©2001 Fairch ild Semicond uctor C orpo ration HUF75339G3, HUF75339P3, HUF75339S3S Rev. B
HUF75339G3, HUF75339P3, HUF75339S3S
75A, 55 V, 0.012 Ohm, N-Channel Ul traFET
Power MOSFETs
These N-Channel power MOSFETs
are manufactured using the
inno vat ive UltraFET ® process . This
advanced process technology
achieves the lowest possible on-resistance per silicon area,
resulting in outstandi ng p erformance. T his device is c apa ble
of withstanding high energy in the avalan ch e mode and the
diode exhibits very low rever se rec ov ery time and stor ed
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers, low-
v oltage bus switches , and pow er manag em ent in port able
and battery-operated products.
Formerly developmental type TA75339.
Features
75A, 55V
Simulation Models
- Temperature Compensated PSPICE® and SABER™
Models
- SPICE and SABER Thermal Impedance Models
A vailable on the WEB at: www.fairchildsemi.com
Peak Current vs Pulse Wi dth Curve
UIS Rating Curve
Related Literature
- TB334, “G uid eli ne s for Soldering Surface Mount
Components to PC Boards”
Symbol
Packaging
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html
For severe environments, see our Autom otive HUFA series.
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
Ordering Information
PART NUMBER PACKAGE BRAND
HUF75339G3 TO-247 75339G
HUF75339P3 TO-220AB 75339P
HUF75339S3S TO-263AB 75339S
NOTE: When ordering, use the entire part number. Add the suffix T to
obtain the TO-263AB variant in tape and reel, e.g., HUF75339S3ST.
D
G
S
JEDEC STYLE TO-247 JEDEC TO-220AB
JEDEC TO -263AB
SOURCE
DRAIN
GATE
DRAIN
(TAB)
DRAIN
SOURCE
GATE
DRAIN
(FLANGE)
GATE
SOURCE
DRAIN
(FLANGE)
Data Sheet December 2001
©2001 Fairch ild Semicond uctor C orpo ration HUF75339G3, HUF75339P3, HUF75339S3S Rev. B
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . VDSS 55 V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . VDGR 55 V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 75
Figure 4 A
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figures 6, 14, 15
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
1.35 W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . .TJ, TSTG -55 to 175 oC
Maximum Temper ature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . Tpkg 300
260
oC
oC
CAUTION: St resses above those l isted in “A bsolute Maximu m Rating s” may cause per manent d amage to t he device. This is a str ess on ly rating and operation o f the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source B reakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) 55 - - V
Zero Gate Vo ltage Drain C urrent IDSS VDS = 50V, VGS = 0V - - 1 µA
VDS = 45V, VGS = 0V, TC = 150oC--250µA
Gate to Source Leakage Current IGSS VGS = ±20V - - ±100 nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V
Drain to Source On Resist ance rDS(ON) ID = 75A, VGS = 10V (Figure 9) - 0.010 0.012
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case RθJC (Figure 3) - - 0.74 oC/W
Thermal Resistance Junction to Ambient RθJA TO-247 - - 30 oC/W
TO-220, TO-263 - - 62 oC/W
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time tON VDD = 30V, ID 75A,
RL = 0.4, VGS = 10V,
RGS = 5.1
--110ns
Turn-On De lay Time td(ON) -15- ns
Rise Time tr-60- ns
Turn-Off De lay Time td(OFF) -20- ns
Fall Time tf-25- ns
Turn-Off T ime tOFF - - 70 ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge Qg(TOT) VGS = 0V to 20V VDD = 30V,
ID 75A,
RL = 0.4
Ig(REF) = 1.0mA
(Figure 13)
- 110 130 nC
Gate Charge at 10V Qg(10) VGS = 0V to 10V - 60 75 nC
Threshold Gate Charge Qg(TH) VGS = 0 V to 2V - 3.7 4.5 nC
Gate to Source Gate C harge Qgs -9-nC
Reverse Transfer Capacitance Qgd -23-nC
HUF75339G3, HUF75339P3, HUF75339S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75339G3, HUF75339P3, HUF75339S3S Rev. B
CAPACITANCE SPECIFICATIONS
Input Capacitance CISS VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
- 2000 - pF
Output Capacitance COSS - 700 - pF
Reverse Transfer Capacitance CRSS - 160 - pF
Electrical Specifications TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to D rain Diode Volt age VSD ISD = 75A - - 1.25 V
Reverse Recovery Time trr ISD = 75A, dISD/dt = 100A/µs--85ns
Reverse Recovered Charge QRR ISD = 75A, dISD/dt = 100A/µs - - 160 nC
Typical Performance Curves
FIGURE 1. NORMALIZED PO WER DISSIPATION vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00 25 50 75 100 150
0.2
0.4
0.6
0.8
1.0
1.2
125 17
5
I
D
, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
20
40
60
80
50 75 100 125 150 17
5
025
t, RECTANGULAR PULSE DURATION (s)
SINGLE PULSE
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
10-4 10-3 10-2 10-1 100101
10-5
0.1
1
2
0.01
ZθJC, NORMALIZED
THERMAL IMPEDANCE
HUF75339G3, HUF75339P3, HUF75339S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75339G3, HUF75339P3, HUF75339S3S Rev. B
FIGURE 4. PEAK CURRENT CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
FIGURE 7. SATURATION CHARA CTERISTICS FIGURE 8. TRANSFER CHARA C TERISTICS
Typical Performance Curves (Continued)
101
100
10-1
10-2
10-3
10-4
10-5
50
100
1000 TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 10V
IDM, PEAK CURRENT (A)
t, PULSE WIDTH (s)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
100
500
10 100
1120
0
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
I
D
, DRAIN CURRENT (A)
T
J
= MAX RATED
T
C
= 25
o
C
100
µ
s
10ms
1ms
V
DSS(MAX)
= 55V
LIMITED BY r
DS(ON)
AREA MAY BE
OP E RATION IN THIS
10
100
0.001 0.01 0.1 1 1
0
tAV = (L)(IAS)/(1.3*RATED B VDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*R ATED BVDSS - VDD) +1]
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
STARTING TJ = 25oC
STARTING TJ = 150oC
500
0
30
60
90
120
150
0123
4
PULSE DURATION = 80µs
TC = 25oC
VGS = 5V
VGS = 6V
VDS, DRAIN TO SOURCE VOLTAGE (V)
ID, DRAIN CURRENT (A)
VGS = 10V
VGS = 20V
VGS = 7V
DUTY CYCLE = 0.5% MAX 0
30
60
90
120
150
0 1.5 3.0 4.5 6.0 7.
5
-55oC
175oC
VGS, GATE TO SO URCE VOLTAGE (V)
ID, DRAIN CURRENT (A)
25oC
VDD = 15V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
HUF75339G3, HUF75339P3, HUF75339S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75339G3, HUF75339P3, HUF75339S3S Rev. B
FIGURE 9. NORMALIZED DRAIN T O SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE FIGURE 10. NORMALIZED GATE THRESHOLD VOLT AGE vs
JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED DRAIN T O SOURCE BREAKDO WN
VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE V OLTAGE
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Typical Performance Curves (Continued)
1.0
1.5
2.0
2.5
-40 0 40 80 120 160 200
0.5-80
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
PULSE DURATION = 80µs
VGS = 10V, ID = 75A
DUTY CYCLE = 0.5% MAX
0.8
1.0
1.2
-40 0 40 80 120 160 200
0.4-80
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
THRESHOLD VO LTAGE
VGS = VDS, ID = 250µA
0.6
1.0
1.1
1.2
-40 0 40 80 120 160 200
0.9-80
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
ID = 250µA
BREAKDOWN VOLTAGE
0
750
1500
2250
3000
3750
0 102030405060
C, CAPACITANCE (pF)
VDS, DRA IN TO SOURCE VOLTAGE (V)
COSS
CRSS
CISS
30
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGD
2
4
6
8
10
10 20 30 40 50 600
0
VGS, GATE TO SOURCE VOLTAGE (V)
VDD = 30V
Qg, GATE CHARGE (nC)
ID = 75A
ID = 56A
ID = 37.5A
ID = 18A
WAVEFORMS IN
DESCENDING ORDER:
HUF75339G3, HUF75339P3, HUF75339S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75339G3, HUF75339P3, HUF75339S3S Rev. B
Test Circuits and Wa veforms
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
RL
VGS +
-
VDS
VDD
DUT
IG(REF)
VDD
Qg(TH)
VGS = 2V
Qg(10)
VGS = 10V
Qg(TOT)
VGS = 20
V
VDS
VGS
I
g(REF)
0
0
Qgs Qgd
VGS
RL
RGS DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
HUF75339G3, HUF75339P3, HUF75339S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75339G3, HUF75339P3, HUF75339S3S Rev. B
PSPICE Ele ctrical Model
.SUBCKT HUF75339 2 1 3 ; rev 23 February 1999
CA 12 8 2.80e-9
CB 15 14 2.80e-9
CIN 6 8 1.77e-9
DBODY 7 5 DBODYMOD
DBRE AK 5 11 D B REAK MOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 59.2
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTH R ES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRA IN 2 5 1.0e - 9
LGATE 1 9 2.0e-9
LSOURCE 3 7 4.7e-10
K1 LSO URCE LGATE 0.0302
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.95e-3
RGATE 9 20 0.34
RLDRAIN 2 5 10
RLGATE 1 9 20
RLSOURCE 3 7 4.7
RSLC1 5 51 RSLCMOD 1.0e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 6.0e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTE M P 18 19 RVTEMPM O D 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMO D
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2B MOD
VBAT 22 1 9 DC 1
ESL C 51 50 VALUE= {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*230),4))}
.MODEL DBOD YMOD D (IS = 3.5e-12 R S = 3.02 e-3 N = 1.0 2 XTI = 5.5 TRS1 = 3.0e-3 TRS2 = 4.0 e-6 CJO = 2.9e-9 TT = 4.35e-8 M = 0 .5)
.MODEL DBREAKMOD D (RS = 8.5e-2 TRS1 = 8.0e- 4TRS2 = 1.0e-7)
.MODEL DPLCA PMOD D (CJO = 2.25e- 9IS = 1e-30 M = 0.8 )
.MODEL MMEDMOD NMOS (VTO = 3.1 KP = 1.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG=0.34)
.MODEL MSTROMOD NMOS (VTO = 3.73 KP = 86.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODE L M WEAKMOD NMOS ( V TO = 2.7 KP = 0.01 IS = 1e-30 N = 1 0 T OX = 1 L = 1u W = 1u RG=3.4)
.MODE L RB REAKM OD RE S (TC1 = 1.08e- 3TC 2 = -2.5e-7)
.MODEL RDRAINMOD RES (TC1 = 2.05e-2 TC2 = 1.6e-5)
.MODEL RSLCMOD RES (TC1 = 6.0e-3 TC2 = -2.8e-6)
.MODEL RSOURCEM OD RES (TC1 = 5.5e-4 TC2 = 1 .75e-5)
.MODEL RVTHRESMOD RES (TC1 = -3.65e-3 TC2 = -6.0e-6)
.MODEL RVTEMPMOD RES (TC1 = -2.3e- 3TC2 = -4.0e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -9 VOFF= -5.5)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.5 VOFF= -9)
.MODEL S2A MOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0 VOF F= 2.1)
.MODEL S2B MOD VSWITCH (RON = 1 e-5 ROFF = 0.1 VON = 2.1 VOFF = 0 )
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PS PI CE Sub-C ircuit for the Power M OSFET Featurin g Glob al
Temperature Options; IEEE Power El ectronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
HUF75339G3, HUF75339P3, HUF75339S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75339G3, HUF75339P3, HUF75339S3S Rev. B
SABER Electrical Model
REV 23 February 1999
template huf75339 n2, n1, n3
electrical n2, n1, n3
{
var i iscl
d..model dbodymod = (is = 3.5e-12, n = 1.02, xti = 5.5, cjo = 2.9e-9, tt = 4.35e-8, m = 0.5)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 2.25e-9, is = 1e-30, n = 10, m = 0.8 )
m..model mmedmod = (type=_n, vto = 3.1, kp = 1.5, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.73, kp = 86.5, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.7, kp = 0.01, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -9, voff = -5.5)
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -5.5, voff = -9)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 2.1)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2.1, voff = 0)
c.ca n12 n8 = 2.8e-9
c.cb n15 n14 = 2.8e-9
c.cin n6 n8 = 1.77e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1.0e-9
l.lgate n1 n9 = 2.0e-9
l.lsourc e n3 n7 = 4.7e-10
k.kl i (l.lgate) i (l.lsource) = l(l.lgate), l(l.lsource), 0.0302
l
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
res.rbreak n17 n18 = 1, tc1 = 1.08e-3, tc2 = -2.5e-7
res.rdbody n71 n5 = 3.02e-3, tc1 = 3.0e-3, tc2 = 4.0e-6
res.rdbreak n72 n5 = 8.5e-2, tc1 = 8.0e-4 , tc2 = 1.0e-7
res.rdrain n50 n16 = 1.95e-3, tc1 = 2.05e-2, tc2 = 1.6e-5
res.rgate n9 n20 = 0.34
res.r ldrain n2 n5 = 10
res. rl g ate n1 n9 = 20
res.rlsource n3 n7 = 4.7
res.rslc1 n5 n51 = 1e-6, tc1 = 6.0e-3, tc2 = -2.8e-6
res.r slc2 n5 n50 = 1e3
res.rsour ce n8 n7 = 6e-3, tc1 = 5.5e-4, t c 2 = 1.75e-5
res.rvtemp n18 n19 = 1, tc1 = -2.3e-3, tc2 = -4.0e-6
res.rvthres n22 n8 = 1, tc1 = -3.65e-3, tc2 = -6.0e-6
spe.ebreak n11 n7 n17 n18 = 59.2
spe.e ds n14 n8 n5 n8 = 1
spe.e gs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1
equations {
i (n51->n50) + = iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n 51))))*((abs(v(n5, n51)*1e6/230))** 4.0))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURC
E
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
HUF75339G3, HUF75339P3, HUF75339S3S
©2001 Fairch ild Semicond uctor C orpo ration HUF75339G3, HUF75339P3, HUF75339S3S Rev. B
SPICE Thermal Model
REV 11 February 1999
HUF75339
CTHERM1 th 6 5.00e-3
CTHERM2 6 5 1 .90e-2
CTHERM3 5 4 7 .95e-3
CTHERM4 4 3 9 .00e-3
CTHERM5 3 2 2 .95e-2
CTHERM6 2 tl 12.55
RTHERM1 th 6 5.04e-3
RTHERM2 6 5 1 .25e-2
RTHERM3 5 4 3 .54e-2
RTHERM4 4 3 1 .98e-1
RTHERM5 3 2 2 .99e-1
RTHERM6 2 tl 3.97e-2
SABER Thermal Model
SABER thermal model HUF75339
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm 1 t h 6 = 5.00e-3
ctherm.ctherm 2 6 5 = 1.90e-2
ctherm.ctherm 3 5 4 = 7.95e-3
ctherm.ctherm 4 4 3 = 9.00e-3
ctherm.ctherm 5 3 2 = 2.95e-2
ctherm.ctherm6 2 tl = 12.55
rtherm.rtherm1 th 6 = 5.04e-3
rtherm.rtherm2 6 5 = 1.25e-2
rtherm.rtherm3 5 4 = 3.54e-2
rtherm.rtherm4 4 3 = 1.98e-1
rtherm.rtherm5 3 2 = 2.99e-1
rtherm.rtherm6 2 t l = 3.97e- 2
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
HUF75339G3, HUF75339P3, HUF75339S3S
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global
subsidiaries, and is not intended to be an exhaustive list of all such trademarks.
ACEx®
Build it Now
CorePLUS
CROSSVOLT
CTL™
Current Transfer Logi c
EcoSPARK®
EZSWITCH™ *
®
Fairchild®
Fairchild Semic onductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore
FlashWriter® *
FPS
FRFET®
Global Power ResourceSM
Green FPS
Green FPS e-Series
GTO
i-Lo
IntelliMAX
ISOPLANAR
MegaBuck™
MICROCOUPLER
MicroFET
MicroPak
MillerDrive™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®
®
PDP-SPM
Power220®
Power247®
POWEREDGE®
Power-SPM
PowerTrench®
Programmable A ctive Droop
QFET®
QS
QT Optoelect ronics
Quiet Series
RapidConfigure
SMART START
SPM®
STEALTH™
SuperFET
SuperSOT-3
SuperSOT-6
SuperSOT-8
SyncFET™
®
The Power Franchise®
TinyBoost
TinyBuck
TinyLogic®
TINYOPTO
TinyPower
TinyPWM
TinyWire
μSerDes
UHC®
Ultra FRFET
UniFET
VCX
* EZSWITCH™ and FlashWriter® are trademarks of Syst em General Corporati on, used under license by Fairc hi l d S emic onductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIG HT TO MAKE C HANGES WITHOUT FURTHER NOTICE TO AN Y PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY AR ISING OUT O F THE
APPLICATION OR USE O F ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICEN SE UNDER ITS
PATENT RIGH TS, NOR THE R IGHTS OF OTH ERS. THESE SPECIFIC ATIONS DO N OT EX PAND THE TER MS OF FAIRCHILD’S
WORLD WIDE TERMS AN D CON DITIONS, SPECIFIC ALLY THE WARRANTY THER EIN, WHICH COVERS TH ESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EX PRESS WRITTEN APPROVAL O F FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body or
(b) support or sustain life, and (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result i n a signifi cant injury of the user.
2. A critical component in any component of a life support,
device, or system whose failure to perform can be
reasonably expected to c ause the failure of t he life support
device or system , or to aff ect it s safety or effec tiveness.
PRODUCT STATUS DEFINITI ONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Format i ve or I n Design This datasheet cont ai ns the desi gn specifi cations for product
development. Spec i ficat i ons may change in any m anner without notice.
Preliminary First Production
This datasheet contains preliminary data; s upplementary data will be
published at a l ater date. Fairchild Semiconductor reserves the right t o
mak e changes at any tim e without notice t o i mprove desi gn.
No Identif i cation Needed Full Production This datasheet cont ai ns final s pecifications. Fairchil d S emic onductor
reserves t he ri ght to make changes at any ti me without not i ce to improve
the design.
Obsolete Not In Production This datasheet contains speci ficati ons on a product that has been
discontinued by Fairchil d Semi conductor. The datasheet is printed f or
reference information only.
Rev. I32