ispJTAG
Programming
Interface
ispGDX
120A ispGDX
160/A
BSCAN/ispEN BSCAN/ispEN BSCAN/ispEN
VCC
In-System Programmability
All necessary programming of the ispGDX Family is done
via five TTL level logic interface signals. These five
signals are fed into the on-chip programming circuitry
where a state machine controls the programming.
On-chip programming can be accomplished using either
an IEEE 1149.1 boundary scan protocol or a Lattice
industry-standard ISP programming protocol. The IEEE
1149.1-compliant interface signals are Test Data In (TDI),
Test Data Out (TDO), Test Clock (TCK) and Test Mode
Select (TMS) control. The corresponding Lattice ISP
control signals are SDI, SDO, SCLK and MODE. These
signals switch their operation from IEEE 1149.1 bound-
ary scan protocol to Lattice ISP programming protocol
based on the state of the BSCAN/ispEN pin as shown in
Table 2. Figure 5 illustrates the block diagram for the ISP
programming interface. Figure 6 illustrates the block
diagram for the ispJTAG interface.
Table 2. Operating Mode Control Signals
Op Mode Signals/ispGDX
SDI, SDO, SCLK, MODE0 Program Device Using Lattice ISP Protocol
TDI, TDO, TCK, TMS1 Program Device or Normal Operation Using IEEE 1149.1 Protocol
BSCAN/ispEN OPERATION CONTROL PIN FUNCTION
14
Specifications ispGDX Family
Boundary Scan / ISP Programming and Test Options
The ispGDX devices provide IEEE1149.1a test capabil-
ity and ISP programming through a standard Boundary
Scan Test Access Port (TAP) interface. In addition,
ispGDX devices can be programmed via the Lattice ISP
programming interface using the same TAP serial inter-
face pins.
When the BSCAN/ispEN signal is high the ispGDX de-
vices enable Boundary Scan Test mode. Under this
mode the Boundary Scan data registers for the I/O pins
are organized in the order given below. Each
I/O register is structured as shown in Figure 7.
The operation of the boundary scan test circuitry in the
ispGDX160 is dependent on the fuse pattern programmed
into the device. The boundary scan circuitry on the
ispGDX160A, ispGDX120A and ispGDX80A operates
independently of the programmed pattern. This allows
customers using boundary scan test to have full test
capability with only a single BSDL file.
Table 3. I/O Shift Register Order
Figure 7. Boundary Scan I/O Register Cell
DQ
M
U
X
DQ
DQ
DQ
DQ
M
U
X
M
U
X
M
U
X
M
U
X
Normal
Function
OE
I/O Pin
EXTEST
Update DR
SCANOUT (to next cell)
Clock DR
SCANIN
(from
previous
cell)
Shift DR
Normal
Function
OE
TOE
I/O Shift Reg Order/ispGDX
ispGDX80A SDI/TDI, I/O B10 .. B19, I/O C0 .. C19, I/O D0 .. D9, RESET, Y1/TOE, Y0, I/O B9 .. B0, I/O A19.. A0,
I/O D19 .. D10, SDO/TDO
ispGDX120A SDI/TDI, I/O B15 .. B29, I/O C0 .. C29, I/O D0 .. D14, TOE, Y2, Y3, RESET, Y1, Y0, I/O B14 .. B0,
I/O A29.. A0, I/O D29 .. D15, SDO/TDO
ispGDX160/A SDI/TDI, I/O B20 .. B39, I/O C0 .. C39, I/O D0 .. D19, TOE, Y2, Y3, RESET, Y1, Y0, I/O B19 .. B0,
I/O A39.. A0, I/O D39 .. D20, SDO/TDO
I/O SHIFT REGISTER ORDERDEVICE
15
Specifications ispGDX Family
The ispGDX devices are identified either by the 32-bit
JTAG IDCODE register or the eight-bit ISP register. The
device ID assignments are listed in Table 4.
The ispJTAG programming is accomplished by execut-
ing Lattice private instructions under the Boundary Scan
State Machine.
Lattice ISP programming is accomplished by driving
BSCAN/ispEN low, while following the ISP state machine
1
0
0
1
1
0
0
1
0
0
0
0
1
0
1
1
0101
1
1
0
1
0
0
111
0
0
1
Update-IR
Exit2-IR
Pause-IR
Exit1-IR
Shift-IR
Capture-IR
Select-IR-Scan
Update-DR
Exit2-DR
Pause-DR
Exit1-DR
Shift-DR
Capture-DR
Select-DR-Scan
Run-Test/Idle
Test-Logic-Reset
TCK
TMS or
TDI
TDO
t
su
t
h
t
co
tsu = 0.1µs (min.) th = 0.1µs (min.) tco = 0.1µs (min.)
Figure 8. Boundary Scan State Machine
Boundary Scan / ISP Programming and Test Options (Continued)
algorithm. The eight-bit device ID can be read from the
device in Idle State for ISP device identification. Details
of the programming sequence are transparent to the user
and are handled by Lattice ISP Daisy Chain Downlowad
(ispDCD), ispCODE C routines or any third-party pro-
grammers. Contact Lattice Technical Support to obtain
more detailed programming information.
Table 4. ispGDX Device ID Codes
GDX ID Codes
0000 0000 0010 0101 0001 0000 0100 0011
0000 0000 0010 0101 0011 0000 0100 0011
ispGDX80A
ispGDX160/A
0111 0111
0000 0000 0010 0101 0010 0000 0100 0011ispGDX120A 0111 1000
0111 1001
8-BIT ISP ID 32-BIT BOUNDARY SCAN IDCODEDEVICE
16
Specifications ispGDX Family
TOE 178 A12
RESET 185 D10
Y0, Y1, Y2, Y3, 75, 76, 180, 181 V10, Y10, C11, A11
BSCAN/ispEN 183 B10
TDI/SDI 81 Y12
TCK/SCLK 80 U11
TMS/MODE 79 V11
TDO/SDO 78 W11
GND 6, 15, 25, 35, 44, 54, 63, 77, 91, 100, 110, 119, 129, A1, D4, D8, D13, D17, H4, H17, J9, J10, J11, J12,
139, 148, 159, 168, 182, 195, 204 K9, K10, K11, K12, L9, L10, L11, L12, M9, M10,
M11, M12, N4, N17, U4, U8, U13, U17
VCC 1, 17, 33, 49, 65, 89, 105, 121, 137, 153, 170, 184 D6, D11, D15, F4, F17, K4, L17, R4, R17, U6, U10,
193 U15
NC173, 74, 156, 179 A2, A6, A7, A10, A15, A19, A20, B1, B2, B4, B11,
B14, B18, B19, B20, C2, C3, C10, C18, D2, D3, D16,
E2, E17, E19, H1, H3, H18, H20, K20, L1, N1, N3,
N18, N20, T2, T4, T19, U5, U18, U19, V3, V14, V18,
V19, W1, W2, W3, W7, W10, W14, W19, W20, Y1,
Y2, Y6, Y9, Y11, Y18, Y20
Signal Descriptions
I/O Input/Output Pins These are the general purpose bidirectional data pins. When used as outputs, each
may be independently latched, registered or tristated. They can also each assume one other control
function (OE, CLK and MUXsel as described in the text).
TOE Test Output Enable pin This pin tristates all I/O pins when a logic low is driven.
RESET Active LOW Input Pin Resets all I/O register outputs when LOW.
Y0, Y1, Y2, Y3 Input Pins Dedicated clock input pins. Each pin can drive any or all I/O cell registers.
BSCAN/ispEN Input Pin When HIGH, this pin enables the Boundary Scan Test and Programming Interface. When
LOW, this pin enables the Lattice ISP protocol for programming and tristates all I/O pins, except those
used for the programming interface.
TDI/SDI Input/Input Pin Serial data input during ISP programming or Boundary Scan mode.
TCK/SCLK Input/Input Pin Serial data clock during ISP programming or Boundary Scan mode.
TMS/MODE Input/Input Pin Control input during ISP programming or Boundary Scan mode.
TDO/SDO Output/Output Pin Serial data output during ISP programming or Boundary Scan mode.
GND Ground (GND)
VCC Vcc Supply voltage (5V).
NC1No Connect.
Signal Name Description
1. NC pins are not to be connected to any active signals, VCC or GND.
Signal 208-Pin PQFP 272-Ball BGA
1. NC pins are not to be connected to any active signals, VCC or GND.
Signal Locations: ispGDX160/A
17
Specifications ispGDX Family
I/O Locations: ispGDX160/A
I/O A0 2 E4
I/O A1 3 C1
I/O A2 4 D1
I/O A3 5 E3
I/O A4 7 E1
I/O A5 8 F3
I/O A6 9 G4
I/O A7 10 F2
I/O A8 11 F1
I/O A9 12 G3
I/O A10 13 G2
I/O A11 14 G1
I/O A12 16 H2
I/O A13 18 J4
I/O A14 19 J3
I/O A15 20 J2
I/O A16 21 J1
I/O A17 22 K2
I/O A18 23 K3
I/O A19 24 K1
I/O A20 26 L2
I/O A21 27 L3
I/O A22 28 L4
I/O A23 29 M1
I/O A24 30 M2
I/O A25 31 M3
I/O A26 32 M4
I/O A27 34 N2
I/O A28 36 P1
I/O A29 37 P2
I/O A30 38 R1
I/O A31 39 P3
I/O A32 40 R2
I/O A33 41 T1
I/O A34 42 P4
I/O A35 43 R3
I/O A36 45 U1
I/O A37 46 T3
I/O A38 47 U2
I/O A39 48 V1
I/O B0 50 U3
I/O B1 51 V2
I/O B2 52 W4
I/O B3 53 V4
I/O B4 55 Y3
I/O B5 56 Y4
I/O B6 57 V5
I/O B7 58 W5
I/O B8 59 Y5
I/O B9 60 V6
I/O B10 61 U7
I/O B11 62 W6
I/O B12 64 V7
I/O B13 66 Y7
I/O B14 67 V8
I/O B15 68 W8
I/O B16 69 Y8
I/O B17 70 U9
I/O B18 71 V9
I/O B19 72 W9
I/O B20 82 W12
I/O B21 83 V12
I/O B22 84 U12
I/O B23 85 Y13
I/O B24 86 W13
I/O B25 87 V13
I/O B26 88 Y14
I/O B27 90 Y15
I/O B28 92 W15
I/O B29 93 Y16
I/O B30 94 U14
I/O B31 95 V15
I/O B32 96 W16
I/O B33 97 Y17
I/O B34 98 V16
I/O B35 99 W17
I/O B36 101 U16
I/O B37 102 V17
I/O B38 103 W18
I/O B39 104 Y19
I/O C0 106 T17
I/O C1 107 V20
I/O C2 108 U20
I/O C3 109 T18
I/O C4 111 T20
I/O C5 112 R18
I/O C6 113 P17
I/O C7 114 R19
I/O C8 115 R20
I/O C9 116 P18
I/O C10 117 P19
I/O C11 118 P20
I/O C12 120 N19
I/O C13 122 M17
I/O C14 123 M18
I/O C15 124 M19
I/O C16 125 M20
I/O C17 126 L19
I/O C18 127 L18
I/O C19 128 L20
I/O C20 130 K19
I/O C21 131 K18
I/O C22 132 K17
I/O C23 133 J20
I/O C24 134 J19
I/O C25 135 J18
I/O C26 136 J17
I/O C27 138 H19
I/O C28 140 G20
I/O C29 141 G19
I/O C30 142 F20
I/O C31 143 G18
I/O C32 144 F19
I/O C33 145 E20
I/O C34 146 G17
I/O C35 147 F18
I/O C36 149 D20
I/O C37 150 E18
I/O C38 151 D19
I/O C39 152 C20
I/O D0 154 D18
I/O D1 155 C19
I/O D2 157 B17
I/O D3 158 C17
I/O D4 160 A18
I/O D5 161 A17
I/O D6 162 C16
I/O D7 163 B16
I/O D8 164 A16
I/O D9 165 C15
I/O D10 166 D14
I/O D11 167 B15
I/O D12 169 C14
I/O D13 171 A14
I/O D14 172 C13
I/O D15 173 B13
I/O D16 174 A13
I/O D17 175 D12
I/O D18 176 C12
I/O D19 177 B12
I/O D20 186 A9
I/O D21 187 B9
I/O D22 188 C9
I/O D23 189 D9
I/O D24 190 A8
I/O D25 191 B8
I/O D26 192 C8
I/O D27 194 B7
I/O D28 196 C7
I/O D29 197 B6
I/O D30 198 A5
I/O D31 199 D7
I/O D32 200 C6
I/O D33 201 B5
I/O D34 202 A4
I/O D35 203 C5
I/O D36 205 A3
I/O D37 206 D5
I/O D38 207 C4
I/O D39 208 B3
208 272
Signal PQFP BGA 208 272
Signal PQFP BGA 208 272
Signal PQFP BGA 208 272
Signal PQFP BGA 208 272
Signal PQFP BGA
18
Specifications ispGDX Family
Signal Configuration: ispGDX160/A
ispGDX160/A 272-Ball BGA Signal Diagram
2019181716151413121110987654321
A
NC1NC1I/O
D4 I/O
D5 I/O
D8 NC1I/O
D13 I/O
D16 TOE Y3 NC1I/O
D20 I/O
D24 NC1NC1I/O
D30 I/O
D34 I/O
D36 NC1GND
A
B
NC1NC1NC1I/O
D2 I/O
D7 I/O
D11 NC1I/O
D15 I/O
D19 NC1
BSCAN/
ispEN
I/O
D21 I/O
D25 I/O
D27 I/O
D29 I/O
D33 NC1I/O
D39 NC1NC1
B
C
I/O
C39 I/O
D1 NC1I/O
D3 I/O
D6 I/O
D9 I/O
D12 I/O
D14 I/O
D18 Y2 NC1I/O
D22 I/O
D26 I/O
D28 I/O
D32 I/O
D35 I/O
D38 NC1NC1I/O
A1
C
D
I/O
C36 I/O
C38 I/O
D0 GND NC1VCC I/O
D10 GND I/O
D17 VCC
RESET
I/O
D23 GND I/O
D31 VCC I/O
D37 GND NC1NC1I/O
A2
D
E
I/O
C33 NC1I/O
C37 NC1I/O
A0 I/O
A3 NC1I/O
A4
E
F
I/O
C30 I/O
C32 I/O
C35 VCC ispGDX160/A VCC I/O
A5 I/O
A7 I/O
A8
F
G
I/O
C28 I/O
C29 I/O
C31 I/O
C34 Bottom View I/O
A6 I/O
A9 I/O
A10 I/O
A11
G
H
NC1I/O
C27 NC1GND GND NC1I/O
A12 NC1
H
J
I/O
C23 I/O
C24 I/O
C25 I/O
C26 GND GND GND GND I/O
A13 I/O
A14 I/O
A15 I/O
A16
J
K
NC1I/O
C20 I/O
C21 I/O
C22 GND GND GND GND VCC I/O
A18 I/O
A17 I/O
A19
K
L
I/O
C19 I/O
C17 I/O
C18 VCC GND GND GND GND I/O
A22 I/O
A21 I/O
A20 NC1
L
M
I/O
C16 I/O
C15 I/O
C14 I/O
C13 GND GND GND GND I/O
A26 I/O
A25 I/O
A24 I/O
A23
M
N
NC1I/O
C12 NC1GND GND NC1I/O
A27 NC1
N
P
I/O
C11 I/O
C10 I/O
C9 I/O
C6 I/O
A34 I/O
A31 I/O
A29 I/O
A28
P
R
I/O
C8 I/O
C7 I/O
C5 VCC VCC I/O
A35 I/O
A32 I/O
A30
R
T
I/O
C4 NC1I/O
C3 I/O
C0 NC1I/O
A37 NC1I/O
A33
T
U
I/O
C2 NC1NC1GND I/O
B36 VCC I/O
B30 GND I/O
B22
TCK/
SCLK
VCC I/O
B17 GND I/O
B10 VCC NC1GND I/O
B0 I/O
A38 I/O
A36
U
V
I/O
C1 NC1NC1I/O
B37 I/O
B34 I/O
B31 NC1I/O
B25 I/O
B21
TMS/
MODE
Y0 I/O
B18 I/O
B14 I/O
B12 I/O
B9 I/O
B6 I/O
B3 NC1I/O
B1 I/O
A39
V
W
NC1NC1I/O
B38 I/O
B35 I/O
B32 I/O
B28 NC1I/O
B24 I/O
B20 TDO/
SDO NC1I/O
B19 I/O
B15 NC1I/O
B11 I/O
B7 I/O
B2 NC1NC1NC1
W
Y
NC1I/O
B39 NC1I/O
B33 I/O
B29 I/O
B27 I/O
B26 I/O
B23 TDI/
SDI NC1Y1 NC1I/O
B16 I/O
B13 NC1I/O
B8 I/O
B5 I/O
B4 NC1NC1
Y
2019181716151413121110987654321
1. NCs are not to be connected to any active signals, Vcc or GND.
Note: Ball A1 indicator dot on top side of package.
19
Specifications ispGDX Family
Pin Configuration: ispGDX160/A
ispGDX160/A 208-Pin PQFP (with Heat Spreader) Pinout Diagram
ispGDX160/A
Top View
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
VCC
I/O A 0
I/O A 1
I/O A 2
I/O A 3
GND
I/O A 4
I/O A 5
I/O A 6
I/O A 7
I/O A 8
I/O A 9
I/O A 10
I/O A 11
GND
I/O A 12
VCC
I/O A 13
I/O A 14
I/O A 15
I/O A 16
I/O A 17
I/O A 18
I/O A 19
GND
I/O A 20
I/O A 21
I/O A 22
I/O A 23
I/O A 24
I/O A 25
I/O A 26
VCC
I/O A 27
GND
I/O A 28
I/O A 29
I/O A 30
I/O A 31
I/O A 32
I/O A 33
I/O A 34
I/O A 35
GND
I/O A 36
I/O A 37
I/O A 38
I/O A 39
VCC
I/O B 0
I/O B 1
I/O B 2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
NC
1
I/O D1
I/O D 0
VCC
I/O C 39
I/O C 38
I/O C 37
I/O C 36
GND
I/O C 35
I/O C 34
I/O C 33
I/O C 32
I/O C 31
I/O C 30
I/O C 29
I/O C 28
GND
I/O C 27
VCC
I/O C 26
I/O C 25
I/O C 24
I/O C 23
I/O C 22
I/O C 21
I/O C 20
GND
I/O C 19
I/O C 18
I/O C 17
I/O C 16
I/O C 15
I/O C 14
I/O C 13
VCC
I/O C 12
GND
I/O C 11
I/O C 10
I/O C 9
I/O C 8
I/O C 7
I/O C 6
I/O C 5
I/O C 4
GND
I/O C 3
I/O C 2
I/O C 1
I/O C 0
VCC
Data
Control
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
Data
Control I/O B 3
GND
I/O B 4
I/O B 5
I/O B 6
I/O B 7
I/O B 8
I/O B 9
I/O B 10
I/O B 11
GND
I/O B 12
VCC
I/O B 13
I/O B 14
I/O B 15
I/O B 16
I/O B 17
I/O B 18
I/O B 19
1
NC
1
NC
Y0
Y1
GND
TDO/SDO
TMS/MODE
TCK/SCLK
TDI/SDI
I/O B 20
I/O B 21
I/O B 22
I/O B 23
I/O B 24
I/O B 25
I/O B 26
VCC
I/O B 27
GND
I/O B 28
I/O B 29
I/O B 30
I/O B 31
I/O B 32
I/O B 33
I/O B 34
I/O B 35
GND
I/O B 36
I/O B 37
I/O B 38
I/O B 39
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
Data Control
I/O D 39
I/O D 38
I/O D 37
I/O D 36
GND
I/O D 35
I/O D 34
I/O D 33
I/O D 32
I/O D 31
I/O D 30
I/O D 29
I/O D 28
GND
I/O D 27
VCC
I/O D 26
I/O D 25
I/O D 24
I/O D 23
I/O D 22
I/O D 21
I/O D 20
RESET
VCC
BSCAN/ispEN
GND
Y3
Y2
NC
1
TOE
I/O D 19
I/O D 18
I/O D 17
I/O D 16
I/O D 15
I/O D 14
I/O D 13
VCC
I/O D 12
GND
I/O D 11
I/O D 10
I/O D 9
I/O D 8
I/O D 7
I/O D 6
I/O D 5
I/O D 4
GND
I/O D 3
I/O D 2
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
Data Control
1. No Connect Pins (NC) are not to be connected to any active signal, Vcc or GND.
20
Specifications ispGDX Family
Signal Locations: ispGDX120A
TOE 150 136
RESET 156 142
Y0, Y1, Y2, Y3, 63, 64, 152, 153 57, 58, 138, 139
BSCAN/ispEN 154 140
TDI/SDI 69 63
TCK/SCLK 68 62
TMS/MODE 67 61
TDO/SDO 66 60
GND 8, 17, 27, 37, 50, 65, 77, 91, 101, 110, 120, 129, 6, 15, 25, 35, 44, 59, 71, 81, 91, 100, 110, 119, 130,
144, 161, 170 147, 156
VCC 3, 19, 35, 55, 79, 99, 115, 136, 155, 159 1, 17, 33, 49, 73, 89, 105, 122, 141, 145
NC11, 2, 43, 44, 45, 46, 61, 62, 87, 88, 89, 90, 130, 131, 55, 56, 120, 137
132, 133, 134, 151, 175, 176
Signal 176-Pin TQFP 160-Pin PQFP
1. NC pins are not to be connected to any active signals, VCC or GND.
I/O Locations: ispGDX120A
176 160
Signal TQFP PQFP
I/O A0 4 2
I/O A1 5 3
I/O A2 6 4
I/O A3 7 5
I/O A4 9 7
I/O A5 10 8
I/O A6 11 9
I/O A7 12 10
I/O A8 13 11
I/O A9 14 12
I/O A10 15 13
I/O A11 16 14
I/O A12 18 16
I/O A13 20 18
I/O A14 21 19
I/O A15 22 20
I/O A16 23 21
I/O A17 24 22
I/O A18 25 23
I/O A19 26 24
I/O A20 28 26
I/O A21 29 27
I/O A22 30 28
I/O A23 31 29
I/O A24 32 30
I/O A25 33 31
I/O A26 34 32
I/O A27 36 34
I/O A28 38 36
I/O A29 39 37
I/O B0 40 38
I/O B1 41 39
I/O B2 42 40
I/O B3 47 41
I/O B4 48 42
I/O B5 49 43
I/O B6 51 45
I/O B7 52 46
I/O B8 53 47
I/O B9 54 48
I/O B10 56 50
I/O B11 57 51
I/O B12 58 52
I/O B13 59 53
I/O B14 60 54
I/O B15 70 64
I/O B16 71 65
I/O B17 72 66
I/O B18 73 67
I/O B19 74 68
I/O B20 75 69
I/O B21 76 70
I/O B22 78 72
I/O B23 80 74
I/O B24 81 75
I/O B25 82 76
I/O B26 83 77
I/O B27 84 78
I/O B28 85 79
I/O B29 86 80
I/O C0 92 82
I/O C1 93 83
I/O C2 94 84
I/O C3 95 85
I/O C4 96 86
I/O C5 97 87
I/O C6 98 88
I/O C7 100 90
I/O C8 102 92
I/O C9 103 93
I/O C10 104 94
I/O C11 105 95
I/O C12 106 96
I/O C13 107 97
I/O C14 108 98
I/O C15 109 99
I/O C16 111 101
I/O C17 112 102
I/O C18 113 103
I/O C19 114 104
I/O C20 116 106
I/O C21 117 107
I/O C22 118 108
I/O C23 119 109
I/O C24 121 111
I/O C25 122 112
I/O C26 123 113
I/O C27 124 114
I/O C28 125 115
I/O C29 126 116
I/O D0 127 117
I/O D1 128 118
I/O D2 135 121
I/O D3 137 123
I/O D4 138 124
I/O D5 139 125
I/O D6 140 126
I/O D7 141 127
I/O D8 142 128
I/O D9 143 129
I/O D10 145 131
I/O D11 146 132
I/O D12 147 133
I/O D13 148 134
I/O D14 149 135
I/O D15 157 143
I/O D16 158 144
I/O D17 160 146
I/O D18 162 148
I/O D19 163 149
I/O D20 164 150
I/O D21 165 151
I/O D22 166 152
I/O D23 167 153
I/O D24 168 154
I/O D25 169 155
I/O D26 171 157
I/O D27 172 158
I/O D28 173 159
I/O D29 174 160
176 160
Signal TQFP PQFP 176 160
Signal TQFP PQFP 176 160
Signal TQFP PQFP 176 160
Signal TQFP PQFP
21
Specifications ispGDX Family
Pin Configuration: ispGDX120A
ispGDX120A 176-Pin TQFP Pinout Diagram
ispGDX120A
Top View
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
1
NC
1
NC
VCC
I/O A 0
I/O A 1
I/O A 2
I/O A 3
GND
I/O A 4
I/O A 5
I/O A 6
I/O A 7
I/O A 8
I/O A 9
I/O A 10
I/O A 11
GND
I/O A 12
VCC
I/O A 13
I/O A 14
I/O A 15
I/O A 16
I/O A 17
I/O A 18
I/O A 19
GND
I/O A 20
I/O A 21
I/O A 22
I/O A 23
I/O A 24
I/O A 25
I/O A 26
VCC
I/O A 27
GND
I/O A 28
I/O A 29
I/O B 0
I/O B1
I/O B 2
1
NC
1
NC
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
NC
1
NC
1
NC
1
GND
I/O D 1
I/O D 0
I/O C 29
I/O C 28
I/O C 27
I/O C 26
I/O C 25
I/O C 24
GND
I/O C 23
I/O C 22
I/O C 21
I/O C 20
VCC
I/O C 19
I/O C 18
I/O C 17
I/O C 16
GND
I/O C 15
I/O C 14
I/O C 13
I/O C 12
I/O C 11
I/O C 10
I/O C 9
I/O C 8
GND
I/O C 7
VCC
I/O C 6
I/O C 5
I/O C 4
I/O C 3
I/O C 2
I/O C 1
I/O C 0
GND
NC
1
NC
1
Data
Control
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
Data
Control
1
NC
1
NC
I/O B 3
I/O B 4
I/O B 5
GND
I/O B 6
I/O B 7
I/O B 8
I/O B 9
VCC
I/O B 10
I/O B 11
I/O B 12
I/O B 13
I/O B 14
1
NC
1
NC
Y0
Y1
GND
TDO/SDO
TMS/MODE
TCK/SCLK
TDI/SDI
I/O B 15
I/O B 16
I/O B 17
I/O B 18
I/O B 19
I/O B 20
I/O B 21
GND
I/O B 22
VCC
I/O B 23
I/O B 24
I/O B 25
I/O B 26
I/O B 27
I/O B 28
I/O B 29
1
NC
1
NC
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
Data Control
NC
1
NC
1
I/O D 29
I/O D 28
I/O D 27
I/O D 26
GND
I/O D 25
I/O D 24
I/O D 23
I/O D 22
I/O D 21
I/O D 20
I/O D 19
I/O D 18
GND
I/O D 17
VCC
I/O D 16
I/O D 15
RESET
VCC
BSCAN/ispEN
2
Y3
Y2
NC
TOE
I/O D 14
I/O D 13
I/O D 12
I/O D 11
I/O D 10
GND
I/O D 9
I/O D 8
I/O D 7
I/O D 6
I/O D 5
I/O D 4
I/O D 3
VCC
I/O D 2
NC
1
NC
1
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
Data Control
1. NC pins are not to be connected to any active signals, VCC or GND.
22
Specifications ispGDX Family
Pin Configuration: ispGDX120A
ispGDX120A 160-Pin PQFP Pinout Diagram
ispGDX120A
Top View
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
VCC
I/O A 0
I/O A 1
I/O A 2
I/O A 3
GND
I/O A 4
I/O A 5
I/O A 6
I/O A 7
I/O A 8
I/O A 9
I/O A 10
I/O A 11
GND
I/O A 12
VCC
I/O A 13
I/O A 14
I/O A 15
I/O A 16
I/O A 17
I/O A 18
I/O A 19
GND
I/O A 20
I/O A 21
I/O A 22
I/O A 23
I/O A 24
I/O A 25
I/O A 26
VCC
I/O A 27
GND
I/O A 28
I/O A 29
I/O B 0
I/O B1
I/O B 2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
NC
1
GND
I/O D 1
I/O D 0
I/O C 29
I/O C 28
I/O C 27
I/O C 26
I/O C 25
I/O C 24
GND
I/O C 23
I/O C 22
I/O C 21
I/O C 20
VCC
I/O C 19
I/O C 18
I/O C 17
I/O C 16
GND
I/O C 15
I/O C 14
I/O C 13
I/O C 12
I/O C 11
I/O C 10
I/O C 9
I/O C 8
GND
I/O C 7
VCC
I/O C 6
I/O C 5
I/O C 4
I/O C 3
I/O C 2
I/O C 1
I/O C 0
GND
Data
Control
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
Data
Control
I/O B 3
I/O B 4
I/O B 5
GND
I/O B 6
I/O B 7
I/O B 8
I/O B 9
VCC
I/O B 10
I/O B 11
I/O B 12
I/O B 13
I/O B 14
1
NC
1
NC
Y0
Y1
GND
TDO/SDO
TMS/MODE
TCK/SCLK
TDI/SDI
I/O B 15
I/O B 16
I/O B 17
I/O B 18
I/O B 19
I/O B 20
I/O B 21
GND
I/O B 22
VCC
I/O B 23
I/O B 24
I/O B 25
I/O B 26
I/O B 27
I/O B 28
I/O B 29
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
Data Control
I/O D 29
I/O D 28
I/O D 27
I/O D 26
GND
I/O D 25
I/O D 24
I/O D 23
I/O D 22
I/O D 21
I/O D 20
I/O D 19
I/O D 18
GND
I/O D 17
VCC
I/O D 16
I/O D 15
RESET
VCC
BSCAN/ispEN
Y3
Y2
NC
1
TOE
I/O D 14
I/O D 13
I/O D 12
I/O D 11
I/O D 10
GND
I/O D 9
I/O D 8
I/O D 7
I/O D 6
I/O D 5
I/O D 4
I/O D 3
VCC
I/O D 2
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
Data Control
1. NC pins are not to be connected to any active signals, VCC or GND.
23
Specifications ispGDX Family
Signal Locations: ispGDX80A
Y1/TOE 87
Y0 38
RESET 89
BSCAN/ispEN 35
TDI/SDI 39
TCK/SCLK 36
TMS/MODE 86
TDO/SDO 85
GND 6, 18, 29, 45, 56, 68, 79, 95
VCC 12, 37, 62, 88
Signal 100-Pin TQFP
I/O Locations: ispGDX80A
I/O A0 1
I/O A1 2
I/O A2 3
I/O A3 4
I/O A4 5
I/O A5 7
I/O A6 8
I/O A7 9
I/O A8 10
I/O A9 11
I/O A10 13
I/O A11 14
I/O A12 15
I/O A13 16
I/O A14 17
I/O A15 19
I/O A16 20
I/O A17 21
I/O A18 22
I/O A19 23
I/O B0 24
I/O B1 25
I/O B2 26
I/O B3 27
I/O B4 28
I/O B5 30
I/O B6 31
I/O B7 32
I/O B8 33
I/O B9 34
I/O B10 40
I/O B11 41
I/O B12 42
I/O B13 43
I/O B14 44
I/O B15 46
I/O B16 47
I/O B17 48
I/O B18 49
I/O B19 50
I/O C0 51
I/O C1 52
I/O C2 53
I/O C3 54
I/O C4 55
I/O C5 57
I/O C6 58
I/O C7 59
I/O C8 60
I/O C9 61
I/O C10 63
I/O C11 64
I/O C12 65
I/O C13 66
I/O C14 67
I/O C15 69
I/O C16 70
I/O C17 71
I/O C18 72
I/O C19 73
I/O D0 74
I/O D1 75
I/O D2 76
I/O D3 77
I/O D4 78
I/O D5 80
I/O D6 81
I/O D7 82
I/O D8 83
I/O D9 84
I/O D10 90
I/O D11 91
I/O D12 92
I/O D13 93
I/O D14 94
I/O D15 96
I/O D16 97
I/O D17 98
I/O D18 99
I/O D19 100
Signal 100 TQFP Signal 100 TQFP Signal 100 TQFP Signal 100 TQFP
24
Specifications ispGDX Family
Pin Configuration: ispGDX80A
ispGDX80A 100-Pin TQFP Pinout Diagram
I/O A0
I/O A1
I/O A2
I/O A3
I/O A4
GND
I/O A5
I/O A6
I/O A7
I/O A8
I/O A9
VCC
I/O A10
I/O A11
I/O A12
I/O A13
I/O A14
GND
I/O A15
I/O A16
I/O A17
I/O A18
I/O A19
I/O B0
I/O B1
I/O C19
I/O C18
I/O C17
I/O C16
I/O C15
GND
I/O C14
I/O C13
I/O C12
I/O C11
I/O C10
VCC
I/O C9
I/O C8
I/O C7
I/O C6
I/O C5
GND
I/O C4
I/O C3
I/O C2
I/O C1
I/O C0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
57
56
55
54
53
52
51
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
58
ispGDX80A
Top View
Data
Control
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
1. Pins have dual function capability.
CLK
OE
MUXsel2
MUXsel1
I/O D1
I/O D0 OE
CLK
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
Data Control
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
OE
CLK
MUXsel2
MUXsel1
Data Control
I/O D19
I/O D18
I/O D17
I/O D16
I/O D15
GND
I/O D14
I/O D13
I/O D12
I/O D11
I/O D10
VCC
RESET
TMS/MODE
1
Y1/TOE
1
I/O D9
I/O D8
I/O D7
I/O D6
I/O D5
GND
I/O D4
I/O D3
I/O D2
I/O B2
I/O B3
I/O B4
GND
I/O B5
I/O B6
I/O B7
I/O B8
I/O B9
I/O B10
1
TDI/SDI
I/O B11
I/O B12
I/O B13
I/O B14
GND
I/O B15
I/O B16
I/O B17
I/O B18
BSCAN/ispEN
1
TCK/SCLK
VCC
Y0
Data
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
CLK
OE
MUXsel1
MUXsel2
Control
I/O B19
TDO/SDO
1
25
Specifications ispGDX Family
Part Number Description
Ordering Information
Table 2-0041/ispGDX
208-Pin PQFP
176-Pin TQFP
5
5
ispGDX160A-5Q208
272-Ball BGA5 ispGDX160A-5B272
160A 208-Pin PQFP7 ispGDX160A-7Q208
272-Ball BGA7 ispGDX160A-7B272
208-Pin PQFP5 ispGDX160-5Q208*
272-Ball BGA5 ispGDX160-5B272*
160 208-Pin PQFP7 ispGDX160-7Q208*
272-Ball BGA7 ispGDX160-7B272*
ispGDX120A-5T176
120
80
160-Pin PQFP5 ispGDX120A-5Q160
176-Pin TQFP7 ispGDX120A-7T176
160-Pin PQFP7 ispGDX120A-7Q160
100-Pin TQFP5 ispGDX80A-5T100
100-Pin TQFP7 ispGDX80A-7T100
I/O PINS ORDERING NUMBER PACKAGE
tpd (ns) COMMERCIAL
*ispGDX160A recommended for new designs.
Device Number
160*
160A
120A
80A
Grade
Blank = Commercial
ispGDX XXXX X XXXX X
Speed
5 = 5ns Tpd
7 = 7ns Tpd
Package
Q208 = PQFP (with Heat Spreader)
T176 = TQFP
Q160 = PQFP
B272 = BGA
T100 = TQFP
Device Family
0212/ispGDX