_30E > _ mm 7929237 o029773 4 me T3841) _ f SGS-THOMSON IRF 530/F1-531/Fl RIF, MICROELECTRONICS IRF 532/FI-533/FI SG S-THONSON N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS PRELIMINARY DATA TYPE Voss Rpsion) Ip" IRF530 100 V 0.16 2 14A IRF530F1 100 V 0.16 2 9A IRF531 80 V 0.16 2 14A IRF531FI 80 V 0.16 Q 9A IRF532 100 V 0.23 2 12A IRF532F! 100 V 0.23 2 BA IRF533 80 V 0.23 0 12A IRF533Fl 80 V 0.23 Q 8A 80-100 VOLTS - FOR DC/DC CONVERTERS HIGH CURRENT ULTRA FAST SWITCHING TO-220 ISOWATT220 EASY DRIVE- FOR REDUCED COST AND SIZE INDUSTRIAL APPLICATIONS: e UNINTERRUPTIBLE POWER SUPPLIES MOTOR CONTROLS INTERNAL SCHEMATIC o N - channel enhancement mode POWER MOS field DIAGRAM effect transistors. Easy drive and very fast switch- ing times make these POWER MOS transistors ideal for high speed switching applications. Appli- G cations include DC/DC converters, UPS, battery chargers, secondary regulators, servo control, power-audio amplifiers and robotics. $ ABSOLUTE MAXIMUM RATINGS IRF TO-220 530 531 532 533 ISOWATT220 530Fl 531Fl 532Fl 533Fl Vps * Drain-source voltage (Vgg = 0) 100 80 100 80 Vv Voer * Drain-gate voitage (Rgg = 20 Ka) 100 80 100 80 Vv Ves Gate-source voltage +20 Vv lpm (*) Drain current (pulsed) 56 56 48 48 A lbLM Drain inductive current, clamped (L= 100 1H) 56 56 48 48 A 530 531 532 533 Ip Drain current (cont.) at T,= 25C 14 14 12 12 A Ip Drain current (cont.) at T,= 100C 9 9 8 8 A 530Fl 531Fl 532Fl 533Fl Ib Drain current (cont.) at T,= 25C 9 9 8 8 A Ip" Drain current (cont.) at Te = 100C 5.5 5.5 5 5 A TO-220 ISOWATT220 Prot Total dissipation at T, <25C 79 35 Ww . Derating factor 0.63 0.28 W/C Tstg Storage temperature 55 to 150 C Ti Max. operating junction temperature 150 C * T,= 25C to 125C (e) Repetitive Rating: Pulse width limited by max junction temperature. = See note on ISOWATT220 on this datasheet. June 1988 113 291__IRF 530/Fl - 531/FI - 532/Fl - 533/F1 | 30E D MM 7529237 0029774 0 = THERMAL DATA" S G S-THOMSON T-39- i " TO-220 | ISOWATT220 Rinj- case Thermal resistance junction-case max 1.58 | 3.57 C/W thes Thermal resistance case-sink typ 0.5 C Rin-amb Thermal resistance junction-ambient max 80 C/W T; Maximum lead temperature for soldering purpose 300 C ELECTRICAL CHARACTERISTICS (T,.5,= 25C unless otherwise specified) Parameters Test Conditions Min. | Typ. | Max. | Unit OFF Vier) pss Drain-source Ip = 250 pA Ve as= 0 breakdown voltage for IRF530/532/530F1/532Fl 400 Vv for IRF531/533/531FI/533Fl 80 Vv loss Zero gate voltage Vps= Max Rating 250 | nA drain current (Vgg=0) | Vpg= Max Rating x 0.8 T,= 125C 1000} 2A lass Gate-body leakage Veg= +20 V +100] nA current (Vpg = 0) ON ak Ves (thy Gate threshold voltage} Vps= Veg Ip = 250 pA 2 4 Vv Ion) On-state drain current Vps> Ib (on) x Rogwon) max Ves =10V for IRF530/531/530F1/531Fl 14 o& for IRF532/533/532F1/533FI 12 A Ros (on) Static drain-source Veg= 10 V Ip= 83A on resistance for IRF530/531/530F1/531FI 0.16] Q for IRF532/533/532FI/533FI 0.23] 2 DYNAMIC Oi, ** Forward Vos P on) * Rog (on) max 5.1 mho transconductance IDb= 3A iss Input capacitance 850 | pF oss Output capacitance Vpog= 25 V f= 1 MHz 260 | pF 88 Reverse transfer Veg= 0 50 | pF capacitance SWITCHING ta (on) Turn-on time Vop= 36 V Ip= 8.0A 30 | ns Rise time Ry= 15 Q 75 | ns ta (of) | Turn-off delay time * (see test circuit) 40 | ns t Fall time 45 ns Qa, Total Gate Charge Veg=10 V Ip= 14A 30 | nc Vps= Max Rating x 0.8 (see test circuit) 2/3 . AI. SSeS on 292S G S-THOMSON IRF 530/FI - 531/FI - 532/Fl - 33/Fl ~ 30E D -_ 729237 oo29775 2 ELECTRICAL CHARACTERISTICS (Continued) oem 39-11 | Parameters Test Conditions Min. | Typ. | Max. | Unit SOURCE DRAIN DIODE Isp Source-drain current 14 A Isp (*) Source-drain current 56 A (pulsed) Vsp** Forward on voltage Isp= 14A Veg= 0 25] V te Reverse recovery T,= 150C 360 ns time Qn Reverse recovered Igsn= 14A di/dt = 100 A/us 21 ne charge ** Pulsed: Pulse duration < 300 ps, duty cycle < 2% () Repetitive Rating: Pulse width limited by max junction temperature See note on ISOWATT220 in this datasheet ISOWATT220 PACKAGE CHARACTERISTICS AND APPLICATION. ISOWATT220 is fully isolated to 2000V dc. Its ther- mal impedance, given in the data sheet, is optimi- sed to give efficient thermal conduction together with excellent electrical isolation. The structure of the case ensures optimum distan- ces between the pins and heatsink. The ISOWATT220 package eliminates the need for ex- ternal isolation so reducing fixing hardware. Accu- rate moulding techniques used in manufacture assure consistent heat spreader-to-heatsink capa- citance. ISOWATT220 thermal performance is better than that of the standard part, mounted with a 0.1mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISOWATT220 packages is determined by: 1, - Te Ri from this Ipmax for the POWER MOS can be cal- THERMAL IMPEDANCE OF ISOWATT220 PACKAGE Fig. 1 illustrates the elements contributing to the thermal resistance of transistor heatsink assembly, using ISOWATT220 package. The total thermal resistance Rj, gon is the sum of each of these elements. The transient thermal impedance, Z,, for different pulse durations can be estimated as follows: 1 - for a short duration power pulse less than ims; Zin< Phuc 2 - for an intermediate power pulse of 5ms to 50ms: Zn= Pinsc 3 - for long power pulses of the order of 500ms or greater: Ztn= Finc + Fines + Rins-amb It is often possibile to discern these areas on tran- sient thermal impedance curves. culated: Fig. 1 P lomax< A [< Rtns-c Rthc-Hs Rehs-amb Roscon) (at 150C) WA VA A . 3/3 7 Troon 293