t SUPERTEX INC 7 Supertex Tila O1 pe @arzaess OO001580 & T IRF510 IRF511 IRF512 ato aS) TY 39. 079 N-Channel Enhancement-Mode Vertical DMOS Power FETs Ordering Information BV osg/ Rosion) loony Order Number / Package BV ass (max) (min) TO-220 100V 0.60 4.0A IRF510 60V 0.622 4.0A IRF511 100V 0.8Q 3.5A IRF512 60V 0.8Q 3.5A IRF513 Features Advanced DMOS Technology gobooooaaoo Freedom from secondary breakdown Low power drive requirement Ease of paralleling Low C,,., and fast switching speeds Excellent thermal! stability (Integral Source-Drain diode High input impedance and high gain Complementary N- and P-Channel devices Applications ooooago Motor contral Converters Amplifiers Switches Power supply circuits Drivers (Relays, Hammers, Solenoids, Lamps, Memories, Displays, Bipolar Transistors, etc.) Absolute Maximum Ratings Drain-to-Source Voltage BV, pss Drain-to-Gate Voltage BV pes Gate-to-Source Voltage + 20V Operating and Storage Temperature -55C to +150C Soldering Temperature* 300C These enhancement-mode (normally-off) power transistors ulil- ize a vertical DMOS structure and Supertex's well-proven silicon- gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and negative temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally- induced secondary breakdown. Supertex Vertical DMOS Power FETs are ideally suited to a wide range of switching and amplifying applications where high break- down voltage, high input impedance, low input capacitance, and fast switching speeds are desired. (Note 1) Package Options of Cy if Gos TO-220 Note 1: See Package Outline section fro discrete pinouts. *Distance of 1.6 mm from case for 10 seconds. 8-11 pee ee er eer pore nen ee idSUPERTEX INC on pe ffazzaeqs ooo1sar a IRFS10/1RFS11ARF512/1RF513 Thermal Characteristics T-39-87 Package 1, (continuous)* 1, (pulsed)* Power Dissipation 5, i, lon loam @T, = 25C C/W C/W IRF510 4.0A 16.0A 20w 80 6.4 4.0A 16.0A IRF51t + 3, -4.0A 16.0A 20W 80 6.4 4.0A 16.0A IRF512 3.5A 14.0A 20wW 80 6.4 3.5A 14.0A IRF513 3.54 14.0A 20W 80 6.4 3.5A 14.0A *Ip {continuous} is limited by max rated T,. Electrical Characteristics (@ 25C unless otherwise specified) (Notes 1 and 2) Symbol Parameter Min Typ Max Unit Conditions BV oss Drain-to-Source IRF510, IRF512| 100 v Vee = 0, by = Breakdown Voltage IRF511, IRF513 60 as = 0 Ip = 250A Vestn) Gate Threshold Voltage 2.0 4.0 V Vos = Vos: Ip = 250A less Gate Body Leakage 500 nA Vag = t 20V, Vi, = 0 250 Vas = 9, Vpg = Max Rating loss Zero Gate Voltage Drain Current 1000 pA Vag = 0, Vog = 0.8 Max Rating Ty = 125C lacon ON-State Drain Current | IRF510, IRF511 4.0 Veg = 10V IRF512, IRFS13 | _3.5 A Vo > loxoxy X Rogiony Max Rating Rosion) Static Drain-to-Gource |_!RF510, IRF511 0.6 ON-State Resistance IRF512, IRF513 0.8 a Vas = 10V: Ip = 2.00 Ges Forward Transconductance 1.0 1.5 u Vos > lovony % Rosiony Max Rating 1, = 2.0A Cis Input Capacitance 150 c Common Source Output Capacitance 100 pF Vas = 01 Vog = 25V oss f= 1 MHz Cass Reverse Transfer Capacitance 25 t Turn-ON Delay Time 20 sion) ae Vop = O.5BY, t. Rise Time 25 | oo 2.0A oss > ns =2, torr) Turn-OFF Delay Time 25 Re 500 t, Fall Time 20 Vep Diode Forward IRF510,JRF511 2.5 V Vag = 9) Ion = 4.04 Voltage Drop IRF512,JRF513 2.0 Vas = 9; Igp = 3.5A t, Reverse Recovery Time 230 ns T, = 150C, Isp = 4.0A, die = 1OOAS Note 1: All 0.C, parameters 100% tested at 25C unless otherwise stated. (Pulse test: 300us pulse, 2% duty cycis.) Note 2: All A.C. parameters sampie tested, Switching Waveforms and Test Circuit J 90% input 10% \_______ | pulse SCOPE } tion) OFF) | GENERATOR | | t | DUT. tg(Ony , tr \d(OFF), 'f | | Output __] I 10% \ Z. 10% | | = | s0% 90% L oe | = = + 8-12 meee eteneer en eee eee +