5.0 kV rms Quad Digital Isolators
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2015–2018 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
High common-mode transient immunity: 100 kV/μs
High robustness to radiated and conducted noise
Low propagation delay
13 ns maximum for 5 V operation
15 ns maximum for 1.8 V operation
150 Mbps maximum guaranteed data rate
Safety and regulatory approvals
UL recognition: 5000 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice 5A
VDE certificate of conformity
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
VIORM = 849 V peak
8000 V peak reinforced surge isolation voltage
CQC certification per GB4943.1-2011
Backward compatibility
ADuM240E1/ADuM241E1/ADuM242E1 pin compatible
with ADuM2400/ADuM2401/ADuM2402
Low dynamic power consumption
1.8 V to 5 V level translation
High temperature operation: 125°C
Fail-safe high or low options
16-lead, RoHS compliant, SOIC package
Qualified for automotive applications
APPLICATIONS
General-purpose multichannel isolation
Serial peripheral interface (SPI)/data converter isolation
Industrial field bus isolation
GENERAL DESCRIPTION
The ADuM240D/ADuM240E/ADuM241D/ADuM241E/
ADuM242D/ADuM242E1 are quad-channel digital isolators
based on Analog Devices, Inc., iCoupler® technology. Combining
high speed, complementary metal-oxide semiconductor (CMOS)
and monolithic air core transformer technology, these isolation
components provide outstanding performance characteristics
superior to alternatives such as optocoupler devices and other
integrated couplers. The maximum propagation delay is 13 ns
with a pulse width distortion of less than 3 ns at 5 V operation.
Channel matching is tight at 3.0 ns maximum.
The ADuM240D/ADuM240E/ADuM241D/ADuM241E/
ADuM242D/ADuM242E data channels are independent and
are available in a variety of configurations with a withstand
voltage rating of 5.0 kV rms (see the Ordering Guide). The
devices operate with the supply voltage on either side ranging
from 1.8 V to 5 V, providing compatibility with lower voltage
FUNCTIONAL BLOCK DIAGRAMS
ENCODE DECODE
ENCODE DECODE
ENCODE DECODE
ENCODE DECODE
V
DD1
GND
1
V
IA
V
IB
V
IC
V
ID
DISABLE
1
/NIC
GND
1
V
DD2
GND
2
ADuM240D/ADuM240E
V
OA
V
OB
V
OC
V
OD
NIC/V
E2
GND
2
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
NOTES
1. NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.
2. PIN 7 IS DISABLE
1
AND PIN 10 IS NIC FOR THE ADuM240D, AND
PIN 7 IS NIC AND PIN 10 IS V
E2
FOR THE ADuM240E.
13576-101
Figure 1. ADuM240D/ADuM240E Functional Block Diagram
DECODE ENCODE
ENCODE DECODE
ENCODE DECODE
ENCODE DECODE
V
DD1
GND
1
V
IA
V
IB
V
IC
V
OD
DISABLE
1
/V
E1
GND
1
V
DD2
GND
2
ADuM241D/ADuM241E
V
OA
V
OB
V
OC
V
ID
DISABLE
2
/V
E2
GND
2
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
NOTES
1. PIN 7 IS DISABLE
1
AND PIN 10 IS DISABLE
2
FOR THE ADuM241D,
AND PIN 7 IS V
E1
AND PIN 10 IS V
E2
FOR THE ADuM241E.
13576-102
Figure 2. ADuM241D/ADuM241E Functional Block Diagram
DECODE ENCODE
DECODE ENCODE
ENCODE DECODE
ENCODE DECODE
V
DD1
GND
1
V
IA
V
IB
V
OC
V
OD
DISABLE
1
/V
E1
GND
1
V
DD2
GND
2
ADuM242D/ADuM242E
V
OA
V
OB
V
IC
V
ID
DISABLE
2
/V
E2
GND
2
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
NOTES
1. PIN 7 IS DISABLE
1
AND PIN 10 IS DISABLE
2
FOR THE ADuM242D,
AND PIN 7 IS V
E1
AND PIN 10 IS V
E2
FOR THE ADuM242E.
13576-103
Figure 3. ADuM242D/ADuM242E Functional Block Diagram
systems as well as enabling voltage translation functionality
across the isolation barrier.
Unlike other optocoupler alternatives, dc correctness is ensured in
the absence of input logic transitions. Two different fail-safe options
are available, by which the outputs transition to a predetermined
state when the input power supply is not applied or the inputs are
disabled. The ADuM240E1/ADuM241E1/ ADuM242E1 are pin
compatible with the ADuM2400/ ADuM2401/ADuM2402.
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 2 of 26
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagrams ............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics—5 V Operation................................ 3
Electrical Characteristics—3.3 V Operation ............................ 5
Electrical Characteristics—2.5 V Operation ............................ 7
Electrical Characteristics—1.8 V Operation ............................ 9
Insulation and Safety Related Specifications .......................... 11
Package Characteristics ............................................................. 11
Regulatory Information ............................................................. 12
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation
Characteristics ............................................................................ 13
Recommended Operating Conditions .................................... 13
Absolute Maximum Ratings ......................................................... 14
ESD Caution................................................................................ 14
Pin Configurations and Function Descriptions ......................... 16
Typical Performance Characteristics ........................................... 19
Theory of Operation ...................................................................... 21
Applications Information .............................................................. 22
PCB Layout ................................................................................. 22
Propagation Delay Related Parameters ................................... 22
Jitter Measurement ..................................................................... 22
Insulation Lifetime ..................................................................... 22
Outline Dimensions ....................................................................... 24
Ordering Guide .......................................................................... 24
Automotive Products ................................................................. 26
REVISION HISTORY
11/2018—Rev. C to Rev. D
Changes to Table 12 and Table 13 ................................................ 12
4/2018—Rev. B to Rev. C
Change to Features Section ............................................................. 1
Changes to Table 12 and Table 13 ................................................ 12
Changes to Ordering Guide .......................................................... 24
Changes to Automotive Products Section ................................... 26
3/2018—Rev. A to Rev. B
Updated Outline Dimensions ....................................................... 24
Changes to Ordering Guide .......................................................... 24
Change to Automotive Products Section .................................... 26
4/2016—Rev. 0 to Rev. A
Added RI-16-2 .................................................................... Universal
Changes to Features Section ............................................................ 1
Changes to Table 1 ............................................................................. 3
Changes to Table 3 ............................................................................. 5
Changes to Table 5 ............................................................................. 7
Changes to Table 7 ............................................................................. 9
Added Table 10; Renumbered Sequentially ................................ 11
Added Table 13 ............................................................................... 12
Added Table 18 ............................................................................... 14
Updated Outline Dimensions ....................................................... 23
Added Figure 26 ............................................................................. 24
Changes to Ordering Guide .......................................................... 24
Added Automotive Products Section .......................................... 26
9/2015—Revision 0: Initial Version
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 3 of 26
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS—5 V OPERATION
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended
operation range of 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.
Table 1.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
SWITCHING SPECIFICATIONS
Pulse Width PW 6.6 ns Within pulse width distortion (PWD) limit
Data Rate1 150 Mbps Within PWD limit
Propagation Delay tPHL, tPLH 4.8 7.2 13 ns 50% input to 50% output
Pulse Width Distortion PWD 0.5 3 ns |tPLH − tPHL|
Change vs. Temperature 1.5 ps/°C
Propagation Delay Skew tPSK 6.1 ns Between any two units at the
same temperature, voltage, and load
Channel Matching
Codirectional tPSKCD 0.5 3.0 ns
Opposing Direction tPSKOD 0.5 3.0 ns
Jitter 490 ps p-p See the Jitter Measurement section
70 ps rms See the Jitter Measurement section
DC SPECIFICATIONS
Input Threshold Voltage
Logic High VIH 0.7 × VDDx V
Logic Low VIL 0.3 × VDDx V
Output Voltage
Logic High VOH V
DDx − 0.1 VDDx V IOx2 = −20 μA, VIx = VIxH3
V
DDx − 0.4 VDDx − 0.2 V IOx2 = −4 mA, VIx = VIxH3
Logic Low VOL 0.0 0.1 V IOx2 = 20 μA, VIx = VIxL4
0.2 0.4 V IOx2 = 4 mA, VIx = VIxL4
Input Current per Channel II −10 +0.01 +10 μA 0 V VIx ≤ VDDx
VE2 Enable Input Pull-Up Current IPU −10 −3 μA VE2 = 0 V
DISABLE1 Input Pull-Down Current IPD 9 15 μA DISABLE1 = VDDx
Tristate Output Current per Channel IOZ −10 +0.01 +10 μA 0 V VOx ≤ VDDx
Quiescent Supply Current
ADuM240D/ADuM240E
I
DD1 (Q) 1.2 2.2 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 2.0 2.72 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 12.0 20.0 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 2.0 2.92 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
ADuM241D/ADuM241E
I
DD1 (Q) 1.6 2.46 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 1.9 2.62 mA VI5 = 0(E0, D0), 1 (E1, D1)6
I
DD1 (Q) 10.0 17.0 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 6.0 10.0 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
ADuM242D/ADuM242E
I
DD1 (Q) 1.6 2.46 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 1.6 2.46 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 7.0 11.5 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 7.0 11.5 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
Dynamic Supply Current
Dynamic Input IDDI (D) 0.01 mA/Mbps Inputs switching, 50% duty cycle
Dynamic Output IDDO (D) 0.02 mA/Mbps Inputs switching, 50% duty cycle
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 4 of 26
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Undervoltage Lockout UVLO
Positive VDDx Threshold VDDxUV+ 1.6 V
Negative VDDx Threshold VDDxUV− 1.5 V
VDDx Hysteresis VDDxUVH 0.1 V
AC SPECIFICATIONS
Output Rise/Fall Time tR/tF 2.5 ns 10% to 90%
Common-Mode Transient Immunity7 |CMH| 75 100 kV/μs VIx = VDDx, VCM = 1000 V,
transient magnitude = 800 V
|CML| 75 100 kV/μs VIx = 0 V, VCM = 1000 V,
transient magnitude = 800 V
1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.
2 IOx is the Channel x output current, where x = A, B, C, or D.
3 VIxH is the input side logic high.
4 VIxL is the input side logic low.
5 VI is the voltage input.
6 E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1
models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section.
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-
mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode
voltage edges.
Table 2. Total Supply Current vs. Data Throughput
1 Mbps 25 Mbps 100 Mbps
Parameter Symbol Min Typ Max Min Typ Max Min Typ Max Unit
SUPPLY CURRENT
ADuM240D/ADuM240E
Supply Current Side 1 IDD1 6.8 10 7.8 12 11.8 17.4 mA
Supply Current Side 2 IDD2 2.1 3.7 3.9 5.7 9.2 13 mA
ADuM241D/ADuM241E
Supply Current Side 1 IDD1 5.8 10.3 7.0 10.9 11.4 15.9 mA
Supply Current Side 2 IDD2 4.0 6.85 5.5 8.5 10.3 14.0 mA
ADuM242D/ADuM242E
Supply Current Side 1 IDD1 4.3 7.7 6.0 9.3 10.3 14.2 mA
Supply Current Side 2 IDD2 5.3 8.7 6.7 10.1 11.0 14.9 mA
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 5 of 26
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended
operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.
Table 3.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
SWITCHING SPECIFICATIONS
Pulse Width PW 6.6 ns Within PWD limit
Data Rate1 150 Mbps Within PWD limit
Propagation Delay tPHL, tPLH 4.8 6.8 14 ns 50% input to 50% output
Pulse Width Distortion PWD 0.7 3 ns |tPLH − tPHL|
Change vs. Temperature 1.5 ps/°C
Propagation Delay Skew tPSK 7.5 ns Between any two units at the same
temperature, voltage, and load
Channel Matching
Codirectional tPSKCD 0.7 3.0 ns
Opposing Direction tPSKOD 0.7 3.0 ns
Jitter 580 ps p-p See the Jitter Measurement section
120 ps rms See the Jitter Measurement section
DC SPECIFICATIONS
Input Threshold Voltage
Logic High VIH 0.7 × VDDx V
Logic Low VIL 0.3 × VDDx V
Output Voltage
Logic High VOH V
DDx − 0.1 VDDx V IOx2 = −20 μA, VIx = VIxH3
V
DDx − 0.4 VDDx − 0.2 V IOx2 = −2 mA, VIx = VIxH3
Logic Low VOL 0.0 0.1 V IOx2 = 20 μA, VIx = VIxL4
0.2 0.4 V IOx2 = 2 mA, VIx = VIxL4
Input Current per Channel II −10 +0.01 +10 μA 0 V ≤ VIx ≤ VDDx
VE2 Enable Input Pull-Up Current IPU −10 −3 μA VE2 = 0 V
DISABLE1 Input Pull-Down Current IPD 9 15 μA DISABLE1 = VDDx
Tristate Output Current per Channel IOZ −10 +0.01 +10 μA 0 V VOx ≤ VDDx
Quiescent Supply Current
ADuM240D/ADuM240E
I
DD1 (Q) 1.2 2.12 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 2.0 2.68 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 12.0 19.6 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 2.0 2.8 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
ADuM241D/ADuM241E
I
DD1 (Q) 1.5 2.36 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 1.8 2.52 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 9.8 16.7 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 5.7 9.7 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
ADuM242D/ADuM242E
I
DD1 (Q) 1.6 2.4 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 1.6 2.4 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 7.0 11.2 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 7.0 11.2 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
Dynamic Supply Current
Dynamic Input IDDI (D) 0.01 mA/Mbps Inputs switching, 50% duty cycle
Dynamic Output IDDO (D) 0.01 mA/Mbps Inputs switching, 50% duty cycle
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 6 of 26
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Undervoltage Lockout UVLO
Positive VDDx Threshold VDDxUV+ 1.6 V
Negative VDDx Threshold VDDxUV− 1.5 V
VDDx Hysteresis VDDxUVH 0.1 V
AC SPECIFICATIONS
Output Rise/Fall Time tR/tF 2.5 ns 10% to 90%
Common-Mode Transient Immunity7 |CMH| 75 100 kV/μs VIx = VDDx, VCM = 1000 V,
transient magnitude = 800 V
|CML| 75 100 kV/μs VIx = 0 V, VCM = 1000 V,
transient magnitude = 800 V
1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.
2 IOx is the Channel x output current, where x = A, B, C, or D.
3 VIxH is the input side logic high.
4 VIxL is the input side logic low.
5 VI is the voltage input.
6 E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1
models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section.
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-
mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode
voltage edges.
Table 4. Total Supply Current vs. Data Throughput
1 Mbps 25 Mbps 100 Mbps
Parameter Symbol Min Typ Max Min Typ Max Min Typ Max Unit
SUPPLY CURRENT
ADuM240D/ADuM240E
Supply Current Side 1 IDD1 6.6 9.8 7.4 11.2 10.7 15.9 mA
Supply Current Side 2 IDD2 2.0 3.7 3.5 5.5 8.2 11.6 mA
ADuM241D/ADuM241E
Supply Current Side 1 IDD1 5.65 10.1 6.65 10.5 10.4 14.9 mA
Supply Current Side 2 IDD2 3.9 6.65 5.2 8.0 9.4 12.8 mA
ADuM242D/ADuM242E
Supply Current Side 1 IDD1 4.3 7.7 5.6 9.0 9.1 13 mA
Supply Current Side 2 IDD2 5.0 8.4 6.2 9.6 9.8 13.7 mA
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 7 of 26
ELECTRICAL CHARACTERISTICS—2.5 V OPERATION
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 2.5 V. Minimum/maximum specifications apply over the entire recommended
operation range: 2.25 V ≤ VDD1 ≤ 2.75 V, 2.25 V ≤ VDD2 ≤ 2.75 V, −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.
Table 5.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
SWITCHING SPECIFICATIONS
Pulse Width PW 6.6 ns Within PWD limit
Data Rate1 150 Mbps Within PWD limit
Propagation Delay tPHL, tPLH 5.0 7.0 14 ns 50% input to 50% output
Pulse Width Distortion PWD 0.7 3 ns |tPLH − tPHL|
Change vs. Temperature 1.5 ps/°C
Propagation Delay Skew tPSK 6.8 ns Between any two units at the same
temperature, voltage, and load
Channel Matching
Codirectional tPSKCD 0.7 3.0 ns
Opposing Direction tPSKOD 0.7 3.0 ns
Jitter 800 ps p-p See the Jitter Measurement section
190 ps rms See the Jitter Measurement section
DC SPECIFICATIONS
Input Threshold Voltage
Logic High VIH 0.7 × VDDx V
Logic Low VIL 0.3 × VDDx V
Output Voltage
Logic High VOH V
DDx − 0.1 VDDx V IOx2 = −20 μA, VIx = VIxH3
V
DDx − 0.4 VDDx − 0.2 V IOx2 = −2 mA, VIx = VIxH3
Logic Low VOL 0.0 0.1 V IOx2 = 20 μA, VIx = VIxL4
0.2 0.4 V IOx2 = 2 mA, VIx = VIxL4
Input Current per Channel II −10 +0.01 +10 μA 0 V ≤ VIx ≤ VDDx
VE2 Enable Input Pull-Up Current IPU −10 −3 μA VE2 = 0 V
DISABLE1 Input Pull-Down Current IPD 9 15 μA DISABLE1 = VDDx
Tristate Output Current per Channel IOZ −10 +0.01 +10 μA 0 V VOx ≤ VDDx
Quiescent Supply Current
ADuM240D/ADuM240E
I
DD1 (Q) 1.2 2.0 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 2.0 2.64 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 1.2 19.6 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 2.0 2.76 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
ADuM241D/ADuM241E
I
DD1 (Q) 1.46 2.32 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 1.75 2.47 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 9.7 16.6 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 5.67 9.67 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
ADuM242D/ADuM242E
I
DD1 (Q) 1.6 2.32 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 1.6 2.32 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 7.0 11.2 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 7.0 11.2 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
Dynamic Supply Current
Dynamic Input IDDI (D) 0.01 mA/Mbps Inputs switching, 50% duty cycle
Dynamic Output IDDO (D) 0.01 mA/Mbps Inputs switching, 50% duty cycle
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 8 of 26
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Undervoltage Lockout
Positive VDDx Threshold VDDxUV+ 1.6 V
Negative VDDx Threshold VDDxUV− 1.5 V
VDDx Hysteresis VDDxUVH 0.1 V
AC SPECIFICATIONS
Output Rise/Fall Time tR/tF 2.5 ns 10% to 90%
Common-Mode Transient Immunity7 |CMH| 75 100 kV/μs VIx = VDDx, VCM = 1000 V,
transient magnitude = 800 V
|CML| 75 100 kV/μs VIx = 0 V, VCM = 1000 V,
transient magnitude = 800 V
1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.
2 IOx is the Channel x output current, where x = A, B, C, or D.
3 VIxH is the input side logic high.
4 VIxL is the input side logic low.
5 VI is the voltage input.
6 E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1
models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section.
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-
mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode
voltage edges.
Table 6. Total Supply Current vs. Data Throughput
1 Mbps 25 Mbps 100 Mbps
Parameter Symbol Min Typ Max Min Typ Max Min Typ Max Unit
SUPPLY CURRENT
ADuM240D/ADuM240E
Supply Current Side 1 IDD1 6.5 9.8 7.3 11.1 10.4 15.5 mA
Supply Current Side 2 IDD2 2.0 3.6 3.3 5.2 7.3 10.2 mA
ADuM241D/ADuM241E
Supply Current Side 1 IDD1 5.6 10.0 6.4 10.4 9.7 14.5 mA
Supply Current Side 2 IDD2 3.8 6.55 4.8 7.7 8.3 11.5 mA
ADuM242D/ADuM242E
Supply Current Side 1 IDD1 4.3 7.7 5.4 8.8 8.8 12.7 mA
Supply Current Side 2 IDD2 5.0 8.4 6.1 9.5 9.5 13.4 mA
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 9 of 26
ELECTRICAL CHARACTERISTICS—1.8 V OPERATION
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 1.8 V. Minimum/maximum specifications apply over the entire recommended
operation range: 1.7 V ≤ VDD1 ≤ 1.9 V, 1.7 V ≤ VDD2 ≤ 1.9 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.
Table 7.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
SWITCHING SPECIFICATIONS
Pulse Width PW 6.6 ns Within PWD limit
Data Rate1 150 Mbps Within PWD limit
Propagation Delay tPHL, tPLH 5.8 8.7 15 ns 50% input to 50% output
Pulse Width Distortion PWD 0.7 3 ns |tPLH − tPHL|
Change vs. Temperature 1.5 ps/°C
Propagation Delay Skew tPSK 7.0 ns
Between any two units at the same
temperature, voltage, and load
Channel Matching
Codirectional tPSKCD 0.7 3.0 ns
Opposing Direction tPSKOD 0.7 3.0 ns
Jitter 470 ps p-p See the Jitter Measurement section
70 ps rms See the Jitter Measurement section
DC SPECIFICATIONS
Input Threshold Voltage
Logic High VIH 0.7 × VDDx V
Logic Low VIL 0.3 × VDDx V
Output Voltage
Logic High VOH V
DDx − 0.1 VDDx V IOx2 = −20 μA, VIx = VIxH3
V
DDx − 0.4 VDDx − 0.2 V IOx2 = −2 mA, VIx = VIxH3
Logic Low VOL 0.0 0.1 V IOx2 = 20 μA, VIx = VIxL4
0.2 0.4 V IOx2 = 2 mA, VIx = VIxL4
Input Current per Channel II −10 +0.01 +10 μA 0 V ≤ VIx ≤ VDDx
VE2 Enable Input Pull-Up Current IPU −10 −3 μA VE2 = 0 V
DISABLE1 Input Pull-Down Current IPD 9 15 μA DISABLE1 = VDDx
Tristate Output Current per Channel IOZ −10 +0.01 +10 μA 0 V VOx ≤ VDDx
Quiescent Supply Current
ADuM240D/ADuM240E
I
DD1 (Q) 1.2 1.92 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 2.0 2.64 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 12.0 19.6 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 2.0 2.76 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
ADuM241D/ADuM241E
I
DD1 (Q) 1.4 2.28 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 1.73 2.45 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 9.6 16.5 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 5.6 9.6 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
ADuM242D/ADuM242E
I
DD1 (Q) 1.6 2.28 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD2 (Q) 1.6 2.28 mA VI5 = 0 (E0, D0), 1 (E1, D1)6
I
DD1 (Q) 7.0 11.2 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
I
DD2 (Q) 7.0 11.2 mA VI5 = 1 (E0, D0), 0 (E1, D1)6
Dynamic Supply Current
Dynamic Input IDDI (D) 0.01 mA/Mbps Inputs switching, 50% duty cycle
Dynamic Output IDDO (D) 0.01 mA/Mbps Inputs switching, 50% duty cycle
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 10 of 26
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Undervoltage Lockout UVLO
Positive VDDx Threshold VDDxUV+ 1.6 V
Negative VDDx Threshold VDDxUV− 1.5 V
VDDx Hysteresis VDDxUVH 0.1 V
AC SPECIFICATIONS
Output Rise/Fall Time tR/tF 2.5 ns 10% to 90%
Common-Mode Transient Immunity7 |CMH| 75 100 kV/μs VIx = VDDx, VCM = 1000 V,
transient magnitude = 800 V
|CML| 75 100 kV/μs VIx = 0 V, VCM = 1000 V,
transient magnitude = 800 V
1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.
2 IOx is the Channel x output current, where x = A, B, C, or D.
3 VIxH is the input side logic high.
4 VIxL is the input side logic low.
5 VI is the voltage input.
6 E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1
models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section.
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-
mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode
voltage edges.
Table 8. Total Supply Current vs. Data Throughput
1 Mbps 25 Mbps 100 Mbps
Parameter Symbol Min Typ Max Min Typ Max Min Typ Max Unit
SUPPLY CURRENT
ADuM240D/ADuM240E
Supply Current Side 1 IDD1 6.4 9.8 7.2 11 10.2 15.2 mA
Supply Current Side 2 IDD2 1.9 3.5 3.1 5.0 6.8 10 mA
ADuM241D/ADuM240E
Supply Current Side 1 IDD1 5.5 9.1 6.3 10.0 9.6 14.0 mA
Supply Current Side 2 IDD2 3.72 6.45 4.8 7.5 8.4 11.2 mA
ADuM242D/ADuM242E
Supply Current Side 1 IDD1 4.3 7.7 5.3 8.7 8.6 12.6 mA
Supply Current Side 2 IDD2 4.9 8.3 6.0 9.4 9.3 13.3 mA
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 11 of 26
INSULATION AND SAFETY RELATED SPECIFICATIONS
For additional information, see www.analog.com/icouplersafety.
Table 9. RW-16 Wide Body [SOIC_W] Package
Parameter Symbol Value Unit Test Conditions/Comments
Rated Dielectric Insulation Voltage 5000 V rms 1-minute duration
Minimum External Air Gap (Clearance) L (I01) 7.8 mm min Measured from input terminals to output terminals,
shortest distance through air
Minimum External Tracking (Creepage) L (I02) 7.8 mm min Measured from input terminals to output terminals,
shortest distance path along body
Minimum Clearance in the Plane of the Printed
Circuit Board (PCB Clearance)
L (PCB) 8.1 mm min Measured from input terminals to output terminals,
shortest distance through air, line of sight, in the PCB
mounting plane
Minimum Internal Gap (Internal Clearance) 25.5 μm min Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index) CTI >400 V DIN IEC 112/VDE 0303 Part 1
Material Group II Material Group (DIN VDE 0110, 1/89, Table 1)
Table 10. RI-16 -2 Wide Body Increased Creepage [SOIC_IC] Package
Parameter Symbol Value Unit Test Conditions/Comments
Rated Dielectric Insulation Voltage 5000 V rms 1-minute duration
Minimum External Air Gap (Clearance) L (I01) 8.3 mm min Measured from input terminals to output terminals,
shortest distance through air
Minimum External Tracking (Creepage) L (I02) 8.3 mm min Measured from input terminals to output terminals,
shortest distance path along body
Minimum Clearance in the Plane of the Printed
Circuit Board (PCB Clearance)
L (PCB) 8.3 mm min Measured from input terminals to output terminals,
shortest distance through air, line of sight, in the PCB
mounting plane
Minimum Internal Gap (Internal Clearance) 25.5 μm min Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index) CTI >400 V DIN IEC 112/VDE 0303 Part 1
Material Group II Material Group (DIN VDE 0110, 1/89, Table 1)
PACKAGE CHARACTERISTICS
Table 11.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Resistance (Input to Output)1 R
I-O 1013 Ω
Capacitance (Input to Output)1 CI-O 2.2 pF f = 1 MHz
Input Capacitance2 C
I 4.0 pF
IC Junction to Ambient Thermal Resistance θJA 45 °C/W Thermocouple located at center of package underside
1 The device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.
2 Input capacitance is from any input data pin to ground.
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 12 of 26
REGULATORY INFORMATION
See Table 17, Table 18, and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific
cross-isolation waveforms and insulation levels.
Table 12. RW-16 Wide Body [SOIC_W] Package
UL CSA VDE CQC
Recognized Under UL 1577
Component Recognition
Program1
Approved under CSA Component Acceptance
Notice 5A
Certified according to DIN V VDE V
0884-10 (VDE V 0884-10):2006-122
Certified by
CQC11-471543-2012,
GB4943.1-2011:
Single Protection, 5000 V rms
Isolation Voltage
CSA 60950-1-07+A1+A2 and IEC 60950-1,
second edition, +A1+A2:
Reinforced insulation, VIORM =
849 peak, VIOSM = 8000 V peak
Basic insulation at
760 V rms (1075 V peak)
Double Protection, 5000 V rms
Isolation Voltage
Basic insulation at 780 V rms (1103 V peak) Basic insulation, VIORM = 849 V peak,
VIOSM = 12 kV peak
Reinforced insulation at
380 V rms (537 V peak),
tropical climate, altitude
≤5000 meters
Reinforced insulation at 390 V rms
(552 V peak)
IEC 60601-1 Edition 3.1:
Basic insulation (1 means of patient protection
(1 MOPP)), 490 V rms (686 V peak)
Reinforced insulation (2 MOPP), 238 V rms
(325 V peak)
CSA 61010-1-12 and IEC 61010-1 third edition:
Basic insulation at 300 V rms mains, 780 V
secondary (1103 V peak)
Reinforced insulation at 300 V rms mains,
390 V secondary (552 V peak)
File E214100 File 205078 File 2471900-4880-0001 File CQC16001147385
1 In accordance with UL 1577, each product is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec.
2 In accordance with DIN V VDE V 0884-10, each product is proof tested by applying an insulation test voltage ≥ 1592 V peak for 1 sec (partial discharge detection limit =
5 pC). The asterisk (*) branded on the component designates DIN V VDE V 0884-10 approval.
Table 13. RI-16 -2 Wide Body Increased Creepage [SOIC_IC] Package
UL CSA VDE CQC
Recognized Under 1577
Component Recognition
Program1
Approved under CSA Component Acceptance
Notice 5A
Certified according to DIN V VDE V
0884-10 (VDE V 0884-10):2006-122
Certified by
CQC11-471543-2012,
GB4943.1-2011
Single Protection, 5000 V rms
Isolation Voltage
CSA 60950-1-07+A1+A2 and IEC 60950-1,
second edition, +A1+A2:
Reinforced insulation, VIORM =
849 peak, VIOSM = 8000 V peak
Basic insulation at
820 V rms (1159 V peak)
Double Protection, 5000 V rms
Isolation Voltage
Basic insulation at 830 V rms (1174 V peak) Basic insulation, VIORM = 849 V peak,
VIOSM = 12 kV peak
Reinforced insulation at
410 V rms (578 V peak),
tropical climate, altitude
≤5000 meters
Reinforced insulation at 415 V rms (587 V peak)
IEC 60601-1 Edition 3.1:
Basic insulation (1 means of patient protection
(1 MOPP)), 519 V rms (734 V peak)
Reinforced insulation (2 MOPP), 261 V rms
(369 V peak)
CSA 61010-1-12 and IEC 61010-1 third edition:
Basic insulation at 300 V rms mains, 830 V
secondary (1174 V peak)
Reinforced insulation at 300 V rms Mains,
390 V secondary (587 V peak)
File E214100 File 205078 File 2471900-4880-0001 File CQC17001171586
1 In accordance with UL 1577, each product is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec.
2 In accordance with DIN V VDE V 0884-10, each product is proof tested by applying an insulation test voltage ≥ 1592 V peak for 1 sec (partial discharge detection limit =
5 pC). The asterisk (*) branded on the component designates DIN V VDE V 0884-10 approval.
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 13 of 26
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance
of the safety data. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval.
Table 14.
Description Test Conditions/Comments Symbol Characteristic Unit
Installation Classification per DIN VDE 0110
For Rated Mains Voltage ≤ 150 V rms I to IV
For Rated Mains Voltage ≤ 300 V rms I to IV
For Rated Mains Voltage ≤ 600 V rms I to III
Climatic Classification 40/125/21
Pollution Degree per DIN VDE 0110, Table 1 2
Maximum Working Insulation Voltage VIORM 849 V peak
Input to Output Test Voltage, Method B1 VIORM × 1.875 = Vpd (m), 100% production test,
tini = tm = 1 sec, partial discharge < 5 pC
Vpd (m) 1592 V peak
Input to Output Test Voltage, Method A Vpd (m)
After Environmental Tests Subgroup 1 VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec,
partial discharge < 5 pC
1274 V peak
After Input and/or Safety Test Subgroup 2
and Subgroup 3
VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec,
partial discharge < 5 pC
1019 V peak
Highest Allowable Overvoltage VIOTM 7000 V peak
Surge Isolation Voltage Basic VPEAK = 12.8 kV, 1.2 μs rise time, 50 μs,
50% fall time
VIOSM 12000 V peak
Surge Isolation Voltage Reinforced VPEAK = 12.8 kV, 1.2 μs rise time, 50 μs,
50% fall time
VIOSM 8000 V peak
Safety Limiting Values Maximum value allowed in the event of a
failure (see Figure 4)
Maximum Junction Temperature TS 150 °C
Total Power Dissipation at 25°C PS 2.78 W
Insulation Resistance at TS VIO = 500 V RS >109 Ω
3.0
2.5
2.0
1.5
0.5
1.0
0020015010050
SAFE LIMITING POWER (W)
AMBI E NT T EM P E RATURE C)
13576-003
Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values
with Ambient Temperature per DIN V VDE V 0884-10
RECOMMENDED OPERATING CONDITIONS
Table 15.
Parameter Symbol Rating
Operating Temperature TA −40°C to +125°C
Supply Voltages VDD1, VDD2 1.7 V to 5.5 V
Input Signal Rise and Fall Times 1.0 ms
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 14 of 26
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 16.
Parameter Rating
Storage Temperature (TST) Range −65°C to +150°C
Ambient Operating Temperature
(TA) Range
−40°C to +125°C
Supply Voltages (VDD1, VDD2) −0.5 V to +7.0 V
Input Voltages (VIA, VIB, VIC, VID, VE1, VE2,
DISABLE1, DISABLE2)1
−0.5 V to VDDI + 0.5 V
Output Voltages (VOA, VOB, VOC, VOD)2 −0.5 V to VDDO + 0.5 V
Average Output Current per Pin3
Side 1 Output Current (IO1) −10 mA to +10 mA
Side 2 Output Current (IO2) −10 mA to +10 mA
Common-Mode Transients4 −150 kV/μs to +150 kV/μs
1 VDDI is the input side supply voltage.
2 VDDO is the output side supply voltage.
3 See Figure 4 for the maximum rated current values for various ambient
temperatures.
4 Refers to the common-mode transients across the insulation barrier.
Common-mode transients exceeding the absolute maximum ratings may
cause latch-up or permanent damage.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Table 17. Maximum Continuous Working Voltage1 RW-16
Wide Body [SOIC_W] Package
Parameter Rating Constraint
AC Voltage
Bipolar Waveform
Basic Insulation 849 V peak 50-year minimum insulation
lifetime
Reinforced
Insulation
768 V peak Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
Unipolar Waveform
Basic Insulation 1698 V peak 50-year minimum insulation
lifetime
Reinforced
Insulation
885 V peak Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
DC Voltage
Basic Insulation 1092 V peak Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
Reinforced
Insulation
543 V peak Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
1 Refers to the continuous voltage magnitude imposed across the isolation
barrier. See the Insulation Lifetime section for more details.
Table 18. Maximum Continuous Working Voltage1 RI-16-2
Wide Body Increased Creepage [SOIC_IC] Package
Parameter Rating Constraint
AC Voltage
Bipolar Waveform
Basic Insulation 849 V peak 50-year minimum insulation
lifetime
Reinforced
Insulation
819 V peak Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
Unipolar Waveform
Basic Insulation 1698 V peak 50-year minimum insulation
lifetime
Reinforced
Insulation
943 V peak Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
DC Voltage
Basic Insulation 1157 V peak Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
Reinforced
Insulation
579 V peak Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
1 Refers to the continuous voltage magnitude imposed across the isolation
barrier. See the Insulation Lifetime section for more details.
ESD CAUTION
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 15 of 26
Truth Tables
Table 19. ADuM240D/ADuM241D/ADuM242D Truth Table (Positive Logic)
VIx Input1, 2 VDISABLEx Input1, 2 VDDI State2 V
DDO State2
Default Low (D0),
VOx Output1, 2, 3
Default High (D1),
VOx Output1, 2, 3
Test Conditions/
Comments
L L or NC Powered Powered L L Normal operation
H L or NC Powered Powered H H Normal operation
X H Powered Powered L H Inputs disabled,
fail-safe output
X4 X
4 Unpowered Powered L H Fail-safe output
X4 X
4 Powered Unpowered Indeterminate Indeterminate
1 L means low, H means high, X means don’t care, and NC means not connected.
2 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VDISABLEx refers to the input disable signal on the same side as the VIx inputs. VDDI and
VDDO refer to the supply voltages on the input and output sides of the given channel, respectively.
3 D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section.
4 Input pins (VIx, DISABLEx) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry.
Table 20. ADuM240E/ADuM241E/ADuM242E Truth Table (Positive Logic)
VIx Input1, 2 VEx Input1, 2 V
DDI State2 V
DDO State2
Default Low (E0),
VOx Output1, 2, 3
Default High (E1),
VOx Output1, 2, 3
Test Conditions/
Comments
L H or NC Powered Powered L L Normal operation
H H or NC Powered Powered H H Normal operation
X L Powered Powered Z Z Outputs disabled
L H or NC Unpowered Powered L H Fail-safe output
X4 L
4 Unpowered Powered Z Z Outputs disabled
X4 X
4 Powered Unpowered Indeterminate Indeterminate
1 L means low, H means high, X means don’t care, NC means not connected, and Z means high impedance.
2 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VEx refers to the output enable signal on the same side as the VOx outputs. VDDI and
VDDO refer to the supply voltages on the input and output sides of the given channel, respectively.
3 E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, and E1 is the ADuM240E1/ADuM241E1/ADuM242E1 models. See the Ordering Guide section.
4 Input pins (VIx, VEx) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry.
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 16 of 26
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
1
2
3
4
16
15
14
13
512
611
710
8 9
ADuM240D
TOP VI EW
(No t t o Scale)
V
DD1
GND
1
V
IA
V
IB
V
IC
V
ID
DISABLE
1
GND
1
V
DD2
GND
2
V
OA
V
OB
V
OC
V
OD
NIC
GND
2
NOTES
1. NIC = NO I NTERNAL CO NNE C T IO N.
LEAVE THIS PIN FLOATING.
13576-004
Figure 5. ADuM240D Pin Configuration
1
2
3
4
16
15
14
13
512
611
710
8 9
V
DD1
GND
1
V
IA
V
IB
V
IC
V
ID
NIC
GND
1
V
DD2
GND
2
V
OA
V
OB
V
OC
V
OD
V
E2
GND
2
ADuM240E
TOP VIEW
(No t to Scale)
NOTES
1. NIC = NO I NTERN AL CONN ECTIO N.
LEAVE THIS PIN FLOATING.
13576-005
Figure 6. ADuM240E Pin Configuration
Table 21. Pin Function Descriptions
Pin No.1
ADuM240D ADuM240E Mnemonic Description
1 1 VDD1 Supply Voltage for Isolator Side 1.
2, 8 2, 8 GND1 Ground Reference for Isolator Side 1.
3 3 VIA Logic Input A.
4 4 VIB Logic Input B.
5 5 VIC Logic Input C.
6 6 VID Logic Input D.
7 Not applicable DISABLE1 Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state
determined by the fail-safe option shown in the Ordering Guide.
9, 15 9, 15 GND2 Ground Reference for Isolator Side 2.
10 7 NIC No Internal Connection. Leave this pin floating.
Not Applicable 10 VE2 Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA,
VOB, VOC, and VOD outputs are enabled. When VE2 is low, the VOA, VOB, VOC, and VOD
outputs are disabled to the high-Z state.
11 11 VOD Logic Output D.
12 12 VOC Logic Output C.
13 13 VOB Logic Output B.
14 14 VOA Logic Output A.
16 16 VDD2 Supply Voltage for Isolator Side 2.
1 Reference the AN-1109 Application Note for specific layout guidelines.
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 17 of 26
1
2
3
4
16
15
14
13
512
611
710
8 9
ADuM241D
TOP VI EW
(Not to Scale)
V
DD1
GND
1
V
IA
V
IB
V
IC
V
OD
DISABLE
1
GND
1
V
DD2
GND
2
V
OA
V
OB
V
OC
V
ID
DISABLE
2
GND
2
13576-104
Figure 7. ADuM241D Pin Configuration
1
2
3
4
16
15
14
13
512
611
710
8 9
ADuM241E
TOP VIEW
(Not to Scale)
V
DD1
GND
1
V
IA
V
IB
V
IC
V
OD
V
E1
GND
1
V
DD2
GND
2
V
OA
V
OB
V
OC
V
ID
V
E2
GND
2
13576-105
Figure 8. ADuM241E Pin Configuration
Table 22. Pin Function Descriptions
Pin No.1
ADuM241D ADuM241E Mnemonic Description
1 1 VDD1 Supply Voltage for Isolator Side 1.
2, 8 2, 8 GND1 Ground Reference for Isolator Side 1.
3 3 VIA Logic Input A.
4 4 VIB Logic Input B.
5 5 VIC Logic Input C.
6 6 VOD Logic Output D.
7 Not applicable DISABLE1 Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state
determined by the fail-safe option shown in the Ordering Guide.
Not Applicable 7 VE1 Output Enable 1. Active high logic input. When VE1 is high or disconnected, the VOD
output is enabled. When VE1 is low, the VOD output is disabled to the high-Z state.
9, 15 9, 15 GND2 Ground Reference for Isolator Side 2.
10 Not applicable DISABLE2 Input Disable 2. This pin disables the isolator inputs. Outputs take on the logic state
determined by the fail-safe option shown in the Ordering Guide.
Not Applicable 10 VE2 Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA, VOB,
and VOC outputs are enabled. When VE2 is low, the VOA, VOB, and VOC outputs are disabled
to the high-Z state.
11 11 VID Logic Input D.
12 12 VOC Logic Output C.
13 13 VOB Logic Output B.
14 14 VOA Logic Output A.
16 16 VDD2 Supply Voltage for Isolator Side 2.
1 Reference the AN-1109 Application Note for specific layout guidelines.
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 18 of 26
1
2
3
4
16
15
14
13
512
611
710
8 9
ADuM242D
TOP VI EW
(Not to Scale)
V
DD1
GND
1
V
IA
V
IB
V
OC
V
OD
DISABLE
1
GND
1
V
DD2
GND
2
V
OA
V
OB
V
IC
V
ID
DISABLE
2
GND
2
13576-106
Figure 9. ADuM242D Pin Configuration
1
2
3
4
16
15
14
13
512
611
710
8 9
ADuM242E
TOP VIEW
(Not to Scale)
V
DD1
GND
1
V
IA
V
IB
V
OC
V
OD
V
E1
GND
1
V
DD2
GND
2
V
OA
V
OB
V
IC
V
ID
V
E2
GND
2
13576-107
Figure 10. ADuM242E Pin Configuration
Table 23. Pin Function Descriptions
Pin No.1
ADuM242D ADuM242E Mnemonic Description
1 1 VDD1 Supply Voltage for Isolator Side 1.
2, 8 2, 8 GND1 Ground Reference for Isolator Side 1.
3 3 VIA Logic Input A.
4 4 VIB Logic Input B.
5 5 VOC Logic Output C.
6 6 VOD Logic Output D.
7 Not applicable DISABLE1 Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state
determined by the fail-safe option shown in the Ordering Guide.
Not Applicable 7 VE1 Output Enable 1. Active high logic input. When VE1 is high or disconnected, the VOC and VOD
outputs are enabled. When VE1 is low, the VOC and VOD outputs are disabled to the high-Z
state.
9, 15 9, 15 GND2 Ground Reference for Isolator Side 2.
10 Not applicable DISABLE2 Input Disable 2. This pin disables the isolator inputs. Outputs take on the logic state
determined by the fail-safe option shown in the Ordering Guide.
Not Applicable 10 VE2 Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA and
VOB outputs are enabled. When VE2 is low, the VOA and VOB outputs are disabled to the
high-Z state.
11 11 VID Logic Input D.
12 12 VIC Logic Input C.
13 13 VOB Logic Output B.
14 14 VOA Logic Output A.
16 16 VDD2 Supply Voltage for Isolator Side 2.
1 Reference the AN-1109 Application Note for specific layout guidelines.
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 19 of 26
TYPICAL PERFORMANCE CHARACTERISTICS
0
2
4
6
8
10
12
14
16
0 20 40 60 80 100 120 140 160
I
DD1
SUPPLY CURRENT (mA)
DATA RATE (Mbps)
V
DD1
= V
DD2
= 5V
V
DD1
= V
DD2
= 3.3V
V
DD1
= V
DD2
= 2.5V
V
DD1
= V
DD2
= 1.8V
13576-006
Figure 11. ADuM240D/ADuM240E IDD1 Supply Current vs. Data Rate at
Various Voltages
DATA RATE (Mbps)
0
2
4
6
8
10
12
14
16
0 20 40 60 80 100 120 140 160
IDD2 SUPPLY CURRENT (mA)
VDD1 = VDD2 = 5V
VDD1 = VDD2 = 3. 3V
VDD1 = VDD2 = 2. 5V
VDD1 = VDD2 = 1. 8V
13576-007
Figure 12. ADuM240D/ADuM240E IDD2 Supply Current vs. Data Rate at
Various Voltages
0
2
4
6
8
10
12
14
16
0 20 40 60 80 100 120 140 160
IDD1 SUPP LY CURRENT (mA)
DATA RATE (Mbps)
VDD1 = VDD2 = 5V
VDD1 = VDD2 = 3.3V
VDD1 = VDD2 = 2.5V
VDD1 = VDD2 = 1.8V
13576-113
Figure 13. ADuM241D/ADuM241E IDD1 Supply Current vs. Data Rate at
Various Voltages
0
2
4
6
8
10
12
14
16
0 20 40 60 80 100 120 140 160
I
DD2
SUPP LY CURRENT (mA)
DATA RATE (Mbps)
V
DD1
= V
DD2
= 5V
V
DD1
= V
DD2
= 3.3V
V
DD1
= V
DD2
= 2.5V
V
DD1
= V
DD2
= 1.8V
13576-114
Figure 14. ADuM241D/ADuM241E IDD2 Supply Current vs. Data Rate at
Various Voltages
0
2
4
6
8
10
12
14
16
0 20 40 60 80 100 120 140 160
I
DD1
SUPP LY CURRENT (mA)
DATA RATE (Mbps)
V
DD1
= V
DD2
= 5V
V
DD1
= V
DD2
= 3.3V
V
DD1
= V
DD2
= 2.5V
V
DD1
= V
DD2
= 1.8V
13576-115
Figure 15. ADuM242D/ADuM242E IDD1 Supply Current vs. Data Rate at
Various Voltages
0
2
4
6
8
10
12
14
16
0 20 40 60 80 100 120 140 160
I
DD2
SUPP LY CURRENT ( m A)
DATA RATE (Mbps)
V
DD1
= V
DD2
= 5V
V
DD1
= V
DD2
= 3.3V
V
DD1
= V
DD2
= 2.5V
V
DD1
= V
DD2
= 1.8V
13576-116
Figure 16. ADuM242D/ADuM242E IDD2 Supply Current vs. Data Rate at
Various Voltages
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 20 of 26
0
2
4
6
8
10
12
14
–40 –20 0 20 40 60 80 100 120 140
PROPAGAT ION DE LAY,
t
PHL
(ns)
TEMPERATURE (°C)
V
DD1
= V
DD2
= 5V
V
DD1
= V
DD2
= 3.3V
V
DD1
= V
DD2
= 2.5V
V
DD1
= V
DD2
= 1.8V
13576-008
Figure 17. Propagation Delay, tPLH vs. Temperature at Various Voltages
–40 –20 0 20 40 60 80 100 120 140
0
2
4
6
8
10
12
14
TE M P E RATURE ( °C)
PROPAGAT ION DELAY, t
PHL
(ns)
V
DD1
= V
DD2
= 5V
V
DD1
= V
DD2
= 3.3V
V
DD1
= V
DD2
= 2.5V
V
DD1
= V
DD2
= 1.8V
13576-009
Figure 18. Propagation Delay, tPHL vs. Temperature at Various Voltages
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 21 of 26
THEORY OF OPERATION
The ADuM240D/ADuM240E/ADuM241D/ADuM241E/
ADuM242D/ADuM242E use a high frequency carrier to
transmit data across the isolation barrier using iCoupler chip
scale transformer coils separated by layers of polyimide isolation.
Using an on/off keying (OOK) technique and the differential
architecture shown in Figure 19 and Figure 20, the ADuM240D/
ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
have very low propagation delay and high speed. Internal regulators
and input/output design techniques allow logic and supply
voltages over a wide range from 1.7 V to 5.5 V, offering voltage
translation of 1.8 V, 2.5 V, 3.3 V, and 5 V logic. The architecture
is designed for high common-mode transient immunity and
high immunity to electrical noise and magnetic interference.
Radiated emissions are minimized with a spread spectrum
OOK carrier and other techniques.
Figure 19 illustrates the waveforms for models of the ADuM240D/
ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
that have the condition of the fail-safe output state equal to low,
where the carrier waveform is off when the input state is low.
If the input side is off or not operating, the low fail-safe output
state (ADuM240D0/ADuM240E0/ADuM241D0/ADuM241E0/
ADuM242D0/ADuM242E0) sets the output to low. For the
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/
ADuM242E that have a high fail-safe output state, Figure 20
illustrates the conditions where the carrier waveform is off
when the input state is high. When the input side is off or not
operating, the high fail-safe output state (ADuM240D1/
ADuM240E1/ADuM241D1/ADuM241E1/ADuM242D1/
ADuM242E1) sets the output to high. See the Ordering Guide
for the model numbers that have the fail-safe output state of low
or the fail-safe output state of high.
TRANSMITTER
GND
1
GND
2
V
IN
V
OUT
RECEIVER
REGULATOR REGULATOR
13576-014
Figure 19. Operational Block Diagram of a Single Channel with a Low Fail-Safe Output State
TRANSMITTER
GND
1
GND
2
V
IN
V
OUT
RECEIVER
REGULATOR REGULATOR
13576-015
Figure 20. Operational Block Diagram of a Single Channel with a High Fail-Safe Output State
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 22 of 26
APPLICATIONS INFORMATION
PCB LAYOUT
The ADuM240D/ADuM240E/ADuM241D/ADuM241E/
ADuM242D/ADuM242E digital isolators require no external
interface circuitry for the logic interfaces. Power supply bypassing
is strongly recommended at the input and output supply pins
(see Figure 21). Bypass capacitors are most conveniently connected
between Pin 1 and Pin 2 for VDD1 and between Pin 15 and Pin 16
for VDD2. The recommended bypass capacitor value is between
0.01 μF and 0.1 μF. The total lead length between both ends of
the capacitor and the input power supply pin must not exceed
10 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9
and Pin 16 must also be considered, unless the ground pair on
each package side is connected close to the package.
V
DD1
GND
1
V
IA
V
IB
V
IC
/V
OC
V
ID
/V
OD
DISABLE
1
/V
E1
/NIC
GND
1
V
DD2
GND
2
V
OA
V
OB
V
IC
/V
OC
V
ID
/V
OD
DISABLE
2
/V
E2
/NIC
GND
2
13576-010
Figure 21. Recommended Printed Circuit Board Layout
In applications involving high common-mode transients, ensure
that board coupling across the isolation barrier is minimized.
Furthermore, design the board layout such that any coupling
that does occur equally affects all pins on a given component
side. Failure to ensure this can cause voltage differentials between
pins exceeding the Absolute Maximum Ratings of the device,
thereby leading to latch-up or permanent damage.
See the AN-1109 Application Note for board layout guidelines.
PROPAGATION DELAY RELATED PARAMETERS
Propagation delay is a parameter that describes the time
required for a logic signal to propagate through a component. The
propagation delay to a Logic 0 output may differ from the
propagation delay to a Logic 1 output.
INPUT (V
Ix
)
OUTPUT (V
Ox
)
t
PLH
t
PHL
50%
50%
13576-011
Figure 22. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these
two propagation delay values and is an indication of how
accurately the timing of the input signal is preserved.
Channel matching is the maximum amount the propagation
delay differs between channels within a single ADuM240D/
ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
component.
Propagation delay skew is the maximum amount the propagation
delay differs between multiple ADuM240D/ADuM240E/
ADuM241D/ADuM241E/ADuM242D/ADuM242E components
operating under the same conditions
JITTER MEASUREMENT
Figure 23 shows the eye diagram for the ADuM240D/ADuM240E/
ADuM241D/ADuM241E/ADuM242D/ADuM242E. The
measurement was taken using an Agilent 81110A pulse pattern
generator at 150 Mbps with pseudorandom bit sequences (PRBS)
2(n − 1), n = 14, for 5 V supplies. Jitter was measured with the
Tektronix Model 5104B oscilloscope, 1 GHz, 10 GSPS with the
DPOJET jitter and eye diagram analysis tools. The result shows a
typical measurement on the ADuM240D/ADuM240E/
ADuM241D/ADuM241E/ADuM242D/ADuM242E with
490 ps p-p jitter.
105
0
1
2
3
4
V
O
L
T
AGE ( V )
5
0
TIME (ns)
–5–10
13576-012
Figure 23. ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/
ADuM242E Eye Diagram
INSULATION LIFETIME
All insulation structures eventually break down when subjected
to voltage stress over a sufficiently long period. The rate of
insulation degradation is dependent on the characteristics of the
voltage waveform applied across the insulation as well as on the
materials and material interfaces.
The two types of insulation degradation of primary interest are
breakdown along surfaces exposed to the air and insulation
wear out. Surface breakdown is the phenomenon of surface
tracking, and the primary determinant of surface creepage
requirements in system level standards. Insulation wear out is the
phenomenon where charge injection or displacement currents
inside the insulation material cause long-term insulation
degradation.
Surface Tracking
Surface tracking is addressed in electrical safety standards by
setting a minimum surface creepage based on the working voltage,
the environmental conditions, and the properties of the insulation
material. Safety agencies perform characterization testing on the
surface insulation of components that allows the components to be
categorized in different material groups. Lower material group
ratings are more resistant to surface tracking and, therefore, can
provide adequate lifetime with smaller creepage. The minimum
creepage for a given working voltage and material group is in each
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 23 of 26
system level standard and is based on the total rms voltage
across the isolation, pollution degree, and material group. The
material group and creepage for the ADuM240D/ADuM240E/
ADuM241D/ADuM241E/ADuM242D/ADuM242E isolators
are presented in Table 9.
Insulation Wear Out
The lifetime of insulation caused by wear out is determined by
its thickness, material properties, and the voltage stress applied.
It is important to verify that the product lifetime is adequate at
the application working voltage. The working voltage supported
by an isolator for wear out may not be the same as the working
voltage supported for tracking. The working voltage applicable
to tracking is specified in most standards.
Testing and modeling have shown that the primary driver of long-
term degradation is displacement current in the polyimide
insulation causing incremental damage. The stress on the insula-
tion can be broken down into broad categories, such as dc
stress, which causes very little wear out because there is no
displacement current, and an ac component time varying
voltage stress, which causes wear out.
The ratings in certification documents are usually based on
60 Hz sinusoidal stress because this reflects isolation from line
voltage. However, many practical applications have combinations
of 60 Hz ac and dc across the barrier as shown in Equation 1.
Because only the ac portion of the stress causes wear out, the
equation can be rearranged to solve for the ac rms voltage, as is
shown in Equation 2. For insulation wear out with the
polyimide materials used in these products, the ac rms voltage
determines the product lifetime.
22
DCRMSACRMS VVV (1)
or
22
DCRMSRMSAC VVV (2)
where:
VRMS is the total rms working voltage.
VAC RMS is the time varying portion of the working voltage.
VDC is the dc offset of the working voltage.
Calculation and Use of Parameters Example
The following example frequently arises in power conversion
applications. Assume that the line voltage on one side of the
isolation is 240 V ac rms and a 400 V dc bus voltage is present
on the other side of the isolation barrier. The isolator material is
polyimide. To establish the critical voltages in determining the
creepage, clearance, and lifetime of a device, see Figure 24 and
the following equations.
ISOL
A
TION VOL
T
AGE
TIME
V
AC RM S
V
RMS
V
DC
V
PEAK
13576-013
Figure 24. Critical Voltage Example
The working voltage across the barrier from Equation 1 is
22
DCRMSACRMS VVV
22 400240
RMS
V
VRMS = 466 V
This VRMS value is the working voltage used together with the
material group and pollution degree when looking up the
creepage required by a system standard.
To determine if the lifetime is adequate, obtain the time varying
portion of the working voltage. To obtain the ac rms voltage,
use Equation 2.
22
DCRMSRMSAC VVV
22 400466
RMSAC
V
VAC RMS = 240 V rms
In this case, the ac rms voltage is simply the line voltage of
240 V rms. This calculation is more relevant when the waveform is
not sinusoidal. The value is compared to the limits for working
voltage in Table 17 for the expected lifetime, less than a 60 Hz
sine wave, and it is well within the limit for a 50-year service life.
Note that the dc working voltage limit in Table 17 is set by the
creepage of the package as specified in IEC 60664-1. This value
can differ for specific system level standards.
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 24 of 26
OUTLINE DIMENSIONS
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-013-AA
10.50 (0.4134)
10.10 (0.3976)
0.30 (0.0118)
0.10 (0.0039)
2.65 (0.1043)
2.35 (0.0925)
10.65 (0.4193)
10.00 (0.3937)
7.60 (0.2992)
7.40 (0.2913)
0.75(0.0295)
0.25(0.0098)
45°
1.27 (0.0500)
0.40 (0.0157)
C
OPLANARITY
0.10 0.33 (0.0130)
0.20 (0.0079)
0.51 (0.0201)
0.31 (0.0122)
SEATING
PLANE
16 9
8
1
1.27 (0.0500)
BSC
03-27-2007-B
Figure 25. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body
(RW-16)
Dimensions shown in millimeters and (inches)
16 9
81
COPLANARITY
0.10
1.27 BSC
12.95
12.80
12.65
7.60
7.50
7.40
2.64
2.50
2.36
1.27
0.41
2.44
2.24
0.25
0.10
10.55
10.30
10.05
0.49
0.35
0.33
0.23
0.76
0.25 45°
0.25 BSC
GAGE
PLANE
COMP L I ANT TO JEDE C S TANDARDS MS- 013-AC
12-13-2017-B
PKG-004586
TOP VIEW
SIDE VIEW
END VIEW
PIN 1
INDICATOR
SEATING
PLANE
Figure 26. 16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]
Wide Body
(RI-16-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model1, 2
Temperature
Range
No. of
Inputs,
VDD1
Side
No. of
Inputs,
VDD2
Side
Withstand
Voltage
Rating (kV rms)
Fail-Safe
Output
State
Input
Disable
Output
Enable
Package
Description
Package
Option
ADuM240D1BRWZ −40°C to +125°C 4 0 5.0 High Yes No 16-Lead SOIC_W RW-16
ADuM240D1BRWZ-RL −40°C to +125°C 4 0 5.0 High Yes No 16-Lead SOIC_W RW-16
ADuM240D0BRWZ −40°C to +125°C 4 0 5.0 Low Yes No 16-Lead SOIC_W RW-16
ADuM240D0BRWZ-RL −40°C to +125°C 4 0 5.0 Low Yes No 16-Lead SOIC_W RW-16
ADuM240E1BRWZ −40°C to +125°C 4 0 5.0 High No Yes 16-Lead SOIC_W RW-16
ADuM240E1BRWZ-RL −40°C to +125°C 4 0 5.0 High No Yes 16-Lead SOIC_W RW-16
ADuM240E0BRWZ −40°C to +125°C 4 0 5.0 Low No Yes 16-Lead SOIC_W RW-16
ADuM240E0BRWZ-RL −40°C to +125°C 4 0 5.0 Low No Yes 16-Lead SOIC_W RW-16
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Rev. D | Page 25 of 26
Model1, 2
Temperature
Range
No. of
Inputs,
VDD1
Side
No. of
Inputs,
VDD2
Side
Withstand
Voltage
Rating (kV rms)
Fail-Safe
Output
State
Input
Disable
Output
Enable
Package
Description
Package
Option
ADuM240E0WBRWZ −40°C to +125°C 4 0 5.0 Low No Yes 16-Lead SOIC_W RW-16
ADuM240E0WBRWZ-RL −40°C to +125°C 4 0 5.0 Low No Yes 16-Lead SOIC_W RW-16
ADuM240D1BRIZ −40°C to +125°C 4 0 5.0 High Yes No 16-Lead SOIC_IC RI-16-2
ADuM240D1BRIZ-RL −40°C to +125°C 4 0 5.0 High Yes No 16-Lead SOIC_IC RI-16-2
ADuM240D0BRIZ −40°C to +125°C 4 0 5.0 Low Yes No 16-Lead SOIC_IC RI-16-2
ADuM240D0BRIZ-RL −40°C to +125°C 4 0 5.0 Low Yes No 16-Lead SOIC_IC RI-16-2
ADuM240E1BRIZ −40°C to +125°C 4 0 5.0 High No Yes 16-Lead SOIC_IC RI-16-2
ADuM240E1BRIZ-RL −40°C to +125°C 4 0 5.0 High No Yes 16-Lead SOIC_IC RI-16-2
ADuM240E0BRIZ −40°C to +125°C 4 0 5.0 Low No Yes 16-Lead SOIC_IC RI-16-2
ADuM240E0BRIZ-RL −40°C to +125°C 4 0 5.0 Low No Yes 16-Lead SOIC_IC RI-16-2
ADuM241D1BRWZ −40°C to +125°C 3 1 5.0 High Yes No 16-Lead SOIC_W RW-16
ADuM241D1BRWZ-RL −40°C to +125°C 3 1 5.0 High Yes No 16-Lead SOIC_W RW-16
ADuM241D0BRWZ −40°C to +125°C 3 1 5.0 Low Yes No 16-Lead SOIC_W RW-16
ADuM241D0BRWZ-RL −40°C to +125°C 3 1 5.0 Low Yes No 16-Lead SOIC_W RW-16
ADuM241E1BRWZ −40°C to +125°C 3 1 5.0 High No Yes 16-Lead SOIC_W RW-16
ADuM241E1BRWZ-RL −40°C to +125°C 3 1 5.0 High No Yes 16-Lead SOIC_W RW-16
ADuM241E1WBRWZ −40°C to +125°C 3 1 5.0 High No Yes 16-Lead SOIC_W RW-16
ADuM241E1WBRWZ-RL −40°C to +125°C 3 1 5.0 High No Yes 16-Lead SOIC_W RW-16
ADuM241E0BRWZ −40°C to +125°C 3 1 5.0 Low No Yes 16-Lead SOIC_W RW-16
ADuM241E0BRWZ-RL −40°C to +125°C 3 1 5.0 Low No Yes 16-Lead SOIC_W RW-16
ADuM241D1BRIZ −40°C to +125°C 3 1 5.0 High Yes No 16-Lead SOIC_IC RI-16-2
ADuM241D1BRIZ-RL −40°C to +125°C 3 1 5.0 High Yes No 16-Lead SOIC_IC RI-16-2
ADuM241D0BRIZ −40°C to +125°C 3 1 5.0 Low Yes No 16-Lead SOIC_IC RI-16-2
ADuM241D0BRIZ-RL −40°C to +125°C 3 1 5.0 Low Yes No 16-Lead SOIC_IC RI-16-2
ADuM241E1BRIZ −40°C to +125°C 3 1 5.0 High No Yes 16-Lead SOIC_IC RI-16-2
ADuM241E1BRIZ-RL −40°C to +125°C 3 1 5.0 High No Yes 16-Lead SOIC_IC RI-16-2
ADuM241E0BRIZ −40°C to +125°C 3 1 5.0 Low No Yes 16-Lead SOIC_IC RI-16-2
ADuM241E0BRIZ-RL −40°C to +125°C 3 1 5.0 Low No Yes 16-Lead SOIC_IC RI-16-2
ADuM242D1BRWZ −40°C to +125°C 2 2 5.0 High Yes No 16-Lead SOIC_W RW-16
ADuM242D1BRWZ-RL −40°C to +125°C 2 2 5.0 High Yes No 16-Lead SOIC_W RW-16
ADuM242D0BRWZ −40°C to +125°C 2 2 5.0 Low Yes No 16-Lead SOIC_W RW-16
ADuM242D0BRWZ-RL −40°C to +125°C 2 2 5.0 Low Yes No 16-Lead SOIC_W RW-16
ADuM242E1BRWZ −40°C to +125°C 2 2 5.0 High No Yes 16-Lead SOIC_W RW-16
ADuM242E1BRWZ-RL −40°C to +125°C 2 2 5.0 High No Yes 16-Lead SOIC_W RW-16
ADuM242E0BRWZ −40°C to +125°C 2 2 5.0 Low No Yes 16-Lead SOIC_W RW-16
ADuM242E0BRWZ-RL −40°C to +125°C 2 2 5.0 Low No Yes 16-Lead SOIC_W RW-16
ADuM242E0WBRWZ −40°C to +125°C 2 2 5.0 Low No Yes 16-Lead SOIC_W RW-16
ADuM242E0WBRWZ-RL −40°C to +125°C 2 2 5.0 Low No Yes 16-Lead SOIC_W RW-16
ADuM242D1BRIZ −40°C to +125°C 2 2 5.0 High Yes No 16-Lead SOIC_IC RI-16-2
ADuM242D1BRIZ-RL −40°C to +125°C 2 2 5.0 High Yes No 16-Lead SOIC_IC RI-16-2
ADuM242D0BRIZ −40°C to +125°C 2 2 5.0 Low Yes No 16-Lead SOIC_IC RI-16-2
ADuM242D0BRIZ-RL −40°C to +125°C 2 2 5.0 Low Yes No 16-Lead SOIC_IC RI-16-2
ADuM242E1BRIZ −40°C to +125°C 2 2 5.0 High No Yes 16-Lead SOIC_IC RI-16-2
ADuM242E1BRIZ-RL −40°C to +125°C 2 2 5.0 High No Yes 16-Lead SOIC_IC RI-16-2
ADuM242E0BRIZ −40°C to +125°C 2 2 5.0 Low No Yes 16-Lead SOIC_IC RI-16-2
ADuM242E0BRIZ-RL −40°C to +125°C 2 2 5.0 Low No Yes 16-Lead SOIC_IC RI-16-2
1 Z = RoHS Compliant Part.
2 The ADuM240E0WBRWZ, ADuM240E0WBRWZ-RL, ADuM241E1WBRWZ, ADuM241E1WBRWZ-RL, ADuM242E0WBRWZ and ADuM242E0WBRWZ–RL are qualified for
automotive applications.
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet
Rev. D | Page 26 of 26
AUTOMOTIVE PRODUCTS
The ADuM240E0W, ADuM241E1W, and ADuM242E0W models are available with controlled manufacturing to support the quality and
reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the
commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade
products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific
product ordering information and to obtain the specific Automotive Reliability reports for these models.
©2015–2018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13576-0-11/18(D)