This is information on a product in full production.
April 2012 Doc ID 15567 Rev. 4 1/53
1
L99H01
Motor bridge driver for automotive applications
Datasheet production data
Features
Operating supply voltage 6 V to 28 V
Central 2 stage charge pump
100% duty cycle
Full R
DSon
down to 6 V (normal level MOSFETs)
Control of reverse battery protection MOSFET
Charge pump current limited
PWM operation up to 30 kHz
SPI interface
Current sense amplifier / free configurable
Zero adjust for end of line trimming
Power management: programmable free
wheeling
Sensing circuitry of external MOSFETs with
embedded thermal sensors
Applications
Wiper
Power door
Seat belt tensioner
Seat positioning
Valve tronic
Park break
2H motors
Description
The L99H01 is designed to control 4 external
N-channel MOS transistors in bridge configuration
for DC-motor driving in automotive applications. A
free configurable current sense amplifier is
integrated. The integrated standard serial
peripheral interface (SPI) controls all outputs and
provides diagnostic information. An interface pin
for the thermal sensors of the external MOSFETs
is implemented.
PowerSSO-36
LQFP32
7x7mm
Table 1. Device summary
Package Order codes
Part number (tube) Part number (tape and reel) Part number (tray)
PowerSSO-36 L99H01XP L99H01XPTR
LQFP32 L99H01QFTR L99H01QF
www.st.com
Contents L99H01
2/53 Doc ID 15567 Rev. 4
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Pinout PowerSSO-36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Pinout LQFP32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 SPI - electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Dual power supply: VS and VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Standby mode (EN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 H-bridge control (DIR, PWM, bit FW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Resistive low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Overvoltage and undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Short-circuit detection / drain source monitoring . . . . . . . . . . . . . . . . . . . 28
3.10 Programmable cross current protection . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.11 Current sense amplifier (CSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.12 Thermal sensor interface / H-bridge switch-off input . . . . . . . . . . . . . . . . 29
3.12.1 EXT_TS-bit = low (active off) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.12.2 EXT_TS-bit = high (thermal sensor interface) . . . . . . . . . . . . . . . . . . . . 29
3.13 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Functional description of the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.1 Serial clock (CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Serial data input (DI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
L99H01 Contents
Doc ID 15567 Rev. 4 3/53
4.1.3 Serial data output (DO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.4 Chip select not (CSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 General data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 OpCode definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Device memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Control and status (RAM) address map . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Device (ROM) address map (access with OC0 and OC1 set to ‘1’) . . . 34
4.4 Global status byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.1 SPI clock monitor and watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Detailed byte description of status register (StatReg0) . . . . . . . . . . . . . . 37
4.6 Detailed byte description of application registers (ApplRegX) . . . . . . . . . 38
4.6.1 Description of the data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 Read device information (ROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Packages thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 PowerSSO-36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Packages thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.5 PowerSSO-36 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.6 LQFP32 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
List of tables L99H01
4/53 Doc ID 15567 Rev. 4
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 6. Operating junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 7. Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 8. Packages thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 9. Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 10. Undervoltage detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 11. Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 12. Inputs: CSN, CLK, PWM, DIR, EN and DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 13. Charge pump output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 14. Gate drivers for external PowerMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 15. Cross current protection time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 16. Drain source monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 17. Thermal sense interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 18. Current sense amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 19. DI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 20. DO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 21. DO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 22. EN, CSN timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 23. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 24. DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 25. DO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 26. Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 27. Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 28. Control and status (RAM) address map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 29. Device (ROM) address map (access with OC0 and OC1 set to ‘1’) . . . . . . . . . . . . . . . . . . 34
Table 30. STK_RESET_Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 31. Address 0<00(hex)>:StatReg 0 - read only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 32. DS_MON - drivers relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 33. Address 1 <01(hex)>:ApplReg1-read/write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 34. Overvoltage threshold of the Vs monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 35. DIAG monitoring of source voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 36. Address 2 <02(hex)> : ApplReg2 – read/write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 37. Cross current protection time (tCCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 38. Multiplexer for current sense amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 39. Gain of current sense amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 40. Address 3 <03(hex)> : ApplReg3 – read/write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 41. External threshold voltage, factor n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 42. External threshold voltage, factor m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 43. Read device information (ROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 44. Address 0 <00(hex)> : ID-header - read only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 45. Address 1 <01(hex)>: product ID (LSB) - read only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 46. Address 2 <02(hex)>: product ID (MSB) - read only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 47. Address 3 <03(hex)>: SPI frame ID - read only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 48. PowerSSO-36 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
L99H01 List of tables
Doc ID 15567 Rev. 4 5/53
Table 49. LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 50. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
List of figures L99H01
6/53 Doc ID 15567 Rev. 4
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Pinning of device in PowerSSO-36 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3. Pinning of device in LQFP-32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. Output timing diagram (active free wheeling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 5. Output timing diagram (passive free wheeling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 6. SPI - transfer timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. SPI - input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8. SPI - DO valid data delay time and valid time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9. SPI - DO enable and disable time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 10. SPI - timing of status bit 0 (fault condition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 11. Global error flag diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 12. PowerSSO-36 Rthj-amb vs. PCB copper area in open free air condition(1) . . . . . . . . . . . . . 43
Figure 13. PowerSSO-36 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 14. LQFP32 Rthj-amb vs. PCB copper area in open box free air condition . . . . . . . . . . . . . . . . 47
Figure 15. LQFP32 package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 16. PowerSSO-36 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 17. PowerSSO-36 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 18. LQFP32 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 19. LQFP32 tray shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
L99H01 Block diagram and pin description
Doc ID 15567 Rev. 4 7/53
1 Block diagram and pin description
Figure 1. Block diagram
1.1 Pinout PowerSSO-36
&RQWURO/RJLF
',
'2
&61
&/.
',5
3:0
63,
,QWHUIDFH
026)(7
&RQWURO
:DNHXS
IURP
6OHHSPRGH
'ATE
$RIVER
(3
'ATE
$RIVER
,3 X
&RQWURO
'LDJQRVLV
&RQWURO
'LDJQRVLV
*+
6+
*/
&6,
&6,
'L II HU HQW L DO &XU U HQ W
6HQVH$PSOLILHU
&6,
&6,
&62
&XUUHQW6HQVH08;
3URJUDPPDEOH
*DLQ
*1'
&3 &3 &3 &3 &3
&HQWUDO6WHS&KDUJH3XPS
9&3
9&3
3URJUDPPDEOH
9'67 +W'HD G
*+
6+
*/
6/
(1
8QGHUYROWDJH
2YHUYROWDJH'HW
9FF
9V
7HPSH UDWXUH3UHZDUQLQJ
7HPSHUDWXUH 6KXWG RZQ
9V
6/
:DWFK'RJ
9FF
76
$&7B2))
*1' '
9FFG
&
95(*
66
-
4E MPDIODES
N& N& N&
6"!4
.2ESET
OPTIONALCONTROL
76$&7B2))
&
OPTIONALCONTROL
("1($'5
Table 2. Pin definitions and functions
Pin Symbol Function
1 GND Ground. Reference potential, connected to slug.
2 GNDD Digital ground. Reference potential.
3V
CCD
Logic voltage supply 3.3 V/5 V: for this input a ceramic capacitor as
close as possible to GND is recommended.
4V
CC
Analog voltage supply 3.3 V/5 V: for this input a ceramic capacitor as
close as possible to GND is recommended.
5 EN Enable input. The enable input has a pull-down resistor.
6DIR
Direction select input for H-bridge control. This input has a pull-down
current.
7 PWM PWM input for H-bridge control. This input has a pull-down current.
8CSN
Chip select not input: this input is low active and requires CMOS logic
levels. The serial data transfer between L99H01 and microcontroller is
enabled by pulling the input CSN to low-level. This input has a pull-up
current.
Block diagram and pin description L99H01
8/53 Doc ID 15567 Rev. 4
9CLK
Serial clock input: this input controls the internal shift register of the
SPI and requires CMOS logic levels.This input has a pull-down
current.
10 DI
Serial data in: the input requires CMOS logic levels and receives serial
data from the microcontroller. The data is an 8-bit control word and the
most significant bit (MSB, bit 7) is transferred first. This input has a
pull-down current.
11 DO
Serial data out: the diagnosis data is available via the SPI and this
tristate-output. The output remains in tristate, if the chip is not selected
by the input CSN (CSN = high).
12, 14, 19,
20, 22 NC Not connected.
13 CSO Current sense amplifier output: VCC compatible.
15 CSI1+ Current sense amplifier input: positive input 1, multiplexible.
16 CSI1- Current sense amplifier input: negative input 1, multiplexible.
17 CSI2+ Current sense amplifier input: positive input 2, multiplexible.
18 CSI2- Current sense amplifier input: negative input 2, multiplexible.
21 TS/ ACT_OFF Thermal sensor interface or input to switch all driver active off.
23 GL2 Gate driver for PowerMOS low-side switch in halfbridge 2.
24 SL2 Source of low-side switch in halfbridge 2.
25 GH2 Gate driver for PowerMOS high-side switch in halfbridge 2.
26 SH2 Source/drain of halfbridge 2.
27 SL1 Source of low-side switch in halfbridge 1.
28 GL1 Gate driver for PowerMOS low-side switch in halfbridge 1.
29 SH1 Source/drain of halfbridge 1.
30 GH1 Gate driver for PowerMOS high-side switch in halfbridge 1.
31 CP Charge pump output.
32 CP2+ Charge pump pin for capacitor 2, positive side.
33 CP2- Charge pump pin for capacitor 2, negative side.
34 CP1+ Charge pump pin for capacitor 1, positive side.
35 CP1- Charge pump pin for capacitor 1, negative side.
36 VS
Power supply voltage (external reverse protection required).
For EMI reason a ceramic capacitor as close as possible to GND is
recommended.
Table 2. Pin definitions and functions (continued)
Pin Symbol Function
L99H01 Block diagram and pin description
Doc ID 15567 Rev. 4 9/53
Figure 2. Pinning of device in PowerSSO-36 package
1. The slug is connected to pin 1.
1.2 Pinout LQFP32








 

















'.$
'.$$
6
##$
6
##
%.
$)2
07-
#3.
#,+
$)
$/
.#
#3/
.#
#3)
#3)
#3)
#3) .#
.#
43!#4?/&&
.#
',
3,
'(
3(
3,
',
3(
'(
#0
#0
#0
#0
#0
63
0OWER33/
("1($'5
Table 3. Pin definitions and functions
Pin Symbol Function
1 CP2- Charge pump pin for capacitor 2, negative side.
2 CP1+ Charge pump pin for capacitor 1, positive side.
3 CP1- Charge pump pin for capacitor 1, negative side.
4V
S
Power supply voltage (external reverse protection required).
For EMI reason a ceramic capacitor as close as possible to GND is
recommended.
5 GND Ground. Reference potential, connected to slug.
6 GNDD Digital ground. Reference potential.
7V
CCD
Logic voltage supply 3.3 V/5 V: for this input a ceramic capacitor as
close as possible to GND is recommended.
8V
CC
Analog voltage supply 3.3 V/5 V: for this input a ceramic capacitor as
close as possible to GND is recommended.
9 EN Enable input. The enable input has a pull-down resistor.
Block diagram and pin description L99H01
10/53 Doc ID 15567 Rev. 4
10 DIR Direction select input for H-bridge control. This input has a pull-down
current.
11 PWM PWM input for H-bridge control. This input has a pull-down current.
12 CSN
Chip select not input: this input is low active and requires CMOS logic
levels. The serial data transfer between L99H01 and microcontroller is
enabled by pulling the input CSN to low-level. This input has a pull-up
current.
13 CLK
Serial clock input: this input controls the internal shift register of the
SPI and requires CMOS logic levels.This input has a pull-down
current.
14 DI
Serial data in: the input requires CMOS logic levels and receives serial
data from the microcontroller. The data is an 8-bit control word and the
most significant bit (MSB, bit 7) is transferred first. This input has a
pull-down current.
15 DO
Serial data out: the diagnosis data is available via the SPI and this
tristate-output. The output remains in tristate, if the chip is not selected
by the input CSN (CSN = high).
16 CSO Current sense amplifier output: VCC compatible.
17 CSI1+ Current sense amplifier input: positive input 1, multiplexible.
18 CSI1- Current sense amplifier input: negative input 1, multiplexible.
19 CSI2+ Current sense amplifier input: positive input 2, multiplexible.
20 CSI2- Current sense amplifier input: negative input 2, multiplexible.
21 NC Not connected.
22 TS/ ACT_OFF Thermal sensor interface or external off for all gate drivers.
23 GL2 Gate driver for PowerMOS low-side switch in halfbridge 2.
24 SL2 Source of low-side switch in halfbridge 2.
25 GH2 Gate driver for PowerMOS high-side switch in halfbridge 2.
26 SH2 Source/drain of halfbridge 2.
27 SL1 Source of low-side switch in halfbridge 1.
28 GL1 Gate driver for PowerMOS low-side switch in halfbridge 1.
29 SH1 Source/drain of halfbridge 1.
30 GH1 Gate driver for PowerMOS high-side switch in halfbridge 1.
31 CP Charge pump output.
32 CP2+ Charge pump pin for capacitor 2, positive side.
Table 3. Pin definitions and functions (continued)
Pin Symbol Function
L99H01 Block diagram and pin description
Doc ID 15567 Rev. 4 11/53
Figure 3. Pinning of device in LQFP-32 package
'HYLFH










       
-2'1
#0
#0
#0
6
3
'.$
'.$$
6##$
6##
%.
$)2
07-
#3.
#,+
$)
$/
#3/
#3)
#3)
#3)
#3)
.#
43!#4?/&&
',
3,
'(
3(
3,
',
3(
'(
#0
#0
("1($'5
Ele ctrical specifications L99H01
12/53 Doc ID 15567 Rev. 4
2 Electrical specifications
2.1 Absolute maximum ratings
Stressing the device above the rating listed in the Ta ble 4 may cause permanent damage to
the device. These are stress ratings only and operation of the device at these or any other
conditions above those indicated in the operating sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
2.2 ESD protection
Table 4. Absolute maximum ratings
Item Symbol Parameter Value Unit
4.1.1 VS
Power supply voltage -0,3 to 35 V
4.1.2 Single pulse tmax < 400 ms 40 V
4.2 VCC Stabilished supply voltage -0.3 to 5.5 V
4.3 DI, DO, CLK, CSN,
EN, DIR, PWM Digital input / output voltage -0.3 to VCC + 0.3 V
4.4 CSO, TS Analog input / output voltage -0.3 to VCC + 0.3 V
4.5 CSI1+, CSI1-,
CSI2+, CSI2- HV signal pins -4 to VS + 5V V
4.6 GL2, GH2, GL1,
GH1 (Gxy) HV signal pins Sxy - 1 to Sxy + 10;
VCP +0.3 V
4.7 SL2, SH2, SL1, SH1 HV signal pins -6 to 40 V
4.8 CP2- CP1- HV signal pins -0.3 to VS + 0.3 V
4.9 CP1+ HV signal pins VS- 0.3 to VS+10 V
4.10 CP2+ HV signal pins VS- 0.6 to VS+10 V
4.11 CP Power pin VS- 0.3 to VS+10 V
Table 5. ESD protection
Item Parameter Value Unit
5.1 All pins ± 2 (1)
1. - HBM according to MIL 883C, Method 3015.7 or EIA/JESD22-A114-A.
- HBM with all unzapped pins grounded.
kV
5.2 VS versus GND ± 4 (1) kV
L99H01 Electrical specifications
Doc ID 15567 Rev. 4 13/53
2.3 Thermal data
2.4 Electrical characteristics
VS = 6 V to 28 V, VCC = 3 V to 5.3 V, Tj = -40°C to 150°C, unless otherwise specified.
The voltages are referred to GND and currents are assumed positive, when the current
flows into the pin.
Table 6. Operating junction temperature
Item Symbol Parameter Value Unit
6.1 TjOperating junction temperature -40 to 150 °C
Table 7. Temperature warning and thermal shutdown
Item Symbol Parameter Min. Typ. Max. Unit
7.1 TjTW ON
Temperature warning threshold
junction temperature Tj135 165 °C
7.2 TjSD ON
Thermal shutdown threshold
junction temperature Tj increasing 155 185 °C
7.3 TjSD OFF
Thermal shutdown threshold
junction temperature Tj decreasing 150 180 °C
Table 8. Packages thermal resistance
Item Symbol Parameter Value Unit
PowerSSO-36 LQFP32
8.1 Rthj-amb
Thermal resistance junction-
ambient (max.) 58(1)
1. Minimum footprint.
80(1) °C/W
Table 9. Supply
Item Symbol Paramete r Test condition Min. Typ. Max. Unit
9.1 VS
Operating supply
voltage range 628V
9.2 VVS_OV1
Overvoltage disable
high threshold 1 SPI: OVT = 1 28 30.5 32 V
9.3 VVS_OV1H
Overvoltage threshold
1 hysteresis 0.57 0.77 1.07 V
9.4 VVS_OV2
Overvoltage disable
high threshold 2 SPI: OVT = 0 18 20 22 V
9.5 VVS_OV2H
Overvoltage threshold
2 hysteresis 0.42 0.62 0.82 V
Ele ctrical specifications L99H01
14/53 Doc ID 15567 Rev. 4
9.6 VVS_UV
Undervoltage disable
low threshold 4.7 4.9 5.1 V
9.7 VVS_UVH
Undervoltage threshold
hysteresis 0.2 0.3 0.4 V
9.8.1
ISVS DC supply current
VS=13V; V
CC =5V;
Active mode; Outputs
floating
4.5 5.5 6.5 mA
9.8.2
VS= 6 V to 28 V;
VCC = 5.0 V; Active
mode; Outputs floating
2.5 18 mA
9.9 ISL
VS quiescent supply
current
VS=13V; V
CC =0V;
Standby mode;
TTes t = -40°C, 25°C;
Outputs floating
A
9.10 ICC VCC DC supply current VS=13V; V
CC =5V;
active mode 1.5 1.8 2.5 mA
9.11 ICC
VCC quiescent supply
current
VCC = 5 V; standby
mode 30 70 150 µA
9.12 ICCdVCCd supply current
VS = 13 V;
VCC =V
CCd=5V;
active mode
250 500 750 µA
Table 10. Undervoltage detection
Item Symbol Parameter Test condition Min. Typ. Max. Unit
10.1 VPOR OFF Power-on reset threshold VCC increasing 2.2 2.55 2.8 V
10.2 VPOR ON Power-on reset threshold VCC decreasing 2.0 2.25 2.6 V
10.3 VPOR hyst
Power-on reset
hysteresis VPOR OFF - VPOR ON 0.2 0.3 0.4 V
Table 11. Watchdog
Item Symbol Parameter Test condition Min. Typ. Max. Unit
11.1 TWDTO Watchdog time out 50 60 100 ms
Table 9. Supply (continued)
Item Symbol Paramete r Test condition Min. Typ. Max. Unit
L99H01 Electrical specifications
Doc ID 15567 Rev. 4 15/53
Table 12. Inputs: CSN, CLK, PWM, DIR, EN and DI
Item Symbol Parameter Test condition Min. Typ. Max. Unit
12.1 Vin L Low-level input voltage 0.3 * VCC 0.4 * VCC V
12.2 Vin H High-level input voltage 0.6 * VCC 0.7 * VCC V
12.3 Vin Hyst Input voltage hysteresis 0.1 * VCC V
12.4 ICSN in Pull-up current at input CSN VCSN =V
CC - 1.5 V -50 -25 -10 µA
12.5 ICLK in
Pull-down current at input
CLK VCLK =1.5V 103550µA
12.6 IDI in Pull-down current at input DI VDI =1.5V 103550µA
12.7 IDIR in Pull-down current at input DIR VDIR =1.5V 103550µA
12.8 IPWM in
Pull-down current at input
PWM VPWM =1.5V 103550µA
12.9 REN in
Pull-down resistance at input
EN VEN = VCC 100 210 480 kΩ
12.10 Cin(1) Input capacitance at input
CSN, CLK, DI, DIR and PWM 0V<V
CC <5.3V 10 15 pF
1. Value of input capacity is not measured in production test. Parameter guaranteed by design.
Table 13. Charge pump output
Item Symbol Parameter Test condition Min. Ty p. Max. Unit
13.1.1
VCP
Charge pump output
voltage
VS = 6 V; ICP = 15 mA VS+6 V
S+7 V
S+7.5 V
13.1.2 VS = 10 V; ICP = 15 mA VS+11 V
S
+12
VS+13.5 V
13.1.3 VS > 12 V; ICP = 15 mA VS+11 V
S
+12
VS+13.5 V
13.2 ICP
Charge pump output
current
fCP = fSYS_CLK / 32;
VS=14V; V
CP =V
S+10V 26 38 48 mA
13.3 VCP_LOW
Charge pump low
threshold voltage VS+4.5 V
S+5 V
S+5.5 V
13.4.1 fSYS_CLK
Clock frequency
(internal oscillator)
VCC = 5 V 3 4 4.5 MHz
13.4.2 VCC = 3 V 2.4 3.3 3.5 MHz
13.5 TCP
Charge pump low filter
time 64 µs
Ele ctrical specifications L99H01
16/53 Doc ID 15567 Rev. 4
Table 14. Gate drivers for external PowerMOS
Item Symbol Parameter Test condition Min. Typ. Max. Unit
Drivers for external high-side PowerMOS
14.1 IGHx(on)
Turn on current
(SOURCE stage) Tj = 25 °C (1) 0.3 0.5(2) 0.8 A
14.2.1
RGHx
On-resistance of
SINK stage
VSHx = 0 V; IGHx = 50 mA;
Tj = 25°C 34 5Ω
14.2.2 VSHx = 0 V; IGHx = 50 mA;
Tj = 125°C 4.5 5.3 7 Ω
14.3 VGHxH Gate on voltage Outputs floating VSHx +8V V
SHx +10V V
SHx +12V V
14.4 RGSHx
Passive Gate
clamp resistance 11 13 15 kΩ
Drivers for external low-side PowerMOS
14.5 IGLx(on)
Turn on current
(SOURCE stage) Tj = 25°C (1) 0.3 0.5(2) 0.8 A
14.6.1
RGLx
On-resistance of
SINK stage
VSLx = 0 V; IGHx = 50 mA;
Tj = 25°C 34 5Ω
14.6.2 VSLx = 0 V; IGHx = 50 mA;
Tj = 125°C 4.5 5.3 7 Ω
14.7 VGLxH Gate on voltage VSLx +8V V
SLx +10V V
SLx + 12 V V
14.8 RGSLx
Passive gate
clamp resistance 11 13 15 kΩ
Timing of the drivers
14.9 tGHxHL
Propagation delay
time high to low
VVS = 13.5 V; VSHx = 0;
RG=30 Ω; CG=4.7nF 0.8 1.4 1.9 µs
14.10 tGLxHL
Propagation delay
time low to high
VVS = 13.5 V; VSLx = 0;
RG=30 Ω,; CG=4.7nF 0.6 1.2 1.8 µs
14.11 tGHxr2 Rise time VVS = 13.5 V; VSHx = 0;
RG=0 Ω; CG=4.7nF 45 170 ns
14.12 tGHxf2 Fall time VVS = 13.5 V; VSHx = 0;
RG=0 Ω; CG=4.7nF 60 210 ns
14.13 tGLxr2 Rise time VVS = 13.5 V; VSLx = 0;
RG=0 Ω; CG=4.7nF 45 170 ns
14.14 tGLxf2 Fall time VVS = 13.5 V; VSLx = 0;
RG=0 Ω; CG=4.7nF 60 210 ns
1. Indirect measurement, parameter measured dynamically using 100 nF load capacitor and evaluating the slew rate.
2. Average value.
L99H01 Electrical specifications
Doc ID 15567 Rev. 4 17/53
Table 15. Cross current protection time(1)
Item Symbol Parameter Test condition Min. Typ. Max. Unit
15.1 tCCP0 Cross current protection time 250(2)
ns
15.2 tCCP1 Cross current protection time 250 500 750
15.3 tCCP2 Cross current protection time 500 750 1000
15.4 tCCP3 Cross current protection time 700 1000 1300
15.5 tCCP4 Cross current protection time 950 1250 1570
15.6 tCCP5 Cross current protection time 1160 1500 1880
15.7 tCCP6 Cross current protection time 1360 1750 2180
15.8 tCCP7 Cross current protection time 1560 2000 2480
1. Test conditions: VCC = 5 V, VS = 13.5 V
2. Not tested
Table 16. Drain source monitoring
Item Symbol Parameter Test condition Min. Typ. Max. Unit
16.1 VSCd1 Drain - source threshold voltage 0.15 0.5 0.7 V
16.2 VSCd2 Drain - source threshold voltage 0.45 1 1.25 V
16.3 VSCd3 Drain - source threshold voltage 0.9 1.5 1.8 V
16.4 VSCd4 Drain - source threshold voltage 1.4 2 2.35 V
16.5 tSCd Drain - source filtertime 6 µs
Table 17. Thermal sense interface
Item Symbol Parameter Min. Typ. Max. Unit
17.1 ITS_bias Output bias current 200 250 300 µA
17.2 Vth_TS TS threshold voltage
VTS < VCC - 1 V
n = number of diodes
m = programmed level (0 to 7)
n * (0.31 + m * 0.03) V
Table 18. Current sense amplifier(1)
Item Symbol Parameter Test condition Min. Typ. Max. Unit
DC parameters
18.1 VICM
Input voltage range –
common mode -4 VCP -
8V V
18.2 VIOFF50 Input offset voltage Gain = 50 -11 -4 3 mV
18.3 VIOFF20 Input offset voltage Gain = 20 -23 -8 7 mV
18.4 VIOFF10 Input offset voltage Gain = 10 -30 -10 10 mV
18.5 VIOFF-T50/ΔTInput offset voltage drift vs.
temperature Gain = 50 -10(2) µV/°K
Ele ctrical specifications L99H01
18/53 Doc ID 15567 Rev. 4
18.6 VIOFF-T20/ΔTInput offset voltage drift vs.
temperature Gain = 20 -18(2) µV/°K
18.7 VIOFF-T10/ΔTInput offset voltage drift vs.
temperature Gain = 10 -27(2) µV/°K
18.8 VIOFF-O_50
Input offset voltage with offset
compensation Gain = 50 -3.5 -1 1.5 mV
18.9 VIOFF-O_20
Input offset voltage with offset
compensation Gain = 20 -6 -2 4 mV
18.10 VIOFF-O_10
Input offset voltage with offset
compensation Gain = 10 -10 -3 6 mV
18.11 PSRR_50 Power supply rejection ratio Gain = 50 39 dB
18.12 PSRR_20 Power supply rejection ratio Gain = 20 31 dB
18.13 PSRR_10 Power supply rejection ratio Gain = 10 25 dB
18.14 CMRR Input common mode rejection Tj = 25°C, DC 60 dB
18.15 Gain50 Gain 46.75 50 53.25
18.16 Gain20 Gain 19 20 21
18.17 Gain10 Gain 9.5 10 10.5
18.18.1
VCSOh High-level output voltage
IOUT = 2 mA VCC -
250 mV V
18.18.2 IOUT = 200 µA VCC -
50 mV
VCC -
20 mV V
18.19.1 VCSOl Low-level output voltage IOUT = -2 mA 100 250 mV
18.19.2 IOUT = -200 µA 15 50 mV
Dynamic parameters
18.20 SRcso_10 CSO slew rate Gain = 10; RL = 1 kΩ,;
CL = 22 pF 2.8 4 V/µs
18.21 SRcso_20 CSO slew rate Gain = 20; RL = 1 kΩ,;
CL = 22 pF 34.5V/µs
18.22 SRcso_50 CSO slew rate Gain = 50; RL = 1 kΩ,;
CL = 22 pF 4.4 6 V/µs
18.23 ICSI_10 CSI input current Gain = 10 -114 -102 -90 µA
18.24 ICSI_20 CSI input current Gain = 20 -80 -72 -64 µA
18.25 ICSI_50 CSI input current Gain = 50 -39 -33 -27 µA
1. Test conditions: VS = 13 V, VCC = 5 V
2. Not tested, guaranteed by design.
Table 18. Current sense amplifier(1) (continued)
Item Symbol Parameter Test condition Min. Typ. Max. Unit
L99H01 Electrical specifications
Doc ID 15567 Rev. 4 19/53
Figure 4. Output timing diagram (active free wheeling)
Figure 5. Output timing diagram (passive free wheeling)
07-
T
'(,X
T



T'(XR T'(XF
T'(X(,
',(X

T

T##0
T',XR


T',XF
T',X(,
T##0
'(XFOR&7LOWFREEWHEELING
',XFOR&7HIGH
',XFOR&7LOW
'(XFOR&7HIGH ("1($'5
07-
T
'(,X
T



T'(XR T'(XF
T'(X(,
T',X(,
07-
T
'(,X
T



T'(XR T'(XF
T'(X(,
T',X(,
("1($'5
Ele ctrical specifications L99H01
20/53 Doc ID 15567 Rev. 4
2.5 SPI - electrical characteristics
VS=6V to 28V, V
CC = 3 V to 5.3 V, Tj= -40°C to 150°C, unless otherwise specified. The
voltages are referred to GND and currents are assumed positive, when the current flows into
the pin.
Table 19. DI timing(1)
1. DI timing parameters tested in production by a passed / failed test:
Tj = -40°C / +25°C: SPI communication @ 2 MHz.
Tj = +125°C: SPI communication @ 1.25 MHz.
Item Symbol Parameter Test condition Min. Typ. Max. Unit
19.1 tCLK Clock period 1000 ns
19.2 tCLKH Clock high time 400 ns
19.3 tCLKL Clock low time 400 ns
19.4 tset CSN
CSN setup time, CSN low
before rising edge of CLK 400 ns
19.5 tset CLK
CLK setup time, CLK high
before rising edge of CSN 400 ns
19.6 tset DI DI setup time 200 ns
19.7 thold DI DI hold time 200 ns
19.8 tr in
Rise time of input signal DI,
CLK, CSN ——100ns
19.9 tf in
Fall time of input signal
DI, CLK, CSN ——100ns
Table 20. DO
Item Symbol Parameter Test condition Min. Typ. Max. Unit
20.1 VDOL
Low-level output
voltage ID=-4mA 0.2 0.4 V
20.2 VDOH
High-level output
voltage ID=4mA V
CC -0.4 V
CC -0.2 V
20.3 IDOLK
Tristate leakage
current
VCSN =V
CC;
0V<V
DO <V
CC
-10 10 µA
20.4 CDO(1)
1. Value of input capacity is not measured in production test. Parameter guaranteed by design.
Tristate input
capacitance
VCSN =V
CC;
0V<V
CC <5.3V 10 15 pF
L99H01 Electrical specifications
Doc ID 15567 Rev. 4 21/53
Table 21. DO timing
Item Symbol Parameter Test condition Min. Typ. Max. Unit
21.1 tr DO DO rise time CL= 100 pF;
Iload =-1mA 80 140 ns
21.2 tf DO DO fall time CL= 100 pF; Iload = 1 mA 50 100 ns
21.3 ten DO tri L
DO enable time from
tristate to low-level
CL= 100 pF; Iload =1mA;
pull-up load to VCC
100 250 ns
21.4 tdis DO L tri
DO disable time from
low-level to tristate
CL= 100 pF; Iload =4mA;
pull-up load to VCC
380 450 ns
21.5 ten DO tri H
DO enable time from
tristate to high-level
CL= 100 pF;
Iload = -1 mA; pull-down load
to GND
100 250 ns
21.6 tdis DO H tri
DO disable time from
high-level to tristate
CL= 100 pF;
Iload = -4 mA; pull-down load
to GND
380 450 ns
21.7 td DO DO delay time VDO <0.3V
CC;
VDO >0.7V
CC; CL= 100 pF 50 250 ns
Table 22. EN, CSN timing
Item Symbol Parameter Test condition Min. Typ. Max. Unit
22.1 tr DO DO rise time CL= 100 pF;
Iload =-1mA 80 140 ns
22.2 tf DO DO fall time CL= 100 pF;
Iload =1mA 50 100 ns
22.3
t
CSN_HI,min
CSN HI time, active
mode:the min high time
between two independent
SPI commands.
Transfer of SPI-
command to input
register
s
Ele ctrical specifications L99H01
22/53 Doc ID 15567 Rev. 4
Figure 6. SPI - transfer timing diagram
Figure 7. SPI - input timing

 
TIME
TIME
TIME
TIME
TIME
#3.HIGHTOLOW$/ENABLED
ACTUALDATA
$)DATAWILLBEACCEPTEDONTHERISINGEDGEOF#,+SIGNAL
NEWDATA
#3.
#,+
$)
$/
EG/54
$/DATAWILLCHANGEONTHEFALLINGEDGEOF#,+SIGNAL
STATUSINFORMATION
FAULTBIT #3.LOWTOHIGHACTUALDATAIS
TRANSFERREDTOOUTPUTPOWERSWITCHES
OLDDATA
 

ACTUALDATA
     

     
("1($'5
$2!
6##
6##
6##
6##
6##
6##
6ALID 6A L ID
#3.
#,+
$)
TSET#3. T#,+( TSE T#,+
T#,+,
THOLD $)
TSET$)
("1($'5
L99H01 Electrical specifications
Doc ID 15567 Rev. 4 23/53
Figure 8. SPI - DO valid data delay time and valid time
Figure 9. SPI - DO enable and disable time


6
##

6
##

6
##
 6##
 6##

6
##
#,+
$/
LOWTOHI
G
H
$/
HIGH
TOLO
W

6##
T
RIN
T
R$/
T
F
$/
TD$/
TF
I
N
("1($'5
#3.
T
FIN RIN
T
$/
$/
EN$/TRI,
T T
DIS$/,TRI

6##
6##


EN $/ TRI (
T T
DIS $/ ( TRI
# P&
,
# P&
,
PULLUPLOADTO6##
PULLDOWNLOADTO'.$
("1($'5
Ele ctrical specifications L99H01
24/53 Doc ID 15567 Rev. 4
Figure 10. SPI - timing of status bit 0 (fault condition)
L99H01 Dev ice descr ipt ion
Doc ID 15567 Rev. 4 25/53
3 Device description
3.1 Dual power supply: VS and VCC
The power supply voltage VS supplies the charge-pump. An internal charge-pump is used to
drive the high-side switches and the low-side switches. The logic supply voltage VCC
(3.3 V / 5 V) is used for the logic part and the SPI of the device. Due to the independent logic
supply voltage the control and status information is not lost, even if the supply voltage VS is
switched-off. In case of power-on (VCC increases from undervoltage to
VPOR OFF = 2.5 V, typical) the circuit is initialized by an internally generated power-on reset
(POR). If the voltage VCC decreases under the minimum threshold (VPOR ON =2.2V,
typical), the outputs are switched-off and the status registers are cleared.
3.2 Standby mode (EN)
The L99H01 is activated with enable input high signal. For enable input floating (not
connected) or VEN = 0 V the device is in standby mode. All latched data are cleared and the
inputs and outputs are switched-off. In the standby mode the current at VS is less than 5 µA
(1 µA) for CSN = high (DO in tristate). If VCC > VPOR OFF and EN = high the device enters
the active mode. In the active mode the charge-pump and the diagnostic functions are
active.
3.3 H-bridge control (DIR, PWM, bit FW)
The DIR and PWM inputs control the drivers of the external H-bridge transistors. The motor
direction can be chosen with the DIR input, the duty cycle and frequency with the PWM
input. With the SPI registers FW and FW-PAS 4 different free wheeling modes (2 active and
2 passive) can be selected using the high-side transistors or the low-side transistors.
Unconnected inputs are defined by internal pull-down current.
Device description L99H01
26/53 Doc ID 15567 Rev. 4
Table 23. Truth table
Control pins Control bits Failure bits Output pins SPI DO Comment
EN DIR PWM TS/ACT_OFF FW FW_PAS CP_LOW OV UV SC TSD WDTO GH1 GL1 GH2 GL2 GL_ER
1 0 X X X X X X X X X X X RL RL RL RL T Standby mode
2 1 X X X X X X X X X X X RL RL RL RL 1 Power-on reset
31XX 0 X 0 0 0000 0 LLLL 0EXT_TS = 1 (external
thermal shutdown)
4 1 X X 0 X 0 0 0 0 0 0 0 L L L L 0 EXT_TS = 0 (active Off)
5 1 X X 1 X X 1 0 0 0 0 0 RLRLRLRL 1 Charge pump voltage too
low
6 1 X X 1 X X 0 0 0 0 1 0 RL RL RL RL 1 Internal thermal shutdown
7 1 X X 1 X X 0 1 0 0 0 0 L L L L 1 Overvoltage
8 1 X X 1 X X 0 0 1 0 0 0 L L L L 1 Undervoltage
91X X 1 X X 0 001 0 0 L
(1) L(1) L(1) L(1) 0 Short-circuit(1)
10 1 X X 1 X X 0 0 0 0 0 1 L L L L 1 Watchdog time out
11 1 0 1 1 X X 0 0 0 0 0 0 L H H L 0 -
12 1 X 0 1 0 0 0 0 0 0 0 0 L H L H 0 Act. free wheeling mode LS
13 1 0 0 1 0 1 0 0 0 0 0 0 L H L L 0 Pass. free wheeling mode
LS
14110 1 0 1 0 0000 0 LLLH 0Pass. free wheeling mode
LS
15 1 1 1 1 X X 0 0 0 0 0 0 H L L H 0 -
16 1 X 0 1 1 0 0 0 0 0 0 0 H L H L 0 Act. free wheeling mode
HS
17 1 0 0 1 1 1 0 0 0 0 0 0 L L H L 0 Pass. free wheeling mode
HS
18 1 1 0 1 1 1 0 0 0 0 0 0 H L L L 0 Pass. free wheeling mode
HS
1. Only the halfbridge (low-side and high-side) where one MOSFET is in short-circuit condition is switched-off. Both MOSFET’S of the other halfbridge remain active and driven by DIR and PWM.
L99H01 Dev ice descr ipt ion
Doc ID 15567 Rev. 4 27/53
Symbols:
x: Don't care
1: Logic high or active
0: Logic low or not active
H: Output in source condition
L: Output in sink condition
RL: Resistive low (see Section 3.4)
T: Tristate
FW: Free wheeling
FW_PAS: Free wheeling passive
CP_LOW: Charge pump low
OV: Overvoltage
UV: Undervoltage
SC: Short-circuit
TSD: Thermal shutdown
GL_ER: Global error flag
3.4 Resistive low
The resistive output mode protects the L99H01 and the H-bridge in the standby mode and in
some failure modes (internal and external thermal shutdown (TSD), charge pump low
(CP_LOW), stucked reset (STK_RESET_Q) and power-on reset (PORES). When a gate
driver changes into the resistive output mode due to a failure a sequence is started. In this
sequence the concerning driver is switched in sink condition for 32 µs to 64 µs to ensure a
fast switch-off of the H-bridge transistor. Afterwards the driver is switched in the resistive
output mode (resistive path to source).
3.5 Diagnostic functions
The diagnostic functions (over load, power supply over- and undervoltage, charge pump
low, watchdog, temperature warning and internal/external thermal shutdown) are internally
filtered and the condition has to be valid for at least 64 µs (6 µs for a short-circuit) before the
corresponding status bit in the status registers is set. The filters are used to improve the
noise immunity of the device. The internal temperature warning function is intended for
information purpose and does not change the state of the output drivers. On the contrary,
the over load condition switches the corresponding halfbridge in sink condition. The internal
thermal shutdown condition and charge pump low disable all drivers (resistive low). The
external thermal shutdown, watchdog, over- and undervoltage condition switch all driver in
sink condition. The microcontroller needs to clear the status bits to reactivate the drivers.
3.6 Overvoltage and undervoltage detection
If the power supply voltage VS rises above the overvoltage threshold VVS_OVH
(typical 20 V / 30 V), all gate driver stages are switched in sink condition to protect the
H-bridge and the load, setting the OV bit. Two values for the overvoltage threshold can be
selected with the SPI. When the voltage VS drops below the undervoltage threshold
Device description L99H01
28/53 Doc ID 15567 Rev. 4
VVS_UV
, all gate driver stages are switched in the sink condition to avoid driving the power
devices without sufficient gate driving voltage (increased power dissipation), setting the UV
bit. In both cases, overvoltage and undervoltage detection, the charge pump is disabled. If
the supply voltage VS recovers from UV/OV to normal operating voltage range and if the
OV_UV_RD is set to 0, then the charge pump is automatically enabled. In any case,
regardless of the OV_UV_RD bit value, the microcontroller needs to clear the status register
to reactivate the gate drivers.
3.7 Charge pump
The charge pump uses 2 external capacitors. The output of the charge pump has a current
limitation. In standby mode and after overvoltage, undervoltage or a thermal shutdown has
been triggered the charge pump is disabled. If the charge pump output voltage remains too
low for longer than TCP , all gate drivers are switched-off (resistive output, see Section 3.4).
The CP_LOW bit has to be cleared through a software reset to reactivate the gate drivers.
3.8 Temp erature warning and th erm al shutdo wn
If junction temperature rises above TjTWON the temperature warning flag TW is set and is
detectable via the SPI. If junction temperature increases above the second threshold
TjSDON, the thermal shutdown bit (TSD) is set. The gate drivers and the charge pump are
switched-off to protect the device. The gates of the H-bridge are discharged by the resistive
low mode (see Section 3.4). In order to reactivate the output stages the junction
temperature must decrease below TjSDOFF
and the thermal shutdown bit has to be cleared
by the microcontroller.
3.9 Sho rt-circuit detection / drain source monitoring
The drain - source voltage of each activated external MOSFET of the H-bridge is monitored
by comparators to detect shorts to ground or battery. If the voltage drop over the external
MOSFET exceeds the threshold voltage VSCd for longer than the short current detection
time tSCd the corresponding gate driver switches the external MOSFET off and the
corresponding drain source monitoring flag (DS_MON [3:0]) is set. Until this failure flag is
reseted the corresponding half bridge is in sink condition. The DS_MON bits have to be
cleared through a software reset to reactivate the gate drivers. The drain source monitoring
has a filter time of 6 µs. This monitoring is only active when the corresponding gate driver is
in source condition. The threshold voltage VSCd can be programmed in 4 steps between
0.5 V and 2 V with the SPI.
3.10 Programmable cro ss current protectio n
The external Power MOSFET’s transistors in H-bridge (two halfbridges) configuration are
switched-on with an additional delay time tCCP to prevent cross current in the halfbridge. The
cross current protection time tCCP can be programmed with the SPI.
L99H01 Dev ice descr ipt ion
Doc ID 15567 Rev. 4 29/53
3.11 Current sense amplifier (CSA)
The current sense amplifier (CSA) is specially designed for current shunt automotive
applications. It is a bidirectional, single-supply difference amplifier for amplifying small
differential voltages in a wide common mode voltage range (-4 V to (VCP - 8) V). It supports
the current measurement at two shunts. The result of respective shunt can be multiplexed to
the microcontroller compatible output voltage by a SPI command.
A gain of 50, 20 or 10 is SPI programmable. The inputs (CSI1+ / CSI1- and CSI2+ / CSI2-)
are build as a transconductance stage. Therefore a series resistor (for filtering etc.) should
not exceed 50 Ω to keep the additional gain error below 1%.
The output works at half scale: VCSO0 = (0,5 * VCC) V for VIDIFF = 0 V. An internal offset
measurement is in normal mode available with the "OFF_CAL" SPI-bit. If this bit is set to
logic "1" the input pins are disconnected from the amplifier and a virtual zero input
differential voltage is selected.
3.12 Thermal sensor interface / H-bridge switch-off input
The TS/ACT_OFF pin is configurable by SPI with the EXT_TS bit. This pin could be used as
temperature sensor interface for the H-bridge or external off for all gate drivers. The output
bias current ITS_bias is on for EN = high.
3.12.1 EXT_TS-bit = low (active off)
The TS/ACT_OFF input is used as a logic driver control input, without filter delay and
without latching the information.
Pulling the TS/ACT_OFF pin below the programmed threshold all gate drivers are
switched-off and the OT_EXT bit is set.
Increasing the voltage at TS/ACT_OFF pin above the programmed threshold the device
remains to the status set by DIR and PWM-pins and the OT_EXT bit is reseted.
The threshold is programmable by SPI with the registers EXTTH_5:0.
3.12.2 EXT_TS-bit = high (thermal sensor interface)
With the thermal sensor interface external diodes can be used to control the temperature of
the external H-bridge. When the diode forward voltage decreases below the reference
voltage for longer than the internal filter time (64 µs) the OT_EXT bit is set and the driver
switches in resistive low (see Section 3.4: Resistive low).
In this mode the OT_EXT-status-bit has to be cleared to reactivate the gate drivers.
The threshold is programmable by SPI with the registers EXTTH_5:0.
3.13 Watchdog
The tasks of the watchdog is to monitor the microcontroller during normal operation within a
nominal trigger cycle of 60 ms. The microcontroller has to restart the watchdog timer by
sending the watchdog restart bit via SPI repeatedly within the watchdog time TWDTO. If no
correct watchdog service is sent from the microcontroller, all gate drivers switch in sink
Device description L99H01
30/53 Doc ID 15567 Rev. 4
condition and the watchdog time out bit (WDTO) is set. Once the watchdog times out, the
gate drivers can only be reactivated by sending a software reset.
L99H01 Functional description of the SPI
Doc ID 15567 Rev. 4 31/53
4 Functional description of the SPI
4.1 Signal description
4.1.1 Serial clock (CLK)
This input signal provides the timing of the serial interface. Data present at serial data input
(DI) is latched on the rising edge of serial clock (CLK). Data on Serial Data Out (DO) is
shifted out at the falling edge of serial clock (CLK).
The serial clock CLK must be active only during a frame (CSN low phase). Any other
switching of CLK close to any CSN edge could generate setup/hold violations in the SPI
logic of the device.
4.1.2 Serial data input (DI)
This input is used to transfer data serially into the device. Values are latched on the rising
edge of serial clock (CLK).
4.1.3 Serial data output (DO)
This output signal is used to transfer data serially out of the device. Data is shifted out on the
falling edge of serial clock (CLK).
DO also reflects the status of the <Global Error Flag> (<Global Status Byte>[7]) while CSN
is low and no clock signal is present.
4.1.4 Chip select not (CSN)
When this input signal is high, the communication interface of the device is deselected and
serial data output (DO) is high impedance. Driving this input low enables the
communication. The communication must start and stop on a low-level of serial clock (CLK).
The SPI can be driven by a microcontroller with its SPI peripheral running in following mode:
CPOL = 0 and CPHA = 0.
For timing details and figures refer to Section 2.5.
4.2 General data description
The SPI communication is based on a SPI interface structure using CSN (chip select not),
DI (serial data in), DO (serial data out/error) and CLK (serial clock) signal lines.
Each DI communication frame consists of a <Command Byte> which is followed by 1 <Data
Byte>.
The data returned on DO within the same frame always starts with the <Global Status
Byte>, which provides general status information about the device. This byte is followed by 1
<Data Byte> (In-frame-response’).
Functional description of the SPI L99H01
32/53 Doc ID 15567 Rev. 4
4.2.1 Command byte
Each communication frame starts with a command byte. It consists of an operating code
which specifies the type of operation (<Read>, <Write>, <Fault Reset>,
<Read Device Information>) and a 6-bit address.
Comments:
OCx: Operating code
Ax: Address
4.2.2 OpCode definition
The <Write Mode> and <Read Mode> operations allow access to the RAM of the device.
The <Clear Status> operation is used to read a status register and subsequently clear its
content.
Table 24. DI
Command byte DI - data byte
1514131211109876543210
OC1 OC0 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
Table 25. DO
Global Status byte DO - data by te
15 14 13 12 11109 8 76543210
GL_ER FE STK_RESET_Q TSD TW UV OV WDTO D7 D6 D5 D4 D3 D2 D1 D0
Table 26. Command byte
Command byte
MSB LSB
Op code Address
OC1 OC0 A5 A4 A3 A2 A1 A0
Table 27. Operating code definition
OC1 OC0 Meaning
0 0 <Write Mode>
0 1 <Read Mode>
1 0 <Clear Status>
1 1 <Read Device Information>
L99H01 Functional description of the SPI
Doc ID 15567 Rev. 4 33/53
<Read Device Information> allows access to the ROM area which contains device related
information such as <ID-Header>, <Product Code>, <Silicon Version and Category> and
<SPI-frame-ID>.
More detailed descriptions of the device information are available in Section 4.7 .
Functional description of the SPI L99H01
34/53 Doc ID 15567 Rev. 4
4.3 Device memory map
4.3.1 Control and status (RAM) addres s map
4.3.2 Device (ROM) address map (a ccess with OC0 and OC1 set to ‘1’)
Table 28. Control and status (RAM) address map
Name Access Address Content
A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
Stat Reg0Read/ Clear000000DS_MON_3DS_MON_2DS_MON_1DS_MON_0 0 0 OT_EXTCP_LOW
Appl Reg1Read/ Write000001 RWD FW_PAS OFF_CALCLK_SPCTR OVT OV_UV_RDDIAG_1 DIAG_0
Appl Reg2Read/ Write000010 RWD COPT_2 COPT_1 COPT_0 FW MCSA GCSA_1GCSA_0
Appl Reg3Read/ Write000011 RWD EXT_TS EXTTH_5 EXTTH_4EXTTH_3EXTTH_2EXTTH_1EXTTH_0
Table 29. Device (ROM) address map (access with OC0 and OC1 set to ‘1’)
Name Access Address Content
A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
ID-Header Read
device 000000 FAM_1 FAM_0 NR_PI_5NR_PI_4NR_PI_3NR_PI_2NR_PI_1NR_PI_0
Product Code 1 Read
device 000001PR_ID_7PR_ID_6PR_ID_5PR_ID_4PR_ID_3PR_ID_2PR_ID_1PR_ID_0
Product Code 2 Read
device 000010PR_ID_15PR_ID_14PR_ID_13PR_ID_12PR_ID_11PR_ID_10PR_ID_9PR_ID_8
SPI-Frame-ID Read
device 000011 BR AR5 AR4 AR3 32 bits 24 bits 16 bits 8 bits
Reserved Read
device 111111
Reserved, accessing this address is recognized as a failure, the device enters a fail-safe state
(see Table 30: STK_RESET_Q).
L99H01 Functional description of the SPI
Doc ID 15567 Rev. 4 35/53
4.4 Global status byte
This byte is shifted out first at DO at every SPI access.
The GL_ER bit is present at DO with the falling edge of CSN.
This byte could be reseted with the command <clear status>.
Comments:
GL_ER: Global error flag. This signal is a logical OR among all the errors of all the
channels of the device.
FE: Frame error. If the number of clock pulses within the previous frame is not 16 the
frame is ignored and this bit is set.
STK_RESET_Q: If a stuck at ‘1’ on SPI_DI during any SPI frame occurs, or if a
power-on reset occurs. STK_RESET_Q is reset (‘1’) with any SPI command.
When STK_RESET_Q is active (‘0’), the gate drivers are switched-off (see Section 3.4:
Resistive low).
After a startup of the circuit the STK_RESET_Q is active because of the POR pulse
and the gate drivers are switched-off. The Gate drivers can only be activated after the
STK_RESET_Q has been reset with a SPI command.
TSD: Thermal shutdown due to an internal sensor. All the gate drivers and the charge
pump must be switched-off (see Section 3.4: Resistive low). The gate drivers can only
be activated after the TSD has been reset with a SPI command.
TW: Thermal warning
UV: Logical OR among the filtered undervoltage signals.
OV: Logical OR among the filtered overvoltage signals.
WDTO: Watchdog time out.
Failures of <Global Status Register>[8:14] are always linked to the <Global Error Flag>.
The <Global Error Flag> is generated by an OR combination of all failure events of the
device (<Global Status Register>[8:14]).
The flag is reflected via the DO pin while CSN is held low and no clock signal is available.
The flag remains as long as CSN is low. This operation does not cause the <communication
error> bit in the <Global Status Byte> to be set.
Table 30. STK_RESET_Q
Bit 15 14 13 12 11 10 9 8
Name GL_ER FE STK_RESET_Q TSD TW UV OV WDTO
<default> 0 0 1 0 0 0 0 0
Functional description of the SPI L99H01
36/53 Doc ID 15567 Rev. 4
4.4.1 SPI clock monitor and watchdog
Figure 11. Global error flag diagram
1. Writing a “1” to RWD - bit in ApplRegx restarts the internal watchdog counter.
The clock monitor counts the number of clock pulses during a communication frame (while
CSN is low). If the number of SCK pulses does not correspond with the frame width
indicated in the <SPI-frame-ID> (ROM address 03hex) the frame is ignored and the bit
<frame error> in the <Global Status Byte> is set.
Note: Due to this safety functionality, daisy chaining the SPI is not possible. Instead, a parallel
operation of the SPI bus by controlling the CSN signal of the connected ICs is
recommended.
6&.
6',
6'2(UU
&61
&RPPXQLFDWLRQ(UURU
:'FRXQWHU
:DWFKGRJ)DLOXUH
*OREDO6WDWXV%\WH
*OREDO(UURU)ODJ
&ORFN
0RQLWRU
5:'
$SSO5HJ[
ELW
("1($'5
L99H01 Functional description of the SPI
Doc ID 15567 Rev. 4 37/53
4.5 Detaile d byte description of status register (StatReg0)
The read operation starts always with the command byte followed by 1 data byte. The
content of the send data byte has to be ‘0’. The content of the addressed register is shifted
out at DO within the same frame (‘in-frame response’).
The device uses 1 status register to monitor the state of the device. Tabl e 31 shows the
address and the content of the register.
Comments:
DS_MON[3:0]: If max drain source voltage exceeds the defined thresholds, the
DS_MON are set and the corresponding drivers go to sink mode. The DS_MON bits
have to be cleared through a software reset to reactivate the drivers.
OT_EXT: Depending on EXT_TS bit following two meanings exist:
EXT_TS = low (active off):
TS/ACT_OFF pin is used as input to switch the H-bridge in tristate and back.
Details are discribed in Section 3.12.1.
EXT_TS = high (thermal sensor interface):
TS/ACT_OFF pin is used as thermal sensor interface for external temperature
diodes. Details are discribed in Section 3.12.2.
CP_LOW: If a charge pump output voltage low occurs, all gate drivers must be
switched-off (resistive low). The CP_LOW bit has to be cleared through a software
reset to reactivate the gate driver.
Table 31. Address 0<00(hex)>:StatReg 0 - read only(1)
1. The errors of the status register are not linked to the <Global Error Flag>.
Bit 7 6 5 4 3 2 1 0
Name DS_MON_3 DS_MON_2 DS_MON_1 DS_MON_0 X X OT_EXT CP_LOW
<default> 0 0 0 0 0 0 0 0
Table 32. DS_MON - drivers relations
Register Deactivated driver
DS_MON_3 High-side 2
DS_MON_2 High-side 1
DS_MON_1 Low-side 2
DS_MON_0 Low-side 1
Functional description of the SPI L99H01
38/53 Doc ID 15567 Rev. 4
4.6 Detailed byte descripti on of application register s (ApplRegX)
The write/read operation starts always with a command byte followed by 1 data byte.
4.6.1 Description of the data byte
The device uses 3 application registers to configure the device. Note that the last row shows
the logic levels during a reset phase.
Comments:
RWD: Restarts the watchdog counter
FW_PAS: Enables passive free wheeling according to Ta ble 23
OFF_CAL: Offset calibration mode for CSA
OVT: Overvoltage threshold
CLK_SPCTR: Switch the clock to the charge pump
0: 125 Khz (50% duty cycle)
1: pulses train (max = 8 µs, min = 2 µs) to optimize power spectrum
OV_UV_RD: Over/undervoltage recovery disabled.
0: If VS recovers from OV/UV condition to normal operating voltage range, the
charge pump is automatically enabled;
1: If VS recovers from OV/UV condition to normal operating voltage range, the
charge pump remains disabled;
In both cases the microcontroller has to clear the status register to enable the gate
drivers
DIAG[1:0]: Drain source monitoring threshold voltage
Table 33. Address 1 <01(hex)>:ApplReg1-read/write
Bit765 43210
Name RWD FW_PAS OFF_CAL CLK_SPCTR OVT OV_UV_ RD DIAG1 DIAG0
<default> 0 0 0 0 0 0 0 0
Table 34. Overvoltage threshold of the Vs monitoring
OVT Threshold
020 V
129 V
Table 35. DIAG monitoring of source voltages
DIAG[1] DIAG[0] Monitoring threshold volta ge
00 V
SCD1= 0.5 V
01 V
SCD2 = 1 V
10 V
SCD3 = 1.5 V
11 V
SCD4 = 2 V
L99H01 Functional description of the SPI
Doc ID 15567 Rev. 4 39/53
Comments:
RWD: Restarts the watchdog counter
COPT[2:0]: Filter time to protect the two external halfbridges against cross current.
FW: Selects high-side or low-side free wheeling
MCSA: Multiplexer for current sense amplifier.
GCSA[1:0]: Gain of the current sense amplifier.
Table 36. Address 2 <02(hex)> : ApplReg2 – read/write
Bit76543210
Name RWD COPT_2 COPT_1 COPT_0 FW MCSA GCSA_1 GCSA_0
<default> 0 0 0 0 0 0 0 0
Table 37. Cross current protection time (tCCP)
COPT_2 COPT_1 COPT_0 Protection time
0 0 0 250 ns
0 0 1 500 ns
0 1 0 750 ns
0 1 1 1000 ns
1 0 0 1250 ns
1 0 1 1500 ns
1 1 0 1750 ns
1 1 1 2000 ns
Table 38. Multiplexer for current sense amplifier
MCSA Selected amplifier
0 CSA2 (CSI2+ / CSI2-)
1 CSA1 (CSI1+ / CSI1-)
Table 39. Gain of current sense amplifier
GCSA_1 GCSA_0 Gain
00 10
01 20
10 50
1 1 Not applicable
Functional description of the SPI L99H01
40/53 Doc ID 15567 Rev. 4
Comments:
RWD: Restarts the watchdog counter
EXT_TS: The bit select the mode of the input pin TS/ACT_OFF:
EXT_TS = low (active off):
TS/ACT_OFF pin is used as input to switch the H-bridge in tristate and back.
Details are discribed in Section 3.12.1.
EXT_TS = high (thermal sensor interface):
TS/ACT_OFF pin is used as thermal sensor interface for external temperature
diodes. Details are discribed in Section 3.12.2.
EXTTH[5:0]: Determines the threshold of the external thermal shutdown/warning
Table 40. Address 3 <03(hex)> : ApplReg3 – read/write
Bit76543210
Name RWD EXT_TS EXTTH_5 EXTTH_4 EXTTH_3 EXTTH_2 EXTTH_1 EXTTH_0
<default>00000000
Table 41. External threshold voltage, factor n
EXTTH_5 EXTTH_4 EXTTH_3 n
000 7
001 6
010 5
011 4
100 3
101 2
110 1
111 0
Table 42. External threshold voltage, factor m
EXTTH_2 EXTTH_1 EXTTH_0 m
000 7
001 6
010 5
011 4
100 3
101 2
110 1
111 0
L99H01 Functional description of the SPI
Doc ID 15567 Rev. 4 41/53
Equation 1
Vth = n * (0.31 + m * 0.03) V
The purpose of factor n is to determine the number of external temperature sense diodes (in
series). With factor m the level of the threshold voltage can be fine tuned.
4.7 Read device information (ROM)
The device information is stored at the ROM addresses defined below and is read using the
respective operating code.
The <ID-Header> indicates the product family and specifies how many bytes of device
information are available.
FAM[1:0]: Family identifier, FAM[1:0] = [0:1] stands for ASSPs.
NR_PI[5:0]: Number of product information bytes.
The <Product Code 1 and 2> represents a unique identifier of the device and version.
Table 43. Read device information (ROM)
Op code Address Device information
OC1 OC0 Ax
1 1 00H <ID-Header>
1 1 01H <Product Code 1>
1 1 02H <Product Code 2>
1 1 03H <SPI-frame-ID>
1 1 3FH
Reserved, accessing this address is recognized as a failure, the
device enters a fail-safe state (see Table 30: STK_RESET_Q).
Table 44. Address 0 <00(hex)> : ID-header - read only(1)
1. Addressable only through a read device information command.
Bit76543210
Name FAM_1 FAM_0 NR_PI_5 NR_PI_4 NR_PI_3 NR_PI_2 NR_PI_1 NR_PI_0
<default>01000010
Table 45. Address 1 <01(hex)>: product ID (LSB) - read only(1)
1. Addressable only through a read device information command.
Bit76543210
Name PR_ID_7 PR_ID_6 PR_ID_5 PR_ID_4 PR_ID_3 PR_ID_2 PR_ID_1 PR_ID_0
<default> 0 0 0 0 0 0 0 1
Functional description of the SPI L99H01
42/53 Doc ID 15567 Rev. 4
The <SPI-frame-ID> (ROM address 03H) provides information about the register width (1, 2,
3 bytes) and the availability of ‘burst mode read’ option.
Comments:
BR: Burst mode read. Not supported
AR5: Address width reduction. Not supported
AR4: Address width reduction. Not supported
AR3: Address width reduction. Not supported
32 bits: 32 bits frame width. Not supported
24 bits: 24 bits frame width. Not supported
16 bits: 16 bits frame width, 8 bits command and 8 bits data
8 bits: 8 bits frame width. Not supported
Table 46. Address 2 <02(hex)>: product ID (MSB) - read only(1)
1. Addressable only through a read device Information command.
Bit76543210
Name
PR_ID_15 PR_ID_14 PR_ID_13 PR_ID_12 PR_ID_11 PR_ID_10 PR_ID_9 PR_ID_8
<default>
00101XXX
Table 47. Address 3 <03(hex)>: SPI frame ID - read only(1)
1. Addressable only through a Read Device Information command.
Bit76543210
Name BR AR5 AR4 AR3 32 bits 24 bits 16 bits 8 bits
<default> 0 0 0 0 0 0 1 0
L99H01 Packages thermal data
Doc ID 15567 Rev. 4 43/53
5 Packages thermal data
Figure 12. PowerSSO-36 Rthj-amb vs. PCB copper area in open free air condition(1)
1. Layout condition of Rth and Zth measurements (PCB: double layer, thermal vias,
FR4 area = 129 mm x 60 mm, PCB thickness =1.6 mm, Cu thickness =70 µm (front and back side),
Copper areas: from minimum pad layout to 8 cm2).
35
40
45
50
55
60
65
0246810
RTHj_amb(°C/W)
PCB Cu heat sink ar ea (cm ^ 2)
Package and packing information L99H01
44/53 Doc ID 15567 Rev. 4
6 Package and packing information
6.1 ECOPACK®
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
L99H01 Package and packing information
Doc ID 15567 Rev. 4 45/53
6.2 PowerSSO-36 package information
Figure 13. PowerSSO-36 package dimensions
("1($'5
Package and packing information L99H01
46/53 Doc ID 15567 Rev. 4
Table 48. PowerSSO-36 mechanical data
Symbol Millimeters
Min. Typ. Max.
A2.15 - 2.45
A2 2.15 - 2.35
a1 0 - 0.1
b0.18-0.36
c0.23-0.32
D(1)
1. “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm
per side (0.006”).
10.10 - 10.50
E(1) 7.4 - 7.6
e-0.5-
e3 - 8.5 -
F-2.3-
G- -0.1
H10.1 - 10.5
h--0.4
k0°-8°
L0.55 -0.85
M-4.3-
N - - 10°
O-1.2-
Q-0.8-
S-2.9-
T-3.65-
U-1-
X 4.1 - 4.7
Y 6.5 - 7.1
L99H01 Package and packing information
Doc ID 15567 Rev. 4 47/53
6.3 Packages thermal data
Figure 14. LQFP32 Rthj-amb vs. PCB copper area in open box free air condition
1. Layout condition of Rth and Zth measurements (PCB: double layer, thermal vias,
FR4 area = 78 mm x 86 mm, PCB thickness =1.6 mm, Cu thickness =70 µm (front and back side), copper
areas: from minimum pad layout to 8 cm2).
75
76
77
78
79
80
81
0 0.2 0.4 0.6 0.8 1
RTHj_amb(°C/W)
PCB Cu heat sink ar ea (cm ^ 2)
Package and packing information L99H01
48/53 Doc ID 15567 Rev. 4
6.4 LQFP32 package information
Figure 15. LQFP32 package dimensions
("1($'5
L99H01 Package and packing information
Doc ID 15567 Rev. 4 49/53
Table 49. LQFP32 mechanical data
Dim. Millimeter
Min. Typ. Max.
A 1.60
A1 0.05 0.15
A2(1)
1. LQFP stands for low profile quad flat pachage.
Low profile: Body thickness (A2 = 1.40 mm)
1.35 1.40 1.45
b 0.30 0.37 0.45
c 0.09 0.20
D 8.80 9.00 9.20
D1 6.80 7.00 7.20
D3 5.60
E 8.80 9.00 9.20
E1 6.80 7.00 7.20
E3 5.60
e0.80
L 0.45 0.60 0.75
L1 1.00
K 0°3.5°7°
ccc 0.10
Package and packing information L99H01
50/53 Doc ID 15567 Rev. 4
6.5 PowerSSO-36 packing information
Figure 16. PowerSSO-36 tube shipment (no suffix)
Figure 17. PowerSSO-36 tape and reel shipment (suffix “TR”)
All dimensions are in mm.
Base qty 49
Bulk qty 1225
Tube length0.5) 532
A3.5
B13.8
C (±0.1) 0.6
A
CB
Reel dimensions
Base qty 1000
Bulk qty 1000
A (max) 330
B (min) 1.5
C (±0.2) 13
F20.2
G (+2 / -0) 24.4
N (min) 100
T (max ) 30.4
Tape dimensions
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
All dimensions are in mm.
Tape width W 24
Tape hole spacing P0 (±0.1) 4
Component spacing P 12
Hole diameter D (±0.05) 1.55
Hole diameter D1 (min) 1.5
Hole position F (±0. 1) 11.5
Compartmen t de pt h K (max) 2.85
Hole spacing P1 (±0.1) 2
Top
cover
tape
End
Start
No componentsNo components Components
500mm min 500mm min
Empty components pockets
sealed with cover tape.
User direction of feed
L99H01 Package and packing information
Doc ID 15567 Rev. 4 51/53
6.6 LQFP32 pack i ng info r ma t io n
Figure 18. LQFP32 tape and reel shipment (suffix “TR”)
Figure 19. LQFP32 tray shipmen t (no suffix )
Revision history L99H01
52/53 Doc ID 15567 Rev. 4
7 Revision history
Table 50. Document revision history
Date Revision Changes
17-Apr-2009 1 Initial release.
19-Aug-2009 2
Updated corporate template from V3 to V3.1
Updated Figure 4.
Removed items 17.16, 17.18 and 17.20 of the Table 18: Current sense
amplifier.
Added Table 15: Cross current protection time
Table 18: Current sense amplifier.
–V
IOFF50, VIOFF20, VIOFF10: added min/typ/max value,
deleted “Tj = 25 °C“ for test condition
–V
IOFF-T50/ΔT: changed symbol (it was VIOFF-T50), updated whole
row.
–V
IOFF-T20/ΔT: changed symbol (it was VIOFF-T20), updated whole
row.
–V
IOFF-T10/ΔT: changed symbol (it was VIOFF-T10), updated whole
row.
–V
IOFF-50, VIOFF-20, VIOFF-10: added min/typ/max value
–Gain50, Gain20, Gain10: added min/typ/max value
Setting time: deleted row
Added Figure 5: Output timing diagram (passive free wheeling)
Updated Table 23: Truth table.
Updated Section 3.9, Section 3.11, Section 3.12.1 and Section 3.12.2.
Table 30: STK_RESET_Q: changed title (it was “Global status byte”)
Updated Section 4.4.1 and Section 4.6.1.
Updated Ta b l e 4 3 .
20-Apr-2010 3 Updated the CP value in Table 4: Absolute maximum ratings
30-Apr-2012 4
Ta bl e 9 : S u p p ly :
VVS_OV1: : changed symbol (it was VVS_OVH1)
VVS_OV1H: : changed symbol (it was VVS_OVH1)
VVS_OV2: : changed symbol (it was VVS_OVH2)
VVS_OV2H: : changed symbol (it was VVS_OVH2)
VVS_UV: : changed symbol (it was VVS_UVH)
Updated Section 3.6: Overvoltage and undervoltage detection and
Section 3.7: Charge pump
Section 4.6.1: Description of the data byte:
updated OV_UV_RD bit description
Table 48: PowerSSO-36 mechanical data:
L: updated values
L99H01
Doc ID 15567 Rev. 4 53/53
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALF UNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com