The QD48S033050 dual output surface mounted DC-DC converter
offers unprecedented performance in a quarter brick package by
providing two independently regulated high current outputs with total
power of 100 W. This is accomplished by the use of patent pending
circuit and packaging techniques to achieve ultra-high efficiency,
excellent thermal performance and a very low body profile.
In telecommunications applications the QD48 converters provide up
to 15 A @ 3.3 V and 10 A @ 5 V simultaneously with thermal
performance far exceeding existing dual quarter bricks and
comparable to dual half-bricks. Low body profile and the preclusion of
heat sinks minimize airflow shadowing, thus enhancing cooling for
downstream devices. The use of 100% surface-mount technologies
for assembly, coupled with Power Bel Solutions advanced electric and
thermal circuitry and packaging, results in a product with extremely
high quality and reliability.
RoHS lead-free solder and lead-solder-exempted products are
available
Delivers simultaneously up to 15 A on 3.3 VDC and up to 10 A on 5.0
VDC output
Can replace two single output quarter-bricks
Minimal cross-channel interference
High efficiency: 88% @ full load, 89% @ half load
Start-up into pre-biased output
No minimum load required
No heat sink required
Low profile: 0.26” [6.6 mm]
Low weight: 1 oz [28 g] typical
Industry-standard footprint: 1.45” x 2.30”
Meets Basic Insulation Requirements of EN60950
Withstands 100 V input transient for 100 ms
On-board LC input filter
Fixed-frequency operation
Fully protected
Output voltage trim range: ±10% for both outputs
Trim resistor via industry-standard equations
High reliability: MTBF 2.6 million hours, calculated per Telcordia TR-
332, Method I Case 1
Positive or negative logic ON/OFF option
Approved to the latest edition and amendment of ITE Safety standards,
UL/CSA 60950-1 and IEC60950-1
Meets conducted emissions requirements of FCC
Class B and EN55022 Class B with external filter
All materials meet UL94, V-0 flammability rating
END OF LIFE
2
QD48S033050
tech.support@psbel.com
Conditions: TA = 25ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, unless otherwise specified.
PARAMETER
CONDITIONS / DESCRIPTION
MAX
UNITS
Absolute Maximum Ratings
Input Voltage
Continuous
80
VDC
Operating Ambient Temperature
85
°C
Storage Temperature
125
°C
Input Characteristics
Operating Input Voltage Range
75
VDC
Input Under Voltage Lockout
Non-latching
Turn-on Threshold
35
VDC
Turn-off Threshold
33
VDC
Input Transient Withstand (Susceptibility)
100 ms
100
VDC
Output Characteristics
External Load Capacitance
3.3 V
5.0 V
Plus full load (resistive)
Plus full load (resistive)
10,000
4,700
μF
μF
Output Current Range
3.3 V
5.0 V
At nominal output voltage 3.3 V
At nominal output voltage 5.0 V
15
10
ADC
ADC
Current Limit Inception
3.3V
5.0 V
Non-latching
Non-latching
19.5
15
ADC
ADC
Peak Short-Circuit Current
3.3 V
5.0 V
Non-latching. Short=10mΩ.
Non-latching. Short=10mΩ.
30
30
A
A
RMS Short-Circuit Current
3.3 V
5.0 V
Non-latching
Non-latching
4
4
Arms
Arms
Isolation Characteristics
I/O Isolation
VDC
Isolation Capacitance
ρF
Isolation Resistance
M
Feature Characteristics
Switching Frequency
kHz
Output Voltage Trim Range1
3.3 V
5.0 V
See section: Output Voltage Adjust/TRIM
Simultaneous with 3.3 V output
+10
+10
%
%
Output Over-Voltage Protection
3.3 V
5.0 V
Non-latching
Non-latching
4.25
6.4
V
V
Over-Temperature Shutdown (PCB)
Non-latching
°C
Auto-Restart Period
Applies to all protection features
ms
Turn-On Time 5.0 V
3.3 V tracks 5.0 V
ms
ON/OFF Control (Positive Logic)
Converter Off
0.8
VDC
Converter On
20
VDC
ON/OFF Control (Negative Logic)
Converter Off
20
VDC
Converter On
0.8
VDC
END OF LIFE
QD48S033050
3
Asia-Pacific
+86 755 298 85888
Europe, Middle East
+353 61 225 977
North America
+1 408 785 5200
© 2016 Bel Power Solutions & Protection
BCD.00769_AB
Input Characteristics
Maximum Input Current
3.3 VDC @ 15 ADC, 5.0 VDC @ 10 ADC,
Vin = 36 V
3.2
ADC
Input Stand-by Current
Vin = 48 V, converter disabled
mAdc
Input No Load Current (0 load on the output)
Vin = 48 V, converter enabled
mAdc
Input Reflected-Ripple Current
See Figure 36 - 25MHz bandwidth
mAPK-PK
Input Voltage Ripple Rejection
120Hz
dB
Output Characteristics
Output Voltage Set Point (no load)
3.3 V
5.0 V
-40ºC to 85ºC
-40ºC to 85ºC
3.333
5.050
VDC
VDC
Output Regulation
Over Line
3.3 V
5.0 V
mV
mV
Over Load2
3.3 V
5.0 V
mV
mV
Cross Regulation3
3.3 V
5.0 V
For Iout2 (5.0 V) change from 0 to 10 A
For Iout1 (3.3 V) change from 0 to 15 A
mV
mV
Output Voltage Range
3.3 V
5.0 V
Over line, load and cross regulation
Over line, load and cross regulation
3.366
5.100
VDC
VDC
Output Ripple and Noise - 25MHz bandwidth
3.3 V
5.0 V
Full load + 1 μF ceramic
Full load + 1 μF ceramic
30
35
mVPK-PK
mVPK-PK
Dynamic Response
Load Change: 50% to 75% to 50%
di/dt = 0.1 A/μS
3.3 V
5.0 V
ΔIout = 25% of IoutMax
Co = 10 μF tant. + 1 μF ceramic (Fig.23)
Co = 10 μF tant. + 1 μF ceramic (Fig.24)
mV
mV
Setting Time to 1%
3.3 V
5.0 V
µs
µs
di/dt = 5 A/μS
3.3V
5.0 V
Co = 300 μF tant. + 1 μF ceramic (Fig.25)
Co = 300 μF tant. + 1 μF ceramic (Fig.26)
mV
mV
Setting Time to 1%
3.3 V
5.0 V
µs
µs
Efficiency
3.3 V 100% Load, 5.0 V 100% Load
%
3.3 V 50% Load, 5.0 V 50% Load
%
1) Vout1 and Vout2 can be simultaneously increased or decreased up to 10% via the Trim function. When trimming up, in order
not to exceed the converter‘s maximum allowable output power capability equal to the product of the nominal output voltage
and the allowable output current for the given conditions, the designer must, if necessary, decrease the maximum current
(originally obtained from the derating curves) by the same percentage to ensure the converter’s actual output power remains
at or below the maximum allowable output power.
2) Load regulation is affected with resistance of the output pins (approximately 0.3 mΩ) since there is no remote sense.
3) Cross regulation is affected with resistance of the RETURN pin (approximately 0.3 mΩ) since there is no remote sense.
END OF LIFE
4
QD48S033050
tech.support@psbel.com
These power converters have been designed to be stable with no external capacitors when used in low inductance input
and output circuits.
However, in many applications, the inductance associated with the distribution from the power source to the input of the
converter can affect the stability of the converter. The addition of a 33 µF electrolytic capacitor with an ESR < 1 across
the input helps ensure stability of the converter. In many applications, the user has to use decoupling capacitance at the
load. The converter will exhibit stable operation with external load capacitance up to 10,000 µF on 3.3 V and 4,700uF on 5
V output.
The ON/OFF pin is used to turn the power converter on or off remotely via a system signal. There are two remote control
options available, positive logic and negative logic and both are referenced to Vin(-). Typical connections are shown in
Fig. 1.
Figure 1. Circuit configuration for ON/OFF function.
The positive logic version turns on when the ON/OFF pin is at logic high and turns off when at logic low. The converter is on
when the ON/OFF pin is left open.
The negative logic version turns on when the pin is at logic low and turns off when the pin is at logic high. The ON/OFF pin
can be hard wired directly to Vin(-) to enable automatic power up of the converter without the need of an external control
signal.
ON/OFF pin is internally pulled-up to 5 V through a resistor. A mechanical switch, open collector transistor, or FET can be
used to drive the input of the ON/OFF pin. The device must be capable of sinking up to 0.2 mA at a low level voltage of
0.8 V. An external voltage source of ±20 V max. may be connected directly to the ON/OFF input, in which case it should be
capable of sourcing or sinking up to 1 mA depending on the signal polarity. See the Start-up Information section for system
timing waveforms associated with use of the ON/OFF pin.
The converter’s output voltages can be adjusted simultaneously up 10% or down 10% relative to the rated output voltages
by the addition of an externally connected resistor.
The TRIM pin should be left open if trimming is not being used. To minimize noise pickup, a 0.1 µF capacitor is connected
internally between the TRIM and RETURN pins.
Figure 2. Configuration for increasing output voltage.
Rload2
Vin
CONTROL
INPUT
Vin (+)
Vin (-)
ON/OFF
Vout2 (+)
Vout1 (+)
TRIM
RTN
(Top View)
Converter
QTM Family
Rload1
Rload2
Vin
Vin (+)
Vin (-)
ON/OFF
Vout2 (+)
Vout1 (+)
TRIM
RTN
RT-INCR
(Top View)
Converter
QTM Family
Rload1
END OF LIFE
QD48S033050
5
Asia-Pacific
+86 755 298 85888
Europe, Middle East
+353 61 225 977
North America
+1 408 785 5200
© 2016 Bel Power Solutions & Protection
BCD.00769_AB
To increase the output voltage (refer to Fig. 2), a trim resistor, RT-INCR, should be connected between the TRIM (Pin 6) and
RETURN (Pin 5), with a value from the table below.
Figure 3. Configuration for decreasing output voltage.
To decrease the output voltage, a trim resistor RT-DECR, (Fig. 3) should be connected between the TRIM (Pin 6) and Vout1(+)
pin (Pin 4), with a value from the table below, where:
Δ = percentage of increase or decrease Vout (NOM).
Note 1:
Both outputs are trimmed up or down simultaneously.
TRIM RESISTOR
(VOUT INCREASE)
Δ
[%]
RT-INCR [k
Ω
]
1
54.9
2
24.9
3
14.3
4
9.31
5
6.34
6
4.32
7
2.80
8
1.69
9
0.825
10
0
TRIM RESISTOR
(VOUT DECREASE)
Δ
[%]
RT-DECR [k
Ω
]
-1
68.1
-2
30.1
-3
17.8
-4
11.5
-5
7.68
-6
5.36
-7
3.48
-8
2.10
-9
1.05
-10
0
Note 2: The above trim resistor values match those typically used in industry-standard dual quarter bricks.
Vin
Rload2
Vin (+)
Vin (-)
ON/OFF
Vout2 (+)
Vout1 (+)
TRIM
RTN
RT-DECR
(Top View)
Converter
QTM Family
Rload1
END OF LIFE
6
QD48S033050
tech.support@psbel.com
Input under-voltage lockout is standard with this converter. The converter will shut down when the input voltage drops below
a pre-determined voltage.
The input voltage must be at least 35 V for the converter to turn on. Once the converter has been turned on, it will shut off
when the input voltage drops below 31 V. This feature is beneficial in preventing deep discharging of batteries used in
telecom applications.
The converter is protected against overcurrent or short circuit conditions on both outputs. Upon sensing an overcurrent
condition, the converter will switch to constant current operation and thereby begin to reduce output voltages. If, due to
current limit, the output voltage Vout1 (3.3 V) drops, than Vout2 (5.0 V) will follow Vout1 with less than 1 V difference. Drop
on Vout2 output due to current limit will not affect voltage on Vout1. For further load increase, if either Vout1 drops below 1
Vdc or Vout2 drops below 2 Vdc, the converter will shut down (Figs. 29 and 30).
Once the converter has shut down, it will attempt to restart nominally every 100 ms with a 2% duty cycle (Figs. 33 and 34).
The attempted restart will continue indefinitely until the overload or short circuit conditions are removed or the output voltage
Vout1 rises above 1 Vdc and Vout2 above 2 Vdc.
The converter will shut down if the output voltage across either Vout1(+) (Pin 4) or Vout2(+) (Pin 7) and RETURN (Pin 5)
exceeds the threshold of the OVP circuitry. The OVP protection is separate for Vout1 and Vout2 with their own reference
independent of the output voltage regulation loops. Once the converter has shut down, it will attempt to restart every 100
ms until the OVP condition is removed.
The converter will shut down under an over temperature condition to protect itself from overheating caused by operation
outside the thermal derating curves, or operation in abnormal conditions such as system fan failure. After the converter has
cooled to a safe operating temperature, it will automatically restart.
The converters meet North American and International safety regulatory requirements per UL60950 and EN60950. Basic
Insulation is provided between input and output.
To comply with safety agencies requirements, an input line fuse must be used external to the converter. A 5-A fuse is
recommended for use with this product.
EMC requirements must be met at the end-product system level, as no specific standards dedicated to EMC characteristics
of board mounted component dc-dc converters exist. However, Power Bel Solutions tests its converters to several system
level standards, primary of which is the more stringent EN55022, Information technology equipment - Radio disturbance
characteristics - Limits and methods of measurement.
With the addition of a simple external filter (see application notes), all versions of the QD48S converters pass the
requirements of Class B conducted emissions per EN55022 and FCC, and meet at a minimum, Class A radiated emissions
per EN 55022 and Class B per FCC Title 47CFR, Part 15-J. Please contact Power Bel Solutions Applications Engineering for
details of this testing.
3.7
This family of converters withstands 100V input transient for 100ms.
END OF LIFE
QD48S033050
7
Asia-Pacific
+86 755 298 85888
Europe, Middle East
+353 61 225 977
North America
+1 408 785 5200
© 2016 Bel Power Solutions & Protection
BCD.00769_AB
Scenario #1: Initial Startup From Bulk Supply
ON/OFF function enabled, converter started via application of
VIN. See Figure 4.
Time
Comments
t0
ON/OFF pin is ON; system front-end power is
toggled on, VIN to converter begins to rise.
t1
VIN crosses Under-Voltage Lockout protection circuit
threshold; converter enabled.
t2
Converter begins to respond to turn-on command
(converter turn-on delay).
t3
Output voltage VOUT1 reaches 100% of nominal value
t4
Output voltage VOUT2 reaches 100% of nominal
value.
For this example, the total converter startup time (t4- t1) is
typically 4 ms.
Figure 4. Start-up scenario #1.
Scenario #2: Initial Startup Using ON/OFF Pin
With VIN previously powered, converter started via ON/OFF pin.
See Figure 5.
Time
Comments
t0
VINPUT at nominal value.
t1
Arbitrary time when ON/OFF pin is enabled (converter
enabled).
t2
End of converter turn-on delay.
t3
Output voltage VOUT1 reaches 100% of nominal value.
t4
Output voltage VOUT2 reaches 100% of nominal value.
For this example, the total converter startup time (t4- t1) is
typically 4 ms.
Figure 5. Startup scenario #2.
Scenario #3: Turn-off and Restart Using ON/OFF Pin
With VIN previously powered, converter is disabled and then
enabled via ON/OFF pin. See Figure 6.
Time
Comments
t0
VIN and VOUT are at nominal values; ON/OFF pin ON.
t1
ON/OFF pin arbitrarily disabled; converter output falls
to zero; turn-on inhibit delay period (100 ms typical) is
initiated, and ON/OFF pin action is internally inhibited.
t2
ON/OFF pin is externally re-enabled.
If (t2- t1) 100 ms, external action of ON/OFF
pin is locked out by startup inhibit timer.
If (t2- t1) > 100 ms, ON/OFF pin action is
internally enabled.
t3
Turn-on inhibit delay period ends. If ON/OFF pin is
ON, converter begins turn-on; if off, converter awaits
ON/OFF pin ON signal; see Figure 5.
t4
End of converter turn-on delay.
t5
Output voltage VOUT1 reaches 100% of nominal value.
t6
Output voltage VOUT2 reaches 100% of nominal value.
For the condition, (t2- t1) 100 ms, the total converter startup time
(t6- t2) is typically 103 ms. For (t2- t1) > 100 ms, startup will be
typically 4 ms after release of ON/OFF pin.
Figure 6. Startup scenario #3.
VOUT1
t4
VOUT1
VOUT2
VIN
ON/OFF
STATE
VOUT2
t
t0t1t2t3
ON
OFF
VOUT1
VOUT2VOUT1
VOUT2
t4t3
ON/OFF
STATE
t0t1t2
ON
OFF
VIN
t
t6
VOUT1
VOUT2VOUT2
VOUT1
ON/OFF
STATE OFF
ON
t0t2t1t5
VIN
t
t4t3
100 ms
END OF LIFE
8
QD48S033050
tech.support@psbel.com
The converter has been characterized for many operational aspects, to include thermal derating (maximum load current as
a function of ambient temperature and airflow) for vertical and horizontal mounting, efficiency, start-up and shutdown
parameters, output ripple and noise, transient response to load step-change, overload and short circuit.
The following pages contain specific plots or waveforms associated with the converter. Additional comments for specific
data are provided below.
All data presented were taken with the converter soldered to a test board, specifically a 0.060” thick printed wiring board
(PWB) with four layers. The top and bottom layers were not metalized. The two inner layers, comprising two-ounce copper,
were used to provide traces for connectivity to the converter.
The lack of metalization on the outer layers as well as the limited thermal connection ensured that heat transfer from the
converter to the PWB was minimized. This provides a worst-case but consistent scenario for thermal derating purposes.
All measurements requiring airflow were made in Power Bel Solutions vertical and horizontal wind tunnel facilities using
infrared (IR) thermography and thermocouples for thermometry.
Ensuring that the components on the converter do not exceed their ratings is important to maintaining high reliability. If one
anticipates operating the converter at or close to the maximum loads specified in the derating curves, it is prudent to check
actual operating temperatures in the application. Thermographic imaging is preferable; if this capability is not available, then
thermocouples may be used. Power Bel Solutions recommends the use of AWG #40 gauge thermocouples to ensure
measurement accuracy. Careful routing of the thermocouple leads will further minimize measurement error. Refer to Figure
37 for optimum measuring thermocouple location.
Available output power and load current vs. ambient temperature and airflow rates are given in Figs. 7-14. Ambient
temperature was varied between 25°C and 85°C, with airflow rates from 30 to 500 LFM (0.15 to 2.5 m/s), and vertical and
horizontal converter mounting.
For each set of conditions, the maximum load current was defined as the lowest of:
(i) The output current at which either any FET junction temperature did not exceed a maximum specified temperature
(120°C) as indicated by the thermographic image, or
(ii) The nominal rating of the converter (15 A on Vout1 and 10 A on Vout2.)
During normal operation, derating curves with maximum FET temperature less than or equal to 120°C should not be
exceeded. Temperature on the PCB at the thermocouple location shown in Fig. 37 should not exceed 118°C in order to
operate inside the derating curves.
Efficiency vs. load current plots are shown in Figs. 14-19 for ambient temperature of 25ºC, airflow rate of 300 LFM (1.5 m/s),
both vertical and horizontal orientations, and input voltages of 36 V, 48 V and 72 V, for different combinations of the loads
on outputs Vout1 and Vout2.
Output voltage waveforms during the turn-on transient using the ON/OFF pin, are shown without and with full rated load
currents (resistive load) in Figs. 21 and 22, respectively.
END OF LIFE
QD48S033050
9
Asia-Pacific
+86 755 298 85888
Europe, Middle East
+353 61 225 977
North America
+1 408 785 5200
© 2016 Bel Power Solutions & Protection
BCD.00769_AB
Figure 31 shows the output voltage ripple waveform, measured at full rated load current on both outputs with a 1 µF ceramic
capacitor across both outputs. Note that all output voltage waveforms are measured across a 1 F ceramic capacitor.
The input reflected ripple current waveforms are obtained using the test setup shown in Fig. 32. The corresponding
waveforms are shown in Figs. 35 and 36.
Ambient Temperature [°C]
20 30 40 50 60 70 80 90
Total Output Power [W]
0
10
20
30
40
50
60
70
80
90
100
110
500 LFM (2.5 m/s)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
30 LFM (0.15 m/s)
Figure 7. Available output power for balanced load current
(Iout1 = 1.5 Iout2) vs. ambient air temperature and airflow rates
for converter mounted vertically with Vin = 48 V, air flowing
from pin 3 to pin 1 and maximum FET temperature 120 C.
Ambient Temperature [°C]
20 30 40 50 60 70 80 90
Total Output Power [W]
0
10
20
30
40
50
60
70
80
90
100
110
500 LFM (2.5 m/s)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
30 LFM (0.15 m/s)
Figure 8. Available output power for balanced load current
(Iout1 = 1.5 Iout2) vs. ambient air temperature and airflow rates
for converter mounted horizontally with Vin = 48 V, air flowing
from pin 3 to pin 4 and maximum FET temperature 120 C.
Ambient Temperature [°C]
20 30 40 50 60 70 80 90
% of Max. Load Current Iout1, Iout2
0
10
20
30
40
50
60
70
80
90
100
110
120
500 LFM (2.5 m/s)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
30 LFM (0.15 m/s)
Figure 9. Available balanced load current (Iout1 = 1.5 Iout2)
vs. ambient air temperature and airflow rates for converter
mounted vertically with Vin = 48 V, air flowing from pin 3 to pin
1 and maximum FET temperature 120 C.
Ambient Temperature [°C]
20 30 40 50 60 70 80 90
% of Max. Load Current Iout1, Iout2
0
10
20
30
40
50
60
70
80
90
100
110
120
500 LFM (2.5 m/s)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
30 LFM (0.15 m/s)
Figure 10. Available balanced load current (Iout1 = 1.5 Iout2)
vs. ambient temperature and airflow rates for converter
mounted horizontally with Vin = 48 V, air flowing from pin 3 to
pin 4 and maximum FET temperature 120 C.
END OF LIFE
10
QD48S033050
tech.support@psbel.com
Ambient Temperature [°C]
20 30 40 50 60 70 80 90
Total Output Power [W]
0
10
20
30
40
50
60
70
80
90
100
110
500 LFM (2.5 m/s)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
30 LFM (0.15 m/s)
Figure 11. Available output power for balanced load current
(Iout1 = 1.5·Iout2) vs. ambient air temperature and airflow rates
for converter mounted vertically with Vin = 48 V, air flowing
from pin 3 to pin 4 and maximum FET temperature 120 C.
Ambient Temperature [°C]
20 30 40 50 60 70 80 90
Total Output Power [W]
0
10
20
30
40
50
60
70
80
90
100
110
500 LFM (2.5 m/s)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
30 LFM (0.15 m/s)
Figure 12. Available output power for balanced load current
(Iout1 = 1.5·Iout2) vs. ambient air temperature and airflow rates
for converter mounted vertically with Vin = 48 V, air flowing
from pin 4 to pin 3 and maximum FET temperature 120 C.
Ambient Temperature [°C]
20 30 40 50 60 70 80 90
% of Max. Load Current Iout1, Iout2
0
10
20
30
40
50
60
70
80
90
100
110
120
500 LFM (2.5 m/s)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
30 LFM (0.15 m/s)
Figure 13. Available balanced load current (Iout1 = 1.5·Iout2)
vs. ambient air temperature and airflow rates for converter
mounted vertically with Vin = 48 V, air flowing from pin 3 to pin
4 and maximum FET temperature 120 C.
Ambient Temperature [°C]
20 30 40 50 60 70 80 90
% of Max. Load Current Iout1, Iout2
0
10
20
30
40
50
60
70
80
90
100
110
120
500 LFM (2.5 m/s)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
30 LFM (0.15 m/s)
Figure 14. Available balanced load current (Iout1 = 1.5·Iout2)
vs. ambient air temperature and airflow rates for converter
mounted vertically with Vin = 48 V, air flowing from pin 4 to pin
3 and maximum FET temperature 120 C.
Load Current Iout1 [Adc]
0 2 4 6 8 10 12 14 16
Efficiency
0.65
0.70
0.75
0.80
0.85
0.90
0.95
72 V
48 V
36 V
Iout2 = 5 Adc
Figure 15. Efficiency vs. load current Iout1 and input voltage
for converter mounted vertically with air flowing from pin 3 to
pin 1 at a rate of 300 LFM (1.5 m/s), for Iout2 = 5 A and
C.
Load Current Iout1 [Adc]
0 2 4 6 8 10 12 14 16
Efficiency
0.65
0.70
0.75
0.80
0.85
0.90
0.95
72 V
48 V
36 V
Iout2 = 5 Adc
Figure 16. Efficiency vs. load current Iout1 and input voltage
for converter mounted horizontally with air flowing from pin 3
to pin 4 at a rate of 300 LFM (1.5 m/s), for Iout2 = 5 A and
C.
END OF LIFE
QD48S033050
11
Asia-Pacific
+86 755 298 85888
Europe, Middle East
+353 61 225 977
North America
+1 408 785 5200
© 2016 Bel Power Solutions & Protection
BCD.00769_AB
Load Current Iout2 [Adc]
0 1 2 3 4 5 6 7 8 9 10 11
Efficiency
0.65
0.70
0.75
0.80
0.85
0.90
0.95
72 V
48 V
36 V
Iout1 = 7.5 Adc
Figure 17. Efficiency vs. load current Iout2 and input voltage
for converter mounted vertically with air flowing from pin 3 to
pin 1 at a rate of 300 LFM (1.5 m/s), for Iout1 = 7.5 A and
C.
Load Current Iout2 [Adc]
0 1 2 3 4 5 6 7 8 9 10 11
Efficiency
0.65
0.70
0.75
0.80
0.85
0.90
0.95
72 V
48 V
36 V
Iout1 = 7.5 Adc
Figure 18. Efficiency vs. load current Iout2 and input voltage
for converter mounted horizontally with air flowing from pin 3
to pin 4 at a rate of 300 LFM (1.5 m/s), for Iout1 = 7.5 A and
C.
Load Current Iout1 = 1.5·Iout2 [Adc]
0 2 4 6 8 10 12 14 16
Efficiency
0.65
0.70
0.75
0.80
0.85
0.90
0.95
72 V
48 V
36 V
Figure 19. Efficiency vs. balanced load current (Iout1 =
1.5·Iout2) and input voltage for converter mounted vertically
with air flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5
C.
Load Current Iout1 = Iout2 [Adc]
0 2 4 6 8 10 12 14 16
Efficiency
0.65
0.70
0.75
0.80
0.85
0.90
0.95
72 V
48 V
36 V
Figure 20. Efficiency vs. balanced load current (Iout1/Iout2 =
const.) and input voltage for converter mounted horizontally
with air flowing from pin 3 to pin 4 at a rate of 300 LFM (1.5
C.
Figure 21. Turn-on transient waveforms at no load current and Vin
= 48 V, triggered via ON/OFF pin. Top trace: ON/OFF signal (5
V/div.). Bottom traces: Vout1 (blue, 1 V/div.), Vout2 (red, 1 V/div.).
Time scale: 1 ms/div.
Figure 22. Turn-on transient waveforms at full rated load current
(resistive) and Vin = 48 V, triggered via ON/OFF pin. Top trace:
ON/OFF signal (5 V/div.). Bottom traces: Vout1 (blue, 1 V/div.),
Vout2 (red, 1 V/div.). Time scale: 1 ms/div.
END OF LIFE
12
QD48S033050
tech.support@psbel.com
Figure 23. Output voltage response to Iout1 load current step-
change of 3.75 A (50%-75%-50%) at Iout2 = 5 A and Vin = 48
V. Ch1 = Vout1 (50 mV/div), Ch2 = Vout2 (50 mV/div), Ch3 =
Iout1 (10 A/div.), Ch4 = Iout2 (10 A/div.). Current slew rate: 0.1
µs, Co = 10 µF tantalum + 1 µF ceramic. Time scale: 0.5
ms/div.
Figure 24. Output voltage response to Iout2 load current step-
change of 2.5 A (50%-75%-50%) at Iout1 = 7.5 A and Vin = 48
V. Ch1 = Vout1 (50 mV/div), Ch2 = Vout2 (50 mV/div), Ch3 =
Iout1 (10 A/div.), Ch4 = Iout2 (10 A/div.). Current slew rate: 0.1
µs, Co = 10 µF tantalum + 1 µF ceramic. Time scale: 0.5
Figure 25. Output voltage response to Iout1 load current step-
change of 3.75 A (50%-75%-50%) at Iout2 = 5 A and Vin = 48
V. Ch1 = Vout1 (100 mV/div), Ch2 = Vout2 (100 mV/div), Ch3 =
Iout1 (10 A/div.), Ch4 = Iout2 (10 A/div.). Current slew rate: 5
A/µs, Co = 300 µF tantalum + 1 µF ceramic. Time scale: 0.5
ms/div.
Figure 26. Output voltage response to Iout2 load current step-
change of 2.5 A (50%-75%-50%) at Iout1 = 7.5 A and Vin = 48
V. Ch1 = Vout1 (100 mV/div), Ch2 = Vout2 (100 mV/div), Ch3 =
Iout1 (10 A/div.), Ch4 = Iout2 (10 A/div.). Current slew rate: 5
A/µs, Co = 300 µF tantalum + 1 µF ceramic. Time scale: 0.5
ms/div.
END OF LIFE
QD48S033050
13
Asia-Pacific
+86 755 298 85888
Europe, Middle East
+353 61 225 977
North America
+1 408 785 5200
© 2016 Bel Power Solutions & Protection
BCD.00769_AB
Figure 27. Output voltage response to both Iout1 and Iout2 (out of
phase) load current step-change of 3.75 A (Iout1) and 2.5 A (Iout2)
(50%-75%-50%) at Vin = 48 V. Ch1 = Vout1 (50 mV/div), Ch2 =
Vout2 (50 mV/div), Ch3 = Iout1 (10 A/div.), Ch4 = Iout2 (10 A/div.).
10 µF tantalum + 1 µF ceramic.
Time scale: 1.0 ms/div.
Figure 28. Output voltage response to both Iout1 and Iout2 (out of
phase) load current step-change of 3.75 A (Iout1) and 2.5 A (Iout2)
(50%-75%-50%) at Vin = 48 V. Ch1 = Vout1 (100 mV/div), Ch2 =
Vout2 (100 mV/div), Ch3 = Iout1 (10 A/div.), Ch4 = Iout2 (10 A/div.)
0 µF tantalum + 1 µF ceramic.
Time scale: 1.0 ms/div.
Note: The only cross-talk during transient is due to the common
RETURN pin for both outputs.
Figure 29. Output voltage Vout1 vs. load current Iout1 showing
current limit point and converter shutdown point. When Vout1 is in
current limit, Vout2 is not affected until Vout1 reaches the shut-
down threshold of 1 V. Input voltage has almost no effect on Vout1
current limit characteristic.
Figure 30. Output voltage Vout2 vs. load current Iout2 showing
current limit point and converter shutdown point. When Vout2 is in
current limit, Vout1 will follow with less than 1 V difference until
Vout2 reaches shut-down threshold of 2 V. Input voltage has
almost no effect onVout1 current limit characteristic.
Figure 31. Output voltage ripple at full rated load current into a
resistive load on both outputs with Co = 1uF (ceramic) and Vin =
48 V. Ch2 = Vout2, Ch1 = Vout1 (both 20 mV/div). Time scale: 1
µs/div.
Figure 32. Test setup for measuring input reflected ripple currents,
ic and is.
510 15 20
4.0
Iout [Adc]
Vout [Vdc]
0
0
3.0
2.0
1.0
Vout1
510 15
6.0
Iout [Adc]
Vout [Vdc]
0
0
4.0
3.0
1.0
Vout2
2.0
5.0
Vout1
Vsource
iSiC
1 F
ceramic
capacitor
10 H
source
inductance DC/DC
Converter
33 F
ESR <1
electrolytic
capacitor
QTM Family
1 F
ceramic
capacitor
Vout2
END OF LIFE
14
QD48S033050
tech.support@psbel.com
Figure 37. Location of the thermocouple for thermal testing.
Figure 33. Load current Iout1 into a 10 m
Vout1 during re-start, with Vout2 open (no load), at Vin = 48 V.
Ch2 = Iout1 (20 A/div, 20 ms/div). ChB = Iout1 (20 A/div, 1
ms/div) is an expansion of the on-time portion of Iout1.
Figure 34. Load current Iout2 into a 10 m
Vout2 during re-start, with Vout1 open (no load), at Vin = 48 V.
Ch2 = Iout2 (20 A/div, 20 ms/div). ChB = Iout2 (20 A/div, 1
ms/div) is an expansion of the on-time portion of Iout2.
Figure 35. Input reflected ripple current, ic (100 mA/div),
measured at input terminals at full rated load current on both
outputs and Vin = 48 V. Refer to Fig. 34 for test setup. Time
scale: 1 µs/div.
Figure 36. Input reflected ripple current, is (10 mA/div),
measured through 10 µH at the source at full rated load
current on both outputs and Vin = 48 V. Refer to Fig. 34 for
test setup. Time scale: 1 µs/div.
END OF LIFE
QD48S033050
15
Asia-Pacific
+86 755 298 85888
Europe, Middle East
+353 61 225 977
North America
+1 408 785 5200
© 2016 Bel Power Solutions & Protection
BCD.00769_AB
All dimensions are in inches [mm]
Connector material: Copper
Connector Finish: Gold over Nickel
Converter Weight: 1 oz. [28 g]
typical
Recommended Surface-Mount
Pads:
Min. 0.080” x 0.112” [2.03 x 2.84]
Max. 0.092” x 0.124” [2.34 x 3.15]
PAD/PIN CONNECTIONS
Pad/Pin #
Function
1
Vin (+)
2
ON/OFF
3
Vin (-)
4
Vout1 (-)
5
RTN [Vo1(-) +Vo2(-)]
6
TRIM
7
Vout2 (+)
Product
Series
Input
Voltage
Mounting
Scheme
Output
Voltage 1
(Vout1)
Output
Voltage 2
(Vout2)
ON/OFF
Logic
Maximum
Height [HT]
Pin
Length [PL]
Special
Features
RoHS
QD
48
S
033
050
-
N
S
0
0
G
Dual
Quarter-
Brick
Format
36-75 V
Surface
Mount
033 3.3 V
050 5.0 V
N
Negative
P
Positive
S 0.273
0 0.00
0 STD
No Suffix
RoHS
lead-solder-
exemption
compliant
G RoHS
compliant
for all six
substances
Note: Always specify Vout2
as the higher of the two
output voltages.
The example above describes P/N QD48S033050-NS00G: 36-75 V input, dual output, surface mounting, 3.3 V @ 15 A and 5.0 V @ 10 A,
negative ON/OFF logic and RoHS compliant for all six substances. Please consult factory regarding availability of a specific version.
NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems,
equipment used in hazardous environments, or nuclear control systems.
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the
date manufactured. Specifications are subject to change without notice.
END OF LIFE