2.5 V to 5.0 V Micropower, Precision
Series Mode Voltage References
AD1582/AD1583/AD1584/AD1585
Rev. H
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©1997–2007 Analog Devices, Inc. All rights reserved.
FEATURES
Series reference (2.5 V, 3 V, 4.096 V, 5 V)
Low quiescent current: 70 μA maximum
Current output capability: ±5 mA
Wide supply range: VIN = VOUT + 200 mV to 12 V
Wideband noise (10 Hz to 10 kHz): 50 μV rms
Specified temperature range: −40°C to +125°C
Compact, surface-mount SOT-23 package
APPLICATIONS
Portable, battery-powered equipment; for example,
notebook computers, cellular phones, pagers, PDAs, GPSs,
and DMMs
Computer workstations; suitable for use with a wide range
of video RAMDACs
Smart industrial transmitters
PCMCIA cards
Automotive
Hard disk drives
3 V/5 V, 8-bit/12-bit data converters
PIN CONFIGURATION
V
OUT 1
GND
2
V
IN
3
AD1582/
AD1583/
AD1584/
AD1585
TOP VIEW
(Not to Scale)
0
0701-001
Figure 1. 3-Lead SOT-23-3 (RT Suffix)
900
800
700
600
2.7 5
SHUNT REFERENCE
1
AD1582 SERIES REFERENCE
200
100
0
500
400
300
I
SUPPLY
(µA)
V
SUPPLY
(V)
1
3.076kSOURCE RESISTOR.
00701-002
Figure 2. Supply Current (μA) vs. Supply Voltage (V)
GENERAL DESCRIPTION
The AD1582/AD1583/AD1584/AD1585 are low cost, low power,
low dropout, precision band gap references. These designs are
available as 3-terminal (series) devices and are packaged in the
compact SOT-23, 3-lead surface-mount package. The versatility
of these references makes them ideal for use in battery-powered
3 V or 5 V systems where there can be wide variations in supply
voltage and a need to minimize power dissipation.
The superior accuracy and temperature stability of the AD1582/
AD1583/AD1584/AD1585 result from the precise matching and
thermal tracking of on-chip components. Patented temperature
drift curvature correction design techniques minimize the
nonlinearities in the voltage output temperature characteristic.
The AD1582/AD1583/AD1584/AD1585 series mode devices
source or sink up to 5 mA of load current and operate efficiently
with only 200 mV of required headroom supply. These parts
draw a maximum 70 μA of quiescent current with only a
1.0 μA/V variation with supply voltage. The advantage of
these designs over conventional shunt devices is extraordinary.
Valuable supply current is no longer wasted through an input
series resistor, and maximum power efficiency is achieved at
all input voltage levels.
The AD1582/AD1583/AD1584/AD1585 are available in two
grades, A and B, and are provided in a tiny footprint, the SOT-
23. All grades are specified over the industrial temperature
range of −40°C to +125°C.
Table 1. AD158x Products, Three Electrical Grades
Electrical
Grade
Initial Accuracy Temperature
Coefficient
(ppm°C)
AD1582 AD1583/AD1585 AD1584
B 0.08% 0.10% 0.10% 50
A 0.80% 1.00% 0.98% 100
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 2 of 16
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Pin Configuration ............................................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
AD1582 Specifications ................................................................. 3
AD1583 Specifications ................................................................. 4
AD1584 Specifications ................................................................. 5
AD1585 Specifications ................................................................. 6
Absolute Maximum Ratings ............................................................ 7
ESD Caution .................................................................................. 7
Terminology ...................................................................................... 8
Typical Performance Characteristics ............................................. 9
Theory of Operation ...................................................................... 10
Applications Information .............................................................. 11
Temperature Performance......................................................... 11
Voltage Output Nonlinearity vs. Temperature ....................... 11
Output Voltage Hysteresis ......................................................... 12
Supply Current vs. Temperature ............................................... 12
Supply Voltage ............................................................................ 12
AC Performance ......................................................................... 12
Noise Performance and Reduction .......................................... 13
Turn-On Time ............................................................................ 13
Dynamic Performance ............................................................... 14
Outline Dimensions ....................................................................... 15
Ordering Guide .......................................................................... 16
Package Branding Information ................................................ 16
REVISION HISTORY
11/07—Rev. G to Rev. H
Deleted C Grade ................................................................. Universal
Changes to VOERR Parameter ....................................................... 3
Changes to Ordering Guide .......................................................... 16
6/06—Rev. F to Rev. G
Changes to Features .......................................................................... 1
Changes to General Description .................................................... 1
2/06—Rev. E to Rev. F
Updated Format .................................................................. Universal
Changes to Features .......................................................................... 1
Changes to Table 6 ............................................................................ 7
Changes to Ordering Guide .......................................................... 16
6/05—Rev. D to Rev. E
Changes to Ordering Guide ........................................................... 7
Moved Package Branding Section .................................................. 7
6/04—Rev. C to Rev. D
Changes to Ordering Guide ............................................................ 6
Updated Outline Dimensions ....................................................... 13
12/02—Rev. B to Rev. C
Changes to Features .......................................................................... 1
Changes to General Description ..................................................... 1
Changes to Specifications ................................................................. 2
Changes to Absolute Maximum Ratings ........................................ 6
Replaced TPC 3 ................................................................................. 8
Changes to Temperature Performance Section ............................. 9
Replaced Figure 4 .............................................................................. 9
Changes to Output Voltage Hysteresis Section .......................... 10
Updated SOT-23 Package .............................................................. 13
3/97—Revision 0: Initial Version
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 3 of 16
SPECIFICATIONS
AD1582 SPECIFICATIONS
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.
Table 2.
AD1582A AD1582B
Parameter Min Typ Max Min Typ Max Unit
OUTPUT VOLTAGE (@ 25°C)
VO 2.480 2.500 2.520 2.498 2.500 2.502 V
INITIAL ACCURACY ERROR (@ 25°C)
VOERR −20 +20 −2 +2 mV
−0.80 +0.80 −0.08 +0.08 %
OUTPUT VOLTAGE TEMPERATURE DRIFT 100 50 ppm/°C
TEMPERATURE COEFFICIENT (TCVO)
−40°C < TA < +125°C 40 100 18 50 ppm/°C
0°C < TA < 70°C 35 15 ppm/°C
MINIMUM SUPPLY HEADROOM (VIN – VOUT) 200 200 mV
LOAD REGULATION
0 mA < IOUT < 5 mA (−40°C to +85°C) 0.2 0.2 mV/mA
0 mA < IOUT < 5 mA (−40°C to +125°C) 0.4 0.4 mV/mA
−5 mA < IOUT < 0 mA (−40°C to +85°C) 0.25 0.25 mV/mA
−5 mA < IOUT < 0 mA (−40°C to +125°C) 0.45 0.45 mV/mA
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C) 2.7 2.7 mV/mA
−0.1 mA < IOUT < +0.1 mA (−40°C to +12C) 3.5 3.5 mV/mA
LINE REGULATION
VOUT + 200 mV < VIN < 12 V
IOUT = 0 mA 25 25 µV/V
RIPPLE REJECTION (∆VOUT/∆VIN)
VIN = 5 V ± 100 mV (f = 120 Hz) 80 80 dB
QUIESCENT CURRENT 70 70 µA
SHORT-CIRCUIT CURRENT TO GROUND 15 15 mA
NOISE VOLTAGE (@ 25°C)
0.1 Hz to 10 Hz 70 70 µV p-p
10 Hz to 10 kHz 50 50 µV rms
TURN-ON SETTLING TIME TO 0.1%
CL = 0.2 µF 100 100 µs
LONG-TERM STABILITY
1000 Hours @ 25°C 100 100 ppm/1000 hr
OUTPUT VOLTAGE HYSTERESIS 115 115 ppm
TEMPERATURE RANGE
Specified Performance (A, B, C) −40 +125 −40 +125 °C
Operating Performance (A, B, C) −55 +125 −55 +125 °C
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 4 of 16
AD1583 SPECIFICATIONS
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.
Table 3.
AD1583A AD1583B
Parameter Min Typ Max Min Typ Max Unit
OUTPUT VOLTAGE (@ 25°C)
VO 2.970 3.000 3.030 2.997 3.000 3.003 V
INITIAL ACCURACY ERROR (@ 25°C)
VOERR −30 +30 −3 +3 mV
−1.0 +1.0 −0.1 +0.1 %
OUTPUT VOLTAGE TEMPERATURE DRIFT 100 50 ppm/°C
TEMPERATURE COEFFICIENT (TCVO)
–40°C < TA < +125°C 40 100 18 50 ppm/°C
0°C < TA < 70°C 35 15 ppm/°C
MINIMUM SUPPLY HEADROOM (VIN – VOUT) 200 200 mV
LOAD REGULATION
0 mA < IOUT < 5 mA (–40°C to +85°C) 0.25 0.25 mV/mA
0 mA < IOUT < 5 mA (–40°C to +125°C) 0.45 0.45 mV/mA
–5 mA < IOUT < 0 mA (–40°C to +85°C) 0.40 0.40 mV/mA
–5 mA < IOUT < 0 mA (–40°C to +125°C) 0.6 0.6 mV/mA
–0.1 mA < IOUT < +0.1 mA (–40°C to +85°C) 2.9 2.9 mV/mA
–0.1 mA < IOUT < +0.1 mA (–40°C to +125°C) 3.7 3.7 mV/mA
LINE REGULATION
VOUT + 200 mV < VIN < 12 V
IOUT = 0 mA 25 25 µV/V
RIPPLE REJECTION (∆VOUT/∆VIN)
VIN = 5 V ± 100 mV (f = 120 Hz) 80 80 dB
QUIESCENT CURRENT 70 70 µA
SHORT-CIRCUIT CURRENT TO GROUND 15 15 mA
NOISE VOLTAGE (@ 25°C)
0.1 Hz to 10 Hz 85 85 µV p-p
10 Hz to 10 kHz 60 60 µV rms
TURN-ON SETTLING TIME TO 0.1%
CL = 0.2 µF 120 120 µs
LONG-TERM STABILITY
1000 Hours @ 25°C 100 100 ppm/1000 hr
OUTPUT VOLTAGE HYSTERESIS 115 115 ppm
TEMPERATURE RANGE
Specified Performance (A, B, C) −40 +125 −40 +125 °C
Operating Performance (A, B, C) −55 +125 −55 +125 °C
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 5 of 16
AD1584 SPECIFICATIONS
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.
Table 4.
AD1584A AD1584B
Parameter Min Typ Max Min Typ Max Unit
OUTPUT VOLTAGE (@ 25°C)
VO 4.056 4.096 4.136 4.092 4.096 4.100 V
INITIAL ACCURACY ERROR (@ 25°C)
VOERR −40 +40 −4 +4 mV
−0.98 +0.98 −0.1 +0.1 %
OUTPUT VOLTAGE TEMPERATURE DRIFT 100 50 ppm/°C
TEMPERATURE COEFFICIENT (TCVO)
−40°C < TA < +125°C 40 100 18 50 ppm/°C
0°C < TA < 70°C 35 15 ppm/°C
MINIMUM SUPPLY HEADROOM (VIN – VOUT) 200 200 mV
LOAD REGULATION
0 mA < IOUT < 5 mA (−40°C to +85°C) 0.32 0.32 mV/mA
0 mA < IOUT < 5 mA (−40°C to +125°C) 0.52 0.52 mV/mA
−5 mA < IOUT < 0 mA (−40°C to +85°C) 0.40 0.40 mV/mA
−5 mA < IOUT < 0 mA (−40°C to +125°C) 0.6 0.6 mV/mA
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C) 3.2 3.2 mV/mA
−0.1 mA < IOUT < +0.1 mA (−40°C to +12C) 4.1 4.1 mV/mA
LINE REGULATION
VOUT + 200 mV < VIN 12 V
IOUT = 0 mA 25 25 µV/V
RIPPLE REJECTION (∆VOUT/∆VIN)
VIN = 5 V ± 100 mV (f = 120 Hz) 80 80 dB
QUIESCENT CURRENT 70 70 µA
SHORT-CIRCUIT CURRENT TO GROUND 15 15 mA
NOISE VOLTAGE (@ 25°C)
0.1 Hz to 10 Hz 110 110 µV p-p
10 Hz to 10 kHz 90 90 µV rms
TURN-ON SETTLING TIME TO 0.1%
CL = 0.2 µF 140 140 µs
LONG-TERM STABILITY
1000 Hours @ 25°C 100 100 ppm/1000 hr
OUTPUT VOLTAGE HYSTERESIS 115 115 ppm
TEMPERATURE RANGE
Specified Performance (A, B, C) −40 +125 −40 +125 °C
Operating Performance (A, B, C) −55 −125 −55 +125 °C
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 6 of 16
AD1585 SPECIFICATIONS
@ TA = TMIN to TMAX, VIN = 6 V, unless otherwise noted.
Table 5.
AD1585A AD1585B
Parameter Min Typ Max Min Typ Max Unit
OUTPUT VOLTAGE (@ 25°C)
VO 4.950 5.000 5.050 4.995 5.000 5.005 V
INITIAL ACCURACY ERROR (@ 25°C)
VOERR −50 +50 −5 +5 mV
−1.0 +1.0 −0.10 +0.10 %
OUTPUT VOLTAGE TEMPERATURE DRIFT 100 50 ppm/°C
TEMPERATURE COEFFICIENT (TCVO)
−40°C < TA < 125°C 40 100 18 50 ppm/°C
0°C < TA < 70°C 35 15 ppm/°C
MINIMUM SUPPLY HEADROOM (VIN – VOUT) 200 200 mV
LOAD REGULATION
0 mA < IOUT < 5 mA (−40°C to +85°C) 0.40 0.40 mV/mA
0 mA < IOUT < 5 mA (−40°C to +125°C) 0.6 0.6 mV/mA
−5 mA < IOUT < 0 mA (−40°C to +85°C) 0.40 0.40 mV/mA
−5 mA < IOUT < 0 mA (−40°C to +125°C) 0.6 0.6 mV/mA
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C) 4 4 mV/mA
−0.1 mA < IOUT < +0.1 mA (−40°C to +12C) 4.8 4.8 mV/mA
LINE REGULATION
VOUT + 200 mV < VIN < 12 V
IOUT = 0 mA 25 25 µV/V
RIPPLE REJECTION (∆VOUT/∆VIN)
VIN = 6 V ± 100 mV (f = 120 Hz) 80 80 dB
QUIESCENT CURRENT 70 70 µA
SHORT-CIRCUIT CURRENT TO GROUND 15 15 mA
NOISE VOLTAGE (@ 25°C)
0.1 Hz to 10 Hz 140 140 µV p-p
10 Hz to 10 kHz 100 100 µV rms
TURN-ON SETTLING TIME TO 0.1%
CL = 0.2 F 175 175 µs
LONG-TERM STABILITY
1000 Hours @ 25°C 100 100 ppm/1000 hr
OUTPUT VOLTAGE HYSTERESIS 115 115 ppm
TEMPERATURE RANGE
Specified Performance (A, B, C) −40 +125 −40 +125 °C
Operating Performance (A, B, C) −55 +125 −55 +125 °C
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 7 of 16
ABSOLUTE MAXIMUM RATINGS
Table 6.
Parameter Rating
VIN to Ground 12 V
Internal Power Dissipation1
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
SOT-23-3 (RT-3) 400 mW
Storage Temperature Range 65°C to 125°C
Specified Temperature Range
AD1582RT/AD1583RT/
AD1584RT/AD1585RT
−40°C to +125°C
Lead Temperature, Soldering
Vapor Phase (60 sec) 215°C
Infrared (15 sec) 220°C
ESD CAUTION
1 Specification is for device in free air at 25°C; SOT-23 package, θJA = 300°C.
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 8 of 16
TERMINOLOGY
Temperature Coefficient (TCVO)
The change of output voltage over the operating temperature
change and normalized by the output voltage at 25°C, expressed
in ppm/°C. The equation follows
[]
() ()
()
()
6
10
25
Cppm/ ×
×°
=°
12
O
1
O
2
O
OTTCV
TVTV
TCV
where:
VO (25°C) = VO @ 25°C.
VO (T1) = VO @ Temperature 1.
VO (T2) = VO @ Temperature 2.
Line Regulation (ΔVO/ΔVIN) Definition
The change in output voltage due to a specified change in input
voltage. It includes the effects of self-heating. Line regulation is
expressed in either percent per volt, parts per million per volt,
or microvolts per volt change in input voltage.
Load Regulation (ΔVO/ΔILOAD)
The change in output voltage due to a specified change in load
current. It includes the effects of self-heating. Load regulation
is expressed in either microvolts per milliampere, parts per
million per milliampere, or ohms of dc output resistance.
Long-Term Stability (ΔVO)
Typical shift of output voltage at 25°C on a sample of parts
subjected to an operation life test of 1000 hours at 125°C.
()
()
1
O
0
OO tVtVV =Δ
[]
()
()
()
6
10ppm ×
=Δ
0
O
1
O
0
O
OtV
tVtV
V
where:
VO (t0) = VO @25°C at Time 0.
VO (t1) = VO @ 25°C after 1000 hours of operation at 125°C.
Thermal Hysteresis (VO_HYS)
The change of output voltage after the device is cycled through
temperatures from +25°C to −40°C to +85°C and back to +25°C.
This is a typical value from a sample of parts put through
such a cycle
(
)
TCO
OHYSO VCVV _
_25
°
=
[]
(
)
()
6
_
_10
25
25
ppm ×
°
°
=CV
VCV
V
O
TCO
O
HYSO
where:
VO (25°C) = VO at 25°C.
VO_TC = VO at 25°C after temperature cycle at +25°C to −40°C to
+85°C and back to +25°C.
Operating Temperature
The temperature extremes at which the device can still function.
Parts can deviate from their specified performance outside the
specified temperature range.
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 9 of 16
TYPICAL PERFORMANCE CHARACTERISTICS
0
0.25
0.20
0.15
0.10
0.35
0.30
0.40
0.05
6
14
8
4
2
12
10
NUMBER OF PARTS
22
16
20
18
AD1585
mV/mA
024681012
V
IN
(V)
AD1582
0
ppm/°C
–60 –50 –40 –30 –20 –10 0 10 20 30 40 50
00701-003
Figure 3. Typical Output Voltage Temperature Drift Distribution
50
15
0
45
20
10
5
35
25
40
30
0
0701-006
Figure 6. Load Regulation vs. VIN
V
OUT
(ERROR)
1.0%0.6%0.2%–0.2%–0.6%–1.0%
00701-004
NUMBER OF PARTS
Figure 4. Typical Output Voltage Error Distribution
2.504
2.502
2.494
2.492
2.490
2.500
2.496
2.498
2.488
TEMPERATURE (°C)
–40 0–20 20 40 60 80 100 120
V
OUT
00701-005
Figure 5. Typical Temperature Drift Characteristic Curves
–20
–40
–60
–80
–70
–30
–50
µV/
0
–90
–10
V
AD1585
AD1582
I
OUT
(mA)
–5 –4 –3 –2 –1 0 1 2 3 4 5
00701-007
Figure 7. Line Regulation vs. ILOAD
10k
1k10010
100
1k
10k 100k
FREQUENCY (Hz)
I
OUT
= 1mA
I
OUT
= 0mA
nV/ Hz
0
0701-008
Figure 8. Noise Spectral Density
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 10 of 16
THEORY OF OPERATION
The AD1582/AD1583/AD1584/AD1585 use the band gap
concept to produce stable, low temperature coefficient voltage
references suitable for high accuracy data acquisition compo-
nents and systems. These parts of precision references use the
underlying temperature characteristics of a silicon transistor’s
base emitter voltage in the forward-biased operating region.
Under this condition, all such transistors have a −2 mV/°C
temperature coefficient (TC) and a VBE that, when extrapolated
to absolute zero, 0 K (with collector current proportional to
absolute temperature), approximates the silicon band gap voltage.
By summing a voltage that has an equal and opposite tempera-
ture coefficient of 2 mV/°C with the VBE of a forward-biased
transistor, an almost 0 TC reference can be developed. In the
AD1582/AD1583/AD1584/AD1585 simplified circuit diagram
shown in Figure 9, such a compensating voltage, V1, is derived
by driving two transistors at different current densities and
amplifying the resultant VBE difference (∆VBE, which has a positive
TC). The sum of VBE and V1 (VBG) is then buffered and amplified
to produce stable reference voltage outputs of 2.5 V, 3 V, 4.096 V,
and 5 V.
R4
R6
R5
GND
V1
+
R3
+
R2
R1
V
IN
V
OUT
V
BG
V
BE
00701-009
Figure 9. Simplified Schematic
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 11 of 16
APPLICATIONS INFORMATION
The AD1582/AD1583/AD1584/AD1585 are series references
that can be used for many applications. To achieve optimum
performance with these references, only two external compo-
nents are required. Figure 10 shows the AD1582/AD1583/
AD1584/AD1585 configured for operation under all loading
conditions. With a simple 4.7 µF capacitor attached to the input
and a 1 µF capacitor applied to the output, the devices can achieve
specified performance for all input voltage and output current
requirements. For best transient response, add a 0.1 µF capacitor
in parallel with the 4.7 µF capacitor. While a 1 µF output capacitor
can provide stable performance for all loading conditions, the
AD1582/AD1583/AD1584/AD1585 can operate under low
(−100 µA < IOUT < +100 µA) current conditions with just a
0.2 µF output capacitor. The 4.7 µF capacitor on the input can
be reduced to 1 F in this condition.
Unlike conventional shunt reference designs, the AD1582/
AD1583/AD1584/AD1585 provide stable output voltages at
constant operating current levels. When properly decoupled,
as shown in Figure 10, these devices can be applied to any
circuit and provide superior low power solutions.
V
OUT
1
2
V
IN 3
AD1582/
AD1583/
AD1584/
AD1585
1µF
4.7µF
+
00701-010
Figure 10. Typical Connection Diagram
TEMPERATURE PERFORMANCE
The AD1582/AD1583/AD1584/AD1585 are designed for
applications where temperature performance is important.
Extensive temperature testing and characterization ensure
that device performance is maintained over the specified
temperature range.
The error band guaranteed with the AD1582/AD1583/AD1584/
AD1585 is the maximum deviation from the initial value at 25°C.
Therefore, for a given grade of the AD1582/AD1583/AD1584/
AD1585, the designer can easily determine the maximum total
error by summing initial accuracy and temperature variation. For
example, for the AD1582BRT, the initial tolerance is ±2 mV,
and the temperature error band is ±8 mV; therefore, the reference
is guaranteed to be 2.5 V ± 10 mV from −40°C to +125°C.
Figure 11 shows the typical output voltage drift for the AD1582/
AD1583/AD1584/AD1585 and illustrates the methodology. The
box in Figure 11 is bounded on the x-axis by operating tempera-
ture extremes. It is bounded on the y-axis by the maximum
and minimum output voltages observed over the operating
temperature range. The slope of the diagonal drawn from the
initial output value at 2C to the output values at +125°C and
−40°C determines the performance grade of the device.
Duplication of these results requires a test system that is highly
accurate with stable temperature control. Evaluation of the
AD1582/AD1583/AD1584/AD1585 produces curves similar
to those in Figure 5 and Figure 11, but output readings can vary
depending on the test methods and test equipment used.
2.504
2.502
2.500
2.498
2.496
2.494
2.492
TEMPERATURE (°C)
V
OUT
(V)
–40 –20 0 20 40 60 80 100 120
2.504
2.502
2.500
2.498
2.496
2.494
2.492
TEMPERATURE (°C)
V
OUT
(V)
–40 –20 0 20 40 60 80 100 120
00701-011
Figure 11. Output Voltage vs. Temperature
VOLTAGE OUTPUT NONLINEARITY VS.
TEMPERATURE
When using a voltage reference with data converters, it is
important to understand the impact that temperature drift can
have on converter performance. The nonlinearity of the reference
output drift represents additional error that cannot be easily
calibrated out of the overall system. To better understand the
impact such a drift can have on a data converter, refer to Figure 12,
where the measured drift characteristic is normalized to the
endpoint average drift. The residual drift error for the AD1582/
AD1583/AD1584/AD1585 of approximately 200 ppm demon-
strates that these parts are compatible with systems that require
12-bit accurate temperature performance.
250
200
150
100
50
0
–50
TEMPERATURE (°C)
–50 –25 0 25 50 75 100
ΔV
OUT
(ppm)
0
0701-012
Figure 12. Residual Drift Error
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 12 of 16
OUTPUT VOLTAGE HYSTERESIS
High performance industrial equipment manufacturers can
require the AD1582/AD1583/AD1584/AD1585 to maintain a
consistent output voltage error at 25°C after the references are
operated over the full temperature range. All references exhibit
a characteristic known as output voltage hysteresis; however, the
AD1582/AD1583/AD1584/AD1585 are designed to minimize
this characteristic. This phenomenon can be quantified by mea-
suring the change in the +25°C output voltage after temperature
excursions from +125°C to +25°C and from −40°C to +25°C.
Figure 13 displays the distribution of the AD1582/AD1583/
AD1584/AD1585 output voltage hysteresis.
80
70
60
50
–700 –450 –200 50 300 550
NUMBER OF PARTS
40
30
20
10
0
ppm
0
0701-013
Figure 13. Output Voltage Hysteresis Distribution
SUPPLY CURRENT VS. TEMPERATURE
The quiescent current for the AD1582/AD1583/AD1584/
AD1585 varies slightly over temperature and input supply
range. Figure 14 illustrates the typical performance for the
AD1582/AD1583/AD1584/AD1585 reference when varying
both temperature and supply voltage. As is evident from
Figure 14, the AD1582/AD1583/AD1584/AD1585 supply
current increases only 1.0 µA/V, making this device extremely
attractive for use in applications where there can be wide
variations in supply voltage and a need to minimize power
dissipation.
100
80
60
40
20
0
I
Q
(µA)
V
IN
(V)
34567891011
T
A
= +25°C
T
A
= +85°C
T
A
= –40°C
00701-014
Figure 14. Typical Supply Current over Temperature
SUPPLY VOLTAGE
One of the ideal features of the AD1582/AD1583/AD1584/AD1585
is low supply voltage headroom. The parts can operate at supply
voltages as low as 200 mV above VOUT and up to 12 V. However,
if negative voltage is inadvertently applied to VIN with respect to
ground, or any negative transient >5 V is coupled to VIN, the
device can be damaged.
AC PERFORMANCE
To apply the AD1582/AD1583/AD1584/AD1585, it is impor-
tant to understand the effects of dynamic output impedance
and power supply rejection. In Figure 15, a voltage divider
is formed by the AD1582/AD1583/AD1584/ AD1585 output
impedance and by the external source impedance. Figure 16
shows the effect of varying the load capacitor on the reference
output. Power supply rejection ratio (PSRR) should be determined
when characterizing the ac performance of a series voltage
reference. Figure 17 shows a test circuit used to measure PSRR,
and Figure 18 demonstrates the ability of the AD1582/AD1583/
AD1584/AD1585 to attenuate line voltage ripple.
5V
5µF
1µF
2×V
OUT
10k
10k
2k
10k
±2V
±100µA
×1
V
LOAD DC
DUT
0
0701-015
Figure 15. Output Impedance Test Circuit
100
AD1585
AD1582
10
1
0.1
10 100 1k 10k 100k 1M
FREQUENCY (Hz)
OUTPUT IMPEDANCE ()
1µF CAP
0
0701-016
Figure 16. Output Impedance vs. Frequency
5V ± 100mV
0.22µF
0.22µF
10V 10k
10k
±200mV
×1
DUT
V
OUT
0
0701-017
Figure 17. Ripple Rejection Test Circuit
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 13 of 16
100
90
0
110 100 1k 10k 100k
50
20
80
70
60
40
30
10
1M
AD1582
AD1585
PSRR (dB)
FREQUENCY (Hz)
00701-018
Figure 18. Ripple Rejection vs. Frequency
NOISE PERFORMANCE AND REDUCTION
The noise generated by the AD1582/AD1583/AD1584/AD1585 is
typically less than 70 µV p-p over the 0.1 Hz to 10 Hz frequency
band. Figure 19 shows the 0.1 Hz to 10 Hz noise of a typical
AD1582/AD1583/AD1584/AD1585. The noise measurement
is made with a high gain band-pass filter. Noise in a 10 Hz to
10 kHz region is approximately 50 µV rms. Figure 20 shows the
broadband noise of a typical AD1582/AD1583/AD1584/AD1585.
If further noise reduction is desired, add a 1-pole, low-pass
filter between the output pin and ground. A time constant of
0.2 ms has a −3 dB point at roughly 800 Hz and reduces the
high frequency noise to about 16 V rms. It should be noted,
however, that while additional filtering on the output can
improve the noise performance of the AD1582/AD1583/
AD1584/AD1585, the added output impedance can degrade
the ac performance of the references.
100
90
10
0%
10µV 1s
00701-019
Figure 19. 10 Hz to 10 kHz Wideband Noise
10
0%
100
90
10ms
100µV
00701-020
Figure 20. 1 Hz to 10 Hz Voltage Noise
TURN-ON TIME
Many low power instrument manufacturers are concerned
with the turn-on characteristics of the components used in their
systems. Fast turn-on components often enable the end user to
save power by keeping power off when not needed. Turn-on
settling time is defined as the time required, after the application of
power (cold start), for the output voltage to reach its final value
within a specified error. The two major factors affecting this are
the active circuit settling time and the time required for the
thermal gradients on the chip to stabilize. Figure 21 shows the
turn-on settling and transient response test circuit. Figure 22
shows the turn-on characteristics of the AD1582/AD1583/
AD1584/AD1585. These characteristics are generated from cold-
start operation and represent the true turn-on waveform after
power-up. Figure 23 shows the fine settling characteristics of
the AD1582/AD1583/AD1584/AD1585. Typically, the reference
settles to within 0.1% of its final value in about 100 µs.
The device can momentarily draw excessive supply current
when VSUPPLY is slightly below the minimum specified level.
Power supply resistance must be low enough to ensure reliable
turn-on. Fast power supply edges minimize this effect.
0.22µF
0.22µF
0
V
OR 10
V
0V TO 10V
10k
10k
DUT V
OUT
5V OR 10V
0V OR 5V
00701-021
Figure 21. Turn-On/Transient Response Test Circuit
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 14 of 16
10
0%
100
5V
1V 20µs
20µs
90
00701-022
10
0%
100
90
5V
200mV 50µs
50µs
00701-024
Figure 22. Turn-On Characteristics Figure 24. Line Transient Response
10
0%
100
5V
1mV 20µs
20µs
90
00701-023
10
0%
100
5V
5mV
90
20µs
20µs
0
0701-025
Figure 23. Turn-On Settling Figure 25. Load Transient Response (0 mA to 5 mA Load)
DYNAMIC PERFORMANCE
0%
100
90
5V
20µs
20µs
5mV
10
00701-026
Many ADCs and DACs present transient current loads to the
reference and poor reference response can degrade converter
performance. The AD1582/AD1583/AD1584/AD1585 provide
superior static and dynamic line and load regulation. Because
these series references are capable of both sourcing and sinking
large current loads, they exhibit excellent settling charac-
teristics.
Figure 24 displays the line transient response for the AD1582/
AD1583/AD1584/AD1585. The circuit used to perform such
a measurement is shown in Figure 21, where the input supply
voltage is toggled from 5 V to 10 V, and the input and output
capacitors are each 0.22 F. Figure 26. Load Transient Response (0 mA to −1 mA Load)
Figure 25 and Figure 26 show the load transient settling cha-
racteristics for the AD1582/AD1583/AD1584/AD1585 when
load current steps of 0 mA to +5 mA and 0 mA to −1 mA are
applied. The input supply voltage remains constant at 5 V; the
input decoupling and output load capacitors are 4.7 F and 1 F,
respectively; and the output current is toggled. For both positive
and negative current loads, the reference responses settle very
quickly and exhibit initial voltage spikes of less than 10 mV.
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 15 of 16
OUTLINE DIMENSIONS
3.04
2.90
2.80
PIN 1
1.40
1.30
1.20
2.64
2.10
1.90 BSC
12
3
SEATING
PLANE
1.12
0.89
0.10
0.01
0.50
0.30
0.20
0.08
0.60
0.50
0.40
0.95 BSC
COMPLIANT TO JEDEC STANDARDS TO-236-AB
Figure 27. 3-Lead Small Outline Transistor Package [SOT-23-3]
(RT-3)
Dimensions shown in millimeters
053006-0
20.20
MIN
1.00 MIN 0.75 MIN
1.10
1.00
0.90
1.50 MIN
7” REEL 100.00
OR
13” REEL 330.00
7” REEL 50.00 MIN
OR
13” REEL 100.00 MIN
DIRECTION OF UNREELING
0.35
0.30
0.25
2.80
2.70
2.60
1.55
1.50
1.45
4.10
4.00
3.90 1.10
1.00
0.90
2.05
2.00
1.95
8.30
8.00
7.70
3.20
3.10
2.90
3.55
3.50
3.45
13.20
13.00
12.80
14.40 MIN
9.90
8.40
6.90
Figure 28. SOT-23 Tape and Reel Outline Dimension
(RT-3)
Dimensions shown in millimeters
AD1582/AD1583/AD1584/AD1585
Rev. H | Page 16 of 16
ORDERING GUIDE
Model
Output
Voltage
(V)
Accuracy
(mV)
Initial
Accuracy
(%)
Initial Temp.
Coefficient
(ppm/°C)
Package
Description
Package
Option Branding1
No. of Parts
Banding
per Reel
AD1582ART-R2 2.50 20 0.80 100 SOT-23-3 RT-3 2A 250
AD1582ART-REEL7 2.50 20 0.80 100 SOT-23-3 RT-3 2A 3,000
AD1582ARTZ-R22
2.50 20 0.80 100 SOT-23-3 RT-3 R1Z 250
AD1582ARTZ-REEL72
2.50 20 0.80 100 SOT-23-3 RT-3 R1Z 3,000
AD1582BRT-R2 2.50 2 0.08 50 SOT-23-3 RT-3 2B 250
AD1582BRT-REEL7 2.50 2 0.08 50 SOT-23-3 RT-3 2B 3,000
AD1582BRTZ-REEL72
2.50 2 0.08 50 SOT-23-3 RT-3 R20 3,000
AD1583ART-R2 3.00 30 1.00 100 SOT-23-3 RT-3 3A 250
AD1583ART-REEL7 3.00 30 1.00 100 SOT-23-3 RT-3 3A 3,000
AD1583ARTZ-R22
3.00 30 1.00 100 SOT-23-3 RT-3 R22 250
AD1583ARTZ-REEL72
3.00 30 1.00 100 SOT-23-3 RT-3 R22 3,000
AD1583BRT-R2 3.00 3 0.10 50 SOT-23-3 RT-3 3B 250
AD1583BRT-REEL7 3.00 3 0.10 50 SOT-23-3 RT-3 3B 3,000
AD1583BRTZ-REEL72
3.00 3 0.10 50 SOT-23-3 RT-3 R23 3,000
AD1584ART-R2 4.096 40 0.98 100 SOT-23-3 RT-3 4A 250
AD1584ART-REEL7 4.096 40 0.98 100 SOT-23-3 RT-3 4A 3,000
AD1584ARTZ-R22
4.096 40 0.98 100 SOT-23-3 RT-3 R25 250
AD1584ARTZ-REEL72
4.096 40 0.98 100 SOT-23-3 RT-3 R25 3,000
AD1584BRT-R2 4.096 4 0.10 50 SOT-23-3 RT-3 4B 250
AD1584BRT-REEL7 4.096 4 0.10 50 SOT-23-3 RT-3 4B 3,000
AD1584BRTZ-REEL72
4.096 4 0.10 50 SOT-23-3 RT-3 R26 3,000
AD1585ART-R2 5.00 50 1.00 100 SOT-23-3 RT-3 5A 250
AD1585ART-REEL72
5.00 50 1.00 100 SOT-23-3 RT-3 5A 3,000
AD1585ARTZ-R22
5.00 50 1.00 100 SOT-23-3 RT-3 R28 250
AD1585ARTZ-REEL72
5.00 50 1.00 100 SOT-23-3 RT-3 R28 3,000
AD1585BRT-R2 5.00 5 0.10 50 SOT-23-3 RT-3 5B 250
AD1585BRT-REEL7 5.00 5 0.10 50 SOT-23-3 RT-3 5B 3,000
AD1585BRTZ-REEL72
5.00 5 0.10 50 SOT-23-3 RT-3 R29 3,000
1 See Package Branding Information section.
2 Z = RoHS Compliant Part.
PACKAGE BRANDING INFORMATION
This branding information is only for nonPb-free versions. Four fields identify the device:
First field, product identifier; for example, a 2/3/4/5 identifies the generic as AD1582/AD1583/AD1584/AD1585
Second field, device grade, which can be A, B, or C
Third field, calendar year of processing: 7 for 1997..., A for 2001...
Fourth field, two-week window within the calendar year; for example, letters A to Z to represent a two-week window starting with “A” for
the first two weeks of January.
©1997–2007 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00701-0-11/07(H)