BD243, BD243A, BD243B, BD243C NPN SILICON POWER TRANSISTORS

BOURNS®

- Designed for Complementary Use with the BD244 Series
- 65 W at 25°C Case Temperature
- 6 A Continuous Collector Current
- 10 A Peak Collector Current
- Customer-Specified Selections Available
- "-S" Suffix Added to Part Number Indicates RoHS Compliance*

TO-220 PACKAGE (TOP VIEW)

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BD243		55	
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD243A	l v	70	V
	BD243B	V _{CER}	90	\
Dotooboot	BD243C		115	
	BD243		45	
Collector-emitter voltage (I _C = 30 mA)	BD243A	V	60	v
	BD243B	V_{CEO}	80	V J
	BD243C		100	
Emitter-base voltage	V _{EBO}	5	V	
Continuous collector current	I _C	6	Α	
Peak collector current (see Note 1)	I _{CM}	10	Α	
Continuous base current	I _B	3	Α	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P _{tot}	65	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note	P _{tot}	2	W	
Unclamped inductive load energy (see Note 4)	½LI _C ²	62.5	mJ	
Operating junction temperature range	Tj	-65 to +150	°C	
Storage temperature range	T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds	T _L	250	°C	

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150°C case temperature at the rate of 0.52 W/°C.
- 3. Derate linearly to 150°C $\,$ free air temperature at the rate of 16 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

*RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.

electrical characteristics at 25°C case temperature

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 30 mA (see Note 5)	I _B = 0	BD243 BD243A BD243B BD243C	45 60 80 100			V
I _{CES}	Collector-emitter cut-off current	$V_{CE} = 55 \text{ V}$ $V_{CE} = 70 \text{ V}$ $V_{CE} = 90 \text{ V}$ $V_{CE} = 115 \text{ V}$	$V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$	BD243 BD243A BD243B BD243C			0.4 0.4 0.4 0.4	mA
I _{CEO}	Collector cut-off current	V _{CE} = 30 V V _{CE} = 60 V	I _B = 0 I _B = 0	BD243/243A BD243B/243C			0.7 0.7	mA
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0				1	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = 4 V$ $V_{CE} = 4 V$	$I_{\rm C} = 0.3 {\rm A}$ $I_{\rm C} = 3 {\rm A}$	(see Notes 5 and 6)	30 15			
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = 1 A	I _C = 6 A	(see Notes 5 and 6)			1.5	V
V_{BE}	Base-emitter voltage	V _{CE} = 4 V	I _C = 6 A	(see Notes 5 and 6)			2	٧
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 kHz	20			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 MHz	3			_

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300 \ \mu s$, duty cycle $\leq 2\%$.

thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.92	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 1 A	$I_{B(on)} = 0.1 A$	$I_{B(off)} = -0.1 A$		0.3		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.7 \text{ V}$	$R_L = 20 \Omega$	t_p = 20 μ s, dc \leq 2%		1		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN VS COLLECTOR CURRENT 1000 $V_{CE} = 4 V$ $T_{C} = 25^{\circ}C$ $t_{p} = 300 \ \mu s, \ duty \ cycle < 2\%$ 100 100 100 100 100 100 100 100 100 100

COLLECTOR-EMITTER SATURATION VOLTAGE

Figure 1.

Figure 2.

BASE-EMITTER VOLTAGE

PRODUCT INFORMATION

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

Figure 5.