V23990-P544-A final datasheet Version 05/03 (R) flow PIM 0, 600V Maximum values Parameter Input Rectifier Bridge Gleichrichter Repetitive peak reverse voltage Periodische Ruckw. Spitzensperrspannung Forward current per diode Dauergrenzstrom Surge forward current Stostrom Grenzwert I2t-value Grenzlastintegral Power dissipation per Diode Condition Repetitive peak collector current Periodischer Kollektorspitzenstrom Power dissipation per IGBT Gate-emitter peak voltage Gate-Emitter-Spitzenspannung SC withstand time V IFAV 30 40-limited by wires 200 A A 200 As 36 W IFSM tp=10ms Tj=25C It Tj=150C Th=80C Tc=80C Ptot 2 Tj=150C Th=80C, tp=1ms Tc=80C Th=80C Icpuls Tj=150C Th=80C Ptot IC A IF tp=1ms Tc=80C Th=80C Tj=150C Repetitive peak collector current Periodischer Kollektorspitzenstrom Power dissipation per IGBT Verlustleistung pro IGBT Gate-emitter peak voltage Gate-Emitter-Spitzenspannung SC withstand time Kurzschluverhalten copyright by Tyco Electronics W 18 Th=80C, Kollektor-Dauergleichstrom 41 us Tj=150C Tj=150C A 10 Diode Inverter Diode Wechselrichter DC forward current Transistor BRC Transistor Wechselrichter Collector-emitter break down voltage Kollektor-Emitter-Sperrspannung DC collector current 30 V Kurzschluverhalten Th=80C Tc=80C A 20 tSC Tj=150C 15 VGE VGE=15V Verlustleistung pro Diode V 62 Tj150C VCE=VCEBR Repetitive peak forward current Periodischer Spitzenstrom Power dissipation per Diode 600 20-limited by wires Tc=80C Dauergleichstrom 2 54 VCE Verlustleistung pro IGBT Unit 1600 tp=10ms Kollektor-Dauergleichstrom Datasheet values max. VRRM Th=80C; Tc=80C Tj=25C DC current Verlustleistung pro Diode Transistor Inverter Transistor Wechselrichter Collector-emitter break down voltage Kollektor-Emitter-Sperrspannung DC collector current Symbol 20-limited by wires IFRM Ptot 37 A 29 W 44 VCE 600 V Th=80C IC 9 A tp=1ms Th=80C Icpuls 17 A Tj=150C Th=80C Ptot W VGE 27 41 20 tSC 10 us Tj150C VCE=600/1200 V 12 VGE=15V Rupert-Mayer-Str. 44, D81359 Munchen V power.switches@tycoelectronics.com V23990-P544-A final datasheet Version 05/03 (R) flow PIM 0, 600V Maximum values Parameter Diode BRC Diode BRC DC forward current Condition Tj=150C Symbol Th=80C IF Datasheet values max. 13 Unit A Dauergleichstrom Tj=150C Repetitive peak forward current Periodischer Spitzenstrom Power dissipation per Diode Verlustleistung pro Diode tp=1ms Th=80C IFRM 26 A Tj=150C Th=80C Ptot 23 35 W Tjmax 150 C Tstg -40...+125 C Top -40...+125 C Vis 4000 Vdc min 12,7 mm min 12,7 mm 17 Thermal properties Thermische Eigenschaften max. Chip temperature max. Chiptemperatur Storage temperature Lagertemperatur Operation temperature Betriebstemperatur Insulation properties Modulisolation Insulation voltage Isolationsspannung Creepage distance Kriechstrecke Clearance Luftstrecke copyright by Tyco Electronics t=1min Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycoelectronics.com V23990-P544-A final datasheet Version 05/03 (R) flow PIM 0, 600V Characteristic values Description Symbol Conditions T(C) Datasheet values Other conditions (Rgon-Rgoff) VR(V) IC(A) VCE(V) IF(A) VDS(V) Id(A) VGE(V) VGS(V) Min Unit Typ Max 1,22 1,21 0,92 0,81 0,01 0,013 1,45 Input Rectifier Bridge Gleichrichter Forward voltage Durchlapannung Threshold voltage (for power loss calc. only) Schleusenspannung Slope resistance (for power loss calc. only) Ersatzwiderstand Reverse current Sperrstrom Thermal resistance chip to heatsink per chip VF Vto rt Ir Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=150C 30 30 30 1200 Warmewiderstand Chip-Kuhlkorper pro Chip V Ohm 0,02 4 Thermal grease thickness50um Warmeleitpaste Dicke50um = 0,61 W/mK RthJH V 1,95 mA K/W 1,287 Transistor Inverter, inductive load Transistor Wechselrichter Gate emitter threshold voltage Gate-Schwellenspannung Collector-emitter saturation voltage Kollektor-Emitter Sattigungsspannung Collector-emitter cut-off Kollektor-Emitter Reststrom Gate-emitter leakage current Gate-Emitter Reststrom Integrated Gate resistor Integrirter Gate Widerstand Turn-on delay time Einschaltverzogerungszeit Rise time Anstiegszeit Turn-off delay time Abschaltverzogerungszeit Fall time Fallzeit Turn-on energy loss per pulse Einschaltverlustenergie pro Puls Turn-off energy loss per pulse Abschaltverlustenergie pro Puls Input capacitance Eingangskapazitat Output capacitance Ausgangskapazitat Reverse transfer capacitance Ruckwirkungskapazitat Gate charge Gate Ladung Thermal resistance chip to heatsink per chip Warmewiderstand Chip-Kuhlkorper pro Chip VGE(th) VCE(sat) ICES IGES Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C VCE=VGE 0,0004 15 15 0 600 25 0 Rgint td(on) tr td(off) tf Eon Eoff Cies Coss Crss QGate 3 4 5 V 2,16 2,57 2,8 V 0,1 2 200 mA Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Rgon=40Ohm Rgoff=20Ohm Rgon=40Ohm Rgoff=20Ohm Rgon=40Ohm Rgoff=20Ohm Rgon=40Ohm Rgoff=20Ohm Rgon=40Ohm Rgoff=20Ohm Rgon=40Ohm Rgoff=20Ohm f=1MHz 15 300 Thermal resistance chip to case per chip Warmewiderstand Chip-Gehause pro Chip Ohm 15 ns 18 15 300 15 ns 19 15 300 15 ns 242 15 300 15 ns 32 15 300 15 mWs 0,324 15 300 15 mWs 0 25 0,368 0,8 f=1MHz 0 25 0,084 0,101 nF f=1MHz 0 25 0,052 0,062 nF 15 480 76 99 nC 15 Thermal grease thickness50um Warmeleitpaste Dicke50um = 0,61 W/mK RthJH nA 0,96 nF 1,7 K/W 1,122 Diode Inverter Diode Wechselrichter Diode forward voltage Durchlaspannung Peak reverse recovery current Ruckstromspitze Reverse recovery time Sperreverzogerungszeit Reverse recovered charge Sperrverzogerungsladung Reverse recovered energy Sperrverzogerungsenergie Thermal resistance chip to heatsink per chip Warmewiderstand Chip-Kuhlkorper pro Chip Thermal resistance chip to case per chip Warmewiderstand Chip-Gehause pro Chip copyright by Tyco Electronics VF IRRM trr Qrr Erec RthJH Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 15 Rgon=40Ohm 15 300 1,96 1,55 15 2,3 V A 19 Rgon=40Ohm 15 300 15 ns 58 Rgon=40Ohm 15 300 15 uC 0,65 Rgon=40Ohm 15 300 15 mWs 0,078 Thermal grease thickness50um Warmeleitpaste Dicke50um = 0,61 W/mK Rupert-Mayer-Str. 44, D81359 Munchen 2,43 K/W 1,6038 power.switches@tycoelectronics.com V23990-P544-A final datasheet Version 05/03 (R) flow PIM 0, 600V Characteristic values Description Symbol Conditions T(C) Datasheet values Other conditions (Rgon-Rgoff) VR(V) IC(A) VCE(V) IF(A) VDS(V) Id(A) VGE(V) VGS(V) Unit Min Typ Max 3 4 5 V 2,24 2,65 2,6 V 0,03 0,7 200 mA Transistor BRC Transistor BRC Gate emitter threshold voltage Gate-Schwellenspannung Collector-emitter saturation voltage Kollektor-Emitter Sattigungsspannung Collector-emitter cut-off Kollektor-Emitter Reststrom Gate-emitter leakage current Gate-Emitter Reststrom Turn-on delay time Einschaltverzogerungszeit Rise time Anstiegszeit Turn-off delay time Abschaltverzogerungszeit Fall time Fallzeit Turn-on energy loss per pulse Einschaltverlustenergie pro Puls Turn-off energy loss per pulse Abschaltverlustenergie pro Puls SC withstand time Kurzschluverhalten Input capacitance Eingangskapazitat Output capacitance Ausgangskapazitat Reverse transfer capacitance Ruckwirkungskapazitat Gate charge Gate Ladung Thermal resistance chip to heatsink per chip Warmewiderstand Chip-Kuhlkorper pro Chip VGE(th) VCE(sat) ICES IGES td(on) tr td(off) tf Eon Eoff Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 0,0002 15 Rgon=80Ohm Rgof=40Ohm Rgon=80Ohm Rgof=40Ohm Rgon=80Ohm Rgof=40Ohm Rgon=80Ohm Rgof=40Ohm Rgon=80Ohm Rgof=40Ohm Rgon=80Ohm Rgof=40Ohm 7 0 600 25 0 15 300 7 Ciss Coss Cies Qgate ns 15 300 7 ns 17 15 300 7 ns 195 15 300 7 ns 28 15 300 7 uWs 0,151 15 300 7 uWs 0,148 us Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Ir trr Qrr Erec f=1MHz 0 25 0,35 0,42 nF f=1MHz 0 25 0,038 0,046 nF f=1MHz 0 25 0,023 0,028 nF 15 480 32 42 nC 6 Thermal grease thickness50um Warmeleitpaste Dicke50um = 0,61 W/mK RthJH VF nA 15 tSC Thermal resistance chip to case per chip Warmewiderstand Chip-Gehause pro Chip Diode BRC Diode BRC Diode forward voltage Durchlaspannung Reverse current Sperrstrom Reverse recovery time Sperreverzogerungszeit Reverse recovered charge Sperrverzogerungsladung Reverse recovery energy Sperrverzogerungsenergie Thermal resistance chip to heatsink per chip Warmewiderstand Chip-Kuhlkorper pro Chip VCE=VGE Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 2,97 1,9602 7 Rgon=80Ohm 15 300 7 Rgon=80Ohm 15 300 7 1,49 1,38 Thermal resistance chip to case per chip Warmewiderstand Chip-Gehause pro Chip 2,15 V 250 uA ns 202 Rgon=80Ohm 15 300 7 uC 0,67 Rgon=80Ohm 15 300 7 uWs 0,14 Thermal grease thickness50um Warmeleitpaste Dicke50um = 0,61 W/mK RthJH K/W 3,66 K/W NTC-Thermistor NTC-Widerstand Rated resistance Nennwiderstand Deviation of R100 Abweichung von R100 Power dissipation given Epcos-Typ Verlustleistung Epcos-Typ angeben B-value B-Wert copyright by Tyco Electronics R25 Tj=25C Tol. 5% DR/R Tc=100C R100=1503Ohm P Tj=25C B(25/100) Tj=25C Tol. 3% Rupert-Mayer-Str. 44, D81359 Munchen 20,9 22 23,1 kOhm 2,9 %/K 210 mW 3980 K power.switches@tycoelectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Output inverter Figure 1. Typical output characteristics Figure 2. Typical output characteristics Output inverter IGBT Output inverter IGBT Ic= f(VCE) Ic= f(VCE) 40 IC (A) IC (A) 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 0 1 2 3 parameter: tp = 250 s VGE parameter: from: in Figure 3. VCE (V) 4 0 5 Tj = 25 C 6 V to 16 V 1 V steps 1 VGE parameter: Typical transfer characteristics Figure 4. 2 3 parameter: tp = 250 s from: in 4 VCE (V) 5 Tj = 125 C 6 V to 16 V 1 V steps Output inverter IGBT Typical diode forward current as a function of forward voltage Ic= f(VGE) Output inverter FRED IF=f(VF) IC (A) 40 IF (A) 60 35 25 oC 50 125 oC 30 125 oC 25 oC 40 25 20 30 15 20 10 10 5 0 0 3 6 parameter: tp = 250 s copyright by Tyco Electronics 9 VCE = V GE (V) 12 0 0 0,5 11 V Rupert-Mayer-Str. 44, D81359 Munchen 1 1,5 2 2,5 3 VF (V) 3,5 parameter: tp = 250 s power.switches@tycolectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Output inverter Figure 5. Figure 6. Typical switching energy losses as a function of collector current Output inverter IGBT E = f (RG) E = f (Ic) E (mWs) 0,7 E (mWs) Typical switching energy losses as a function of gate resistor Output inverter IGBT 0,6 0,7 0,6 0,5 0,5 0,4 0,4 Eoff Eoff Eon Eon 0,3 0,3 0,2 0,2 Erec 0,1 0,1 0 0 5 10 15 20 25 I C (A) 30 Erec 0 0 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V RGon = 2*RGoff = 40 Figure 7. 30 60 90 120 150 R G ( ) 180 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V Ic = 15 A Figure 8. Typical switching times as a function of collector current Output inverter IGBT Typical switching times as a function of gate resistor Output inverter IGBT t = f (RG) t = f (Ic) 10 t ( s) t ( s) 1 tdoff 0,1 tdoff 1 tf tdon 0,1 tf tdon tr 0,01 tr 0,01 0,001 0 5 10 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V RGon = 2*RGoff = 40 copyright by Tyco Electronics 15 20 25 IC (A) 30 0,001 0 30 60 90 120 150 RG () 180 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V Ic = 15 A Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycolectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Output inverter Figure 9. Figure 10. Typical reverse recovery time as a function of IGBT turn on gate resistor Output inverter FRED diode trr = f (Rgon) Typical reverse recovery current as a function of IGBT turn on gate resistor Output inverter FRED diode IRRM = f (Rgon) 0,1 IrrM (A) t rr( s) 30 25 0,08 20 0,06 15 0,04 10 0,02 5 0 0 0 25 50 Tj = VR = IF= 75 100 125 0 R Gon ( )175 150 30 125 C 300 V 15 A 60 Tj = VR = IF= Figure 11. Typical reverse recovery charge as a Figure 12. function of IGBT turn on gate resistor Output inverter FRED diode Qrr = f (Rgon) 90 120 150 R Gon ( ) 180 125 C 300 V 15 A Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor Output inverter FRED diode dI0/dt,dIrec/dt= f (Rgon) 1800 direc / dt (A/ s) Qrr ( C) 1 0,9 1600 0,8 1400 0,7 1200 0,6 1000 dI0/dt 0,5 800 0,4 600 0,3 dIrec/dt 0,2 400 0,1 200 0 0 25 Tj = VR = IF= 50 125 C 300 V 15 A copyright by Tyco Electronics 75 100 125 R Gon ( )175 150 0 0 30 60 Tj = VR = IF= Rupert-Mayer-Str. 44, D81359 Munchen 90 120 150 R Gon ( )180 125 C 300 V 15 A power.switches@tycolectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Output inverter Figure 13. IGBT transient thermal impedance Figure 14. as a function of pulse width FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 -2 10-2 10-5 10-4 10-3 10-2 Parameter: D = tp / T 10-1 100 t p (s) RthJH= 1,70 K/W 101 10-5 10-4 10-3 10-2 Parameter: D = tp / T FRED thermal model values R (C/W) R (C/W) copyright by Tyco Electronics Tau (s) 6,9E+00 6,3E-01 1,2E-01 2,2E-02 2,8E-03 0,05 0,22 0,98 0,69 0,35 Rupert-Mayer-Str. 44, D81359 Munchen 100 t p (s) 101 RthJH= 2,43 K/W IGBT thermal model values 0,06 0,23 0,82 0,38 0,13 10-1 Tau (s) 1,4E+01 7,9E-01 1,1E-01 3,3E-02 3,6E-03 power.switches@tycolectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Output inverter Figure 15. Power dissipation as a Figure 16. function of heatsink temperature Output inverter IGBT Collector current as a function of heatsink temperature Output inverter IGBT Ptot = f (Th) Ic = f (Th) 25 IC (A) Ptot (W) 90 80 20 70 60 15 50 40 10 30 20 5 10 0 0 0 50 100 150 Th ( o C) 50 100 parameter: Tj = 150C parameter: Tj = 150C VGE= 15 V Figure 17. Power dissipation as a Figure 18. 150 Th ( o C) function of heatsink temperature Output inverter FRED Forward current as a function of heatsink temperature Output inverter FRED Ptot = f (Th) IF = f (Th) 65 200 25 IF (A) Ptot (W) 0 200 60 55 20 50 45 40 15 35 30 10 25 20 15 5 10 5 0 0 50 parameter: Tj = 150C copyright by Tyco Electronics 100 150 Th ( o C) 200 0 0 50 100 150 Th ( o C) 200 parameter: Tj = 150C Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycolectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Brake Figure 19. Typical output characteristics Figure 20. Typical output characteristics Brake IGBT Brake IGBT Ic= f(VCE) Ic= f(VCE) 20 IC (A) IC (A) 20 16 16 12 12 8 8 4 4 0 0 0 1 2 3 parameter: tp = 250 s VGE parameter: from: 4 V CE (V) Tj = 25 C 6 V to in 1 V steps 0 5 1 2 3 parameter: tp = 250 s VGE parameter: from: 16 V Figure 21. Typical transfer characteristics Figure 22. V CE (V) 4 Tj = 125 C 6 V to in 1 V steps 16 V Brake IGBT Typical diode forward current as a function of forward voltage Ic= f(VGE) Brake FRED 25 5 IF=f(VF) IF (A) IC (A) 25 20 20 25 o C 125 o C 15 15 10 10 125 25 o C 5 5 0 0 0 2 4 parameter: tp = 250 s copyright by Tyco Electronics 6 8 VCE = 10 V V 10 GE (V) 12 0 0,5 1 1,5 2 2,5 V F (V) 3 parameter: tp = 250 s Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycolectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Brake Figure 23. Typical switching energy losses Figure 24. as a function of collector current Brake IGBT Typical switching energy losses as a function of gate resistor Brake IGBT E = f (Ic) E = f (RG) 0,3 E (mWs) E (mWs) 0,3 Eon 0,25 0,25 Eoff Eoff 0,2 Eon 0,2 Erec 0,15 0,15 0,1 0,1 0,05 0,05 0 Erec 0 0 2 4 6 8 10 12 I (A) 14 C 0 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V RGon = 2*RGoff = 40 50 100 150 200 300R G ( ) 350 250 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V Ic = 7A Figure 25. Typical switching times as a Figure 26. function of collector current Brake IGBT Typical switching times as a function of gate resistor Brake IGBT t = f (Ic) t = f (RG) 1 t ( s) t ( s) 1 tdoff tdoff 0,1 0,1 tdon tf tf tr tr 0,01 0,01 tdon 0,001 0 2 4 6 inductive load, Tj = 125 C VCE = 300 V VGE= 15 V RGon = 2*RGoff = 40 copyright by Tyco Electronics 8 10 12 IC (A) 14 0,001 0 50 100 150 200 250 300 350 RG () inductive load, Tj = 125 C VCE = 300 V VGE= 15 V Ic = 7A Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycolectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Brake Figure 27. IGBT transient thermal impedance Figure 28. as a function of pulse width FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10 -2 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10 -5 -4 -3 10 10 -2 10 Parameter: D = tp / T -1 0 10 10 t p (s) 10 1 10 -5 RthJH= 2,97 K/W -4 -3 10 10 -2 Parameter: D = tp / T Figure 29. Power dissipation as a Figure 30. -1 10 10 0 t p (s) 101 RthJH= 3,66 K/W function of heatsink temperature Brake IGBT Collector current as a function of heatsink temperature Brake IGBT Ptot = f (Th) Ic = f (Th) 70 15 IC (A) Ptot (W) 10 60 12 50 9 40 30 6 20 3 10 0 0 0 50 parameter: Tj = 150C copyright by Tyco Electronics 100 150 Th ( o C) 200 0 50 100 150 Th ( o C) 200 parameter: Tj = 150C VGE= 15 V Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycolectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Brake Figure 31. Power dissipation as a Figure 32. function of heatsink temperature Brake FRED Forward current as a function of heatsink temperature Brake FRED Ptot = f (Th) IF = f (Th) 20 IF (A) Ptot (W) 55 50 45 15 40 35 30 10 25 20 15 5 10 5 0 0 50 parameter: Tj = 150C copyright by Tyco Electronics 100 150 Th ( o C) 200 0 0 50 100 150 Th ( o C) 200 parameter: Tj = 150C Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycolectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Input rectifier bridge Figure 33. Typical diode forward current as a function of forward voltage Figure 34. Diode transient thermal impedance as a function of pulse width IF=f(VF) Rectifier diode ZthJH = f(tp) 101 25 ZthJC (K/W) IF (A) 30 20 10 15 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 25C 125C 10 10-1 5 0 0 0,5 VF (V) 1 1,5 10 -2 10-5 10-4 10-3 parameter: tp = 250 s Parameter: D = tp / T Figure 35. Power dissipation as a Figure 36. 10-2 10-1 100 t p (s) RthJH= 1,95 K/W function of heatsink temperature Rectifier diode Forward current as a function of heatsink temperature Rectifier diode Ptot = f (Th) IF = f (Th) 80 101 IF (A) Ptot (W) 50 70 45 40 60 35 50 30 40 25 30 20 15 20 10 10 5 0 0 50 parameter: Tj = 150C copyright by Tyco Electronics 100 150 Th ( o C) 0 200 0 50 100 150 Th ( o C) 200 parameter: Tj = 150C Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycolectronics.com V23990-P544-A final datasheet version 05/03 flow PIM(R) 0, 600V Thermistor Figure 37. Typical NTC characteristic as a function of temperature RT = f (T) NTC-typical temperature characteristic RT (k) 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 25 35 45 55 65 75 85 95 105 115 125 T (C) copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 Munchen power.switches@tycolectronics.com V23990-P544-A final data flow PIM(R) 0, 600V version 0603 Output inverter application General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Rgon= Figure 1. Typical avarage static loss as a function of output current IGBT Rgoff= 20 ohms Typical avarage static loss as a function of output current FRED Ploss=f(Iout) Ploss=f(Iout) 14 Ploss (W) 24 Ploss (W) Figure 2. 40 ohms Mi*cosfi=1 22 Mi*cosfi=-1 12 20 18 10 16 14 8 12 6 10 8 4 6 4 2 2 Mi*cosfi=-1 0 0 2 4 6 8 10 12 14 16 0 18 20 Iout (A) Conditions: Tj=125C Modulation index * cosfi parameter Mi*cosfi from -1,00 to in 0,20 steps 2 4 6 8 10 12 14 16 1,00 Figure 4. 1,00 Typical avarage switching loss as a function of output current FRED Ploss=f(Iout) Ploss (W) Ploss=f(Iout) 0,8 Ploss (W) 7,0 18 20 Iout (A) Conditions: Tj=125C Modulation index * cosfi parameter Mi*cosfi from -1,00 to in 0,20 steps Figure 3. Typical avarage switching loss as a function of output current IGBT Mi*cosfi=1 0 fsw=16kHz 0,7 6,0 fsw=16kHz 0,6 5,0 0,5 4,0 0,4 3,0 0,3 2,0 0,2 1,0 0,1 fsw=2kHz fsw=2kHz 0,0 0,0 0 5 Conditions: Switching freq. parameter 10 Tj=125C DC link= fsw from in copyright by Tyco Electronics 15 Iout (A) 20 0 5 Conditions: 320 V 2 kHz to * 2 steps 16 kHz Switching freq. parameter Rupert-Mayer-Strae 44, D81359 Munchen 10 15 Tj=125C DC link= fsw from in 320 V 2 kHz to * 2 steps Iout (A) 20 16 kHz power.switches@tycolectronics.com V23990-P544-A final data flow PIM(R) 0, 600V version 0603 Output inverter application General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Rgon= Figure 5. Typical available 50Hz output current as a function of Mi*cosfi Phase Figure 6. Iout (A) Iout (A) 22 Th=60C 20 20 ohms Typical available 50Hz output current as a function of switching frequency Iout=f(fsw) 22 20 18 18 16 16 14 14 12 12 Th=60C 10 Th=100C 8 8 6 6 4 4 2 2 0 -1,0 Rgoff= Phase Iout=f(Mi*cosfi) 10 40 ohms Th=100C 0 -0,8 -0,6 -0,4 -0,2 Conditions: 0,0 0,2 0,4 Tj=125C DC link= fsw= Th from in Heatsink temp. parameter 0,6 0,8 1,0 Mi*cosfi 1 10 Conditions: 320 16 60 5 V kHz C to 100 C C steps Heatsink temp. parameter Figure 7. Typical available 50Hz output current as a function of Mi*cosfi and fsw Phase Figure 8. Iout (Apeak) -0,80 Iout (A) -0,60 Tj=125C DC link= Mi*cosfi= Th from in 100 320 V 0,8 60 C to 100 C 5 C steps Typical available 0Hz output current as a function of switching frequency Phase Iout=f(fsw,Mi*cosfi) -1,00 fsw (kHz) Ioutpeak=f(fsw) 20 Th=60C -0,40 15 18-20 16-18 0,00 14-16 0,20 12-14 10-12 Mi*cosfi -0,20 10 0,40 0,60 Th=100C 5 0,80 1,00 1 Conditions: 2 4 fsw Tj=125C DC link= Th= copyright by Tyco Electronics 8 16 32 64 0 1 10 Conditions: 320 V 80 C Heatsink temp. parameter Rupert-Mayer-Strae 44, D81359 Munchen Tj=125C DC link= Th from in fsw (kHz) 100 320 V 60 C to 100 C 5 C steps power.switches@tycolectronics.com V23990-P544-A final data flow PIM(R) 0, 600V version 0603 Output inverter application General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Figure 9. Typical available electric peak output power as a function of heatsink temperature 5,0 Rgoff= Inverter Pout=f(Th) 6,0 40 ohms 20 ohms Figure 10. Typical efficiency as a function of output power efficiency (%) Pout (kW) Inverter Rgon= efficiency=f(Pout) 100,0 99,5 99,0 2kHz 98,5 4,0 2kHz 98,0 3,0 97,5 16kHz 97,0 2,0 96,5 16kHz 96,0 1,0 95,5 0,0 95,0 60 65 70 75 80 85 90 95 o 100 Th ( C) Conditions: Tj=125C DC link= 320 V Modulation index Mi= 1 cosfi= 0,80 Switching freq. fsw from 2 kHz to parameter in * 2 steps 0,0 1,0 2,0 3,0 4,0 5,0 Pout (kW) Conditions: 16 kHz Tj=125C DC link= 320 V Modulation index Mi= 1 cosfi= 0,80 Switching freq. fsw from 2 kHz to parameter in * 2 steps 16 kHz Figure 11. Typical available overload factor as a function of motor power and switching frequency Overload (%) Inverter Ppeak/Pnom=f(Pnom,fsw) Conditions: Tj=125C DC link= 320 V Modulation index Mi= 1 cosfi= 0,8 Switching freq. fsw from 1 kHz to parameter in * 2 steps Heatsink temperature= 80 C Motor efficiency= 0,85 400 350 300 250 16 kHz 200 150 Switching frequency (kHz) Motor nominal power (HP/kW) 100 0,75 / 0,55 1,00 / 0,74 1,50 / 1,10 2,00 / 1,47 3,00 / 2,21 5,00 / 3,68 7,50 / 5,52 1 753 565 377 282 188 113 0 2 753 565 377 282 188 113 0 4 747 560 373 280 187 112 0 8 714 536 357 268 179 0 0 16 654 490 327 245 163 0 0 copyright by Tyco Electronics Rupert-Mayer-Strae 44, D81359 Munchen power.switches@tycolectronics.com V23990-P544-A final data flow PIM(R) 0, 600V copyright by Tyco Electronics version 0603 Rupert-Mayer-Strae 44, D81359 Munchen power.switches@tycolectronics.com