A KYOCERA GROUP COMPANY
AVX
SMPS Caps/High Voltage Caps
Tip & Ring/Cap Arrays/Discoidals
Advanced Applications
1
Contents
Introduction – Application Specific MLCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
SMPS Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
SM Style Stacked MLC Capacitors (US Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . 8-28
CH/CV Style (European Preferred Sizes) Vertical/Horizontal Mount . . . . . . . . . . . . . . . . 29-34
RH Style (European Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-36
Assembly Guidelines (SM, CH, CV & RH Styles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37-38
SK Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39-40
SE Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41-42
CECC Offering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
High Voltage MLC Leaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ESA Qualified SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44-49
HV Style (US Preferred Sizes) DIP Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-52
CH/CV Style (European Preferred Sizes)
Vertical/Horizontal Mount, DIP & Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53-56
SV Style Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-59
MLC Chip Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Basic Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61-64
Surface Mounting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-68
High Voltage MLC Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69-70
Hi-Q®High RF Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71-75
Tip & Ring Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76-77
MLC Chips, Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Single-In-Line Packages (SIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-80
Discoidal MLC Feed-Through Capacitors and Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
DC Style (US Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82-84
XB Style (European Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85-88
XF Style (Feed-Through Discoidal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85-88
Filtered Arrays XD Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
CECC Ceramic Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Baseline Management – BS9100 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Advanced Application Specific Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
AVX Internet/FAX/CD Rom/Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2
Application Specific MLCs
Problem Solving at the Leading Edge
As the world’s leading manufacturer and innovator in
application specific multilayer ceramic (ASMLC) capacitors,
AVX offers a unique technological and production capability
to the field. AVX actively pursues and satisfies the high
reliability and custom needs of a variety of governmental
and industrial customers. Successful involvement in
missile programs, extensive work in ultra-high reliability
telecommunications and sophisticated capacitor design
applications – all have established AVX as the source for
advanced and high reliability ASMLC capacitors. Advanced
Products are ISO9001 certified organizations for design
and manufacturing of MLC capacitors.
AVX Advanced Application Capacitors are organized around
three distinct functions:
• Application Specific Development Laboratories
• Advanced Manufacturing Facilities
• Quality Control
International Space Station Defense / Military Telecommunications
Undersea Cable Repeater
For designs or applications not listed please consult Advanced Products.
Olean, NY, USA - 716-372-6611
Coleraine, Northern Ireland - ++44(0) 28703 44188
St. Appollinaire, France - ++33(0) 38071 7400
3
APPLICATION SPECIFIC
DEVELOPMENT LABORATORIES
Initially, AVX technical personnel communicate with customers
to learn the requirements that the new capacitor must satisfy.
The personnel involved are well-versed in material, manufac-
turing and electronic application technologies. They study the
overall application and the environment in which the part will
function. Programs are begun for selection of appropriate
ceramic formulations, metal systems and designs. These
programs yield a detailed technology profile from which
mechanical design and process specifications follow.
ADVANCED
MANUFACTURING FACILITIES
The ability and reputation of AVX in high reliability MLCs is due
in part to the company’s complete control over all phases of
the production process. This includes powder processing,
tape casting and/or wet build-up, green MLC assembly and
final capacitor assembly/packaging. Recent renovations at
AVX have upgraded green MLC assembly areas to certified
clean room levels.
A favorite feature with many customers of AVX is our ability
to work with customers in solving special packaging
requirements. This includes special lead configurations and
multiple chip packaging that simplifies the mounting of
specialty capacitors. To the customer, the total capability of
AVX assures a high level of consistent control at all steps of
production.
QUALITY CONTROL
The Q. A. organization is an integral part of manufacturing.
Quality Control tests the product of each manufacturing
process, detects flaws or variations from the narrow
acceptable standard and isolates the cause of the deviation.
Corrective action can then be taken to return the process to
within its predetermined control levels.
Quality Assurance has large and well-equipped laboratories
where statistical samples are evaluated and tested to
determine failure rates, characterize products and assure
compliance with specification. Both destructive and non-
destructive testing are used, including advanced ultrasonic
inspection equipment for non-destructive inspection of an
entire production quantity.
Put the experience, technology and facilities of the leading
company in multilayer ceramics to work for you. No other
source offers the unique combination of capability and
commitment to advanced application specific components.
Application Specific MLCs
Problem Solving at the Leading Edge
4
FOREWORD
High speed switch mode power supplies place high
demands on the capacitors used in the input or output filters
of Resonant DC-DC or Pulse Modulated DC-DC converters.
AVX Corporation has developed several multilayer ceramic
(MLC) capacitor styles for these switcher applications. These
capacitors have been extensively tested and characterized
and found to have almost ideal performances to meet the
stringent requirements of these applications.
Input Filter Capacitor
The Input Filter capacitor is required to perform two functions:
To supply an unrestricted burst of current to the power supply
switch circuitry and to not only do it without generating any
noise, but to help suppress noise generated in the switch
circuitry. It is, in effect, a very large decoupling capacitor. It
must have very low ESL, capabilities for very high dv/dt, as
well as di/dt and it must have a very low ESR to eliminate
power loss.
The distance from the primary DC source, as well as the type
of capacitor used in this source (usually electrolytics),
presents a very high inductance to the input of the Switcher.
The MLC input capacitor, with its excellent ESL and ESR
characteristics, is located physically close to the switch
circuitry. Repetitive peak currents, inherent with the Switcher
design, require a high ripple capability, as well as high surge
capability for transients, both induced and conducted from
other sources. MLCs have both these capabilities.
Output Filter Capacitor
The output from the switching circuit of a Switcher consists
of current on and off. From an elevated DC reference, this
current is an AC ripple additive on the DC. In order to smooth
this ripple effect, a filter circuit (usually inductive input) is built
to allow a storage of energy to take place during the rising
ripple portion and to allow a discharge of energy during the
falling ripple portion.
The ESR and ESL of the capacitor contribute to the net ripple
effect. The output filter capacitor is chosen for ESR, and with
previous types of capacitors, multiples were used in an
attempt to lower the net ESR. The MLC offers ESRs well
below the minimum allowable to lower noise levels, thus
eliminating the need for multiple units.
Other MLC Capacitors for
SMPS Applications
AVX also manufactures coupling, decoupling, resonant and
snubber capacitors for SMPS applications. Contact AVX for
Application Specific S.M.P.S. capacitor requirements.
Olean, NY, USA 716-372-6611
Coleraine, Northern Ireland ++44(0) 28703 44188
St. Apollinaire, France ++33(0) 38071 7400
SMPS Capacitors
SMPS Capacitor Applications
5
SMPS Capacitors
Capacitor Selection and Performance
A
bsolute Maximum Output Capacitance
Assuming no ESL and no ESR
25
20
15
10
5
0
Load Current - Amps
0 5 10 15 20
Maximum Output Filter Capacitance
2 MHz
1 MHz
500 KHz
250 KHz
( F)
50 mV Noise
Due to
Capacitance
Absolute Maximum Capacitance ESL
Assuming no ESR - Capacitive Induced Ripple
25
20
15
10
5
0
Load Current - Amps
0 5 10 15 20
Maximum Output Filter Capacitance ESL
(nH)
DIP Leads
SK Series
250 KHz
500 KHz
1 MHz
2 MHz
50 mV Noise
Due to ESL
Absolute Maximum Capacitance ESR
Assuming no ESL - Capacitive Induced Ripple
25
20
15
10
5
0
Load Current - Amps
010203040
Maximum Output Filter Capacitance ESR
(mOhm)
50 mV Noise
Due to ESR
DIP Leads
SK Series
AI Electrolytic
15 F
MLC SM02
10 F
Wet Ta
10 F
Solid Ta
5.6 F
MLC SM04
4.7 F
10 10 10 10 10
Capacitance ( F)
0
2
4
6
8
10
12
14
16
Time (Seconds)
-5
-6
-7
-8-9
Capacitance as Measured from dv/dt Slope
200 mA/ns Current Pulse
Measurement starts after Inductive Ring Decay
ASMLC CAPACITOR SELECTION
ASMLC CAPACITOR PERFORMANCE
SMPS Design Information (SM, CH, CV, RH and SK Styles)
6
AC Ripple Capability
Due to the wide range of product offering in this catalog, the
AC ripple capabilities for switch mode power supply capacitors
and high voltage capacitors are provided in the form of IBM
compatible software package called SpiCalci. It is available
free from AVX and can be downloaded for free from AVX
website: www.avx.com.
SpiCalci program will provide answers to most of the design
engineers’ questions on critical parameters for their specific
applications:
• Equivalent Series Resistance
- function of frequency and temperature
• Equivalent Series Inductance
- function of design
• Self Resonant Frequency
f = 1/ (2 x πL x C)
• Thermal Characteristics
- function of design
• AC Ripple Capabilities
- function of frequency, temperature and design
TYPICAL ESR -vs- Frequency
FOR SM04 STYLE CAPACITORS
1µF4.7µF9µF
ESR (Ohms)
10.000
1.000
0.100
0.010
0.001
1.0 10.0 100.0 1000.0
Frequency (kHz)
MAXIMUM RMS CURRENT FOR 50 VDC, CH - X7R
@ 100 KHz & 25C Ambient
ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION
A RMS
50
45
40
35
30
25
20
15
10
5
06.8
CH41
8.7
CH51
10.4
CH61
16.5
CH71
11.9
CH76
29.9
CH81
26.6
CH86
28.8
CH91
STYLE
MAXIMUM RMS CURRENT FOR 50 WVDC, SM - X7R
@ 100 KHz & 25C Ambient
ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION
100 KHz ARMS
50
45
40
35
30
25
20
15
10
5
0
36.8 28.3 22.7 9.7 5.7 33.8
SM01 SM02 SM03 SM04 SM05 SM06
STYLE
MAXIMUM RMS CURRENT FOR 25 WVDC, SK - Z5U
@ 100 KHz & 25C Ambient
ASSUMING MAX. CAP. FOR EACH STYLE
100 KHz ARMS
12
10
8
6
4
2
01.7 4.5 6.2 7.4 7.7 11.0 6.7 8.7
SK01 SK04 SK05 SK06 SK07 SK08 SK09 SK10
STYLE
EXAMPLE (SK ONLY)
SMPS Capacitors
Capacitor Performance
EXAMPLE (CH ONLY)
EXAMPLE (SM ONLY)
Examples of Product Performance
7
SMPS Capacitors
Application Information on SupraCap®
High speed switch mode power supplies require extremely
low equivalent series resistance (ESR) and equivalent series
inductance (ESL) capacitors for input and output filtering.
These requirements are beyond the practical limits of
electrolytic capacitors, both aluminum and tantalums, but
are readily met by multilayer ceramic (MLCs) capacitors
(Figure 1).
Theoretical SMPS’s output filter capacitor values are in the
range of 6-10 µF/amp at 40KHz and drop to less than
1 µF/amp at 1MHz. Most electrolytic applications use 10 to
100 times the theoretical value in order to obtain lower ESR
from paralleling many capacitors. This is not necessary with
SupraCap®MLC capacitors which inherently have ESRs
in the range of milliohms. These extremely low values of
ESR mean low ripple voltage and less self-heating of
the capacitor.
Output noise spikes are reduced by lowering the filter capac-
itance self-inductance. The ripple current is a triangle wave
form with constant di/dt except when it changes polarity,
then the di/dt is very high. The noise voltage generated by
the filter capacitor is
VNoise = LCapacitor di/dt
AVX SupraCap®devices have inductance value less than 3nH.
Figure 2 compares a 5.6 µF MLC to a 5.6 µF tantalum which
was specially designed for low ESR and ESL. When subjected
to a di/dt of 200 mA/ns the tantalum shows an ESR of 165
mand an ESL of 18nH versus the MLC’s 4 mand 0.3 nH.
These performance differences allow considerable reduction
in size and weight of the filter capacitor.
Additionally, MLCs are compatible with surface mount
technology reflow and assembly techniques which is the
desirable assembly for conversion frequencies exceeding
1 MHz. Electrolytic capacitors (both aluminum and tantalum)
are not compatible with normal vapor phase (VPS) or infrared
(IR) reflow temperatures (205-215°C) due to electrolyte and
structural problems. AVX SupraCap®devices are supplied
with lead frames for either thru-hole or surface mount
assembly. The lead frames act as stress relief for differences
in coefficients of expansion between the large ceramic chip
(10 ppm/°C) and the PC boards.
DSW 16 50mV 50nS
TPOS-7
Ta
MLC
CSW 1 50nS
50mV VZR-0.2
V=2.0mV T=25.5nS
Figure 2
ESR -vs- Frequency
24 uFd Filter Capacitors
Aluminum
Electrolytic Low "ESR"
Tantalum
Ceramic
MLC
ESR (Ohms)
100,000
10,000
1,000
0.100
0.010
0.001
0.1 1.0 10.0 100.0 1000.0 10000.0
Frequency (KHz)
Figure 1
SUPRACAP®- LARGE CAPACITANCE VALUE MLCs
8
SMPS Stacked MLC Capacitors
(SM Style) Technical Information on SMPS Capacitors U.S. Preferred Styles
Temperature Coefficient
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C
X7R: C Temperature Coefficient - ±15%, -55° to +125°C
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C
Capacitance Test (MIL-STD-202 Method 305)
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
C0G and X7R: 100K Mor 1000 M-µF, whichever is less.
Z5U: 10K Mor 1000 M-µF, whichever is less.
Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G and X7R: 10K Mor 100 M-µF, whichever is less.
Z5U: 1K Mor 100 M-µF, whichever is less.
Dielectric Withstanding Voltage 25°C (Flash Test)
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 750 VDC)
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging
current.
Life Test (1000 hrs)
C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @
600 VDC)
Z5U: 150% rated voltage at +85°C
Moisture Resistance (MIL-STD-202 Method 106)
C0G, X7R, Z5U: Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method104, Condition B)
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
Typical ESR (m)
24 µF Performance
Aluminum Tantalum MLC
Electrolytic
ESR @ 50KHz 2,100 140 1
ESR @ 100KHz 2,000 125 1
ESR @ 500KHz 1,600 105 2.5
ESR @ 1MHz 1,500 105 5
ESR @ 5MHz 1,200 140 10
ESR @ 10MHz 1,700 190 14
ELECTRICAL SPECIFICATIONS
SM0 1 7 C 106 M A N 650
HOW TO ORDER AVX Styles: SM-1, SM-2, SM-3, SM-4, SM-5, SM-6
AVX Style Size Voltage Temperature Capacitance Capacitance Test Termination Height
Size See 50V = 5 Coefficient Code Tolerance Level N = Straight Lead Max
SM0 = Uncoated dimen- 100V = 1 C0G = A (2 significant C0G: J = ±5% A = Standard J = Leads formed Dimension “A”
SM5 = Epoxy sions 200V = 2 X7R = C digits + no. K = ±10% B = Hi-Rel*in 120 = 0.120"
coated chart 500V = 7 Z5U = E of zeros) M = ±20% L = Leads formed 240 = 0.240"
10 pF = 100 X7R: K = ±10% out 360 = 0.360"
100 pF = 101 M = ±20% 480 = 0.480"
1,000 pF = 102 Z = +80, -20% 650 = 0.650"
22,000 pF = 223 Z5U: M = ±20%
220,000 pF = 224 Z = +80, -20%
1 µF = 105 P = GMV (+100, -0%)
10 µF = 106
100 µF = 107
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications
across AC supply mains or AC line filtering with polarity reversal. Contact plant
for recommendations.
*Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A
(B Level), Subgroup 1 per MIL-PRF-49470.
9
D
A
B
6.35
(0.250) MIN.
0.508 (0.020) TYP.
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
1.397 (0.055)
±0.254 (0.010)
E
C
CHIP SEPARATION
0.254 (0.010) TYP.
0.254 (0.010) TYP.
SMPS Stacked MLC Capacitors
(SM Style) Surface Mount and Thru-Hole Styles (SM0, SM5) U.S. Preferred Styles
No. of Leads
Style A (max.) B (max.) C ±.635 (±0.025) D ±.635 (±0.025) E (max.) per side
SM-1 11.4 (0.450) 52.1 (2.050) 12.7 (0.500) 20
SM-2 20.3 (0.800) 38.4 (1.510) 22.1 (0.870) 15
SM-3 11.4 (0.450) 26.7 (1.050) 12.7 (0.500) 10
SM-4 10.2 (0.400) 10.2 (0.400) 11.2 (0.440) 4
SM-5 6.35 (0.250) 6.35 (0.250) 7.62 (0.300) 3
SM-6 31.8 (1.250) 52.1 (2.050) 34.3 (1.350) 20
Note: For SM5 add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E
“N” STYLE LEADS
“J” STYLE LEADS
DIMENSIONS millimeters (inches)
See page 10 for
maximum “A”
Dimension
For “N” Style Leads,
“B” Dimension = “A”
Dimension Plus 0.065".
For “J” & “L” Leads,
“B” Dimension = “A”
Dimension Plus 0.080"
D
A
B
0.508 (0.020) TYP.
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
1.397 (0.055)
±0.254 (0.010)
E
C
CHIP SEPARATION
0.254 (0.010) TYP.
0.254 (0.010) TYP.
0.254 (0.010) RAD. (TYP.)
1.905 (0.075)
±0.635 (0.025)
TYP.
1.778 (0.070)
±0.254 (0.010)
E
C
CHIP SEPARATION
0.254 (0.010) TYP.
0.254 (0.010) TYP.
0.254 (0.010) RAD. (TYP.)
1.778 (0.070)
1.905 (0.075)
±0.635 (0.025)
TYP.
±0.254 (0.010)
D
A
B
0.508 (0.020) TYP.
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
1.397 (0.055)
±0.254 (0.010)
“L” STYLE LEADS
10
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 .09
27 12 7.0 2.6 41 18 11 4.0 18 6.0 3.6 1.3
84 32 12 – – 110 46 34 – – 40 15 6.0 – –
SMPS Stacked MLC Capacitors
(SM Style) U.S. Preferred Styles
Max Capacitance (µF) Available Versus Style with Height (A) of 0.120" - 3.05mm
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
.16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 .50
7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 40 24 9.4
12 4.6 3.0 – – 4.6 1.8 .72 – – 260 140 92 – –
Max Capacitance (µF) Available Versus Style with Height (A) of 0.240" - 6.10mm
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
2.0 1.4 .80 .36 2.4 2.0 1.2 .52 1.0 .80 .40 .18
54 24 14 5.2 82 36 22 8.0 36 12 7.2 2.6
160 64 24 – – 230 92 68 – – 80 30 12 – –
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
.32 .26 .14 .05 .10 .08 .05 .02 6.4 4.8 2.6 1.0
15 3.6 2.2 .80 5.6 1.3 .80 .32 160 80 48 18
24 9.2 6.0 – – 9.2 3.6 1.4 – – 520 280 180 – –
Max Capacitance (µF) Available Versus Style with Height (A) of 0.360" - 9.14mm
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
3.0 2.1 1.2 .54 3.6 3.0 1.8 .78 1.5 1.2 .60 .27
82 36 21 7.8 120 54 33 12 54 18 10 3.9
250 96 36 – – 350 130 100 – – 120 45 18 – –
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
.48 .39 .21 .07 .15 .12 .07 .03 9.6 7.2 3.9 1.5
22 5.4 3.3 1.2 8.2 2.0 1.2 .48 240 120 72 28
36 13 9.0 – – 13 5.4 2.1 – – 780 430 270 – –
Max Capacitance (µF) Available Versus Style with Height (A) of 0.480" - 12.2mm
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
4.0 2.8 1.6 .72 4.8 4.0 2.2 1.0 2.0 1.6 .80 .36
110 48 28 10 160 72 44 16 72 24 14 5.2
330 120 48 – – 470 180 130 – – 160 60 24 – –
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
.64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0
30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37
48 18 12 – – 18 7.2 2.8 – – 1000 570 360 – –
Max Capacitance (µF) Available Versus Style with Height (A) of 0.650" - 16.5mm
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
5.0 3.5 2.0 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 .45
130 60 35 13 200 90 55 20 90 30 18 6.5
420 160 60 – – 590 230 170 – – 200 75 30 – –
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
.80 .65 .35 .12 .25 .20 .12 .05 16 12 6.5 2.5
36 9.0 5.5 2.0 12 3.4 2.0 .80 400 200 120 47
60 23 15 – – 23 9.0 3.6 – – 1300 720 460 – –
SM01 _ _____AN120 SM02 _ _ _ _ _ _ AN120 SM03 _ _ _ _ _ _ AN120 SM04 _ _ _ _ _ _ AN120 SM05 _ _____AN120 SM06 _ _____AN120
AVX
STYLE
C0G
X7R
Z5U
SM01 _ _____AN240 SM02 _ _ _ _ _ _ AN240 SM03 _ _ _ _ _ _ AN240 SM04 _ _ _ _ _ _ AN240 SM05 _ _____AN240 SM06 _ _____AN240
AVX
STYLE
C0G
X7R
Z5U
SM01 _ _____AN360 SM02 _ _ _ _ _ _ AN360 SM03 _ _ _ _ _ _ AN360 SM04 _ _ _ _ _ _ AN360 SM05 _ _____AN360 SM06 _ _____AN360
AVX
STYLE
C0G
X7R
Z5U
SM01 _ _____AN480 SM02 _ _ _ _ _ _ AN480 SM03 _ _ _ _ _ _ AN480 SM04 _ _ _ _ _ _ AN480 SM05 _ _____AN480 SM06 _ _____AN480
AVX
STYLE
C0G
X7R
Z5U
SM01 _ _____AN650 SM02 _ _ _ _ _ _ AN650 SM03 _ _ _ _ _ _ AN650 SM04 _ _ _ _ _ _ AN650 SM05 _ _____AN650 SM06 _ _____AN650
AVX
STYLE
C0G
X7R
Z5U
11
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470 U.S. Preferred Styles
AVX IS QUALIFIED TO MIL-PRF-49470/1
AND MIL-PRF-49470/2
The SMPS capacitors are designed for high current, high-
power and high-temperature applications. These capacitors
have very low ESR (Equivalent Series Resistance) and ESL
(Equivalent Series Inductance). SMPS Series capacitors offer
design and component engineers a proven technology
specifically designed for programs requiring high reliability
performance in harsh environments.
MIL-PRF-49470 SMPS Series capacitors are primarily used
in input/output filters of high-power and high-voltage power
supplies as well as in bus filters and DC snubbers for high
power inverters and other high-current applications. These
capacitors are available with through-hole and surface
mount leads. The operating temperature is -55°C to +125°C.
The MIL-PRF-49470 capacitors are preferred over the DSCC
drawing 87106 capacitors. MIL-PRF-49470 specification
was created to produce a robust replacement for DSCC
87106. MIL-PRF-49470 offers two product levels.
Level “B” is the standard reliability. Level “T” is the high relia-
bility suitable for space application.
AVX is qualified to supply MIL-PRF-49470/1 parts. These are
unencapsulated ceramic dielectric, switch mode power supply
capacitors. AVX is also qualified to supply MIL-PRF-49470/2
parts. These are encapsulated ceramic dielectric, switch
mode power supply capacitors.
PLEASE CONTACT THE DSCC WEBSITE
[http://www.dscc.dla.mil/Programs/MilSpec/DocSearch.asp]
for details on testing, electrical, mechanical and part number
options.
PLEASE CONTACT THE DSCC WEBSITE
[http://www.dscc.dla.mil/Programs/QmlQpl/] for the latest
QPL (Qualified Products List).
For “T” level parts, replace the “M” in the pin with “T” (for
example M49470R01474KCN becomes T49470R01474KCN)
MIL-PRF-49470 contains additional capacitors that are not
available in 87106, such as additional lead configurations
and lower profile parts.
On the pages to follow is the general dimensional outline
along with a cross reference from 87106 parts to MIL-PRF-
49470 parts.
M49470
Performance
specification
indicating
MIL-PRF-49470
R
Characteristic
01
Performance
specification
sheet number
01 – indicating
MIL-PRF-49470/1
02 – indicating
MIL-PRF-49470/2
474
Capacitance
K
Capacitance
Tolerance
C
Rated Voltage
N
Configuration
(Lead Style)
HOW TO ORDER
12
NOTES:
1. Dimensions are in millimeters (inches)
2. Unless otherwise specified, tolerances are 0.254 (±0.010).
3. Lead frame configuration is shown as typical above the seating plane.
4. See table I of MIL-PRF-49470/1 for specific maximum A dimension. For maximum B dimension, add 1.65 (0.065) to
the appropriate A dimension. For all lead styles, the number of chips is determined by the capacitance and voltage
rating.
5. For case code 5, dimensions shall be 2.54 (0.100) maximum and 0.305 (0.012) minimum.
6. Lead alignment within pin rows shall be within ±0.10 (0.005).
MIL-PRF-49470/1
MIL-PRF-49470/1 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable),
standard reliability and high reliability unencapsulated, Style PS01.
D
1.397 ±0.254
(0.055 ±0.010)
B
See
Note 4
A
See
Note 4
6.35 (0.250) MIN
2.54 (0.100) MAX
0.635 (0.025) MIN
(See Note 5)
2.54 (0.100) TYP
SEATING PLANE
See Note 3
See Note 6
0.508 ±0.050
(0.020 ±0.002) C
E
6.35 (0.250)
MIN
0.254 ±0.05
(0.010 ±0.002)
0.254 (0.010)
RAD (TYP)
C
E
L
1.27 (0.050) MIN
0.254 (0.010)
RAD (TYP)
C
E
L
1.27 (0.050) MIN
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470/1 U.S. Preferred Styles
D Number of
Case Code C ±0.635 (±0.025) E (max.) Leads
Min. Max. per side
1 11.4 (0.450) 49.5 (1.950) 52.7 (2.075) 12.7 (0.500) 20
2 20.3 (0.800) 36.8 (1.450) 40.0 (1.535) 22.1 (0.870) 15
3 11.4 (0.450) 24.1 (0.950) 27.3 (1.075) 12.7 (0.500) 10
4 10.2 (0.400) 8.89 (0.350) 10.8 (0.425) 11.2 (0.440) 4
5 6.35 (0.250) 6.20 (0.224) 6.97 (0.275) 7.62 (0.300) 3
6 31.8 (1.250) 49.5 (1.950) 52.7 (2.075) 34.3 (1.350) 20
DIMENSIONS: millimeters (inches)
LEAD STYLE N AND A
LEAD STYLE J AND C CIRCUIT DIAGRAM LEAD STYLE L AND B
13
NOTES:
1. Dimensions are in millimeters (inches)
2. Unless otherwise specified, tolerances are 0.254 (±0.001).
3. See table I of MIL-PRF-49470/2 for specific maximum A dimension. For
all lead styles, the number of chips is determined by the capacitance and
voltage rating.
4. Lead alignment within pin rows shall be within ±0.10 (0.004).
Case Code C ±0.635 (±0.025) D ±0.635 (±0.025) E (max) Number of Leads
per side
1 11.4 (0.450) 54.7 (2.155) 14.7 (0.580) 20
2 20.3 (0.800) 41.0 (1.615) 24.1 (0.950) 15
3 11.4 (0.450) 29.3 (1.155) 14.7 (0.580) 10
4 10.2 (0.400) 12.3 (0.485) 12.3 (0.485) 4
5 6.35 (0.250) 9.02 (0.355) 9.02 (0.355) 3
6 31.8 (1.250) 54.7 (2.155) 36.3 (1.430) 20
DIMENSIONS: millimeters (inches)
MIL-PRF-49470/2
MIL-PRF-49470/2 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable),
standard reliability and high reliability encapsulated, Style PS02.
D
0.38 ±0.13
(0.015 ±0.005)
A MAX
See Note 3
4.45 (0.175) MAX
1.02 (0.040) MIN 2.54 (0.100) TYP
SEATING
PLANE
See Note 4
0.50 ±0.05
(0.020 ±0.002) C
E
6.35 (0.250)
MIN
2.54 ±0.05
(0.100 ±0.002)
2.54 (0.100)
RAD (TYP)
C
E
L
1.27 (0.050) MIN
2.54 (0.100)
RAD (TYP)
C
E
L
1.27 (0.050) MIN
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470/2 U.S. Preferred Styles
LEAD STYLE J AND C CIRCUIT DIAGRAM LEAD STYLE L AND B
LEAD STYLE N AND A
14
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470 U.S. Preferred Styles
87106- MIL-PRF-49470 PIN AVX PART NUMBER CAP TOL CASE VOLT
(µF) CODE (VDC)
1 M49470X01105KAN SM055C105KHN120 1.0 ±10% 5 50
2 M49470X01105MAN SM055C105MHN120 1.0 ±20% 5 50
3 M49470X01125KAN SM055C125KHN120 1.2 ±10% 5 50
4 M49470X01125MAN SM055C125MHN120 1.2 ±20% 5 50
5 M49470X01155KAN SM055C155KHN240 1.5 ±10% 5 50
6 M49470X01155MAN SM055C155MHN240 1.5 ±20% 5 50
7 M49470X01185KAN SM055C185KHN240 1.8 ±10% 5 50
8 M49470X01185MAN SM055C185MHN240 1.8 ±20% 5 50
9 M49470X01225KAN SM055C225KHN240 2.2 ±10% 5 50
10 M49470X01225MAN SM055C225MHN240 2.2 ±20% 5 50
11 M49470X01275KAN SM055C275KHN360 2.7 ±10% 5 50
12 M49470X01275MAN SM055C275MHN360 2.7 ±20% 5 50
13 M49470X01335KAN SM055C335KHN360 3.3 ±10% 5 50
14 M49470X01335MAN SM055C335MHN360 3.3 ±20% 5 50
15 M49470X01395KAN SM055C395KHN480 3.9 ±10% 5 50
16 M49470X01395MAN SM055C395MHN480 3.9 ±20% 5 50
17 M49470X01475KAN SM055C475KHN480 4.7 ±10% 5 50
18 M49470X01475MAN SM055C475MHN480 4.7 ±20% 5 50
M49470X01475KAA SM045C475KHN240 4.7 ±10% 4 50
M49470X01475MAA SM045C475MHN240 4.7 ±20% 4 50
19 M49470X01565KAN SM055C565KHN650 5.6 ±10% 5 50
20 M49470X01565MAN SM055C565MHN650 5.6 ±20% 5 50
M49470X01565KAA SM045C565KHN240 5.6 ±10% 4 50
M49470X01565MAA SM045C565KHN240 5.6 ±20% 4 50
21 M49470X01825KAN SM045C825KHN360 8.2 ±10% 4 50
22 M49470X01825MAN SM045C825MHN360 8.2 ±20% 4 50
23 M49470X01106KAN SM045C106KHN480 10 ±10% 4 50
24 M49470X01106MAN SM045C106MHN480 10 ±20% 4 50
25 M49470X01126KAN SM045C126KHN480 12 ±10% 4 50
26 M49470X01126MAN SM045C126MHN480 12 ±20% 4 50
27 M49470X01156KAN SM045C156KHN650 15 ±10% 4 50
28 M49470X01156MAN SM045C156MHN650 15 ±20% 4 50
M49470X01156KAA SM035C156KHN240 15 ±10% 3 50
M49470X01156MAA SM035C156MHN240 15 ±20% 3 50
29 M49470X01186KAN SM035C186KHN240 18 ±10% 3 50
30 M49470X01186MAN SM035C186MHN240 18 ±20% 3 50
31 M49470X01226KAN SM035C226KHN360 22 ±10% 3 50
32 M49470X01226MAN SM035C226MHN360 22 ±20% 3 50
33 M49470X01276KAN SM035C276KHN360 27 ±10% 3 50
34 M49470X01276MAN SM035C276MHN360 27 ±20% 3 50
35 M49470X01336KAN SM035C336KHN360 33 ±10% 3 50
36 M49470X01336MAN SM035C336MHN360 33 ±20% 3 50
37 M49470X01396KAN SM035C396KHN480 39 ±10% 3 50
38 M49470X01396MAN SM035C396MHN480 39 ±20% 3 50
39 M49470X01476KAN SM035C476KHN650 47 ±10% 3 50
40 M49470X01476MAN SM035C476MHN650 47 ±20% 3 50
M49470X01476KAA SM025C476KHN240 47 ±10% 2 50
M49470X01476MAA SM025C476MHN240 47 ±20% 2 50
41 M49470X01686KAN SM015C686KHN480 68 ±10% 1 50
42 M49470X01686MAN SM015C686MHN480 68 ±20% 1 50
M49470X01686KAA SM025C686KHN360 68 ±10% 2 50
M49470X01686MAA SM025C686MHN360 68 ±20% 2 50
43 M49470X01826KAN SM015C826KHN480 82 ±10% 1 50
44 M49470X01826MAN SM015C826MHN480 82 ±20% 1 50
M49470X01826KAA SM025C826KHN360 82 ±10% 2 50
M49470X01826MAA SM025C826MHN360 82 ±20% 2 50
45 M49470X01107KAN SM015C107KHN650 100 ±10% 1 50
46 M49470X01107MAN SM015C107MHN650 100 ±20% 1 50
M49470X01107KAA SM025C107KHN480 100 ±10% 2 50
M49470X01107MAA SM025C107MHN480 100 ±20% 2 50
47 M49470X01157KAN SM025C157KHN650 150 ±10% 2 50
48 M49470X01157MAN SM025C157MHN650 150 ±20% 2 50
87106- MIL-PRF-49470 PIN AVX PART NUMBER CAP TOL CASE VOLT
(µF) CODE (VDC)
49 M49470X01187KAN SM065C187KHN480 180 ±10% 6 50
50 M49470X01187MAN SM065C187MHN480 180 ±20% 6 50
51 M49470X01227KAN SM065C227KHN480 220 ±10% 6 50
52 M49470X01227MAN SM065C227MHN480 220 ±20% 6 50
53 M49470X01277KAN SM065C277KHN650 270 ±10% 6 50
54 M49470X01277MAN SM065C277MHN650 270 ±20% 6 50
55 M49470X01684KBN SM051C684KHN120 0.68 ±10% 5 100
56 M49470X01684MBN SM051C684MHN120 0.68 ±20% 5 100
57 M49470X01824KBN SM051C824KHN240 0.82 ±10% 5 100
58 M49470X01824MBN SM051C824MHN240 0.82 ±20% 5 100
59 M49470X01105KBN SM051C105KHN240 1.0 ±10% 5 100
60 M49470X01105MBN SM051C105MHN240 1.0 ±20% 5 100
61 M49470X01125KBN SM051C125KHN240 1.2 ±10% 5 100
62 M49470X01125MBN SM051C125MHN240 1.2 ±20% 5 100
63 M49470X01155KBN SM051C155KHN360 1.5 ±10% 5 100
64 M49470X01155MBN SM051C155MHN360 1.5 ±20% 5 100
65 M49470X01185KBN SM051C185KHN360 1.8 ±10% 5 100
66 M49470X01185MBN SM051C185MHN360 1.8 ±20% 5 100
67 M49470X01225KBN SM051C225KHN480 2.2 ±10% 5 100
68 M49470X01225MBN SM051C225MHN480 2.2 ±20% 5 100
M49470X01225KBA SM041C225KHN240 2.2 ±10% 4 100
M49470X01225MBA SM041C225MHN240 2.2 ±20% 4 100
69 M49470X01275KBN SM051C275KHN480 2.7 ±10% 5 100
70 M49470X01275MBN SM051C275MHN480 2.7 ±20% 5 100
71 M49470X01335KBN SM051C335KHN650 3.3 ±10% 5 100
72 M49470X01335MBN SM051C335MHN650 3.3 ±20% 5 100
M49470X01335KBA SM041C335KHN240 3.3 ±10% 4 100
M49470X01335MBA SM041C335MHN240 3.3 ±20% 4 100
73 M49470X01395KBN SM041C395KHN360 3.9 ±10% 4 100
74 M49470X01395MBN SM041C395MHN360 3.9 ±20% 4 100
75 M49470X01475KBN SM041C475KHN360 4.7 ±10% 4 100
76 M49470X01475MBN SM041C475MHN360 4.7 ±20% 4 100
77 M49470X01565KBN SM041C565KHN480 5.6 ±10% 4 100
78 M49470X01565MBN SM041C565MHN480 5.6 ±20% 4 100
79 M49470X01685KBN SM041C685KHN480 6.8 ±10% 4 100
80 M49470X01685MBN SM041C685MHN480 6.8 ±20% 4 100
81 M49470X01825KBN SM041C825KHN650 8.2 ±10% 4 100
82 M49470X01825MBN SM041C825MHN650 8.2 ±20% 4 100
M49470X01825KBA SM031C825KHN240 8.2 ±10% 3 100
M49470X01825MBA SM031C825MHN240 8.2 ±20% 3 100
83 M49470X01126KBN SM031C126KHN240 12 ±10% 3 100
84 M49470X01126MBN SM031C126MHN240 12 ±20% 3 100
85 M49470X01156KBN SM031C156KHN360 15 ±10% 3 100
86 M49470X01156MBN SM031C156MHN360 15 ±20% 3 100
87 M49470X01186KBN SM031C186KHN360 18 ±10% 3 100
88 M49470X01186MBN SM031C186MHN360 18 ±20% 3 100
89 M49470X01226KBN SM031C226KHN480 22 ±10% 3 100
90 M49470X01226MBN SM031C226MHN480 22 ±20% 3 100
91 M49470X01276KBN SM031C276KHN650 27 ±10% 3 100
92 M49470X01276MBN SM031C276MHN650 27 ±20% 3 100
M49470X01276KBA SM021C276KHN240 27 ±10% 2 100
M49470X01276MBA SM021C276MHN240 27 ±20% 2 100
93 M49470X01336KBN SM011C336KHN360 33 ±10% 1 100
94 M49470X01336MBN SM011C336MHN360 33 ±20% 1 100
M49470X01336KBA SM021C336KHN240 33 ±10% 2 100
M49470X01336MBA SM021C336MHN240 33 ±20% 2 100
95 M49470X01396KBN SM011C396KHN480 39 ±10% 1 100
96 M49470X01396MBN SM011C396MHN480 39 ±20% 1 100
M49470X01396KBA SM021C396KHN360 39 ±10% 2 100
M49470X01396MBA SM021C396MHN360 39 ±20% 2 100
97 M49470X01476KBN SM011C476KHN480 47 ±10% 1 100
98 M49470X01476MBN SM011C476MHN480 47 ±20% 1 100
15
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470 U.S. Preferred Styles
87106- MIL-PRF-49470 PIN AVX PART NUMBER CAP TOL CASE VOLT
(µF) CODE (VDC)
M49470X01476KBA SM021C476KHN360 47 ±10% 2 100
M49470X01476MBA SM021C476MHN360 47 ±20% 2 100
99 M49470X01566KBN SM011C566KHN650 56 ±10% 1 100
100 M49470X01566MBN SM011C566MHN650 56 ±20% 1 100
101 M49470X01686KBN SM021C686KHN480 68 ±10% 2 100
102 M49470X01686MBN SM021C686MHN480 68 ±20% 2 100
103 M49470X01826KBN SM021C826KHN650 82 ±10% 2 100
104 M49470X01826MBN SM021C826MHN650 82 ±20% 2 100
105 M49470X01107KBN SM061C107KHN360 100 ±10% 6 100
106 M49470X01107MBN SM061C107MHN360 100 ±20% 6 100
107 M49470X01127KBN SM061C127KHN360 120 ±10% 6 100
108 M49470X01127MBN SM061C127MHN360 120 ±20% 6 100
109 M49470X01157KBN SM061C157KHN480 150 ±10% 6 100
110 M49470X01157MBN SM061C157MHN480 150 ±20% 6 100
111 M49470X01187KBN SM061C187KHN650 180 ±10% 6 100
112 M49470X01187MBN SM061C187MHN650 180 ±20% 6 100
113 M49470R01474KCN SM052C474KHN240 0.47 ±10% 5 200
114 M49470R01474MCN SM052C474MHN240 0.47 ±20% 5 200
115 M49470R01564KCN SM052C564KHN240 0.56 ±10% 5 200
116 M49470R01564MCN SM052C564MHN240 0.56 ±20% 5 200
117 M49470R01684KCN SM052C684KHN360 0.68 ±10% 5 200
118 M49470R01684MCN SM052C684MHN360 0.68 ±20% 5 200
119 M49470R01824KCN SM052C824KHN360 0.82 ±10% 5 200
120 M49470R01824MCN SM052C824MHN360 0.82 ±20% 5 200
121 M49470R01105KCN SM052C105KHN480 1.0 ±10% 5 200
122 M49470R01105MCN SM052C105MHN480 1.0 ±20% 5 200
M49470R01105KCA SM042C105KHN120 1.0 ±10% 4 200
M49470R01105MCA SM042C105MHN120 1.0 ±20% 4 200
123 M49470R01125KCN SM052C125KHN480 1.2 ±10% 5 200
124 M49470R01125MCN SM052C125MHN480 1.2 ±20% 5 200
M49470R01125KCA SM042C125KHN240 1.2 ±10% 4 200
M49470R01125MCA SM042C125MHN240 1.2 ±20% 4 200
125 M49470R01155KCN SM052C155KHN650 1.5 ±10% 5 200
126 M49470R01155MCN SM052C155MHN650 1.5 ±20% 5 200
M49470R01155KCA SM042C155KHN240 1.5 ±10% 4 200
M49470R01155MCA SM042C155MHN240 1.5 ±20% 4 200
127 M49470R01185KCN SM042C185KHN360 1.8 ±10% 4 200
128 M49470R01185MCN SM042C185MHN360 1.8 ±20% 4 200
129 M49470R01225KCN SM042C225KHN360 2.2 ±10% 4 200
130 M49470R01225MCN SM042C225MHN360 2.2 ±20% 4 200
131 M49470R01275KCN SM042C275KHN480 2.7 ±10% 4 200
132 M49470R01275MCN SM042C275MHN480 2.7 ±20% 4 200
133 M49470R01335KCN SM042C335KHN480 3.3 ±10% 4 200
134 M49470R01335MCN SM042C335MHN480 3.3 ±20% 4 200
135 M49470R01395KCN SM042C395KHN650 3.9 ±10% 4 200
136 M49470R01395MCN SM042C395MHN650 3.9 ±20% 4 200
M49470R01395KCA SM032C395KHN240 3.9 ±10% 3 200
M49470R01395MCA SM032C395MHN240 3.9 ±20% 3 200
137 M49470R01475KCN SM032C475KHN240 4.7 ±10% 3 200
138 M49470R01475MCN SM032C475MHN240 4.7 ±20% 3 200
139 M49470R01565KCN SM032C565KHN240 5.6 ±10% 3 200
140 M49470R01565MCN SM032C565MHN240 5.6 ±20% 3 200
141 M49470R01685KCN SM032C685KHN360 6.8 ±10% 3 200
142 M49470R01685MCN SM032C685MHN360 6.8 ±20% 3 200
143 M49470R01825KCN SM032C825KHN360 8.2 ±10% 3 200
144 M49470R01825MCN SM032C825MHN360 8.2 ±20% 3 200
145 M49470R01106KCN SM032C106KHN480 10 ±10% 3 200
146 M49470R01106MCN SM032C106MHN480 10 ±20% 3 200
147 M49470R01126KCN SM032C126KHN650 12 ±10% 3 200
148 M49470R01126MCN SM032C126MHN650 12 ±20% 3 200
M49470R01126KCA SM022C126KHN240 12 ±10% 2 200
M49470R01126MCA SM022C126MHN240 12 ±20% 2 200
87106- MIL-PRF-49470 PIN AVX PART NUMBER CAP TOL CASE VOLT
(µF) CODE (VDC)
149 M49470R01156KCN SM012C156KHN360 15 ±10% 1 200
150 M49470R01156MCN SM012C156MHN360 15 ±20% 1 200
M49470R01156KCA SM022C156KHN240 15 ±10% 2 200
M49470R01156MCA SM022C156MHN240 15 ±20% 2 200
151 M49470R01186KCN SM012C186KHN480 18 ±10% 1 200
152 M49470R01186MCN SM012C186MHN480 18 ±20% 1 200
M49470R01186KCA SM022C186KHN360 18 ±10% 2 200
M49470R01186MCA SM022C186MHN360 18 ±20% 2 200
153 M49470R01226KCN SM012C226KHN650 22 ±10% 1 200
154 M49470R01226MCN SM012C226MHN650 22 ±20% 1 200
M49470R01226KCA SM022C226KHN360 22 ±10% 2 200
M49470R01226MCA SM022C226MHN360 22 ±20% 2 200
155 M49470R01276KCN SM012C276KHN650 27 ±10% 1 200
156 M49470R01276MCN SM012C276MHN650 27 ±20% 1 200
M49470R01276KCA SM022C276KHN480 27 ±10% 2 200
M49470R01276MCA SM022C276MHN480 27 ±20% 2 200
157 M49470R01336KCN SM022C336KHN480 33 ±10% 2 200
158 M49470R01336MCN SM022C336MHN480 33 ±20% 2 200
159 M49470R01396KCN SM022C396KHN650 39 ±10% 2 200
160 M49470R01396MCN SM022C396MHN650 39 ±20% 2 200
161 M49470R01476KCN SM062C476KHN240 47 ±10% 6 200
162 M49470R01476MCN SM062C476MHN240 47 ±20% 6 200
163 M49470R01566KCN SM062C566KHN360 56 ±10% 6 200
164 M49470R01566MCN SM062C566MHN360 56 ±20% 6 200
165 M49470R01686KCN SM062C686KHN360 68 ±10% 6 200
166 M49470R01686MCN SM062C686MHN360 68 ±20% 6 200
167 M49470R01826KCN SM062C826KHN480 82 ±10% 6 200
168 M49470R01826MCN SM062C826MHN480 82 ±20% 6 200
169 M49470R01107KCN SM062C107KHN650 100 ±10% 6 200
170 M49470R01107MCN SM062C107MHN650 100 ±20% 6 200
171 M49470R01127KCN SM062C127KHN650 120 ±10% 6 200
172 M49470R01127MCN SM062C127MHN650 120 ±20% 6 200
173 M49470Q01154KEN SM057C154KHN120 0.15 ±10% 5 500
174 M49470Q01154MEN SM057C154MHN120 0.15 ±20% 5 500
175 M49470Q01184KEN SM057C184KHN240 0.18 ±10% 5 500
176 M49470Q01184MEN SM057C184MHN240 0.18 ±20% 5 500
177 M49470Q01224KEN SM057C224KHN240 0.22 ±10% 5 500
178 M49470Q01224MEN SM057C224MHN240 0.22 ±20% 5 500
179 M49470Q01274KEN SM057C274KHN240 0.27 ±10% 5 500
180 M49470Q01274MEN SM057C274MHN240 0.27 ±20% 5 500
181 M49470Q01334KEN SM057C334KHN360 0.33 ±10% 5 500
182 M49470Q01334MEN SM057C334MHN360 0.33 ±20% 5 500
183 M49470Q01394KEN SM057C394KHN360 0.39 ±10% 5 500
184 M49470Q01394MEN SM057C394MHN360 0.39 ±20% 5 500
185 M49470Q01474KEN SM057C474KHN360 0.47 ±10% 5 500
186 M49470Q01474MEN SM057C474MHN360 0.47 ±20% 5 500
187 M49470Q01564KEN SM057C564KHN480 0.56 ±10% 5 500
188 M49470Q01564MEN SM057C564MHN480 0.56 ±20% 5 500
M49470Q01564KEA SM047C564KHN240 0.56 ±10% 4 500
M49470Q01564MEA SM047C564MHN240 0.56 ±20% 4 500
189 M49470Q01684KEN SM057C684KHN650 0.68 ±10% 5 500
190 M49470Q01684MEN SM057C684MHN650 0.68 ±20% 5 500
M49470Q01684KEA SM047C684KHN360 0.68 ±10% 4 500
M49470Q01684MEA SM047C684MHN360 0.68 ±20% 4 500
191 M49470Q01105KEN SM047C105KHN360 1.0 ±10% 4 500
192 M49470Q01105MEN SM047C105MHN360 1.0 ±20% 4 500
193 M49470Q01125KEN SM047C125KHN360 1.2 ±10% 4 500
194 M49470Q01125MEN SM047C125MHN360 1.2 ±20% 4 500
195 M49470Q01155KEN SM047C155KHN480 1.5 ±10% 4 500
196 M49470Q01155MEN SM047C155MHN480 1.5 ±20% 4 500
197 M49470Q01185KEN SM047C185KHN650 1.8 ±10% 4 500
198 M49470Q01185MEN SM047C185MHN650 1.8 ±20% 4 500
16
87106- MIL-PRF-49470 PIN AVX PART NUMBER CAP TOL CASE VOLT
(µF) CODE (VDC)
247 M49470X01185KAJ SM055C185KHJ240 1.8 ±10% 5 50
248 M49470X01185MAJ SM055C185MHJ240 1.8 ±20% 5 50
249 M49470X01225KAJ SM055C225KHJ240 2.2 ±10% 5 50
250 M49470X01225MAJ SM055C225MHJ240 2.2 ±20% 5 50
251 M49470X01275KAJ SM055C275KHJ360 2.7 ±10% 5 50
252 M49470X01275MAJ SM055C275MHJ360 2.7 ±20% 5 50
253 M49470X01335KAJ SM055C335KHJ360 3.3 ±10% 5 50
254 M49470X01335MAJ SM055C335MHJ360 3.3 ±20% 5 50
255 M49470X01395KAJ SM055C395KHJ480 3.9 ±10% 5 50
256 M49470X01395MAJ SM055C395MHJ480 3.9 ±20% 5 50
257 M49470X01475KAJ SM055C475KHJ480 4.7 ±10% 5 50
258 M49470X01475MAJ SM055C475MHJ480 4.7 ±20% 5 50
M49470X01475KAC SM045C475KHJ240 4.7 ±10% 4 50
M49470X01475MAC SM045C475MHJ240 4.7 ±20% 4 50
259 M49470X01565KAJ SM055C565KHJ650 5.6 ±10% 5 50
260 M49470X01565MAJ SM055C565MHJ650 5.6 ±20% 5 50
M49470X01565KAC SM045C565KHJ240 5.6 ±10% 4 50
M49470X01565MAC SM045C565MHJ240 5.6 ±10% 4 50
261 M49470X01685KAJ SM045C685KHJ360 6.8 ±10% 4 50
262 M49470X01685MAJ SM045C685MHJ360 6.8 ±20% 4 50
263 M49470X01825KAJ SM045C825KHJ360 8.2 ±10% 4 50
264 M49470X01825MAJ SM045C825MHJ360 8.2 ±20% 4 50
265 M49470X01106KAJ SM045C106KHJ480 10 ±10% 4 50
266 M49470X01106MAJ SM045C106MHJ480 10 ±20% 4 50
267 M49470X01126KAJ SM045C126KHJ480 12 ±10% 4 50
268 M49470X01126MAJ SM045C126MHJ480 12 ±20% 4 50
269 M49470X01156KAJ SM045C156KHJ650 15 ±10% 4 50
270 M49470X01156MAJ SM045C156MHJ650 15 ±20% 4 50
M49470X01156KAC SM035C156KHJ240 15 ±10% 3 50
M49470X01156MAC SM035C156MHJ240 15 ±20% 3 50
271 M49470X01186KAJ SM035C186KHJ240 18 ±10% 3 50
272 M49470X01186MAJ SM035C186MHJ240 18 ±20% 3 50
273 M49470X01226KAJ SM035C226KHJ360 22 ±10% 3 50
274 M49470X01226MAJ SM035C226MHJ360 22 ±20% 3 50
275 M49470X01276KAJ SM035C276KHJ360 27 ±10% 3 50
276 M49470X01276MAJ SM035C276MHJ360 27 ±20% 3 50
277 M49470X01336KAJ SM035C336KHJ360 33 ±10% 3 50
278 M49470X01336MAJ SM035C336MHJ360 33 ±20% 3 50
279 M49470X01396KAJ SM035C396KHJ480 39 ±10% 3 50
280 M49470X01396MAJ SM035C396MHJ480 39 ±20% 3 50
281 M49470X01476KAJ SM035C476KHJ650 47 ±10% 3 50
282 M49470X01476MAJ SM035C476MHJ650 47 ±20% 3 50
M49470X01476KAC SM025C476KHJ240 47 ±10% 2 50
M49470X01476MAC SM025C476MHJ240 47 ±20% 2 50
283 M49470X01566KAJ SM015C566KHJ360 56 ±10% 1 50
284 M49470X01566MAJ SM015C566MHJ360 56 ±20% 1 50
M49470X01566KAC SM025C566KHJ240 56 ±10% 2 50
M49470X01566MAC SM025C566MHJ240 56 ±20% 2 50
285 M49470X01686KAJ SM015C686KHJ480 68 ±10% 1 50
286 M49470X01686MAJ SM015C686MHJ480 68 ±20% 1 50
M49470X01686KAC SM025C686KHJ360 68 ±10% 2 50
M49470X01686MAC SM025C686MHJ360 68 ±20% 2 50
287 M49470X01826KAJ SM015C826KHJ480 82 ±10% 1 50
288 M49470X01826MAJ SM015C826MHJ480 82 ±20% 1 50
M49470X01826KAC SM025C826KHJ360 82 ±10% 2 50
M49470X01826MAC SM025C826MHJ360 82 ±20% 2 50
289 M49470X01107KAJ SM015C107KHJ650 100 ±10% 1 50
290 M49470X01107MAJ SM015C107MHJ650 100 ±20% 1 50
M49470X01107KAC SM025C107KHJ480 100 ±10% 2 50
M49470X01107MAC SM025C107MHJ480 100 ±20% 2 50
291 M49470X01127KAJ SM025C127KHJ480 120 ±10% 2 50
292 M49470X01127MAJ SM025C127MHJ480 120 ±20% 2 50
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470 U.S. Preferred Styles
87106- MIL-PRF-49470 PIN AVX PART NUMBER CAP TOL CASE VOLT
(µF) CODE (VDC)
M49470Q01185KEA SM037C185KHN240 1.8 ±10% 3 500
M49470Q01185MEA SM037C185MHN240 1.8 ±20% 3 500
199 M49470Q01275KEN SM037C275KHN360 2.7 ±10% 3 500
200 M49470Q01275MEN SM037C275MHN360 2.7 ±20% 3 500
201 M49470Q01335KEN SM037C335KHN360 3.3 ±10% 3 500
202 M49470Q01335MEN SM037C335MHN360 3.3 ±20% 3 500
203 M49470Q01395KEN SM037C395KHN360 3.9 ±10% 3 500
204 M49470Q01395MEN SM037C395MHN360 3.9 ±20% 3 500
205 M49470Q01475KEN SM037C475KHN480 4.7 ±10% 3 500
206 M49470Q01475MEN SM037C475MHN480 4.7 ±20% 3 500
207 M49470Q01565KEN SM037C565KHN650 5.6 ±10% 3 500
208 M49470Q01565MEN SM037C565MHN650 5.6 ±20% 3 500
M49470Q01565KEA SM027C565KHN240 5.6 ±10% 2 500
M49470Q01565MEA SM027C565MHN240 5.6 ±20% 2 500
209 M49470Q01825KEN SM017C825KHN480 8.2 ±10% 1 500
210 M49470Q01825MEN SM017C825MHN480 8.2 ±20% 1 500
M49470Q01825KEA SM027C825KHN360 8.2 ±10% 2 500
M49470Q01825MEA SM027C825MHN360 8.2 ±20% 2 500
211 M49470Q01106KEN SM017C106KHN480 10 ±10% 1 500
212 M49470Q01106MEN SM017C106MHN480 10 ±20% 1 500
M49470Q01106KEA SM027C106KHN360 10 ±10% 2 500
M49470Q01106MEA SM027C106MHN360 10 ±20% 2 500
213 M49470Q01126KEN SM017C126KHN650 12 ±10% 1 500
214 M49470Q01126MEN SM017C126MHN650 12 ±20% 1 500
M49470Q01126KEA SM027C126KHN480 12 ±10% 2 500
M49470Q01126MEA SM027C126MHN480 12 ±20% 2 500
215 M49470Q01186KEN SM027C186KHN650 18 ±10% 2 500
216 M49470Q01186MEN SM027C186MHN650 18 ±20% 2 500
217 M49470Q01276KEN SM067C276KHN360 27 ±10% 6 500
218 M49470Q01276MEN SM067C276MHN360 27 ±20% 6 500
219 M49470Q01336KEN SM067C336KHN480 33 ±10% 6 500
220 M49470Q01336MEN SM067C336MHN480 33 ±20% 6 500
221 M49470Q01396KEN SM067C396KHN650 39 ±10% 6 500
222 M49470Q01396MEN SM067C396MHN650 39 ±20% 6 500
223 M49470X01685KAN SM045C685KHN360 6.8 ±10% 4 50
224 M49470X01685MAN SM045C685MHN360 6.8 ±20% 4 50
225 M49470X01566KAN SM015C566KHN360 56 ±10% 1 50
226 M49470X01566MAN SM015C566MHN360 56 ±20% 1 50
M49470X01566KAA SM025C566KHN240 56 ±10% 2 50
M49470X01566MAA SM025C566MHN240 56 ±20% 2 50
227 M49470X01127KAN SM025C127KHN480 120 ±10% 2 50
228 M49470X01127MAN SM025C127MHN480 120 ±20% 2 50
229 M49470X01106KBN SM031C106KHN240 10 ±10% 3 100
230 M49470X01106MBN SM031C106MHN240 10 ±20% 3 100
231 M49470Q01824KEN SM047C824KHN360 0.82 ±10% 4 500
232 M49470Q01824MEN SM047C824MHN360 0.82 ±20% 4 500
233 M49470Q01225KEN SM037C225KHN240 2.2 ±10% 3 500
234 M49470Q01225MEN SM037C225MHN240 2.2 ±20% 3 500
235 M49470Q01685KEN SM017C685KHN480 6.8 ±10% 1 500
236 M49470Q01685MEN SM017C685MHN480 6.8 ±20% 1 500
M49470Q01685KEA SM027C685KHN240 6.8 ±10% 2 500
M49470Q01685MEA SM027C685MHN240 6.8 ±20% 2 500
237 M49470Q01156KEN SM027C156KHN650 15 ±10% 2 500
238 M49470Q01156MEN SM027C156MHN650 15 ±20% 2 500
239 M49470Q01226KEN SM067C226KHN360 22 ±10% 6 500
240 M49470Q01226MEN SM067C226MHN360 22 ±20% 6 500
241 M49470X01105KAJ SM055C105KHJ120 1.0 ±10% 5 50
242 M49470X01105MAJ SM055C105MHJ120 1.0 ±20% 5 50
243 M49470X01125KAJ SM055C125KHJ120 1.2 ±10% 5 50
244 M49470X01125MAJ SM055C125MHJ120 1.2 ±20% 5 50
245 M49470X01155KAJ SM055C155KHJ240 1.5 ±10% 5 50
246 M49470X01155MAJ SM055C155MHJ240 1.5 ±20% 5 50
17
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470 U.S. Preferred Styles
87106- MIL-PRF-49470 PIN AVX PART NUMBER CAP TOL CASE VOLT
(µF) CODE (VDC)
293 M49470X01157KAJ SM025C157KHJ650 150 ±10% 2 50
294 M49470X01157MAJ SM025C157MHJ650 150 ±20% 2 50
295 M49470X01187KAJ SM065C187KHJ480 180 ±10% 6 50
296 M49470X01187MAJ SM065C187MHJ480 180 ±20% 6 50
297 M49470X01227KAJ SM065C227KHJ480 220 ±10% 6 50
298 M49470X01227MAJ SM065C227MHJ480 220 ±20% 6 50
299 M49470X01277KAJ SM065C277KHJ650 270 ±10% 6 50
300 M49470X01277MAJ SM065C277MHJ650 270 ±20% 6 50
301 M49470X01684KBJ SM051C684KHJ120 0.68 ±10% 5 100
302 M49470X01684MBJ SM051C684MHJ120 0.68 ±20% 5 100
303 M49470X01824KBJ SM051C824KHJ240 0.82 ±10% 5 100
304 M49470X01824MBJ SM051C824MHJ240 0.82 ±20% 5 100
305 M49470X01105KBJ SM051C105KHJ240 1.0 ±10% 5 100
306 M49470X01105MBJ SM051C105MHJ240 1.0 ±20% 5 100
307 M49470X01125KBJ SM051C125KHJ240 1.2 ±10% 5 100
308 M49470X01125MBJ SM051C125MHJ240 1.2 ±20% 5 100
309 M49470X01155KBJ SM051C155KHJ360 1.5 ±10% 5 100
310 M49470X01155MBJ SM051C155MHJ360 1.5 ±20% 5 100
311 M49470X01185KBJ SM051C185KHJ360 1.8 ±10% 5 100
312 M49470X01185MBJ SM051C185MHJ360 1.8 ±20% 5 100
313 M49470X01225KBJ SM051C225KHJ480 2.2 ±10% 5 100
314 M49470X01225MBJ SM051C225MHJ480 2.2 ±20% 5 100
M49470X01225KBC SM041C225KHJ240 2.2 ±10% 4 100
M49470X01225MBC SM041C225MHJ240 2.2 ±20% 4 100
315 M49470X01275KBJ SM051C275KHJ480 2.7 ±10% 5 100
316 M49470X01275MBJ SM051C275MHJ480 2.7 ±20% 5 100
317 M49470X01335KBJ SM051C335KHJ650 3.3 ±10% 5 100
318 M49470X01335MBJ SM051C335MHJ650 3.3 ±20% 5 100
M49470X01335KBC SM041C335KHJ240 3.3 ±10% 4 100
M49470X01335MBC SM041C335MHJ240 3.3 ±20% 4 100
319 M49470X01395KBJ SM041C395KHJ360 3.9 ±10% 4 100
320 M49470X01395MBJ SM041C395MHJ360 3.9 ±20% 4 100
321 M49470X01475KBJ SM041C475KHJ360 4.7 ±10% 4 100
322 M49470X01475MBJ SM041C475MHJ360 4.7 ±20% 4 100
323 M49470X01565KBJ SM041C565KHJ480 5.6 ±10% 4 100
324 M49470X01565MBJ SM041C565MHJ480 5.6 ±20% 4 100
325 M49470X01685KBJ SM041C685KHJ480 6.8 ±10% 4 100
326 M49470X01685MBJ SM041C685MHJ480 6.8 ±20% 4 100
327 M49470X01825KBJ SM041C825KHJ650 8.2 ±10% 4 100
328 M49470X01825MBJ SM041C825MHJ650 8.2 ±20% 4 100
M49470X01825KBC SM031C825KHJ240 8.2 ±10% 3 100
M49470X01825MBC SM031C825MHJ240 8.2 ±20% 3 100
329 M49470X01106KBJ SM031C106KHJ240 10 ±10% 3 100
330 M49470X01106MBJ SM031C106MHJ240 10 ±20% 3 100
331 M49470X01126KBJ SM031C126KHJ240 12 ±10% 3 100
332 M49470X01126MBJ SM031C126MHJ240 12 ±20% 3 100
333 M49470X01156KBJ SM031C156KHJ360 15 ±10% 3 100
334 M49470X01156MBJ SM031C156MHJ360 15 ±20% 3 100
335 M49470X01186KBJ SM031C186KHJ360 18 ±10% 3 100
336 M49470X01186MBJ SM031C186MHJ360 18 ±20% 3 100
337 M49470X01226KBJ SM031C226KHJ480 22 ±10% 3 100
338 M49470X01226MBJ SM031C226MHJ480 22 ±20% 3 100
339 M49470X01276KBJ SM031C276KHJ650 27 ±10% 3 100
340 M49470X01276MBJ SM031C276MHJ650 27 ±20% 3 100
M49470X01276KBC SM021C276KHJ240 27 ±10% 2 100
M49470X01276MBC SM021C276MHJ240 27 ±20% 2 100
341 M49470X01336KBJ SM011C336KHJ360 33 ±10% 1 100
342 M49470X01336MBJ SM011C336MHJ360 33 ±20% 1 100
M49470X01336KBC SM021C336KHJ240 33 ±10% 2 100
M49470X01336MBC SM021C336MHJ240 33 ±20% 2 100
343 M49470X01396KBJ SM011C396KHJ480 39 ±10% 1 100
344 M49470X01396MBJ SM011C396MHJ480 39 ±20% 1 100
87106- MIL-PRF-49470 PIN AVX PART NUMBER CAP TOL CASE VOLT
(µF) CODE (VDC)
M49470X01396KBC SM021C396KHJ360 39 ±10% 2 100
M49470X01396MBC SM021C396MHJ360 39 ±20% 2 100
345 M49470X01476KBJ SM011C476KHJ480 47 ±10% 1 100
346 M49470X01476MBJ SM011C476MHJ480 47 ±20% 1 100
M49470X01476KBC SM021C476KHJ360 47 ±10% 2 100
M49470X01476MBC SM021C476MHJ360 47 ±20% 2 100
347 M49470X01566KBJ SM011C566KHJ650 56 ±10% 1 100
348 M49470X01566MBJ SM011C566MHJ650 56 ±20% 1 100
349 M49470X01686KBJ SM021C686KHJ480 68 ±10% 2 100
350 M49470X01686MBJ SM021C686MHJ480 68 ±20% 2 100
351 M49470X01826KBJ SM021C826KHJ650 82 ±10% 2 100
352 M49470X01826MBJ SM021C826MHJ650 82 ±20% 2 100
353 M49470X01107KBJ SM061C107KHJ360 100 ±10% 6 100
354 M49470X01107MBJ SM061C107MHJ360 100 ±20% 6 100
355 M49470X01127KBJ SM061C127KHJ360 120 ±10% 6 100
356 M49470X01127MBJ SM061C127MHJ360 120 ±20% 6 100
357 M49470X01157KBJ SM061C157KHJ480 150 ±10% 6 100
358 M49470X01157MBJ SM061C157MHJ480 150 ±20% 6 100
359 M49470X01187KBJ SM061C187KHJ650 180 ±10% 6 100
360 M49470X01187MBJ SM061C187MHJ650 180 ±20% 6 100
361 M49470R01474KCJ SM052C474KHJ240 0.47 ±10% 5 200
362 M49470R01474MCJ SM052C474MHJ240 0.47 ±20% 5 200
363 M49470R01564KCJ SM052C564KHJ240 0.56 ±10% 5 200
364 M49470R01564MCJ SM052C564MHJ240 0.56 ±20% 5 200
365 M49470R01684KCJ SM052C684KHJ360 0.68 ±10% 5 200
366 M49470R01684MCJ SM052C684MHJ360 0.68 ±20% 5 200
367 M49470R01824KCJ SM052C824KHJ360 0.82 ±10% 5 200
368 M49470R01824MCJ SM052C824MHJ360 0.82 ±20% 5 200
369 M49470R01105KCJ SM052C105KHJ480 1.0 ±10% 5 200
370 M49470R01105MCJ SM052C105MHJ480 1.0 ±20% 5 200
M49470R01105KCC SM042C105KHJ120 1.0 ±10% 4 200
M49470R01105MCC SM042C105MHJ120 1.0 ±20% 4 200
371 M49470R01125KCJ SM052C125KHJ480 1.2 ±10% 5 200
372 M49470R01125MCJ SM052C125MHJ480 1.2 ±20% 5 200
M49470R01125KCC SM042C125KHJ240 1.2 ±10% 4 200
M49470R01125MCC SM042C125MHJ240 1.2 ±20% 4 200
373 M49470R01155KCJ SM052C155KHJ650 1.5 ±10% 5 200
374 M49470R01155MCJ SM052C155MHJ650 1.5 ±20% 5 200
M49470R01155KCC SM042C155KHJ230 1.5 ±10% 4 200
M49470R01155MCC SM042C155MHJ230 1.5 ±20% 4 200
375 M49470R01185KCJ SM042C185KHJ360 1.8 ±10% 4 200
376 M49470R01185MCJ SM042C185MHJ360 1.8 ±20% 4 200
377 M49470R01225KCJ SM042C225KHJ360 2.2 ±10% 4 200
378 M49470R01225MCJ SM042C225MHJ360 2.2 ±20% 4 200
379 M49470R01275KCJ SM042C275KHJ480 2.7 ±10% 4 200
380 M49470R01275MCJ SM042C275MHJ480 2.7 ±20% 4 200
381 M49470R01335KCJ SM042C335KHJ480 3.3 ±10% 4 200
382 M49470R01335MCJ SM042C335MHJ480 3.3 ±20% 4 200
383 M49470R01395KCJ SM042C395KHJ650 3.9 ±10% 4 200
384 M49470R01395MCJ SM042C395MHJ650 3.9 ±20% 4 200
M49470R01395KCC SM032C395KHJ240 3.9 ±10% 3 200
M49470R01395MCC SM032C395MHJ240 3.9 ±20% 3 200
385 M49470R01475KCJ SM032C475KHJ240 4.7 ±10% 3 200
386 M49470R01475MCJ SM032C475MHJ240 4.7 ±20% 3 200
387 M49470R01565KCJ SM032C565KHJ240 5.6 ±10% 3 200
388 M49470R01565MCJ SM032C565MHJ240 5.6 ±20% 3 200
389 M49470R01685KCJ SM032C685KHJ360 6.8 ±10% 3 200
390 M49470R01685MCJ SM032C685MHJ360 6.8 ±20% 3 200
391 M49470R01825KCJ SM032C825KHJ360 8.2 ±10% 3 200
392 M49470R01825MCJ SM032C825MHJ360 8.2 ±20% 3 200
393 M49470R01106KCJ SM032C106KHJ480 10 ±10% 3 200
394 M49470R01106MCJ SM032C106MHJ480 10 ±20% 3 200
18
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470 U.S. Preferred Styles
87106- MIL-PRF-49470 PIN AVX PART NUMBER CAP TOL CASE VOLT
(µF) CODE (VDC)
443 M49470Q01125KEJ SM047C125KHJ360 1.2 ±10% 4 500
444 M49470Q01125MEJ SM047C125MHJ360 1.2 ±20% 4 500
445 M49470Q01155KEJ SM047C155KHJ480 1.5 ±10% 4 500
446 M49470Q01155MEJ SM047C155MHJ480 1.5 ±20% 4 500
447 M49470Q01185KEJ SM047C185KHJ650 1.8 ±10% 4 500
448 M49470Q01185MEJ SM047C185MHJ650 1.8 ±20% 4 500
M49470Q01185KEC SM037C185KHJ240 1.8 ±10% 3 500
M49470Q01185MEC SM037C185MHJ240 1.8 ±20% 3 500
449 M49470Q01225KEJ SM037C225KHJ240 2.2 ±10% 3 500
450 M49470Q01225MEJ SM037C225MHJ240 2.2 ±20% 3 500
451 M49470Q01275KEJ SM037C275KHJ360 2.7 ±10% 3 500
452 M49470Q01275MEJ SM037C275MHJ360 2.7 ±20% 3 500
453 M49470Q01335KEJ SM037C335KHJ360 3.3 ±10% 3 500
454 M49470Q01335MEJ SM037C335MHJ360 3.3 ±20% 3 500
455 M49470Q01395KEJ SM037C395KHJ360 3.9 ±10% 3 500
456 M49470Q01395MEJ SM037C395MHJ360 3.9 ±20% 3 500
457 M49470Q01475KEJ SM037C475KHJ480 4.7 ±10% 3 500
458 M49470Q01475MEJ SM037C475MHJ480 4.7 ±20% 3 500
459 M49470Q01565KEJ SM037C565KHJ650 5.6 ±10% 3 500
460 M49470Q01565MEJ SM037C565MHJ650 5.6 ±20% 3 500
M49470Q01565KEC SM027C565KHJ240 5.6 ±10% 2 500
M49470Q01565MEC SM027C565MHJ240 5.6 ±20% 2 500
461 M49470Q01685KEJ SM017C685KHJ480 6.8 ±10% 1 500
462 M49470Q01685MEJ SM017C685MHJ480 6.8 ±20% 1 500
M49470Q01685KEC SM027C685KHJ240 6.8 ±10% 2 500
M49470Q01685MEC SM027C685MHJ240 6.8 ±20% 2 500
463 M49470Q01825KEJ SM017C825KHJ480 8.2 ±10% 1 500
464 M49470Q01825MEJ SM017C825MHJ480 8.2 ±20% 1 500
M49470Q01825KEC SM027C825KHJ360 8.2 ±10% 2 500
M49470Q01825MEC SM027C825MHJ360 8.2 ±20% 2 500
465 M49470Q01106KEJ SM017C106KHJ480 10 ±10% 1 500
466 M49470Q01106MEJ SM017C106MHJ480 10 ±20% 1 500
M49470Q01106KEC SM027C106KHJ360 10 ±10% 2 500
M49470Q01106MEC SM027C106MHJ360 10 ±20% 2 500
467 M49470Q01126KEJ SM017C126KHJ650 12 ±10% 1 500
468 M49470Q01126KEJ SM017C126KHJ650 12 ±10% 1 500
M49470Q01126MEC SM027C126MHJ480 12 ±20% 2 500
M49470Q01126MEC SM027C126MHJ480 12 ±20% 2 500
469 M49470Q01156KEJ SM027C156KHJ650 15 ±10% 2 500
470 M49470Q01156MEJ SM027C156MHJ650 15 ±20% 2 500
471 M49470Q01186KEJ SM027C186KHJ650 18 ±10% 2 500
472 M49470Q01186MEJ SM027C186MHJ650 18 ±20% 2 500
473 M49470Q01226KEJ SM067C226KHJ360 22 ±10% 6 500
474 M49470Q01226MEJ SM067C226MHJ360 22 ±20% 6 500
475 M49470Q01276KEJ SM067C276KHJ360 27 ±10% 6 500
476 M49470Q01276MEJ SM067C276MHJ360 27 ±20% 6 500
477 M49470Q01336KEJ SM067C336KHJ480 33 ±10% 6 500
478 M49470Q01336MEJ SM067C336MHJ480 33 ±20% 6 500
479 M49470Q01396KEJ SM067C396KHJ650 39 ±10% 6 500
480 M49470Q01396MEJ SM067C396MHJ650 39 ±20% 6 500
87106- MIL-PRF-49470 PIN AVX PART NUMBER CAP TOL CASE VOLT
(µF) CODE (VDC)
395 M49470R01126KCJ SM032C126KHJ650 12 ±10% 3 200
396 M49470R01126MCJ SM032C126MHJ650 12 ±20% 3 200
M49470R01126KCC SM022C126KHJ240 12 ±10% 2 200
M49470R01126MCC SM022C126MHJ240 12 ±20% 2 200
397 M49470R01156KCJ SM012C156KHJ360 15 ±10% 1 200
398 M49470R01156MCJ SM012C156MHJ360 15 ±20% 1 200
M49470R01156KCC SM022C156KHJ240 15 ±10% 2 200
M49470R01156MCC SM022C156MHJ240 15 ±20% 2 200
399 M49470R01186KCJ SM012C186KHJ480 18 ±10% 1 200
400 M49470R01186MCJ SM012C186MHJ480 18 ±20% 1 200
M49470R01186KCC SM022C186KHJ360 18 ±10% 2 200
M49470R01186MCC SM022C186MHJ360 18 ±20% 2 200
401 M49470R01226KCJ SM012C226KHJ650 22 ±10% 1 200
402 M49470R01226MCJ SM012C226MHJ650 22 ±20% 1 200
M49470R01226KCC SM022C226KHJ360 22 ±10% 2 200
M49470R01226MCC SM022C226MHJ360 22 ±20% 2 200
403 M49470R01276KCJ SM012C276KHJ650 27 ±10% 1 200
404 M49470R01276MCJ SM012C276MHJ650 27 ±20% 1 200
M49470R01276KCC SM022C276KHJ480 27 ±10% 2 200
M49470R01276MCC SM022C276MHJ480 27 ±20% 2 200
405 M49470R01336KCJ SM022C336KHJ480 33 ±10% 2 200
406 M49470R01336MCJ SM022C336MHJ480 33 ±20% 2 200
407 M49470R01396KCJ SM022C396KHJ650 39 ±10% 2 200
408 M49470R01396MCJ SM022C396MHJ650 39 ±20% 2 200
409 M49470R01476KCJ SM062C476KHJ240 47 ±10% 6 200
410 M49470R01476MCJ SM062C476MHJ240 47 ±20% 6 200
411 M49470R01566KCJ SM062C566KHJ360 56 ±10% 6 200
412 M49470R01566MCJ SM062C566MHJ360 56 ±20% 6 200
413 M49470R01686KCJ SM062C686KHJ360 68 ±10% 6 200
414 M49470R01686MCJ SM062C686MHJ360 68 ±20% 6 200
415 M49470R01826KCJ SM062C826KHJ480 82 ±10% 6 200
416 M49470R01826MCJ SM062C826MHJ480 82 ±20% 6 200
417 M49470R01107KCJ SM062C107KHJ650 100 ±10% 6 200
418 M49470R01107MCJ SM062C107MHJ650 100 ±20% 6 200
419 M49470R01127KCJ SM062C127KHJ650 120 ±10% 6 200
420 M49470R01127MCJ SM062C127MHJ650 120 ±20% 6 200
421 M49470Q01154KEJ SM057C154KHJ120 0.15 ±10% 5 500
422 M49470Q01154MEJ SM057C154MHJ120 0.15 ±20% 5 500
423 M49470Q01184KEJ SM057C184KHJ240 0.18 ±10% 5 500
424 M49470Q01184MEJ SM057C184MHJ240 0.18 ±20% 5 500
425 M49470Q01224KEJ SM057C224KHJ240 0.22 ±10% 5 500
426 M49470Q01224MEJ SM057C224MHJ240 0.22 ±20% 5 500
427 M49470Q01274KEJ SM057C274KHJ240 0.27 ±10% 5 500
428 M49470Q01274MEJ SM057C274MHJ240 0.27 ±20% 5 500
429 M49470Q01334KEJ SM057C334KHJ360 0.33 ±10% 5 500
430 M49470Q01334MEJ SM057C334MHJ360 0.33 ±20% 5 500
431 M49470Q01394KEJ SM057C394KHJ360 0.39 ±10% 5 500
432 M49470Q01394MEJ SM057C394MHJ360 0.39 ±20% 5 500
433 M49470Q01474KEJ SM057C474KHJ360 0.47 ±10% 5 500
434 M49470Q01474MEJ SM057C474MHJ360 0.47 ±20% 5 500
435 M49470Q01564KEJ SM057C564KHJ480 0.56 ±10% 5 500
436 M49470Q01564MEJ SM057C564MHJ480 0.56 ±20% 5 500
M49470Q01564KEC SM047C564KHJ240 0.56 ±10% 4 500
M49470Q01564MEC SM047C564MHJ240 0.56 ±20% 4 500
437 M49470Q01684KEJ SM057C684KHJ650 0.68 ±10% 5 500
438 M49470Q01684MEJ SM057C684MHJ650 0.68 ±20% 5 500
M49470Q01684KEC SM047C684KHJ240 0.68 ±10% 4 500
M49470Q01684MEC SM047C684MHJ240 0.68 ±20% 4 500
439 M49470Q01824KEJ SM047C824KHJ360 0.82 ±10% 4 500
440 M49470Q01824MEJ SM047C824MHJ360 0.82 ±20% 4 500
441 M49470Q01105KEJ SM047C105KHJ360 1.0 ±10% 4 500
442 M49470Q01105MEJ SM047C105MHJ360 1.0 ±20% 4 500
19
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 & #88011 U.S. Preferred Styles
0.254 (0.010) RAD. TYP.
1.778 (0.070)
±0.254 (0.010)
1.905 (0.075)
±0.635 (0.025)
TYP.
SCHEMATIC
Case A (max.) B (max.) No. of Leads
Code (See Note 2) (See Note 2) C ±.635 (±0.025) D ±.635 (±0.025) E (max.) per side
116.5 (0.650) 18.2 (0.715) 11.4 (0.450) 52.1 (2.050) 12.7 (0.500) 20
216.5 (0.650) 18.2 (0.715) 20.3 (0.800) 38.4 (1.510) 22.1 (0.870) 15
316.5 (0.650) 18.2 (0.715) 11.4 (0.450) 26.7 (1.050) 12.7 (0.500) 10
416.5 (0.650) 18.2 (0.715) 10.2 (0.400) 10.2 (0.400) 11.2 (0.440) 4
516.5 (0.650) 18.2 (0.715) 6.35 (0.250) 6.35 (0.250) 7.62 (0.300) 3
616.5 (0.650) 18.2 (0.715) 31.8 (1.250) 52.1 (2.050) 34.3 (1.350) 20
NOTES:
1. Unless otherwise specified, tolerances 0.254 (±0.010).
2. “A” dimensions are maximum (see tables on pages 22 thru 25 for specific part number dimensions).
3. “N” straight leads; “J” leads formed in.
4. For case code 5, dimensions shall be 2.54 (0.100) maximum, 0.305 (0.012) minimum.
D
A
B
6.35
(0.250) MIN.
0.508 (0.020) TYP.
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
1.397 (0.055)
±0.254 (0.010)
“N” STYLE LEADS
“J” STYLE LEADS
DIMENSIONS millimeters (inches)
(NOTE 4)
20
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 & #88011 U.S. Preferred Styles
Ordering Information
Part Number: The complete part number shall be as follows:
X7R: 87106 XXX
_________________ ______________
Drawing number Dash number
(see list)
Ordering Data. The contract or purchase order should
specify the following:
a. Complete part number.
b. Requirements for delivery of one copy of the quality con-
formance inspection data with each shipment of parts by
the manufacturer.
c. Whether the manufacturer performs the group B tests, or
provides certification of compliance with group B require-
ments.
d. Requirements for notification of change of products to
acquiring activity, if applicable.
e. Requirements for packaging and packing.
Source of Supply.
Vendor CAGE Vendor name
number and address
_____________ _________________________
96095 Olean Advanced Products
A Division of AVX Corporation
1695 Seneca Avenue
Olean, NY 14760
Performance Characteristics
Operating Temperature Range. The operating temperature
range shall be -55°C to +125°C.
Electrical Characteristics.
Rated Voltage. See tables on pages 22, 23, 24 & 25.
Capacitance. Measured in accordance with method 305 of
MIL-STD-202 (1KHz at 1.0Vrms, open circuit voltage, at +25°C).
Dissipation Factor (+25°C). X7R: Dissipation factor shall be
2.5 percent maximum (measured under the same conditions
as capacitance.) C0G: Dissipation factor shall be 0.15 percent
maximum.
Temperature Coefficient.
DSCC Dwg. Bias = 0 volt Bias = rated voltage
88011 All Voltages 0±30 ppm/°C 0±30 ppm/°C
87106 50 WVDC ±15% +15, -25%
and 100 WVDC
87106 200 WVDC ±15% +15, -40%
87106 500 WVDC ±15% +15, -50%
Insulation Resistance.
At +25°C, rated voltage: 100K Mor 1,000 M-µF,
whichever is less.
At +125°C, rated voltage: 10K Mor 100 M-µF,
whichever is less.
Dielectric Withstanding Voltage. Dielectric withstanding volt-
age shall be 250 percent of rated voltage except 500V rated
parts at 150 percent of rated voltage.
Capacitance Tolerance. J = ±5 percent, K = ±10 percent,
M = ±20 percent.
Solderability of Terminals. In accordance with MIL-PRF-
49470.
Resistance to Soldering Heat. In accordance with MIL-STD-
202, method 210, condition B, for 20 seconds.
Shock. In accordance with MIL-PRF-49470.
Immersion Cycling. In accordance with MIL-PRF-49470.
Moisture Resistance. In accordance with MIL-PRF-49470.
Life. Life shall be 200 percent of rated voltage except 500V
rated parts at 120 percent of rated voltage applied at +125°C for
1,000 hours.
Thermal Shock. MIL-STD-202, method 107, test condition A,
except high temperature is +125°C.
Voltage Conditioning. In accordance with MIL-PRF-49470,
except 500V rated parts at 120 percent of rated voltage at
+125°C.
Terminal Strength. MIL-STD-202, method 211, condition B,
except that each lead shall be bent away from the body 90
degrees from the original position and back, two bends.
Marking. Marking shall be in accordance with MIL-STD-1285,
except the part number shall be as specified in paragraph 1.2
of 87106, or 88011 with the manufacturer’s name or code and
date code minimum, except case sizes 4 and 5 shall be marked
with coded cap and tolerance minimum. Full marking shall be
included on the package.
21
Requirement Test method
Inspection paragraph of paragraph of Sampling procedure
MIL-PRF-49470 MIL-PRF-49470
Subgroup 1
Thermal shock and voltage conditioning 1/ 3.9 4.8.5 100% inspection
Subgroup 2
Visual and mechanical examination:
Material 3.4 4.8.4
Physical dimensions 3.1 13 samples
Interface requirements 3.5 and 3.5.1 0 failures
(other than physical dimensions)
Marking 2/ 3.28
Workmanship 3.30
SMPS Stacked MLC Capacitors
(SM Style) DSCC #87106 and #88011 U.S. Preferred Styles
Table II. Group A inspection.
1/ Post checks are required (see paragraph 3.9 of MIL-PRF-49470).
2/ Marking defects are based on visual examination only. Any subsequent electrical defects shall not
be used as a basis for determining marking defects.
Requirement Test method Number of Number of
Inspection paragraph of paragraph of sample units defectives
MIL-PRF-49470 MIL-PRF-49470 to be inspected permitted 2/
Subgroup 1 3/
Temperature coefficient 4/4/
Resistance to solvents 5/ 6/ 3.23 4.8.20
Immersion 3.18 4.8.15 12 1
Terminal strength 5/ 3.24 4.8.10
Subgroup 2
Resistance to soldering heat 3.20 4.8.17 12 1 6/ 1
Moisture resistance 3.21 4.8.18
Subgroup 3
Marking legibility 3.28.1 4.8.4.1 6 1
(laser marking only)
Subgroup 4
Solderability 3.15 4.8.12 3 0
Subgroup 5
Life 3.26 4.8.22 5 minimum 0
per case code
1/ Unless otherwise specified herein, when necessary, mounting of group B samples shall be at the
discretion of the manufacturer.
2/ A sample unit having one or more defects shall be charged as a single defective.
3/ Order of tests is at discretion of manufacturer.
4/ See 3.2.3 of DSCC 87106.
5/ Sample size shall be 3 pieces with zero defectives permitted.
6/ Total of one defect allowed for combination of subgroup 1, subgroup 2, and subgroup 3 inspections.
Table III. Group B inspection. 1/
22
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R) U.S. Preferred Styles
Electrical characteristics
Max. A
DSCC Cap.
Dwg. Value Cap. Case Lead Dimension
87106- (µF) Tol. Code Style mm (inches)
50V
001 1.0 K 5 N 3.05 (0.120)
002 1.0 M 5 N 3.05 (0.120)
241 1.0 K 5 J 3.05 (0.120)
242 1.0 M 5 J 3.05 (0.120)
003 1.2 K 5 N 3.05 (0.120)
004 1.2 M 5 N 3.05 (0.120)
243 1.2 K 5 J 3.05 (0.120)
244 1.2 M 5 J 3.05 (0.120)
005 1.5 K 5 N 6.10 (0.240)
006 1.5 M 5 N 6.10 (0.240)
245 1.5 K 5 J 6.10 (0.240)
246 1.5 M 5 J 6.10 (0.240)
007 1.8 K 5 N 6.10 (0.240)
008 1.8 M 5 N 6.10 (0.240)
247 1.8 K 5 J 6.10 (0.240)
248 1.8 M 5 J 6.10 (0.240)
009 2.2 K 5 N 6.10 (0.240)
010 2.2 M 5 N 6.10 (0.240)
249 2.2 K 5 J 6.10 (0.240)
250 2.2 M 5 J 6.10 (0.240)
011 2.7 K 5 N 9.14 (0.360)
012 2.7 M 5 N 9.14 (0.360)
251 2.7 K 5 J 9.14 (0.360)
252 2.7 M 5 J 9.14 (0.360)
013 3.3 K 5 N 9.14 (0.360)
014 3.3 M 5 N 9.14 (0.360)
253 3.3 K 5 J 9.14 (0.360)
254 3.3 M 5 J 9.14 (0.360)
015 3.9 K 5 N 12.2 (0.480)
016 3.9 M 5 N 12.2 (0.480)
255 3.9 K 5 J 12.2 (0.480)
256 3.9 M 5 J 12.2 (0.480)
017 4.7 K 5 N 12.2 (0.480)
018 4.7 M 5 N 12.2 (0.480)
257 4.7 K 5 J 12.2 (0.480)
258 4.7 M 5 J 12.2 (0.480)
019 5.6 K 5 N 16.5 (0.650)
020 5.6 M 5 N 16.5 (0.650)
259 5.6 K 5 J 16.5 (0.650)
260 5.6 M 5 J 16.5 (0.650)
223 6.8 K 4 N 9.14 (0.360)
224 6.8 M 4 N 9.14 (0.360)
261 6.8 K 4 J 9.14 (0.360)
262 6.8 M 4 J 9.14 (0.360)
021 8.2 K 4 N 9.14 (0.360)
022 8.2 M 4 N 9.14 (0.360)
263 8.2 K 4 J 9.14 (0.360)
264 8.2 M 4 J 9.14 (0.360)
023 10 K 4 N 12.2 (0.480)
024 10 M 4 N 12.2 (0.480)
265 10 K 4 J 12.2 (0.480)
266 10 M 4 J 12.2 (0.480)
025 12 K 4 N 12.2 (0.480)
026 12 M 4 N 12.2 (0.480)
267 12 K 4 J 12.2 (0.480)
268 12 M 4 J 12.2 (0.480)
027 15 K 4 N 16.5 (0.650)
028 15 M 4 N 16.5 (0.650)
269 15 K 4 J 16.5 (0.650)
270 15 M 4 J 16.5 (0.650)
029 18 K 3 N 6.10 (0.240)
030 18 M 3 N 6.10 (0.240)
271 18 K 3 J 6.10 (0.240)
Max. A
DSCC Cap.
Dwg. Value Cap. Case Lead Dimension
87106- (µF) Tol. Code Style mm (inches)
50V
272 18 M 3 J 6.10 (0.240)
272 18 M 3 J 6.10 (0.240)
031 22 K 3 N 9.14 (0.360)
032 22 M 3 N 9.14 (0.360)
273 22 K 3 J 9.14 (0.360)
274 22 M 3 J 9.14 (0.360)
033 27 K 3 N 9.14 (0.360)
034 27 M 3 N 9.14 (0.360)
275 27 K 3 J 9.14 (0.360)
276 27 M 3 J 9.14 (0.360)
035 33 K 3 N 9.14 (0.360)
036 33 M 3 N 9.14 (0.360)
277 33 K 3 J 9.14 (0.360)
278 33 M 3 J 9.14 (0.360)
037 39 K 3 N 12.2 (0.480)
038 39 M 3 N 12.2 (0.480)
279 39 K 3 J 12.2 (0.480)
280 39 M 3 J 12.2 (0.480)
039 47 K 3 N 16.5 (0.650)
040 47 M 3 N 16.5 (0.650)
281 47 K 3 J 16.5 (0.650)
282 47 M 3 J 16.5 (0.650)
225 56 K 1 N 9.14 (0.360)
226 56 M 1 N 9.14 (0.360)
283 56 K 1 J 9.14 (0.360)
284 56 M 1 J 9.14 (0.360)
041 68 K 1 N 12.2 (0.480)
042 68 M 1 N 12.2 (0.480)
285 68 K 1 J 12.2 (0.480)
286 68 M 1 J 12.2 (0.480)
043 82 K 1 N 12.2 (0.480)
044 82 M 1 N 12.2 (0.480)
287 82 K 1 J 12.2 (0.480)
288 82 M 1 J 12.2 (0.480)
045 100 K 1 N 16.5 (0.650)
046 100 M 1 N 16.5 (0.650)
289 100 K 1 J 16.5 (0.650)
290 100 M 1 J 16.5 (0.650)
227 120 K 2 N 12.2 (0.480)
228 120 M 2 N 12.2 (0.480)
291 120 K 2 J 12.2 (0.480)
292 120 M 2 J 12.2 (0.480)
047 150 K 2 N 16.5 (0.650)
048 150 M 2 N 16.5 (0.650)
293 150 K 2 J 16.5 (0.650)
294 150 M 2 J 16.5 (0.650)
049 180 K 6 N 12.2 (0.480)
050 180 M 6 N 12.2 (0.480)
295 180 K 6 J 12.2 (0.480)
296 180 M 6 J 12.2 (0.480)
051 220 K 6 N 12.2 (0.480)
052 220 M 6 N 12.2 (0.480)
297 220 K 6 J 12.2 (0.480)
298 220 M 6 J 12.2 (0.480)
053 270 K 6 N 16.5 (0.650)
054 270 M 6 N 16.5 (0.650)
299 270 K 6 J 16.5 (0.650)
300 270 M 6 J 16.5 (0.650)
Max. A
DSCC Cap.
Dwg. Value Cap. Case Lead Dimension
87106- (µF) Tol. Code Style mm (inches)
100V
055 .68 K 5 N 3.05 (0.120)
056 .68 M 5 N 3.05 (0.120)
301 .68 K 5 J 3.05 (0.120)
302 .68 M 5 J 3.05 (0.120)
057 .82 K 5 N 6.10 (0.240)
058 .82 M 5 N 6.10 (0.240)
303 .82 K 5 J 6.10 (0.240)
304 .82 M 5 J 6.10 (0.240)
059 1.0 K 5 N 6.10 (0.240)
060 1.0 M 5 N 6.10 (0.240)
305 1.0 K 5 J 6.10 (0.240)
306 1.0 M 5 J 6.10 (0.240)
061 1.2 K 5 N 6.10 (0.240)
062 1.2 M 5 N 6.10 (0.240)
307 1.2 K 5 J 6.10 (0.240)
308 1.2 M 5 J 6.10 (0.240)
063 1.5 K 5 N 9.14 (0.360)
064 1.5 M 5 N 9.14 (0.360)
309 1.5 K 5 J 9.14 (0.360)
310 1.5 M 5 J 9.14 (0.360)
065 1.8 K 5 N 9.14 (0.360)
066 1.8 M 5 N 9.14 (0.360)
311 1.8 K 5 J 9.14 (0.360)
312 1.8 M 5 J 9.14 (0.360)
067 2.2 K 5 N 12.2 (0.480)
068 2.2 M 5 N 12.2 (0.480)
313 2.2 K 5 J 12.2 (0.480)
314 2.2 M 5 J 12.2 (0.480)
069 2.7 K 5 N 12.2 (0.480)
070 2.7 M 5 N 12.2 (0.480)
315 2.7 K 5 J 12.2 (0.480)
316 2.7 M 5 J 12.2 (0.480)
071 3.3 K 5 N 16.5 (0.650)
072 3.3 M 5 N 16.5 (0.650)
317 3.3 K 5 J 16.5 (0.650)
318 3.3 M 5 J 16.5 (0.650)
073 3.9 K 4 N 9.14 (0.360)
074 3.9 M 4 N 9.14 (0.360)
319 3.9 K 4 J 9.14 (0.360)
320 3.9 M 4 J 9.14 (0.360)
075 4.7 K 4 N 9.14 (0.360)
076 4.7 M 4 N 9.14 (0.360)
321 4.7 K 4 J 9.14 (0.360)
322 4.7 M 4 J 9.14 (0.360)
077 5.6 K 4 N 12.2 (0.480)
078 5.6 M 4 N 12.2 (0.480)
323 5.6 K 4 J 12.2 (0.480)
324 5.6 M 4 J 12.2 (0.480)
079 6.8 K 4 N 12.2 (0.480)
080 6.8 M 4 N 12.2 (0.480)
325 6.8 K 4 J 12.2 (0.480)
326 6.8 M 4 J 12.2 (0.480)
081 8.2 K 4 N 16.5 (0.650)
082 8.2 M 4 N 16.5 (0.650)
327 8.2 K 4 J 16.5 (0.650)
328 8.2 M 4 J 16.5 (0.650)
229 10 K 3 N 6.10 (0.240)
230 10 M 3 N 6.10 (0.240)
329 10 K 3 J 6.10 (0.240)
330 10 M 3 J 6.10 (0.240)
083 12 K 3 N 6.10 (0.240)
084 12 M 3 N 6.10 (0.240)
331 12 K 3 J 6.10 (0.240)
332 12 M 3 J 6.10 (0.240)
23
DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension
87106- (µF) Tol. Code Style mm (inches)
100V
085 15 K 3 N 9.14 (0.360)
086 15 M 3 N 9.14 (0.360)
333 15 K 3 J 9.14 (0.360)
334 15 M 3 J 9.14 (0.360)
087 18 K 3 N 9.14 (0.360)
088 18 M 3 N 9.14 (0.360)
335 18 K 3 J 9.14 (0.360)
336 18 M 3 J 9.14 (0.360)
089 22 K 3 N 12.2 (0.480)
090 22 M 3 N 12.2 (0.480)
337 22 M 3 K 12.2 (0.480)
338 22 M 3 J 12.2 (0.480)
091 27 K 3 N 16.5 (0.650)
092 27 M 3 N 16.5 (0.650)
339 27 K 3 J 16.5 (0.650)
340 27 M 3 J 16.5 (0.650)
093 33 K 1 N 9.14 (0.360)
094 33 M 1 N 9.14 (0.360)
341 33 K 1 J 9.14 (0.360)
342 33 M 1 J 9.14 (0.360)
095 39 K 1 N 12.2 (0.480)
096 39 M 1 N 12.2 (0.480)
343 39 K 1 J 12.2 (0.480)
344 39 M 1 J 12.2 (0.480)
097 47 K 1 N 12.2 (0.480)
098 47 M 1 N 12.2 (0.480)
345 47 K 1 J 12.2 (0.480)
346 47 M 1 J 12.2 (0.480)
099 56 K 1 N 16.5 (0.650)
100 56 M 1 N 16.5 (0.650)
347 56 K 1 J 16.5 (0.650)
348 56 M 1 J 16.5 (0.650)
101 68 K 2 N 12.2 (0.480)
102 68 M 2 N 12.2 (0.480)
349 68 K 2 J 12.2 (0.480)
350 68 M 2 J 12.2 (0.480)
103 82 K 2 N 16.5 (0.650)
104 82 M 2 N 16.5 (0.650)
351 82 K 2 J 16.5 (0.650)
352 82 M 2 J 16.5 (0.650)
105 100 K 6 N 9.14 (0.360)
106 100 M 6 N 9.14 (0.360)
353 100 K 6 J 9.14 (0.360)
354 100 M 6 J 9.14 (0.360)
107 120 K 6 N 9.14 (0.360)
108 120 M 6 N 9.14 (0.360)
355 120 K 6 J 9.14 (0.360)
356 120 M 6 J 9.14 (0.360)
109 150 K 6 N 12.2 (0.480)
110 150 M 6 N 12.2 (0.480)
357 150 K 6 J 12.2 (0.480)
358 150 M 6 J 12.2 (0.480)
111 180 K 6 N 16.5 (0.650)
112 180 M 6 N 16.5 (0.650)
359 180 K 6 J 16.5 (0.650)
360 180 M 6 J 16.5 (0.650)
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R) U.S. Preferred Styles
Electrical characteristics
DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension
87106- (µF) Tol. Code Style mm (inches)
200V
113 .47 K 5 N 6.10 (0.240)
114 .47 M 5 N 6.10 (0.240)
361 .47 K 5 J 6.10 (0.240)
362 .47 M 5 J 6.10 (0.240)
115 .56 K 5 N 6.10 (0.240)
116 .56 M 5 N 6.10 (0.240)
363 .56 K 5 J 6.10 (0.240)
364 .56 M 5 J 6.10 (0.240)
117 .68 K 5 N 9.14 (0.360)
118 .68 M 5 N 9.14 (0.360)
365 .68 K 5 J 9.14 (0.360)
366 .68 M 5 J 9.14 (0.360)
119 .82 K 5 N 9.14 (0.360)
120 .82 M 5 N 9.14 (0.360)
367 .82 M 5 J 9.14 (0.360)
368 .82 M 5 J 9.14 (0.360)
121 1.0 K 5 N 12.2 (0.480)
122 1.0 M 5 N 12.2 (0.480)
369 1.0 K 5 J 12.2 (0.480)
370 1.0 M 5 J 12.2 (0.480)
123 1.2 K 5 N 12.2 (0.480)
124 1.2 M 5 N 12.2 (0.480)
371 1.2 K 5 J 12.2 (0.480)
372 1.2 M 5 J 12.2 (0.480)
125 1.5 K 5 N 16.5 (0.650)
126 1.5 M 5 N 16.5 (0.650)
373 1.5 K 5 J 16.5 (0.650)
374 1.5 M 5 J 16.5 (0.650)
127 1.8 K 4 N 9.14 (0.360)
128 1.8 M 4 N 9.14 (0.360)
375 1.8 K 4 J 9.14 (0.360)
376 1.8 M 4 J 9.14 (0.360)
129 2.2 K 4 N 9.14 (0.360)
130 2.2 M 4 N 9.14 (0.360)
377 2.2 K 4 J 9.14 (0.360)
378 2.2 M 4 J 9.14 (0.360)
131 2.7 K 4 N 12.2 (0.480)
132 2.7 M 4 N 12.2 (0.480)
379 2.7 K 4 J 12.2 (0.480)
380 2.7 M 4 J 12.2 (0.480)
133 3.3 K 4 N 12.2 (0.480)
134 3.3 M 4 N 12.2 (0.480)
381 3.3 K 4 J 12.2 (0.480)
382 3.3 M 4 J 12.2 (0.480)
135 3.9 K 4 N 16.5 (0.650)
136 3.9 M 4 N 16.5 (0.650)
383 3.9 K 4 J 16.5 (0.650)
384 3.9 M 4 J 16.5 (0.650)
137 4.7 K 3 N 6.10 (0.240)
138 4.7 M 3 N 6.10 (0.240)
385 4.7 K 3 J 6.10 (0.240)
386 4.7 M 3 J 6.10 (0.240)
139 5.6 K 3 N 6.10 (0.240)
140 5.6 M 3 N 6.10 (0.240)
387 5.6 K 3 J 6.10 (0.240)
388 5.6 M 3 J 6.10 (0.240)
141 6.8 K 3 N 9.14 (0.360)
142 6.8 M 3 N 9.14 (0.360)
389 6.8 K 3 J 9.14 (0.360)
390 6.8 M 3 J 9.14 (0.360)
143 8.2 K 3 N 9.14 (0.360)
144 8.2 M 3 N 9.14 (0.360)
391 8.2 K 3 J 9.14 (0.360)
392 8.2 M 3 J 9.14 (0.360)
DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension
87106- (µF) Tol. Code Style mm (inches)
200V
145 10 K 3 N 12.2 (0.480)
146 10 M 3 N 12.2 (0.480)
393 10 K 3 J 12.2 (0.480)
394 10 M 3 J 12.2 (0.480)
147 12 K 3 N 16.5 (0.650)
148 12 M 3 N 16.5 (0.650)
395 12 K 3 J 16.5 (0.650)
396 12 M 3 J 16.5 (0.650)
149 15 K 1 N 9.14 (0.360)
150 15 M 1 N 9.14 (0.360)
397 15 K 1 J 9.14 (0.360)
398 15 M 1 J 9.14 (0.360)
151 18 K 1 N 12.2 (0.480)
152 18 M 1 N 12.2 (0.480)
399 18 K 1 J 12.2 (0.480)
400 18 M 1 J 12.2 (0.480)
153 22 K 1 N 16.5 (0.650)
154 22 M 1 N 16.5 (0.650)
401 22 K 1 J 16.5 (0.650)
402 22 M 1 J 16.5 (0.650)
155 27 K 1 N 16.5 (0.650)
156 27 M 1 N 16.5 (0.650)
403 27 K 1 J 16.5 (0.650)
404 27 M 1 J 16.5 (0.650)
157 33 K 2 N 12.2 (0.480)
158 33 M 2 N 12.2 (0.480)
405 33 K 2 J 12.2 (0.480)
406 33 M 2 J 12.2 (0.480)
159 39 K 2 N 16.5 (0.650)
160 39 M 2 N 16.5 (0.650)
407 39 K 2 J 16.5 (0.650)
408 39 M 2 J 16.5 (0.650)
161 47 K 6 N 6.10 (0.240)
162 47 M 6 N 6.10 (0.240)
409 47 K 6 J 6.10 (0.240)
410 47 M 6 J 6.10 (0.240)
163 56 K 6 N 9.14 (0.360)
164 56 M 6 N 9.14 (0.360)
411 56 K 6 J 9.14 (0.360)
412 56 M 6 J 9.14 (0.360)
165 68 K 6 N 9.14 (0.360)
166 68 M 6 N 9.14 (0.360)
413 68 K 6 J 9.14 (0.360)
414 68 M 6 J 9.14 (0.360)
167 82 K 6 N 12.2 (0.480)
168 82 M 6 N 12.2 (0.480)
415 82 K 6 J 12.2 (0.480)
416 82 M 6 J 12.2 (0.480)
169 100 K 6 N 16.5 (0.650)
170 100 M 6 N 16.5 (0.650)
417 100 K 6 J 16.5 (0.650)
418 100 M 6 J 16.5 (0.650)
171 120 K 6 N 16.5 (0.650)
172 120 M 6 N 16.5 (0.650)
419 120 K 6 J 16.5 (0.650)
420 120 M 6 J 16.5 (0.650)
24
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R) U.S. Preferred Styles
Electrical characteristics
DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension
87106- (µF) Tol. Code Style mm (inches)
500V
173 .15 K 5 N 3.05 (0.120)
174 .15 M 5 N 3.05 (0.120)
421 .15 K 5 J 3.05 (0.120)
422 .15 M 5 J 3.05 (0.120)
175 .18 K 5 N 6.10 (0.240)
176 .18 M 5 N 6.10 (0.240)
423 .18 K 5 J 6.10 (0.240)
424 .18 M 5 J 6.10 (0.240)
177 .22 K 5 N 6.10 (0.240)
178 .22 M 5 N 6.10 (0.240)
425 .22 K 5 J 6.10 (0.240)
426 .22 M 5 J 6.10 (0.240)
179 .27 K 5 N 6.10 (0.240)
180 .27 M 5 N 6.10 (0.240)
427 .27 K 5 J 6.10 (0.240)
428 .27 M 5 J 6.10 (0.240)
181 .33 K 5 N 9.14 (0.360)
182 .33 M 5 N 9.14 (0.360)
429 .33 K 5 J 9.14 (0.360)
430 .33 M 5 J 9.14 (0.360)
183 .39 K 5 N 9.14 (0.360)
184 .39 M 5 N 9.14 (0.360)
431 .39 K 5 J 9.14 (0.360)
432 .39 M 5 J 9.14 (0.360)
185 .47 K 5 N 9.14 (0.360)
186 .47 M 5 N 9.14 (0.360)
433 .47 K 5 J 9.14 (0.360)
434 .47 M 5 J 9.14 (0.360)
187 .56 K 5 N 12.2 (0.480)
188 .56 M 5 N 12.2 (0.480)
435 .56 K 5 J 12.2 (0.480)
436 .56 M 5 J 12.2 (0.480)
189 .68 K 5 N 16.5 (0.650)
190 .68 M 5 N 16.5 (0.650)
437 .68 K 5 J 16.5 (0.650)
438 .68 M 5 J 16.5 (0.650)
231 .82 K 4 N 9.14 (0.360)
232 .82 M 4 N 9.14 (0.360)
439 .82 K 4 J 9.14 (0.360)
440 .82 M 4 J 9.14 (0.360)
191 1.0 K 4 N 9.14 (0.360)
192 1.0 M 4 N 9.14 (0.360)
441 1.0 K 4 J 9.14 (0.360)
442 1.0 M 4 J 9.14 (0.360)
193 1.2 K 4 N 9.14 (0.360)
194 1.2 M 4 N 9.14 (0.360)
443 1.2 K 4 J 9.14 (0.360)
444 1.2 M 4 J 9.14 (0.360)
195 1.5 K 4 N 12.2 (0.480)
196 1.5 M 4 N 12.2 (0.480)
445 1.5 K 4 J 12.2 (0.480)
446 1.5 M 4 J 12.2 (0.480)
197 1.8 K 4 N 16.5 (0.650)
198 1.8 M 4 N 16.5 (0.650)
447 1.8 K 4 J 16.5 (0.650)
448 1.8 M 4 J 16.5 (0.650)
233 2.2 K 3 N 6.10 (0.240)
234 2.2 M 3 N 6.10 (0.240)
449 2.2 K 3 J 6.10 (0.240)
450 2.2 M 3 J 6.10 (0.240)
199 2.7 K 3 N 9.14 (0.360)
200 2.7 M 3 N 9.14 (0.360)
451 2.7 K 3 J 9.14 (0.360)
452 2.7 M 3 J 9.14 (0.360)
DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension
87106- (µF) Tol. Code Style mm (inches)
500V
201 3.3 K 3 N 9.14 (0.360)
202 3.3 M 3 N 9.14 (0.360)
453 3.3 K 3 J 9.14 (0.360)
454 3.3 M 3 J 9.14 (0.360)
203 3.9 K 3 N 9.14 (0.360)
204 3.9 M 3 N 9.14 (0.360)
455 3.9 K 3 J 9.14 (0.360)
456 3.9 M 3 J 9.14 (0.360)
205 4.7 K 3 N 12.2 (0.480)
206 4.7 M 3 N 12.2 (0.480)
457 4.7 K 3 J 12.2 (0.480)
458 4.7 M 3 J 12.2 (0.480)
207 5.6 K 3 N 16.5 (0.650)
208 5.6 M 3 N 16.5 (0.650)
459 5.6 K 3 J 16.5 (0.650)
460 5.6 M 3 J 16.5 (0.650)
235 6.8 K 1 N 12.2 (0.480)
236 6.8 M 1 N 12.2 (0.480)
461 6.8 K 1 J 12.2 (0.480)
462 6.8 M 1 J 12.2 (0.480)
209 8.2 K 1 N 12.2 (0.480)
210 8.2 M 1 N 12.2 (0.480)
463 8.2 K 1 J 12.2 (0.480)
464 8.2 M 1 J 12.2 (0.480)
211 10 K 1 N 12.2 (0.480)
212 10 M 1 N 12.2 (0.480)
465 10 K 1 J 12.2 (0.480)
466 10 M 1 J 12.2 (0.480)
213 12 K 1 N 16.5 (0.650)
214 12 M 1 N 16.5 (0.650)
467 12 K 1 J 16.5 (0.650)
468 12 M 1 J 16.5 (0.650)
237 15 K 2 N 16.5 (0.650)
238 15 M 2 N 16.5 (0.650)
469 15 K 2 J 16.5 (0.650)
470 15 M 2 J 16.5 (0.650)
215 18 K 2 N 16.5 (0.650)
216 18 M 2 N 16.5 (0.650)
471 18 K 2 J 16.5 (0.650)
472 18 M 2 J 16.5 (0.650)
239 22 K 6 N 9.14 (0.360)
240 22 M 6 N 9.14 (0.360)
473 22 K 6 J 9.14 (0.360)
474 22 M 6 J 9.14 (0.360)
217 27 K 6 N 9.14 (0.360)
218 27 M 6 N 9.14 (0.360)
475 27 K 6 J 9.14 (0.360)
476 27 M 6 J 9.14 (0.360)
219 33 K 6 N 12.2 (0.480)
220 33 M 6 N 12.2 (0.480)
477 33 K 6 J 12.2 (0.480)
478 33 M 6 J 12.2 (0.480)
221 39 K 6 N 16.5 (0.650)
222 39 M 6 N 16.5 (0.650)
479 39 K 6 J 16.5 (0.650)
480 39 M 6 J 16.5 (0.650)
25
DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension
88011- (µF) Tol. Code Style mm (inches)
50V
001* .056 J 5 N 3.05 (0.120)
002* .056 K 5 N 3.05 (0.120)
003* .068 J 5 N 6.10 (0.240)
004* .068 K 5 N 6.10 (0.240)
005* .082 J 5 N 6.10 (0.240)
006* .082 K 5 N 6.10 (0.240)
007* .10 J 5 N 6.10 (0.240)
008* .10 K 5 N 6.10 (0.240)
009* .12 J 5 N 9.14 (0.360)
010* .12 K 5 N 9.14 (0.360)
011* .15 J 5 N 9.14 (0.360)
012* .15 K 5 N 9.14 (0.360)
013* .18 J 5 N 12.2 (0.480)
014* .18 K 5 N 12.2 (0.480)
015* .22 J 5 N 12.2 (0.480)
016* .22 K 5 N 12.2 (0.480)
017* .27 J 5 N 16.5 (0.650)
018* .27 K 5 N 16.5 (0.650)
019* .33 J 4 N 9.14 (0.360)
020* .33 K 4 N 9.14 (0.360)
021* .39 J 4 N 12.2 (0.480)
022* .39 K 4 N 12.2 (0.480)
023* .47 J 4 N 12.2 (0.480)
024* .47 K 4 N 12.2 (0.480)
025* .56 J 4 N 16.5 (0.650)
026* .56 K 4 N 16.5 (0.650)
027* .68 J 3 N 6.10 (0.240)
028* .68 K 3 N 6.10 (0.240)
029* .82 J 3 N 6.10 (0.240)
030* .82 K 3 N 6.10 (0.240)
031* 1.0 J 3 N 9.14 (0.360)
032* 1.0 K 3 N 9.14 (0.360)
033* 1.2 J 3 N 9.14 (0.360)
034* 1.2 K 3 N 9.14 (0.360)
035* 1.5 J 3 N 12.2 (0.480)
036* 1.5 K 3 N 12.2 (0.480)
037* 1.8 J 3 N 12.2 (0.480)
038* 1.8 K 3 N 12.2 (0.480)
039* 2.2 J 3 N 16.5 (0.650)
040* 2.2 K 3 N 16.5 (0.650)
041* 2.7 J 1 N 9.14 (0.360)
042* 2.7 K 1 N 9.14 (0.360)
043* 3.3 J 1 N 12.2 (0.480)
044* 3.3 K 1 N 12.2 (0.480)
045* 3.9 J 1 N 12.2 (0.480)
046* 3.9 K 1 N 12.2 (0.480)
047* 4.7 J 1 N 16.5 (0.650)
048* 4.7 K 1 N 16.5 (0.650)
049* 5.6 J 2 N 16.5 (0.650)
050* 5.6 K 2 N 16.5 (0.650)
051* 6.8 J 6 N 9.14 (0.360)
052* 6.8 K 6 N 9.14 (0.360)
053* 8.2 J 6 N 9.14 (0.360)
054* 8.2 K 6 N 9.14 (0.360)
055* 10 J 6 N 12.2 (0.480)
056* 10 K 6 N 12.2 (0.480)
057* 12 J 6 N 12.2 (0.480)
058* 12 K 6 N 12.2 (0.480)
059* 15 J 6 N 16.5 (0.650)
060* 15 K 6 N 16.5 (0.650)
100V
061* .047 J 5 N 6.10 (0.240)
062* .047 K 5 N 6.10 (0.240)
063* .056 J 5 N 6.10 (0.240)
064* .056 K 5 N 6.10 (0.240)
065* .068 J 5 N 6.10 (0.240)
066* .068 K 5 N 6.10 (0.240)
067* .082 J 5 N 6.10 (0.240)
068* .082 K 5 N 6.10 (0.240)
069* .10 J 5 N 9.14 (0.360)
070* .10 K 5 N 9.14 (0.360)
071* .12 J 5 N 9.14 (0.360)
072* .12 K 5 N 9.14 (0.360)
073* .15 J 5 N 12.2 (0.480)
074* .15 K 5 N 12.2 (0.480)
075* .18 J 5 N 12.2 (0.480)
076* .18 K 5 N 12.2 (0.480)
077* .22 J 5 N 16.5 (0.650)
078* .22 K 5 N 16.5 (0.650)
079* .27 J 4 N 9.14 (0.360)
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #88011 (C0G) U.S. Preferred Styles
CG (C0G) Electrical characteristics per MIL-C-20
DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension
88011- (µF) Tol. Code Style mm (inches)
100V (continued)
080* .27 K 4 N 9.14 (0.360)
081* .33 J 4 N 12.2 (0.480)
082* .33 K 4 N 12.2 (0.480)
083* .39 J 4 N 12.2 (0.480)
084* .39 K 4 N 12.2 (0.480)
085* .47 J 4 N 16.5 (0.650)
086* .47 K 4 N 16.5 (0.650)
087* .56 J 4 N 16.5 (0.650)
088* .56 K 4 N 16.5 (0.650)
089* .68 J 3 N 6.10 (0.240)
090* .68 K 3 N 6.10 (0.240)
091* .82 J 3 N 9.14 (0.360)
092* .82 K 3 N 9.14 (0.360)
093* 1.0 J 3 N 9.14 (0.360)
094* 1.0 K 3 N 9.14 (0.360)
095* 1.2 J 3 N 12.2 (0.480)
096* 1.2 K 3 N 12.2 (0.480)
097* 1.5 J 3 N 12.2 (0.480)
098* 1.5 K 3 N 12.2 (0.480)
099* 1.8 J 3 N 16.5 (0.650)
100* 1.8 K 3 N 16.5 (0.650)
101* 2.2 J 1 N 12.2 (0.480)
102* 2.2 K 1 N 12.2 (0.480)
103* 2.7 J 1 N 12.2 (0.480)
104* 2.7 K 1 N 12.2 (0.480)
105* 3.3 J 1 N 16.5 (0.650)
106* 3.3 K 1 N 16.5 (0.650)
107* 3.9 J 2 N 12.2 (0.480)
108* 3.9 K 2 N 12.2 (0.480)
109* 4.7 J 2 N 16.5 (0.650)
110* 4.7 K 2 N 16.5 (0.650)
111* 5.6 J 6 N 9.14 (0.360)
112* 5.6 K 6 N 9.14 (0.360)
113* 6.8 J 6 N 9.14 (0.360)
114* 6.8 K 6 N 9.14 (0.360)
115* 8.2 J 6 N 12.2 (0.480)
116* 8.2 K 6 N 12.2 (0.480)
117* 10 J 6 N 16.5 (0.650)
118* 10 K 6 N 16.5 (0.650)
119* 12 J 6 N 16.5 (0.650)
120* 12 K 6 N 16.5 (0.650)
200V
121* .022 J 5 N 3.05 (0.120)
122* .022 K 5 N 3.05 (0.120)
123* .027 J 5 N 6.10 (0.240)
124* .027 K 5 N 6.10 (0.240)
125* .033 J 5 N 6.10 (0.240)
126* .033 K 5 N 6.10 (0.240)
127* .039 J 5 N 6.10 (0.240)
128* .039 K 5 N 6.10 (0.240)
129* .047 J 5 N 9.14 (0.360)
130* .047 K 5 N 9.14 (0.360)
131* .056 J 5 N 9.14 (0.360)
132* .056 K 5 N 9.14 (0.360)
133* .068 J 5 N 12.2 (0.480)
134* .068 K 5 N 12.2 (0.480)
135* .082 J 5 N 12.2 (0.480)
136* .082 K 5 N 12.2 (0.480)
137* .10 J 5 N 16.5 (0.650)
138* .10 K 5 N 16.5 (0.650)
139* .12 J 4 N 9.14 (0.360)
140* .12 K 4 N 9.14 (0.360)
141* .15 J 4 N 9.14 (0.360)
142* .15 K 4 N 9.14 (0.360)
143* .18 J 4 N 12.2 (0.480)
144* .18 K 4 N 12.2 (0.480)
145* .22 J 4 N 12.2 (0.480)
146* .22 K 4 N 12.2 (0.480)
147* .27 J 4 N 16.5 (0.650)
148* .27 K 4 N 16.5 (0.650)
149* .33 J 3 N 6.10 (0.240)
150* .33 K 3 N 6.10 (0.240)
151* .39 J 3 N 6.10 (0.240)
152* .39 K 3 N 6.10 (0.240)
153* .47 J 3 N 9.14 (0.360)
154* .47 K 3 N 9.14 (0.360)
155* .56 J 3 N 9.14 (0.360)
156* .56 K 3 N 9.14 (0.360)
157* .68 J 3 N 12.2 (0.480)
158* .68 K 3 N 12.2 (0.480)
DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension
88011- (µF) Tol. Code Style mm (inches)
200V (continued)
159* .82 J 3 N 16.5 (0.650)
160* .82 K 3 N 16.5 (0.650)
161* 1.0 J 3 N 16.5 (0.650)
162* 1.0 K 3 N 16.5 (0.650)
163* 1.2 J 1 N 12.2 (0.480)
164* 1.2 K 1 N 12.2 (0.480)
165* 1.5 J 1 N 12.2 (0.480)
166* 1.5 K 1 N 12.2 (0.480)
167* 1.8 J 1 N 16.5 (0.650)
168* 1.8 K 1 N 16.5 (0.650)
169* 2.2 J 2 N 12.2 (0.480)
170* 2.2 K 2 N 12.2 (0.480)
171* 2.7 J 2 N 16.5 (0.650)
172* 2.7 K 2 N 16.5 (0.650)
173* 3.3 J 6 N 9.14 (0.360)
174* 3.3 K 6 N 9.14 (0.360)
175* 3.9 J 6 N 9.14 (0.360)
176* 3.9 K 6 N 9.14 (0.360)
177* 4.7 J 6 N 12.2 (0.480)
178* 4.7 K 6 N 12.2 (0.480)
179* 5.6 J 6 N 16.5 (0.650)
180* 5.6 K 6 N 16.5 (0.650)
500V
181* .010 J 5 N 3.05 (0.120)
182* .010 K 5 N 3.05 (0.120)
183* .012 J 5 N 6.10 (0.240)
184* .012 K 5 N 6.10 (0.240)
185* .015 J 5 N 6.10 (0.240)
186* .015 K 5 N 6.10 (0.240)
187* .018 J 5 N 6.10 (0.240)
188* .018 K 5 N 6.10 (0.240)
189* .022 J 5 N 9.14 (0.360)
190* .022 K 5 N 9.14 (0.360)
191* .027 J 5 N 9.14 (0.360)
192* .027 K 5 N 9.14 (0.360)
193* .033 J 5 N 12.2 (0.480)
194* .033 K 5 N 12.2 (0.480)
195* .039 J 5 N 12.2 (0.480)
196* .039 K 5 N 12.2 (0.480)
197* .047 J 5 N 16.5 (0.650)
198* .047 K 5 N 16.5 (0.650)
199* .056 J 4 N 9.14 (0.360)
200* .056 K 4 N 9.14 (0.360)
201* .068 J 4 N 9.14 (0.360)
202* .068 K 4 N 9.14 (0.360)
203* .082 J 4 N 12.2 (0.480)
204* .082 K 4 N 12.2 (0.480)
205* .10 J 4 N 12.2 (0.480)
206* .10 K 4 N 12.2 (0.480)
207* .12 J 4 N 16.5 (0.650)
208* .12 K 4 N 16.5 (0.650)
209* .15 J 3 N 6.10 (0.240)
210* .15 K 3 N 6.10 (0.240)
211* .18 J 3 N 6.10 (0.240)
212* .18 K 3 N 6.10 (0.240)
213* .22 J 3 N 9.14 (0.360)
214* .22 K 3 N 9.14 (0.360)
215* .27 J 3 N 9.14 (0.360)
216* .27 K 3 N 9.14 (0.360)
217* .33 J 3 N 12.2 (0.480)
218* .33 K 3 N 12.2 (0.480)
219* .39 J 3 N 16.5 (0.650)
220* .39 K 3 N 16.5 (0.650)
221* .47 J 1 N 9.14 (0.360)
222* .47 K 1 N 9.14 (0.360)
223* .56 J 1 N 12.2 (0.480)
224* .56 K 1 N 12.2 (0.480)
225* .68 J 1 N 12.2 (0.480)
226* .68 K 1 N 12.2 (0.480)
227* .82 J 1 N 16.5 (0.650)
228* .82 K 1 N 16.5 (0.650)
229* 1.0 J 2 N 12.2 (0.480)
230* 1.0 K 2 N 12.2 (0.480)
231* 1.2 J 2 N 16.5 (0.650)
232* 1.2 K 2 N 16.5 (0.650)
233* 1.5 J 6 N 9.14 (0.360)
234* 1.5 K 6 N 9.14 (0.360)
235* 1.8 J 6 N 12.2 (0.480)
236* 1.8 K 6 N 12.2 (0.480)
237* 2.2 J 6 N 16.5 (0.650)
238* 2.2 K 6 N 16.5 (0.650)
*Add J or L for applicable formed leads
26
SMPS Stacked MLC Capacitors
(SM9 Style) Technical Information on SMPS Capacitors U.S. Preferred Styles
Temperature Coefficient
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C
X7R: C Temperature Coefficient - ±15%, -55° to +125°C
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C
Capacitance Test (MIL-STD-202 Method 305)
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
C0G and X7R: 100K Mor 1000 M-µF, whichever is less.
Z5U: 10K Mor 1000 M-µF, whichever is less.
Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G and X7R: 10K Mor 100 M-µF, whichever is less.
Z5U: 1K Mor 100 M-µF, whichever is less.
Dielectric Withstanding Voltage 25°C (Flash Test)
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 750 VDC)
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging
current.
Life Test (1000 hrs)
C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @
600 VDC)
Z5U: 150% rated voltage at +85°C
Moisture Resistance (MIL-STD-202 Method 106)
C0G, X7R, Z5U: Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method104, Condition B)
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
Typical ESR (m)
24 µF Performance
Aluminum Tantalum MLC
Electrolytic
ESR @ 50KHz 2,100 140 1
ESR @ 100KHz 2,000 125 1
ESR @ 500KHz 1,600 105 2.5
ESR @ 1MHz 1,500 105 5
ESR @ 5MHz 1,200 140 10
ESR @ 10MHz 1,700 190 14
ELECTRICAL SPECIFICATIONS
SM9 1 7 C 106 M A N 660
HOW TO ORDER AVX Styles: SM91, SM92, SM93, SM94, SM95, SM96
AVX Style Size Voltage Temperature Capacitance Capacitance Test Termination Height
Size See 50V = 5 Coefficient Code Tolerance Level N = Straight Lead See table
SM9 = Plastic dimen- 100V = 1 C0G = A (2 significant C0G: J = ±5% A = Standard J = Leads formed on next
Case sions 200V = 2 X7R = C digits + no. K = ±10% B = Hi-Rel*in page for
chart 500V = 7 Z5U = E of zeros) M = ±20% L = Leads formed max cap.
10 pF = 100 X7R: K = ±10% out per
100 pF = 101 M = ±20% height
1,000 pF = 102 Z = +80, -20%
22,000 pF = 223 Z5U: Z = +80, -20%
220,000 pF = 224 P = GMV (+100, -0%)
1 µF = 105
10 µF = 106
100 µF = 107
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications
across AC supply mains or AC line filtering with polarity reversal. Contact plant
for recommendations.
*Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A
(B Level), Subgroup 1 per MIL-PRF-49470.
27
SMPS Stacked MLC Capacitors
Encapsulated in DAP (Diallyl Phthalate) Case
(SM9 Style) U.S. Preferred Styles
DE
Maximum Height
(see table)
0.381 (0.015)
±0.127 (0.005)
6.35 (0.250) (MIN.)
0.254 (0.010) TYP.
C
0.508 (0.020) TYP.
2.54 (0.100)
CENTERS TYP.
4.445 (0.175) MAX
1.016 (0.040) MIN
E
0.381 (0.015)
±0.127 (0.005)
Maximum Height
(see table)
4.445 (0.175) MAX
1.016 (0.040) MIN 2.54 (0.100)
CENTERS TYP.
0.508 (0.020)TYP.
C
1.905 (0.075)
±0.635 (0.025) TYP.
D
0.254 (0.010)
RAD. TYP.
1.778 (0.070)
±0.254 (0.010)
0.254 (0.010)
TYP.
C D E No. of Leads
Case Code ±0.635 (0.025) ±0.254 (0.010) +0.000 (0.000) -0.254 (0.010) per side*
SM91 11.4 (0.450) 54.7 (2.155) 14.7 (0.580) 20
SM92 20.3 (0.800) 41.0 (1.615) 24.1 (0.950) 15
SM93 11.4 (0.450) 29.3 (1.155) 14.7 (0.580) 10
SM94 10.2 (0.400) 12.3 (0.485) 12.3 (0.485) 4
SM95 6.35 (0.250) 9.02 (0.355) 9.02 (0.355) 3
SM96 31.8 (1.250) 54.7 (2.155) 36.3 (1.430) 20
*Leads styles N, J or L available
DIMENSIONS millimeters (inches)
“N” STYLE LEADS
“L” STYLE LEADS
E
0.381 (0.015)
±0.127 (0.005)
Maximum Height
(see table)
4.445 (0.175) MAX
1.016 (0.040) MIN 2.54 (0.100)
CENTERS TYP.
0.508 (0.020) TYP.
C
1.905 (0.075)
±0.635 (0.025) TYP.
D
0.254 (0.010)
RAD. TYP.
1.778 (0.070)
±0.254 (0.010)
0.254 (0.010)
TYP.
“J” STYLE LEADS
28
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 .09
27 12 7.0 2.6 41 18 11 4.0 18 6.0 3.6 1.3
84 32 12 – – 110 46 34 – – 40 15 6.0 – –
Max Capacitance (µF) Available Versus Style with Height of 0.270" - 6.86mm
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
.16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 .50
7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 40 24 9.4
12 4.6 3.0 – – 4.6 1.8 .72 – – 260 140 92 – –
Max Capacitance (µF) Available Versus Style with Height of 0.390" - 9.91mm
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
2.0 1.4 .80 .36 2.4 2.0 1.2 .52 1.0 .80 .40 .18
54 24 14 5.2 82 36 22 8.0 36 12 7.2 2.6
160 64 24 – – 230 92 68 – – 80 30 12 – –
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
.32 .26 .14 .05 .10 .08 .05 .02 6.4 4.8 2.6 1.0
15 3.6 2.2 .80 5.6 1.3 .80 .32 160 80 48 18
24 9.2 6.0 – – 9.2 3.6 1.4 – – 520 280 180 – –
Max Capacitance (µF) Available Versus Style with Height of 0.530" - 13.46mm
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
3.0 2.1 1.2 .54 3.6 3.0 1.8 .78 1.5 1.2 .60 .27
82 36 21 7.8 120 54 33 12 54 18 10 3.9
250 96 36 – – 350 130 100 – – 120 45 18 – –
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
.48 .39 .21 .07 .15 .12 .07 .03 9.6 7.2 3.9 1.5
22 5.4 3.3 1.2 8.2 2.0 1.2 .48 240 120 72 28
36 13 9.0 – – 13 5.4 2.1 – – 780 430 270 – –
Max Capacitance (µF) Available Versus Style with Height of 0.660" - 16.76mm
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
4.0 2.8 1.6 .72 4.8 4.0 2.4 1.0 2.0 1.6 .80 .36
110 48 28 10 160 72 44 16 72 24 14 5.2
330 120 48 – – 470 180 130 – – 160 60 24 – –
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
.64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0
30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37
48 18 12 – – 18 7.2 2.8 – – 1000 570 360 – –
Max Capacitance (µF) Available Versus Style with Height of 0.800" - 20.3mm
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
5.0 3.5 2.0 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 .45
130 60 35 13 200 90 55 20 90 30 18 6.5
420 160 60 – – 590 230 170 – – 200 75 30 – –
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
.80 .65 .35 .12 .25 .20 .12 .05 16 12 6.5 2.5
36 9.0 5.5 2.0 12 3.4 2.0 .80 400 200 120 47
60 23 15 – – 23 9.0 3.6 – – 1300 720 460 – –
SM91 _ _____AN270 SM92 _ _ _ _ _ _ AN270 SM93 _ _ _ _ _ _ AN270 SM94 _ _ _ _ _ _ AN270 SM95 _ _____AN270 SM96 _ _____AN270
AVX
STYLE
C0G
X7R
Z5U
SM91 _ _____AN390 SM92 _ _ _ _ _ _ AN390 SM93 _ _ _ _ _ _ AN390 SM94 _ _ _ _ _ _ AN390 SM95 _ _____AN390 SM96 _ _____AN390
AVX
STYLE
C0G
X7R
Z5U
SM91 _ _____AN530 SM92 _ _ _ _ _ _ AN530 SM93 _ _ _ _ _ _ AN530 SM94 _ _ _ _ _ _ AN530 SM95 _ _____AN530 SM96 _ _____AN530
AVX
STYLE
C0G
X7R
Z5U
SM91 _ _____AN660 SM92 _ _ _ _ _ _ AN660 SM93 _ _ _ _ _ _ AN660 SM94 _ _ _ _ _ _ AN660 SM95 _ _____AN660 SM96 _ _____AN660
AVX
STYLE
C0G
X7R
Z5U
SM91 _ _____AN800 SM92 _ _ _ _ _ _ AN800 SM93 _ _ _ _ _ _ AN800 SM94 _ _ _ _ _ _ AN800 SM95 _ _____AN800 SM96 _ _____AN800
AVX
STYLE
C0G
X7R
Z5U
SMPS Stacked MLC Capacitors
Encapsulated in DAP (Diallyl Phthalate) Case
(SM9 Style) U.S. Preferred Styles
29
SMPS Capacitors Chip Assemblies
CH/CV - Radial, Dual-in-Line,
4 Terminal/SMT ‘J’ & ‘L’ Ranges European Preferred Styles
10nF to 180 µF BS9100 approved
50V to 500 VDC Low ESR/ESL
-55ºC to +125ºC 1B/C0G and 2C1/X7R Dielectrics
This range allows SMPS engineers to select the best volumetric
solution for input and output filter applications in high reliability designs.
Utilizing advanced multilayer ceramic techniques to minimize ESR/ESL
giving high current handling properties appropriate for filtering,
smoothing and decoupling circuits.
ELECTRICAL SPECIFICATIONS
Temperature Coefficient CECC 30 000, (4.24.1)
1B/C0G: A Temperature Coefficient - 0 ± 30 ppm/ºC, -55º to +125ºC
2C1/X7R: C Temperature Characteristic - ± 15%, -55º to +125ºC
Capacitance Test 25ºC
1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz for 100 pF or less)
2C1/X7R: Measured at 1 VRMS max at 1KHz
Dissipation Factor 25°C
1B/C0G: 0.15% max at 1KHz, 1 VRMS max (1MHz for 100 pF or less)
2C1/X7R: 2.5% max at 1KHz, 1 VRMS max
Insulation Resistance 25°C
1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-µF, whichever
is less
Dielectric Withstanding Voltage 25°C (Flash Test)
1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 150% rated voltage)
Dielectric Withstanding Voltage 25°C (Flash Test)
1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA
max charging current. (500 Volt units @ 150% rated voltage)
Life Test (1000 hrs) CECC 30 000 (4.23)
1B/C0G & 2C1/X7R: 200% rated voltage at +125ºC.
(500 Volt units @ 120% rated voltage)
Damp Heat IEC 68-2-3, 56 days.
Thermal Shock IEC 68-2-14
-55ºC to +125ºC, 5 cycles
Resistance to Solder Heat IEC 68-2-20
Vibration IEC 68-2-6
10Hz - 2000Hz, 0.75mm or 98m/sec2, 6 hrs.
Bump IEC 68-2-29
390m/sec2, 4000 bumps
CH and CV 4x, 5x, 81-84
Top line A (AVX). Voltage code, dielectric code.
Middle line capacitance code, tolerance code.
Bottom line 6 digit batch code.
Other CH, CV Styles
Top line AVX.
Second line voltage code, dielectric code.
Third line capacitance code, tolerance code.
Bottom line, 6 digit batch code.
AVX
5C
156M
xxxxxx
A5C
225K
xxxxxx
MARKING
30
HOW TO ORDER
CV 52 5 C 106 M A 3 0 A 2
Style Size Voltage Dielectric Capacitance Capacitance Specification Finish Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
(see product section) 5 = 50V A = C0G (2 significant J = ±5% A = Non-customized 3 = Uncoated 0 = Standard A = Standard 2 = 2 Terminal
1 = 100V C = X7R digits + no. K = ±10% 8 = Coated 4 = 4 Terminal
2 = 200V of zeros) M = ±20% (classified as See Note 1
7 = 500V eg. 105 = 1 µF P = -0 +100% uninsulated) above
106 = 10 µF
107 = 100 µF
LHS
Lead
Style Dia
(max) (max) (nom) (nom)
CV41-44 10.6 (0.417) 8.7 (0.342) 8.2 (0.322) 0.7 (0.028)
CV51-54 11.9 (0.468) 10.7 (0.421) 10.2 (0.400) 0.9 (0.035)
CV61-64 16.5 (0.649) 13.6 (0.535) 15.2 (0.600) 0.9 (0.035)
CV71-74 17.8 (0.700) 21.6 (0.850) 15.2 (0.600) 0.9 (0.035)
CV76-79 22.7 (0.893) 16.6 (0.653) 21.2* (0.834) 0.9 (0.035)
Part Number format (CVxxxxxxxxxxxA2)
Typical Part Number CV525C106MA30A2
VERTICALLY MOUNTED RADIAL PRODUCT
SMPS Capacitors (CV Style)
Chip Assemblies European Preferred Styles
Part Number format (CVxxxxxxxxx3xx4)
Typical Part Number CV435C106MA30A4
VERTICALLY MOUNTED 4 TERMINAL RADIAL PRODUCT
*Tolerance ± 0.8
millimeters (inches)
T Max.
H Max. L Max.
25 (0.984)
±3 (0.118) Lead Dia.
See Table
S1 ±0.5
(0.020)
S1 ±0.5
(0.020)
M2
M1 = M2 ±0.5 (0.020)
M1
DIMENSIONS millimeters (inches)
Style T max
CV41/51/61/71/76 3.80 (0.150)
CV42/52/62/72/77 7.40 (0.291)
CV43/53/63/73/78 11.1 (0.437)
CV44/54/64/74/79 14.8 (0.583)
LHS
Lead
Style Dia
(max) (max) (nom) (nom)
CV43-44 10.6 (0.417) 8.7 (0.342) 8.2 (0.322) 0.7 (0.028)
CV53-54 11.9 (0.468) 10.7 (0.421) 10.2 (0.400) 0.9 (0.035)
CV63-64 16.5 (0.649) 13.6 (0.535) 15.2 (0.600) 0.9 (0.035)
CV73-74 17.8 (0.700) 21.6 (0.850) 15.2 (0.600) 0.9 (0.035)
CV78-79 22.7 (0.893) 16.6 (0.653) 21.2* (0.834) 0.9 (0.035)
*Tolerance ± 0.8 (0.031)
millimeters (inches)
Note 1. This style is only available in 3 & 4 chip assemblies
DIMENSIONS millimeters (inches)
Style T max S1
CV43/53/63/73/78 11.1 (0.437) 5.08 (0.200)
CV44/54/64/74/79 14.8 (0.583) 7.62 (0.300)
T Max.
H Max.
25 (0.984)
±3 (0.118)
Lead Dia.
See Table
S ±0.5
(0.020)
L Max.
Note: See page 91 for How to Order BS9100 parts
31
LW S
No. of
Style Leads
(max) (max) (nom) per side
CH41-44 9.2 (0.362) 8.7 (0.342) 8.2 (0.322) 3
CH51-54 10.7 (0.421) 10.7 (0.421) 10.2 (0.400) 4
CH61-64 14.9 (0.586) 13.6 (0.535) 14.0 (0.551) 5
CH71-74 16.8 (0.661) 21.6 (0.850) 15.2 (0.600) 7
CH76-79 21.6 (0.850) 16.6 (0.653) 20.3* (0.800) 6
CH81-84 12.0 (0.472) 38.2 (1.503) 10.2 (0.400) 14
CH86-89 18.9 (0.744) 38.2 (1.503) 15.2 (0.600) 14
CH91-94 24.0 (0.944) 40.6 (1.598) 20.3* (0.800) 14
LWS
S Lead S1
Style Dia
(max) (max) (nom) (nom) (nom)
CH42-44 10.6 (0.417) 8.7 (0.342) 8.2 (0.322) 0.7 (0.028) 5.08 (0.200)
CH52-54 11.9 (0.468) 10.7 (0.421) 10.2 (0.400) 0.9 (0.035) 7.62 (0.300)
CH62-64 16.5 (0.649) 13.6 (0.535) 15.2 (0.600) 0.9 (0.035) 7.62 (0.300)
CH72-74 17.8 (0.700) 21.6 (0.850) 15.2 (0.600) 0.9 (0.035) 15.2 (0.600)
CH77-79 22.7 (0.893) 16.6 (0.653) 21.2* (0.834) 0.9 (0.035) 10.2 (0.400)
CH82-84 14.1 (0.555) 38.2 (1.503) 10.2 (0.400) 0.9 (0.035) 27.9 (1.100)
CH87-89 17.8 (0.700) 38.2 (1.503) 15.2 (0.600) 1.0 (0.039) 27.9 (1.100)
CH92-94 22.7 (0.893) 40.6 (1.598) 21.2* (0.834) 1.2 (0.047) 30.5 (1.200)
Part Number format (CHxxxxxxxxx3xx4)
Typical Part Number CH782C106MA30A4
HORIZONTALLY MOUNTED 4 TERMINAL RADIAL PRODUCT
SMPS Capacitors (CH Style)
Chip Assemblies European Preferred Styles
Part Number format (CHxxxxxxxxxx0A0)
Typical Part Number CH615C106MA30A0
HORIZONTALLY MOUNTED DUAL-IN-LINE PRODUCT
Lead width 0.5 (0.020)
Lead thickness 0.254 (0.100)
L1 = L2 ± 0.5 (0.020)
HOW TO ORDER
CH 52 5 C 106 M A 3 0 A 0
Style Size Voltage Dielectric Capacitance Capacitance Specification Finish Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
(see product section) 5 = 50V A = C0G (2 significant J = ±5% 0 = Standard A = Standard 0 = Straight dual
1 = 100V C = X7R digits + no. K = ±10% in line
2 = 200V of zeros) M = ±20% 4 = 4 Terminal
7 = 500V eg. 105 = 1 µF P = -0 +100%
106 = 10 µF
107 = 100 µF
*Tolerance ± 0.8
NOTE: This style is only available in 2, 3 & 4 chip assemblies only millimeters (inches)
S ± 0.5
W max
T max
M2
25 (0.984)
±3 (0.118)
Lead dia
(see table)
M1
L max
M1 = M2 ± 0.5 (0.020)
S1 ± 0.5
(0.020) (0.020)
DIMENSIONS millimeters (inches)
*Tolerance ± 0.8 (0.031)
DIMENSIONS millimeters (inches)
Style T max
CH42/52/62/72/77/87/92 7.4 (0.291)
CH43/53/63/73/78/88/93 11.1 (0.437)
CH44/54/64/74/79/89/94 14.8 (0.583)
Style T max
CH41/51/61/71/76/81/86/91 3.8 (0.150)
CH42/52/62/72/77/82/87/92 7.4 (0.291)
CH43/53/63/73/78/83/88/93 11.1 (0.437)
CH44/54/64/74/79/84/89/94 14.8 (0.583)
W max
T
max
2.0 (0.079)
max
2.54 (0.100)
± 0.05 (0.002)
L1
L2
L max
S ± 0.5
(0.020)
13
±
(0.512)
1 (0.039)
millimeters (inches)
A = Non-customized 3 = Uncoated
8 = Coated
(classified as
uninsulated)
Note: See page 91 for How to Order BS9100 parts
32
A = Non-customized 3 = Uncoated
8 = Coated
(classified as
uninsulated)
HOW TO ORDER
CH 52 5 C 106 M A 3 0 A 7
Style Size Voltage Dielectric Capacitance Capacitance Specification Finish Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
(see product section) 5 = 50V A = C0G (2 significant J = ±5% 0 = Standard A = Standard 3 = Low profile ‘J’
1 = 100V C = X7R digits + no. K = ±10% (single chip)
2 = 200V of zeros) M = ±20% 5 = Low profile ‘L
7 = 500V eg. 105 = 1 µF P = -0 +100% (single chip)
106 = 10 µF 7 = ‘L’ Dual in line
107 = 100 µF 8 = ‘J’ Dual in line
SMPS Capacitors (CH Style)
Chip Assemblies European Preferred Styles
Part Number format (CHxxxxxxxxxx0A7)
Typical Part Number CH411C275KA30A7
HORIZONTALLY MOUNTED ‘L’ LEAD SMT PRODUCT
Part Number format (CHxxxxxxxxxx0A8)
Typical Part Number CH411C275KA30A8
HORIZONTALLY MOUNTED ‘J’ LEAD SMT PRODUCT
*Tolerance ± 0.8 (0.031)
millimeters (inches)
millimeters (inches)
L
max
W max
T max
S ± 0.5 (0.02)
NOTE: A ‘Llead low profile version
(CH....0A5) is available with lead height
1.1 (0.043) max. for single chip assemblies eg.
CH415C225MA30A5
L1
L2
2.54 (0.1)
±0.5 (0.02)
2.54 (0.1)
±0.5 (0.02)
Lead width 0.5 (0.020)
Lead thickness 0.254 (0.010)
L1 = L2 ± 0.5 (0.020)
Style T max
CH41/51/61/71/76/81/86/91 3.8 (0.150)
CH42/52/62/72/77/82/87/92 7.4 (0.291)
CH43/53/63/73/78/83/88/93 11.1 (0.437)
CH44/54/64/74/79/84/89/94 14.8 (0.583)
Lead width 0.5 (0.020)
Lead thickness 0.254 (0.010)
L1 = L2 ± 0.5 (0.020)
Style T max
CH41/51/61/71/76/81/86/91 3.8 (0.150)
CH42/52/62/72/77/82/87/92 7.4 (0.291)
CH43/53/63/73/78/83/88/93 11.1 (0.437)
CH44/54/64/74/79/84/89/94 14.8 (0.583)
LW S
No. of
Style Leads
(max) (max) (nom) per side
CH41-44 9.2 (0.362) 8.7 (0.342) 8.2 (0.322) 3
CH51-54 10.7 (0.421) 10.7 (0.421) 10.2 (0.400) 4
CH61-64 14.9 (0.586) 13.6 (0.535) 14.0 (0.551) 5
CH71-74 16.8 (0.661) 21.6 (0.850) 15.2 (0.600) 7
CH76-79 21.6 (0.850) 16.6 (0.653) 20.3* (0.800) 6
CH81-84 12.0 (0.472) 38.2 (1.503) 10.2 (0.400) 14
CH86-89 18.9 (0.744) 38.2 (1.503) 15.2 (0.600) 14
CH91-94 24.0 (0.944) 40.6 (1.598) 20.3* (0.800) 14
DIMENSIONS millimeters (inches)
T max
L
max
L1
L2
W max
NOTE: A ‘J’ lead low profile version (CH....0A3) is available with lead height
1.1 (0.043) max. for single chip assemblies eg. CH515C475MA30A3
S ± 0.5 (0.020)
2.54 (0.100)
±0.5 (0.020)
2.54 (0.100)
±0.5 (0.020)
LW S
No. of
Style Leads
(max) (max) (nom) per side
CH41-44 9.2 (0.362) 8.7 (0.342) 8.2 (0.322) 3
CH51-54 10.7 (0.421) 10.7 (0.421) 10.2 (0.400) 4
CH61-64 14.9 (0.586) 13.6 (0.535) 14.0 (0.551) 5
CH71-74 16.8 (0.661) 21.6 (0.850) 15.2 (0.600) 7
CH76-79 21.6 (0.850) 16.6 (0.653) 20.3* (0.800) 6
CH81-84 12.0 (0.472) 38.2 (1.503) 10.2 (0.400) 14
CH86-89 18.9 (0.744) 38.2 (1.503) 15.2 (0.600) 14
CH91-94 24.0 (0.944) 40.6 (1.598) 20.3* (0.800) 14
*Tolerance ± 0.8 (0.031)
DIMENSIONS millimeters (inches)
Note: See page 91 for How to Order BS9100 parts
33
CH/CV41-44 CH/CV51-54 CH/CV61-64 CH/CV71-74 CH/CV76-79 CH81-84 CH86-89 CH91-94
Styles Styles Styles Styles Styles Styles Styles Styles
Voltage DC
Cap µF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500
0.01 41
0.012 41
0.015 41
0.018 41
0.022 42 51
0.027 42 51
0.033 41 42 52 61
0.039 41 42 52 61
0.047 41 41 43 52 61
0.056 41 41 43 52 61
0.068 41 41 41 44 51 53 62 71 76 81
0.082 41 41 42 51 53 62 71 76 81
0.1 41 42 42 51 51 54 62 71 76 81
0.12 42 42 42 51 51 52 61 62 72 77 81 86
0.15 42 42 42 51 52 52 61 61 63 72 77 81 86
0.18 42 42 43 51 52 52 61 61 63 72 77 82 86
0.22 42 43 43 52 52 52 61 61 62 64 71 72 76 77 81 82 86 91
0.27 43 43 44 52 52 53 61 62 62 71 71 73 76 76 78 81 81 82 87 91
0.33 43 44 52 53 53 61 62 62 71 71 73 76 76 78 81 81 82 87 91
0.39 44 52 53 54 62 62 62 71 71 72 74 76 76 77 79 81 81 81 83 86 87 92
0.47 53 54 62 62 63 71 71 72 76 76 77 81 81 81 83 86 87 92
0.56 53 62 63 63 71 72 72 76 77 77 81 81 82 84 86 86 88 92
0.68 54 62 63 64 72 72 72 77 77 77 81 82 82 86 86 86 88 92
0.82 63 64 72 72 73 77 77 78 82 82 82 86 86 87 89 91 93
1 6364 7272 73 777778 828282 8687 87 919193
1.2 64 72 73 74 77 78 79 82 82 83 87 87 87 91 91 92 94
1.5 73 73 78 78 82 83 83 87 87 87 91 92 92
1.8 73 74 78 79 83 83 84 87 87 88 92 92 92
2.2 74 79 83 84 87 88 88 92 92 92
2.7 84 88 88 89 92 92 93
3.3 88 89 92 93 93
3.9 89 93 93 94
4.7 93 94
5.6 94
C0G DIELECTRIC ULTRA STABLE CERAMIC
NB Figures in cells refer to size within ordering information
SMPS Capacitors (CH/CV Style)
Chip Assemblies European Preferred Styles
34
CH/CV41-44 CH/CV51-54 CH/CV61-64 CH/CV71-74 CH/CV76-79 CH81-84 CH86-89 CH91-94
Styles Styles Styles Styles Styles Styles Styles Styles
Voltage DC
Cap µF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500
0.12 41
0.15 41
0.18 41
0.22 41
0.27 42 51
0.33 41 42 51
0.39 41 42 51
0.47 41 42 52 61
0.56 41 43 52 61
0.68 42 43 51 52 61
0.82 42 44 51 52 61 71 76 81
1414244 5153 6162 71 76 81
1.2 41 42 52 53 61 62 71 76 81
1.5 41 43 52 54 61 62 71 76 81 86
1.8 41 41 43 52 61 62 72 77 82 86
2.2 41 41 44 51 52 61 63 71 72 76 77 81 82 86
2.7 41 41 51 53 62 63 71 72 76 77 81 82 87 91
3.3 41 42 51 53 62 64 71 72 76 77 81 82 87 91
3.9 42 42 51 51 54 62 72 73 77 78 81 83 86 87 91
4.7 42 42 51 52 61 62 72 73 77 78 82 83 86 87 91
5.6 42 42 51 52 61 63 72 74 77 79 82 84 86 88 92
6.8 42 43 52 52 61 61 63 72 77 82 86 88 92
8.2 43 43 52 52 61 61 64 71 73 76 78 82 87 89 91 92
10 43 44 52 53 61 62 64 71 73 76 78 83 87 91 92
12 44 53 53 62 62 71 71 74 76 76 79 81 83 87 92 93
15 53 54 62 62 71 71 76 76 81 81 84 86 87 92 93
18 54 62 63 71 72 76 77 81 81 86 88 92 94
22 54 62 63 72 72 77 77 81 82 86 86 88 92
27 63 64 72 72 77 77 82 82 86 86 89 93
33 63 64 72 73 77 78 82 82 86 87 91 93
39 64 72 73 77 78 82 82 87 87 91 91 94
47 73 74 78 79 82 83 87 87 91 92
56 73 78 83 83 87 87 92 92
68 74 79 83 84 87 88 92 92
82 84 88 88 92 92
100 88 89 92 93
120 89 93 93
150 93 94
180 94
X7R DIELECTRIC STABLE CERAMIC
NB Figures in cells refer to size within ordering information
SMPS Capacitors (CH/CV Style)
Chip Assemblies European Preferred Styles
35
Style L max W max H max S ± 0.1 h
No. of leads
(±0.004)
per side
RH21 7.62 (0.300) 5.40 (0.213) 4.60 (0.181) 2.50 (0.098) 1.50 ±0.30
(0.059 ±0.012) 2
RH22 7.62 (0.300) 5.40 (0.213) 7.50 (0.295) 2.50 (0.098) 1.50 ±0.30
(0.059 ±0.012) 2
RH31 7.62 (0.300) 7.00 (0.270) 5.08 (0.200) 5.08 (0.200) 1.78 ±0.25
(0.070 ±0.010) 3
RH32 7.62 (0.300) 7.00 (0.270) 8.13 (0.320) 5.08 (0.200) 1.78 ±0.25
(0.070 ±0.010) 3
RH41 9.20 (0.362) 8.70 (0.342) 4.90 (0.192) 5.08 (0.200) 1.60 ±0.10
(0.062 ±0.004) 3
RH42 9.20 (0.362) 8.70 (0.342) 8.20 (0.323) 5.08 (0.200) 1.60 ±0.10
(0.062 ±0.004) 3
RH51 10.7 (0.421) 10.7 (0.421) 4.90 (0.192) 7.62 (0.300) 1.60 ±0.10
(0.062 ±0.004) 4
RH52 10.7 (0.421) 10.7 (0.421) 8.20 (0.323) 7.62 (0.300) 1.60 ±0.10
(0.062 ±0.004) 4
RH61 14.9 (0.586) 13.6 (0.535) 4.90 (0.192) 10.2 (0.400) 1.60 ±0.10
(0.062 ±0.004) 5
RH62 14.9 (0.586) 13.6 (0.535) 8.20 (0.323) 10.2 (0.400) 1.60 ±0.10
(0.062 ±0.004) 5
SMPS Capacitors (RH Style)
RH - Surface Mount ‘J’ Lead Range European Preferred Styles
0.1 µF to 10.0 µF Low ESR/ESL
50V to 500 VDC 2C1/X7R Dielectric
-55ºC to +125ºC
This range of uncoated MLC capacitors are processed for
input and output filter capacitors in high frequency DC-DC
convertor applications above 10 Watts e.g. telecomms and
instrumentation, where high volume and low cost is required.
These products are available in surface mount ‘J’ leaded
versions and can be supplied in bulk and tape/reel packaging.
Temperature Coefficient CECC 30 000, (4.24.1)
2C1/X7R: C Temperature Characteristic - ± 15%, -55ºC to +125ºC
Capacitance Test
2C1/X7R: Measured at 1 VRMS max at 1KHz
Dissipation Factor 25°C
2C1/X7R: 2.5% max at 1KHz, 1 VRMS max
Insulation Resistance 25°C
2C1/X7R: 100K megohms or 1000 megohms-µF, whichever is less
Dielectric Withstanding Voltage 25°C (Flash Test)
2C1/X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 150% rated voltage)
Life Test (1000 hrs) CECC 30 000 (4.23)
2C1/X7R: 200% rated voltage at +125ºC.
(500 Volt units @ 120% rated voltage)
Thermal Shock IEC 68.2.14
-55ºC to +125ºC, 5 cycles
Resistance to Solder Heat IEC 68.2.20
ELECTRICAL SPECIFICATIONS
Typical ESR (m) 3 µF, 100V X7R
ESR @ 100KHz 17
ESR @ 500KHz 12
ESR @ 1MHz 14
M1
M1 = M2 ±0.5 (0.020)
M2
1.65 (0.065) ±0.15 (0.006)
0.6 (0.024)
±0.1 (0.004)
W Max.L Max.
h
0.25 (0.010)Typ.
H Max.
1.4 (0.055) Typ.
S
Bend Radius
90° ±5°
2.54 (0.100)
±0.05 (0.002)
Non-Accum.
DIMENSIONS millimeters (inches)
DIMENSIONS millimeters (inches)
36
RH41
RH42
RH41
RH42
RH41
RH42
RH21
RH22
RH31
RH32
RH31
RH32
RH31
RH32
RH31
RH32
RH41
RH42
RH51
RH52
RH51
RH52
RH51
RH52
RH51
RH52
RH61
RH62
RH61
RH62
RH61
RH62
RH61
RH62
RH21/RH22 RH31/RH32 RH41/RH42 RH51/RH52 RH61/RH62
Style Style Style Style Style
Voltage DC
Cap µF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500
0.047
0.056
0.068
0.082
0.1
0.12
0.15
0.18
0.22
0.27
0.33
0.39
0.47
0.56
0.68
0.78
0.82
1
1.2
1.5
1.8
2.2
2.7
3
3.3
3.9
4.4
4.7
5.6
6.8
8.2
10
12
15
18
22
27
HOW TO ORDER
RH 31 5 C 225 M A 3 0 A 3
Style Size Voltage Dielectric Capacitance Capacitance Specification Package Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
(see table above) 5 = 50V C = X7R (2 significant K = ±10% A = Non 3 = Waffle Pack 0 = Standard A = Standard 3 = ‘J’ Lead
1 = 100V digits + no. M = ±20% customized A = Tape & Reel
2 = 200V of zeros)
7 = 500V eg. 105 = 1 µF
104 = 0.1 µF
2C1/X7R STABLE DIELECTRIC
PACKAGING
For availability of further parts in the RH21/RH22 Series, contact manufacturing.
SMPS Capacitors (RH Style)
RH - Surface Mount ‘J’ Lead Range European Preferred Styles
Style Qty/Reel 13" Max. Qty/Waffle Pack
RH21 see note 270
RH22 see note 270
RH31 800 108
RH32 500 108
RH41 800 108
RH42 see note 100
RH51 750 88
RH52 see note 100
RH61 500 126
RH62 see note 42
Note: T&R is not yet available. Contact manufacturing for further information as this will be available in the future.
37
Reliability
AVX has been involved in numerous military and customer High
Reliability programs for over 40 years.
Reliability [% Failure Rate (FR%) or Mean Time Between Failure
(MTBF)] is based on the number of failures and the cumulative
test hours expanded by test versus use acceleration factors. The
acceleration factors are calculated according to the following
relationships:
Temperature
Acceleration = 10 Where:
TT= test temp. (°C)
TU= use temp. (°C)
Voltage VT3 Where:
Acceleration =VuVT= test voltage
VU= use voltage
Military Reliability levels are usually expressed in terms of rated
conditions versus test conditions (generally 125°C and 2X
WVDC). If actual conditions are less than rated, the reliability lev-
els will improve significantly over rated and can be calculated by
use of the above relationship for determining accelerated test
hours. For example, if the actual use conditions were 75°C and
1/2 WVDC rating for a 125°C rated part, the acceleration factors
are 64X for voltage and 100X for temperature. Reliabilities based
on current testing can be obtained by contacting AVX.
General Processing Guidelines
Soldering
The SM styles capacitors are generally quite large relative to
other types of MLC capacitors. As a result of the size, precau-
tions must be taken before subjecting the parts to any soldering
operation in order to prevent thermal shock. Preheat prior to sol-
dering is essential. The heating rate of the SupraCap®ceramic
bodies during preheat must not exceed 4°C/second. The preheat
temperature must be within 50°C of the peak temperature
reached by the ceramic bodies, adjacent to lead material, through
the soldering process. The leads are attached to the chip stack
with 10 / 88 / 2 (Sn / Pb / Ag, Solidus 268°C, Liquidus 290°C).
Vibration Specifications*
Due to the weight of the SupraCap®and the size and strength of
the lead frame used, when the SupraCap®is to be used in an
application where it will undergo high frequency vibration, we
strongly recommend using our potted SM9 styles SupraCap®.
If other DIP styles SupraCap®are to be used in a high frequency
vibration environment, the SupraCap®should be supported in
some way to prevent oscillation of the capacitor assembly which
will result in lead breakage. If “strapping” the SupraCap®to the
board is the chosen method of support, care should be taken
not to chip the ceramic or apply undue pressure so that crack-
ing of the ceramic results.
If bonding the SupraCap®to the board with adhesive, consider-
ation of the CTE (coefficient of thermal expansion) is necessary.
A mismatch between the CTE of the ceramic and adhesive can
cause the ceramic to crack during temperature cycles.
Processing Guidelines*
There are practical size limitations for MLCs which prohibit reli-
able direct mounting of chip capacitors larger than 2225 (.22" x
.25") to a substrate. These large chips are subject to thermal
shock cracking and thermal cycling solder joint fatigue. Even
1812 (.18" x .12") and 2225 chip capacitors will have solder joint
failures due to mechanical fatigue after 1500 thermal cycles
from 0 to 85°C on FR4 and 3000 cycles on alumina from -55
to 125°C. This is due to differences in the Coefficient of Thermal
Expansion (CTE) between MLCs and substrate materials used in
hybrids and surface mount assemblies. Materials used in the
manufacture of all electronic components and substrates have
wide ranges of CTEs as shown in Table 1.
Table I
CTEs of Typical Components and Substrates
Linear Displacement
This CTE difference translates into mechanical stress that is
due to the linear displacement of substrate and component. Linear
displacement is a function of CTE (CTEsub – CTEcomp) and the
overall length of the component. Long components/ substrates
have large linear displacements even with a small CTE which will
cause high stress in the solder joints and fatigue after a few tem-
perature cycles. Figure 1 shows linear displacement for conditions
where CTE is positive and negative.
* Reference AVX Technical Information paper, “Processing Guidelines for
SMPS Capacitors.”
Material CTE (ppm/°C)
Alloy 42 5.3
Alumina 7
Barium Titanate Capacitor Body 10-12
Copper 17.6
Copper Clad Invar 6-7
Filled Epoxy Resin (<TR) 18-25
FR4/G-10 PC Board (X, Y) 18
Nickel or Steel 15
Polyimide/Glass PCB (X, Y) 12
Polyimide/Kevlar PCB (X, Y) 7
Tantalum 6.5
Tin Lead Alloys 27
SMPS Capacitors
Assembly Guidelines
TT– TU
25
38
SMPS Capacitors
Assembly Guidelines
Figure 1. Linear Displacement Between
Component and Substrate
General Processing Guidelines
Figure 2 shows the location of maximum stress in the solder
joint due to positive and negative DCTE and linear displace-
ment.
Stress Relief
Leadframes on larger capacitor sizes (greater than 2225) must
be used to minimize mechanical stress on the solder joints dur-
ing temperature cycling which is normal operation for power
supplies (Figure 3). Failing solder joints increase both ESR and
ESL causing an increase in ripple, noise and heat, accelerating
failure.
Layout
Effective solder dams must be used to keep all molten solder
on the solder lands during reflow or solder will migrate away
from the land, causing opens or weak solder joints. High fre-
quency output filters cannot use low power layout techniques
such as necked down conductors because of the stringent
inductance requirements.
Figure 3. “J” and “L” Leadframes Mounted on
Capacitors to Relieve Stress
Inductance
Adding leadframes has a small impact on component induc-
tance but this is the price that must be paid for reliable operation
over temperature. Figure 4 shows typical leadframe inductance
that is added for two lead standoff distances (0.020" and 0.050")
versus the number of leads along one side of SupraCap®which
are specifically designed output filter capacitors for 1 MHz and
above switchers. The actual inductance will be somewhat less
because the leadframes flare out from the lead where the lead-
frame is attached to the capacitor body.
Figure 4. Number of Leads on One Side of Capacitor vs. Total
Leadframe Inductance vs. Substrate Standoff Height
Very high frequency switch mode power supplies place
tremendous restrictions on output filter capacitors. In addition
to handling high ripple current (low ESR), ESL must approach
zero nano henrys, part must be truly surface mountable
and be available in new configurations to be integrated into
transmission lines to further reduce inductance with load
currents greater than 40A at 1 MHz and as frequencies move
above 1-2 MHz.
The total inductance is the sum of each side of the part where
the inductance of one side is the parallel combination of each
lead in the leadframe. That inductance is given by:
L (nH) = 5x[In (2x) / (B+C) + 1/2]
Where = lead length in inches
In = natural log
B+C = lead cross section in inches
so L1(nH) = 2xL (nH) where L1is the total inductance of the
leadframe.
CAPACITOR
SUBSTRATE
SOLDER
FILLETS
BODY
CAPACITOR
BODY
SOLDER LAND
"J" LEADS
"L" LEADS
0.050"
Standoff
0.020"
Standoff
Total Leadframe
Inductance (nH)
0.4
0.3
0.2
0.1
5 10 15 20
Number of leads on one side of Capacitor
0
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
SUBSTRATE
SUBSTRATE
SUBSTRATE
oper amb sub
T T CTE CTE cap
>>
oper amb sub
T T CTE CTE cap
<>
DIMENSIONS
AT AMBIENT
TEMPERATURE
SUBSTRATE LINEAR
DISPLACEMENT
PUTS SOLDER JOINT
AND CAPACITOR IN
TENSION
SUBSTRATE LINEAR
DISPLACEMENT
PUTS SOLDER JOINT
AND CAPACITOR IN
COMPRESSION
Figure 2
oper amb sub
T T CTE CTE cap
<>Stress for
CAPACITOR
SUBSTRATE
SOLDER
FILLET
MAXIMUM STRESS
oper amb sub
T T CTE CTE cap
>>Stress for
CAPACITOR
SUBSTRATE
SOLDER
FILLET
MAXIMUM STRESS
39
HOW TO ORDER
SMPS Capacitors (SK Style)
Commercial Radial Range
SK 01 3 E 125 Z A A*
Style Size
See chart
below
Voltage
25V = 3
50V = 5
100V = 1
200V = 2
500V = 7
Temperature
Coefficient
Z5U = E
X7R = C
C0G = A
Capacitance
Code
(2 significant
digits + no.
of zeros)
22 nF = 223
220 nF = 224
1 µF = 105
100 µF = 107
Capacitance
Tolerance
C0G: J = ±5%
K = ±10%
M = ±20%
X7R: K = ±10%
M = ±20%
Z = +80, -20%
Z5U: Z = +80, -20%
P = GMV (+100, -0%)
Test
Level
A = Standard
B = Hi-Rel*
Leads
A = Leads
Packaging
(See Note 1)
Note 1: No suffix signifies bulk packaging,
which is AVX standard packaging.
SK01, SK*3, SK*4, SK*5, SK*6, SK*9
& SK*0 are available taped and reel
per EIA-468. Use suffix “TR1” if tape &
reel is required.
PRODUCT OFFERING – C0G, X7R AND Z5U
AVX SK styles are conformally coated MLC capacitors for input or output
filtering in switch mode power supplies. They are specially processed to
handle high currents and are low enough in cost for commercial SMPS
application.
Temperature Coefficient
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C
X7R: C Temperature Coefficient - ±15%, -55° to +125°C
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C
Capacitance Test (MIL-STD-202 Method 305)
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
C0G and X7R: 100K Mor 1000 M-µF, whichever is less.
Z5U: 10K Mor 1000 M-µF, whichever is less.
Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G and X7R: 10K Mor 100 M-µF, whichever is less.
Z5U: 1K Mor 100 M-µF, whichever is less.
Dielectric Withstanding Voltage 25°C (Flash Test)
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 750 VDC)
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current.
Life Test (1000 hrs)
C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC)
Z5U: 150% rated voltage at +85°C
Moisture Resistance (MIL-STD-202 Method 106)
C0G, X7R, Z5U: Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method104, Condition B)
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
ELECTRICAL SPECIFICATIONS
TAPE & REEL QUANTITY
Part Pieces
SK01 2000
SK03/SK53 1000
SK04/SK54 1000
SK05/SK55 500
SK06/SK56 500
SK09/SK59 500
SK10/SK60 400
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications
across AC supply mains or AC line filtering with polarity reversal. Contact plant
for recommendations.
*Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A
(B Level), Subgroup 1 per MIL-PRF-49470.
40
SMPS Capacitors (SK Style)
Product Offering – C0G, X7R and Z5U
Style L (max.) H (max.) T (max.) LS (nom.) LD (nom.)
SK01 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SK03/SK53 7.62 (0.300) 7.62 (0.300) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SK04/SK54 10.2 (0.400) 10.2 (0.400) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SK05/SK55 12.7 (0.500) 12.7 (0.500) 5.08 (0.200) 10.2 (0.400) 0.635 (0.025)
SK06/SK56 22.1 (0.870) 15.2 (0.600) 5.08 (0.200) 20.1 (0.790) 0.813 (0.032)
SK07 27.9 (1.100) 15.2 (0.600) 5.08 (0.200) 24.9 (0.980) 0.813 (0.032)
SK08 27.9 (1.100) 15.2 (0.600) 8.89 (0.350) 24.9 (0.980) 0.813 (0.032)
SK09/SK59 17.0 (0.670) 13.7 (0.540) 5.08 (0.200) 14.6 (0.575) 0.635 (0.025)
SK10/SK60 23.6 (0.930) 18.3 (0.720) 6.35 (0.250) 20.3 (0.800) 0.813 (0.032)
L = Length T = Thickness LS = Lead Spacing Nominal ±.787 (0.031)
H = Height M = Meniscus 1.52 (0.060) max. LL = Lead Length 50.8 (2.000) max./25.4 (1.000) min.
LD = Lead Diameter Nominal ±.050 (0.002)
SK01 SK03 – SK10 SK53 - SK56 and SK59 – SK60
M
LD
LL
LS
H
L
M
LD
LL
LS
H
L
M
LD
LL
LS
H
H + 3.683
(0.145)
LT
DIMENSIONS millimeters (inches)
Z5U Capacitance Range (µF)
Style 25 WVDC 50 WVDC 100 WVDC 200 WVDC
min./max. min./max. min./max. min./max.
SK01
.10/1.2 .10/0.82 .10/0.47 .10/0.33
SK03/SK53
.10/5.6 .10/3.30 .10/2.20 .10/1.50
SK04/SK54
1.0/10.0 1.0/8.20 .10/4.70 .10/3.30
SK05/SK55
1.0/18.0 1.0/10.00 1.0/6.80 .10/4.70
SK06/SK56
1.0/47.0 1.0/39.00 1.0/22.00 1.0/15.00
SK07
1.0/68.0 1.0/47.00 1.0/27.00 1.0/18.00
SK08
82/120.0 56/100.00 33/47.00 22/33.00
SK09/SK59
1.0/27.0 1.0/18.00 1.0/10.00 1.0/6.80
SK10/SK60
1.0/56.0 1.0/39.00 1.0/22.00 1.0/18.00
C0G Capacitance Range (µF) X7R Capacitance Range (µF)
Style 25 50 100 200 500
WVDC WVDC WVDC WVDC WVDC
min./max. min./max. min./max. min./max. min./max.
SK01
.001/0.015 .001/0.012 .001/0.010 .0010/0.0056 .0010/0.0018
SK03/SK53
.01/0.056 .01/0.047 .01/0.039 .001/0.022 .001/0.0068
SK04/SK54
.01/0.12 .01/0.10 .01/0.082 .01/0.047 .001/0.015
SK05/SK55
.01/0.18 .01/0.15 .01/0.12 .01/0.068 .001/0.022
SK06/SK56
.10/0.56 .01/0.47 .01/0.39 .01/0.22 .01/0.068
SK07
.10/0.68 .01/0.56 .01/0.47 .01/0.27 .01/0.082
SK08
.82/1.20 .68/1.10 .56/0.82 .33/0.47 .10/0.15
SK09/SK59
.10/0.27 .01/0.22 .01/0.18 .01/0.10 .001/0.039
SK10/SK60
.10/0.68 .01/0.56 .01/0.47 .01/0.27 .01/0.082
Style 25 50 100 200 500
WVDC WVDC WVDC WVDC WVDC
min./max. min./max. min./max. min./max. min./max.
SK01
.01/0.39 .01/0.33 .01/0.27 .01/0.12 .001/0.033
SK03/SK53
.10/2.2 .10/1.8 .01/1.5 .01/0.56 .01/0.18
SK04/SK54
.10/4.7 .10/3.3 .10/2.7 .01/1.0 .01/0.33
SK05/SK55
.10/6.8 .10/5.6 .10/3.9 .10/1.8 .01/0.56
SK06/SK56
1.0/15 1.0/10 .10/5.6 .10/3.9 .10/1.2
SK07
1.0/18 1.0/14 1.0/8.2 .10/4.7 .10/1.8
SK08
22/33 15/22 10/15 5.6/8.2 2.2/3.3
SK09/SK59
.10/8.2 .10/5.6 .10/3.3 .10/2.2 .10/1.0
SK10/SK60
1.0/18 1.0/12 .10/6.8 .10/4.7 .10/1.5
41
HOW TO ORDER
SMPS Capacitors (SE Style)
Extended Commercial Radial Range
SE 01 3 C 125 M A A*
Style Size
See chart
below
Voltage
25V = 3
50V = 5
100V = 1
Temperature
Coefficient
X7R = C
Capacitance
Code
(2 significant
digits + no.
of zeros)
22 nF = 223
220 nF = 224
1 µF = 105
100 µF = 107
Capacitance
Tolerance
X7R: K = ±10%
M = ±20%
Z = +80, -20%
Test
Level
A = Standard
B = Hi-Rel*
Leads
A = Leads
Packaging
(See Note 1)
Note 1: No suffix signifies bulk packaging,
which is AVX standard packaging.
Parts available tape and reel per EIA-
468. Use suffix “TR1” if tape & reel is
required.
Note: Capacitors with X7R dielectrics are not intended for applications across
AC supply mains or AC line filtering with polarity reversal. Contact plant for
recommendations.
*Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-39014.
PRODUCT OFFERING – X7R
AVX SE styles offer capacitance extension to popular SK ranges. The CV
product for SE-series, X7R capacitors (TCC: ±15% over -55 to +125°C)
compares favorably to high CV ranges offered by other suppliers in much
less stable Y5U dielectric (TCC: +22/-56% over -30 to +85°C). SE style
capacitors are conformally coated and are designed for input and output
filtering applications in switch mode power supplies.
Temperature Coefficient
X7R: Temperature Coefficient ±15%, -55° to +125°C
Capacitance Test (MIL-STD-202 Method 305)
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Dissipation Factor 25°C
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
X7R: 100K Mor 1000 M-µF, whichever is less.
Insulation Resistance 125°C (MIL-STD-202 Method 302)
X7R: 10K Mor 100 M-µF, whichever is less.
Dielectric Withstanding Voltage 25°C (Flash Test)
X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current.
Life Test (1000 hrs)
X7R: 200% rated voltage at +125°C
Moisture Resistance (MIL-STD-202 Method 106)
X7R: Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
ELECTRICAL SPECIFICATIONS
TAPE & REEL QUANTITY
Part Pieces
SE01 2000
SE03/SE53 1000
SE04/SE54 1000
SE05/SE55 500
42
SMPS Capacitors (SE Style)
Product Offering – X7R
Style L (max.) H (max.) T (max.) LS (nom.) LD (nom.)
SE01 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SE03/SE53 7.62 (0.300) 7.62 (0.300) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SE04/SE54 10.2 (0.400) 10.2 (0.400) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SE05/SE55 12.7 (0.500) 12.7 (0.500) 5.08 (0.200) 10.2 (0.400) 0.635 (0.025)
SE06/SE56 22.1 (0.870) 15.2 (0.600) 5.08 (0.200) 20.1 (0.790) 0.813 (0.032)
L = Length T = Thickness LS = Lead Spacing Nominal ±.787 (0.031)
H = Height M = Meniscus 1.52 (0.060) max. LL = Lead Length 50.8 (2.000) max./25.4 (1.000 min.)
LD = Lead Diameter Nominal ±.050 (0.002)
SE01 SE03 – SE06 SE53 – SE56
M
LD
LL
LS
H
L
M
LD
LL
LS
H
L
M
LD
LL
LS
H
H + 3.683
(0.145)
LT
DIMENSIONS millimeters (inches)
X7R Capacitance Range (µF)
Style 25 50 100
WVDC WVDC WVDC
min./max. min./max. min./max.
SE01
0.47/1.5 0.39/1.0 0.33/0.68
SE03/SE53
2.7/6.8 2.2/4.7 1.8/3.3
SE04/SE54
5.6/12 3.9/10 3.3/6.8
SE05/SE55
8.2/18 6.8/12 4.7/8.2
SE06/SE56
18/39 12/27 6.8/15
43
SMPS Capacitors (CECC Offering)
European Preferred Styles
Size Code Length (L) Height (H) Thickness (T) Nom (t) S ±0.4
(max.) (max.) (max.)
BR40 10.16 (0.400) 11.7 (0.460) 3.81 (0.150) 0.51 (0.020) 5.08 (0.200)
BR50 12.7 (0.500) 12.7 (0.500) 5.1 (0.200) 0.64 (0.025) 10.16 (0.400)
BR84 23.6 (0.930) 17.78 (0.700) 6.35 (0.250) 0.76 (0.030) 20.32 (0.800)
LT
H
t
S
31.7
(1.248)
MIN.
1.50
(0.059)
MAX.
DIMENSIONS millimeters (inches)
1B/C0G 2C1/X7R
CECC 30 601 801 Issue 1 CECC 30 701 801 Issue 1
50V 100V 200V 500V 50V 100V 200V 500V
BR40 683-104 473-683 333-473 4R5-153 185-275 125-185 334-474 473-154
BR50 124-224 104-154 683-104 820-333 395-475 225-395 684-105 104-394
BR84 104-564 104-474 104-334 223-104 475-186 475-156 105-335 474-155
CECC APPROVED RANGE
BR 84 1 C 156 K T A
Style Size Voltage Dielectric Capacitance Capacitance Specification Lead Length
Code Code Code Code Code Tolerance Code Code
See 5 = 50V A = C0G (2 significant G = ±2% T = CECC A = 31.7mm min.
table 1 = 100V C = X7R digits + no. C0G only
above 2 = 200V of zeros) J = ±5%
7 = 500V C0G only
K = ±10%
M = ±20%
P = -0 +100%
Note: If tape and reel is required, add TR to the end of the part number
HOW TO ORDER
44
ESA Qualified SMPS Capacitors
High Voltage Chip/Leaded Capacitors
Capacitors, Fixed, Chip, Ceramic Dielectric, Type II, High
Voltage, Based on Styles 1812 and 1825 for use in ESA
space programs, according to ESA/ SCC Generic
Specification 3009 and associated Detail Specification
3009/034 as recommended by the Space Components
Coordination Group. (ranges in table below)
Note: Variants 01 to 12: metallized pads
Capacitors, Fixed, Ceramic Dielectric, Type II, High Voltage,
1.0 to 5.0 kV, Based on Case Styles VR, CV and CH for use
in ESA space programs, according to ESA/SCC Generic
Specification 3001 and associated Detail Specification
3001/034 as recommended by the Space Components
Coordination Group. (ranges in table)
Note 1: Lead Types
a - Leaded Radial (epoxy coated)
b - Leaded Radial (Polyurethane Varnish)
c - Straight Dual in Line
d - L Dual in Line
Note 2: Tolerances of ±10% and ±20% are available
Rated
Size Variant Voltage Tolerance Capacitance
(kV) (%) Code (E12)
1812 01 1.0 ±10 392 - 223
02 ±20
03 2.0 ±10 152 - 182
04 ±20
05 3.0 ±10 821 - 102
06 ±20
1825 07 1.0 ±10 273 - 563
08 ±20
09 2.0 ±10 222 - 682
10 ±20
11 3.0 ±10 821 - 392
12 ±20
3009034
Detail Spec
Number
XX
Type
Variant
(per table)
B
Test Level
C = Standard test level
B = Level C plus serialized
and capacitance
recorded before and
after 100% burn-in.
XXX
Capacitance
Code
The first two digits represent
significant figures and the third
digit specifies the number of
zeros to follow; i.e.
102 = 1000pF
103 = 10000pF
HOW TO ORDER
Parts should be ordered using the ESA variant number as follows:
HIGH VOLTAGE CHIP CAPACITORS
Case Lead Capacitance Code (E12)
Size Variant Type 1.0kV 2.0kV 3.0kV 4.0kV 5.0kV
VR30S 01 a 392 - 203 152 - 182 821 - 102
VR30 02 a 273 - 563 222 - 682 821 - 392
VR40 03 a 473 - 124 822 - 153 472 - 103 182 - 222
VR50 04 a 154 - 274 183 - 333 123 - 183 562 - 822 332 - 392
VR66 05 a 224 - 564 393 - 823 223 - 393 103 - 153 682 - 103
VR84 06 a 684 - 105 473 - 154 473 - 683 183 - 393 123 - 183
VR90 07 a 125 - 275 184 - 334 823 - 184 473 - 124 223 - 563
CV41 08 b 473 - 124 822 - 153 472 - 103 182 - 222
CH41 09 c 473 - 124 822 - 153 472 - 103 182 - 222
CH41 10 d 473 - 124 822 - 153 472 - 103 182 - 222
CV51 11 b 154 - 274 183 - 333 123 - 183 562 - 822 332 - 392
CH51 12 c 154 - 274 183 - 333 123 - 183 562 - 822 332 - 392
CH51 13 d 154 - 274 183 - 333 123 - 183 562 - 822 332 - 392
CV61 14 b 224 - 564 393 - 823 223 - 393 103 - 153 682 - 103
CH61 15 c 224 - 564 393 - 823 223 - 393 103 - 153 682 - 103
CH61 16 d 224 - 564 393 - 823 223 - 393 103 - 153 682 - 103
CV76 17 b 684 - 105 473 - 154 473 - 683 183 - 393 123 - 183
CH76 18 c 684 - 105 473 - 154 473 - 683 183 - 393 123 - 183
CH76 19 d 684 - 105 473 - 154 473 - 683 183 - 393 123 - 183
CV91 20 b 125 - 275 184 - 334 823 - 184 473 - 124 223 - 563
CH91 21 c 125 - 275 184 - 334 823 - 184 473 - 124 223 - 563
CH91 22 d 125 - 275 184 - 334 823 - 184 473 - 124 223 - 563
HIGH VOLTAGE LEADED CAPACITORS
3001034
Detail Spec
Number
XX
Type Variant
(per table above)
B
Test Level
C = Standard test level
B = Level C plus serialized
and capacitance recorded
before and after 100%
burn-in.
XXX
Capacitance
Code
The first two digits represent
significant figures and the third
digit specifies the number of
zeros to follow; i.e.
102 = 1000pF
103 = 10000pF
K
Capacitance
Tolerance
K = 10%
M = 20%
X
Voltage
M = 1kV
P = 2kV
R = 3kV
S = 4kV
Z = 5kV
Eg 300103412C274KM
Eg 300903401C223
HOW TO ORDER
Parts should be ordered using the ESA variant
number as follows:
45
ESA Qualified SMPS Capacitors
High Capacitance European Preferred Styles
Capacitors, Fixed, Ceramic Dielectric, Type II, High
Capacitance, Based on Case Styles BR, CV and CH for use
in ESA space programs, according to ESA/SCC Generic
Specification 3001 and associated Detail Specification
3001/030 as recommended by the Space Components
Coordination Group. (see ranges in table below)
Note 1: Lead Types
a - Leaded Radial (epoxy coated)
b - Leaded Radial (Polyurethane Varnish)
c - Straight Dual in Line
d - L Dual in Line
Note 2: Tolerances of ±10% and ±20% are available
Case Figure Capacitance Code (E12)
Size Variant 50V 100V 200V 500V
BR40 01 a 185 - 335 125 - 395 334 - 564 124 - 224
BR50 02 a 395 - 565 225 - 395 684 - 105 274 - 394
BR66 03 a 685 - 106 475 - 825 105 - 225 474 - 105
BR72 04 a 126 - 186 825 - 156 225 - 335 824 - 155
BR84 05 a 126 - 186 825 - 156 225 - 335 824 - 155
CV41 06 b 185 - 335 125 - 275 334 - 564 124 - 224
CH41 07 c 185 - 335 125 - 275 334 - 564 124 - 224
CH41 08 d 185 - 335 125 - 275 334 - 564 124 - 224
CH42 09 c 395 - 565 225 - 395 684 - 105 274 - 394
CH42 10 d 395 - 565 225 - 395 684 - 105 274 - 394
CH43 11 c 825 - 106 685 - 825 155 - 185 564 - 684
CH43 12 d 825 - 106 685 - 825 155 - 185 564 - 684
CH44 13 c 126 106 225 824 - 105
CH44 14 d 126 106 225 824 - 105
CV51 15 b 395 - 565 225 - 395 684 - 105 274 - 394
CH51 16 c 395 - 565 225 - 395 684 - 105 274 - 394
CH51 17 d 395 - 565 225 - 395 684 - 105 274 - 394
CH52 18 c 685 - 106 475 - 825 125 - 225 474 - 824
CH52 19 d 685 - 106 475 - 825 125 - 225 474 - 824
CH53 20 c 126 - 156 106 - 126 275 - 335 105 - 125
CH53 21 d 126 - 156 106 - 126 275 - 335 105 - 125
CH54 22 c 186 - 226 156 395 155
CH54 23 d 186 - 226 156 395 155
CV61 24 b 685 - 106 475 - 825 105 - 225 474 - 105
CH61 25 c 685 - 106 475 - 825 105 - 225 474 - 105
CH61 26 d 685 - 106 475 - 825 105 - 225 474 - 105
CH62 27 c 126 - 226 106 - 156 275 - 475 105 - 185
CH62 28 d 126 - 226 106 - 156 275 - 475 105 - 185
CH63 29 c 276 - 336 186 - 226 565 - 685 225 - 275
CH63 30 d 276 - 336 186 - 226 565 - 685 225 - 275
CH64 ˜31 c 396 276 - 336 825 - 106 335
CH64 32 d 396 276 - 336 825 - 106 335
CV71 33 b 126 - 186 825 - 156 225 - 335 824 - 155
CH71 34 c 126 - 186 825 - 156 225 - 335 824 - 155
CH71 35 d 126 - 186 825 - 156 225 - 335 824 - 155
CH72 36 c 226 - 396 186 - 276 395 - 685 185 - 335
CH72 37 d 226 - 396 186 - 276 395 - 685 185 - 335
HIGH CAPACITANCE LEADED CAPACITORS
3001030
Detail Spec
Number
XX
Type Variant
(per table above)
B
Test Level
C = Standard test level
B = Level C plus serialized and
capacitance recorded before
and after 100% burn-in.
XXX
Capacitance
Code
The first two digits represent
significant figures and the third
digit specifies the number of
zeros to follow; i.e.
102 = 1000pF
103 = 10000pF
K
Capacitance
Tolerance
K = 10%
M = 20%
X
Voltage
C = 50V
E = 100V
G = 200V
L = 500V
EG 300103018C106KC
HOW TO ORDER
Parts should be ordered using the ESA variant number as follows:
Case Figure Capacitance Code (E12)
Size Variant 50V 100V 200V 500V
CH73 38 c 476 - 566 336 - 396 825 - 106 395 - 475
CH73 39 d 476 - 566 336 - 396 825 - 106 395 - 475
CH74 40 c 686 476 126 565
CH74 41 d 686 476 126 565
CV76 42 b 126 - 186 825 - 156 225 - 335 824 - 155
CH76 43 c 126 - 186 825 - 156 225 - 335 824 - 155
CH76 44 d 126 - 186 825 - 156 225 - 335 824 - 155
CH77 45 c 226 - 396 186 - 276 395 - 685 185 - 335
CH77 46 d 226 - 396 186 - 276 395 - 685 185 - 335
CH78 47 c 476 - 566 336 - 396 825 - 106 395 - 475
CH78 48 d 476 - 566 336 - 396 825 - 106 395 - 475
CH79 49 c 686 476 126 565
CH79 50 d 696 476 126 565
CH81 51 c 156 - 226 126 - 186 225 - 395 824 - 155
CH81 52 d 156 - 226 126 - 186 225 - 395 824 - 155
CH82 53 c 276 - 476 226 - 396 475 - 825
CH82 54 d 276 - 476 226 - 396 475 - 825
CH83 55 c 566 - 686 476 - 566 10 - 12
CH83 56 d 566 - 686 476 - 566 10 - 12
CH84 57 c 826 686 156
CH84 58 d 826 686 156
CH86 59 c 226 - 336 156 - 276 395 - 685 155 - 225
CH86 60 d 226 - 336 156 - 276 395 - 685 155 - 225
CH87 61 c 396 - 686 336 - 566 825 - 156
CH87 62 d 396 - 686 336 - 566 825 - 156
CH88 63 c 826 - 107 686 - 826 186 - 226
CH88 64 d 826 - 107 686 - 826 186 - 226
CH89 65 c 127 107 276
CH89 66 d 127 107 276
CH91 67 c 396 - 476 336 - 396 825 - 106
CH91 68 d 396 - 476 336 - 396 825 - 106
CH92 69 c 566 - 107 476 - 826 126 - 226
CH92 70 d 566 - 107 476 - 826 126 - 226
CH93 71 c 127 - 157 107 - 127 276 - 336
CH93 72 d 127 - 157 107 - 127 276 - 336
CH94 73 c 187 157 396
CH94 74 d 187 157 396
Lot Acceptance Testing is available for all our ESA qualified ranges.
LAT 1 42 samples 12 mechanical + 20 life test + 6 for TC + 4 for solder
LAT 2 30 samples 20 life test + 6 for TC + 4 for solder
LAT 3 10 samples 6 for TC + 4 for solder
46
SMPS Capacitors
ESA/SCC DETAIL SPECIFICATION NO. 3001/034
PHYSICAL DIMENSIONS – VR STYLE
Millimeters (Inches)
ESA/SCC DETAIL SPECIFICATION NO. 3001/034
PHYSICAL DIMENSIONS – CV STYLE
Millimeters (Inches)
L
I
e
M= = M
Symbol Variants 01 to 06 Variants 07 to 12
Min. Max. Min. Max.
L4.20 5.00 4.20 5.00
(0.165) (0.197) (0.165) (0.197)
l2.80 3.60 5.67 6.67
(0.110) (0.142) (0.223) (0.263)
e 3.00 3.30
(0.118) (0.130)
M0.25 0.75 0.25 0.75
(0.010) (0.030) (0.010) (0.030)
B
H
L
E
J
Ød
F
Variant Case B Ød E F H J L
Size Max. Min. Max. Min. Max. Max. Max. Max. Min.
01 VR30S 7.62 0.51 0.61 4.58 5.58 5.00 4.60 1.50 31.7
(0.300) (0.020) (0.024) (0.180) (0.220) (0.197) (0.181) (0.059) (1.248)
02 VR30 7.62 0.51 0.61 4.58 5.58 5.00 9.62 1.50 31.7
(0.300) (0.020) (0.024) (0.180) (0.220) (0.197) (0.379) (0.059) (1.248)
03 VR40 10.16 0.51 0.61 4.58 5.58 5.00 11.7 1.50 31.7
(0.400) (0.020) (0.024) (0.180) (0.220) (0.197) (0.461) (0.059) (1.248)
04 VR50 12.7 0.59 0.69 9.66 10.66 5.10 14.2 1.50 31.7
(0.500) (0.023) (0.027) (0.380) (0.420) (0.201) (0.559) (0.059) (1.248)
05 VR66 17.5 0.86 0.96 14.2 15.2 6.40 16.5 1.50 31.7
(0.689) (0.034) (0.038) (0.559) (0.598) (0.252) (0.650) (0.059) (1.248)
06 VR84 23.62 0.86 0.96 20.4 22.0 6.40 19.78 1.50 31.7
(0.930) (0.034) (0.038) (0.803) (0.866) (0.252) (0.779) (0.059) (1.248)
07 VR90 23.5 0.86 0.96 20.4 22.0 6.40 42.0 1.50 31.7
(0.925) (0.034) (0.038) (0.803) (0.866) (0.252) (1.654) (0.059) (1.248)
Variant Case B Ød E F H L
Size Max. Min. Max. Min. Max. Max. Max. Min. Max.
08 CV41 10.6 0.65 0.75 7.70 8.70 3.80 8.70 22.0 28.0
(0.417) (0.026) (0.030) (0.303) (0.343) (0.150) (0.343) (0.866) (1.102)
11 CV51 11.9 0.85 0.95 9.66 10.66 3.80 10.7 22.0 28.0
(0.469) (0.033) (0.037) (0.380) (0.420) (0.150) (0.421) (0.866) (1.102)
14 CV61 16.5 0.85 0.95 14.74 15.74 3.80 13.6 22.0 28.0
(0.650) (0.033) (0.037) (0.580) (0.620) (0.150) (0.535) (0.866) (1.102)
17 CV76 22.7 0.85 0.95 20.4 22.0 3.80 16.6 22.0 28.0
(0.894) (0.033) (0.037) (0.803) (0.866) (0.150) (0.654) (0.866) (1.102)
20 CV91 22.7 1.15 1.25 20.4 22.0 3.80 40.6 22.0 28.0
(0.894) (0.045) (0.049) (0.803) (0.866) (0.150) (1.598) (0.866) (1.102)
F
d
H
LL
E
ESA/SCC DETAIL SPECIFICATION NO. 3009/034
PHYSICAL DIMENSIONS
Millimeters (Inches)
47
ESA/SCC DETAIL SPECIFICATION NO. 3001/034
PHYSICAL DIMENSIONS – CH STYLE, D.I.L. Millimeters (Inches)
SMPS Capacitors
A
L
a1
be
D
F
b1
E
Variant Case A D E F
Size Max. Max. Min. Max. Max.
07 CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
09 CH42 7.40 (0.291) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
11 CH43 11.1 (0.437) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
13 CH44 14.8 (0.583) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
16 CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
18 CH52 7.40 (0.291) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
20 CH53 11.1 (0.437) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
22 CH54 14.8 (0.583) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
25 CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
27 CH62 7.40 (0.291) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
29 CH63 11.1 (0.437) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
31 CH64 14.8 (0.583) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
34 CH71 3.80 (0.150) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
36 CH72 7.40 (0.291) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
38 CH73 11.1 (0.437) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
40 CH74 14.8 (0.583) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
43 CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
45 CH77 7.40 (0.291) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
47 CH78 11.1 (0.437) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
49 CH79 14.8 (0.583) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
51 CH81 3.80 (0.150) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
53 CH82 7.40 (0.291) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
55 CH83 11.1 (0.437) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
57 CH84 14.8 (0.583) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
59 CH86 3.80 (0.150) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
61 CH87 7.40 (0.291) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
63 CH88 11.1 (0.437) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
65 CH89 14.8 (0.583) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
67 CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
69 CH92 7.40 (0.291) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
71 CH93 11.1 (0.437) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
73 CH94 14.8 (0.583) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
Symbol Min. Max. Notes
a1 - 2.00 1
(0.079)
b0.45 0.55 1
(0.018) (0.022)
b1 0.204 0.304 1
(0.008) (0.012)
e2.49 2.59 2
(0.098) (0.102)
L12.0 14.0 1
(0.472) (0.551)
Notes: 1 – All leads
2 – Each space
ESA/SCC DETAIL SPECIFICATION NO. 3001/034
PHYSICAL DIMENSIONS – CH STYLE, L Millimeters (Inches)
A
L
be
D
F
EL L
Variant Case A D E F
Size Max. Max. Min. Max. Max.
10 CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
13 CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
16 CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
19 CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
22 CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
Symbol Min. Max. Notes
b0.45 0.55 1
(0.018) (0.022)
e2.49 2.59 2
(0.098) (0.102)
L2.04 3.01 1
(0.080) (0.120)
Notes: 1 – All leads
2 – Each space
48
SMPS Capacitors
ESA/SCC DETAIL SPECIFICATION NO. 3001/030
PHYSICAL DIMENSIONS – BR STYLE
Millimeters (Inches)
ESA/SCC DETAIL SPECIFICATION NO. 3001/030
PHYSICAL DIMENSIONS – CV STYLE
Millimeters (Inches)
B
H
L
E
J
Ød
F
Variant Case B Ød E F H J L
Size Max. Min. Max. Min. Max. Max. Max. Max. Min.
01 BR40 10.16 0.51 0.61 4.58 5.58 5.00 11.7 1.50 31.7
(0.400) (0.020) (0.024) (0.180) (0.220) (0.197) (0.461) (0.059) (1.248)
02 BR50 12.7 0.59 0.69 9.66 10.66 5.10 14.2 1.50 31.7
(0.500) (0.023) (0.027) (0.380) (0.420) (0.201) (0.559) (0.059) (1.248)
03 BR66 17.5 0.86 0.96 14.2 15.2 6.40 16.5 1.50 31.7
(0.689) (0.034) (0.038) (0.559) (0.598) (0.252) (0.650) (0.059) (1.248)
04 BR72 19.3 0.86 0.96 14.74 15.74 6.40 24.0 1.50 31.7
(0.760) (0.034) (0.038) (0.580) (0.620) (0.252) (0.945) (0.059) (1.248)
05 BR84 23.62 0.71 0.81 18.93 20.83 6.40 19.78 1.50 31.7
(0.930) (0.028) (0.032) (0.745) (0.820) (0.252) (0.779) (0.059) (1.248)
Variant Case B Ød E F H L
Size Max. Min. Max. Min. Max. Max. Max. Min. Max.
06 CV41 10.6 0.65 0.75 7.70 8.70 3.80 8.70 22.0 28.0
(0.417) (0.026) (0.030) (0.303) (0.343) (0.150) (0.343) (0.866) (1.102)
15 CV51 11.9 0.85 0.95 9.66 10.66 3.80 10.7 22.0 28.0
(0.469) (0.033) (0.037) (0.380) (0.420) (0.150) (0.421) (0.866) (1.102)
24 CV61 16.5 0.85 0.95 14.74 15.74 3.80 13.6 22.0 28.0
(0.650) (0.033) (0.037) (0.580) (0.620) (0.150) (0.535) (0.866) (1.102)
33 CV71 17.8 0.85 0.95 14.74 15.74 3.80 21.6 22.0 28.0
(0.701) (0.033) (0.037) (0.580) (0.620) (0.150) (0.850) (0.866) (1.102)
42 CV76 22.7 0.85 0.95 20.4 22.0 3.80 16.6 22.0 28.0
(0.894) (0.033) (0.037) (0.803) (0.866) (0.150) (0.654) (0.866) (1.102)
F
d
H
LL
E
49
ESA/SCC DETAIL SPECIFICATION NO. 3001/030
PHYSICAL DIMENSIONS – CH STYLE, D.I.L. Millimeters (Inches)
SMPS Capacitors
A
L
a1
be
D
F
b1
E
Variant Case A D E F
Size Max. Max. Min. Max. Max.
07 CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
09 CH42 7.40 (0.291) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
11 CH43 11.1 (0.437) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
13 CH44 14.8 (0.583) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
16 CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
18 CH52 7.40 (0.291) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
20 CH53 11.1 (0.437) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
22 CH54 14.8 (0.583) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
25 CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
27 CH62 7.40 (0.291) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
29 CH63 11.1 (0.437) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
31 CH64 14.8 (0.583) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
34 CH71 3.80 (0.150) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
36 CH72 7.40 (0.291) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
38 CH73 11.1 (0.437) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
40 CH74 14.8 (0.583) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
43 CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
45 CH77 7.40 (0.291) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
47 CH78 11.1 (0.437) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
49 CH79 14.8 (0.583) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
51 CH81 3.80 (0.150) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
53 CH82 7.40 (0.291) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
55 CH83 11.1 (0.437) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
57 CH84 14.8 (0.583) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
59 CH86 3.80 (0.150) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
61 CH87 7.40 (0.291) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
63 CH88 11.1 (0.437) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
65 CH89 14.8 (0.583) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
67 CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
69 CH92 7.40 (0.291) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
71 CH93 11.1 (0.437) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
73 CH94 14.8 (0.583) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
Symbol Min. Max. Notes
a1 - 2.00 1
(0.079)
b0.45 0.55 1
(0.018) (0.022)
b1 0.204 0.304 1
(0.008) (0.012)
e2.49 2.59 2
(0.098) (0.102)
L2.04 3.04 1
(0.080) (0.120)
Notes: 1 – All leads
2 – Each space
ESA/SCC DETAIL SPECIFICATION NO. 3001/030
PHYSICAL DIMENSIONS – CH STYLE, L Millimeters (Inches)
A
L
be
D
F
EL L
Variant Case A D E F
Size Max. Max. Min. Max. Max.
08 CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)
10 CH42 7.40 (0.291) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)
12 CH43 11.1 (0.437) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)
14 CH44 14.8 (0.583) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)
17 CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
19 CH52 7.40 (0.291) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
21 CH53 11.1 (0.437) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
23 CH54 14.8 (0.583) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
26 CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
28 CH62 7.40 (0.291) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
30 CH63 11.1 (0.437) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
32 CH64 14.8 (0.583) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
35 CH71 3.80 (0.150) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
37 CH72 7.40 (0.291) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
39 CH73 11.1 (0.437) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
41 CH74 14.8 (0.583) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
44 CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
46 CH77 7.40 (0.291) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
48 CH78 11.1 (0.437) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
50 CH79 14.8 (0.583) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
52 CH81 3.80 (0.150) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
54 CH82 7.40 (0.291) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
56 CH83 11.1 (0.437) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
58 CH84 14.8 (0.583) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
60 CH86 3.80 (0.150) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
62 CH87 7.40 (0.291) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
64 CH88 11.1 (0.437) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
66 CH89 14.8 (0.583) 38.2 (1.504)) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
68 CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
70 CH92 7.40 (0.291) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
72 CH93 11.1 (0.437) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
74 CH94 14.8 (0.583) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
Symbol Min. Max. Notes
b0.45 0.55 1
(0.018) (0.022)
e2.49 2.59 2
(0.098) (0.102)
L2.04 3.04 1
(0.080) (0.120)
Notes: 1 – All leads
2 – Each space
50
HV 01 A C 105 M A N 650
AVX Style Size Voltage Temperature Capacitance Capacitance Failure Termination Height
See 1K = A Coefficient Code Tolerance Rate N = Straight Lead Max
dimen- 2K = G C0G = A (2 significant C0G: J = ±5% A = Does J = Leads Dimension "A"
sions 3K = H X7R = C digits + no. K = ±10% not apply formed in 120 = 0.120"
chart 4K = J N1500 = 4 of zeros) M = ±20% L = Leads 240 = 0.240"
5K = K 10 pF = 100 X7R: K = ±10% formed out 360 = 0.360"
100 pF = 101 M = ±20% 480 = 0.480"
1,000 pF = 102 Z = +80, -20% 650 = 0.650"
22,000 pF = 223 N1500: J = ±5%
220,000 pF = 224 K = ±10%
1 µF = 105 M = ±20%
10 µF = 106
100 µF = 107
C0G Dielectric
General
Specifications
Capacitance Range
100 pF to 1.2 µF
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz, for 100 pF use 1 MHz)
Capacitance Tolerances
±5%, ±10%, ±20%
Operating Temperature Range
-55°C to +125°C
Temperature Characteristic
0 ± 30 ppm/°C
Voltage Ratings
1000 VDC thru 5000 VDC (+125°C)
Dissipation Factor
0.15% max.
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz, for 100 pF use 1 MHz)
Insulation Resistance (+25°C, at 500V)
100K Mmin., or 1000 M-µF min.,
whichever is less
Insulation Resistance (+125°C, at 500V)
10K Mmin., or 100 M-µF min.,
whichever is less
Dielectric Strength
120% rated voltage, 5 seconds
Life Test
100% rated and +125°C
N1500
General
Specifications
Capacitance Range
100 pF to 1.9 µF
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz)
Capacitance Tolerances
±5%, ±10%, ±20%
Operating Temperature Range
-55°C to +125°C
Temperature Characteristic
-1500 ±250 ppm/°C
Voltage Ratings
1000 VDC thru 5000 VDC (+125°C)
Dissipation Factor
0.15% max.
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz)
Insulation Resistance (+25°C, at 500V)
100K Mmin., or 1000 M-µF min.,
whichever is less
Insulation Resistance (+125°C, at 500V)
10K Mmin., or 100 M-µF min.,
whichever is less
Dielectric Strength
120% rated voltage, 5 seconds
Life Test
100% rated and +125°C
X7R Dielectric
General
Specifications
Capacitance Range
100 pF to 15 µF
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz)
Capacitance Tolerances
±10%, ±20%, +80%, -20%
Operating Temperature Range
-55°C to +125°C
Temperature Characteristic
±15% (0 VDC)
Voltage Ratings
1000 VDC thru 5000 VDC (+125°C)
Dissipation Factor
2.5% max.
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz)
Insulation Resistance (+25°C, at 500V)
100K Mmin., or 1000 M-µF min.,
whichever is less
Insulation Resistance (+125°C, at 500V)
10K Mmin., or 100 M-µF min.,
whichever is less
Dielectric Strength
120% rated voltage, 5 seconds
Life Test
100% rated and +125°C
HOW TO ORDER AVX Styles: HV01 THRU HV06
Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
High Voltage DIP Leaded (HV Style)
U.S. Preferred Styles
51
No. of Leads
Style A (max.) B (max.) C ±.635(±.025) D ±.635(±.025) E (max.) per side
HV01 53.3 (2.100) 10.5 (0.415) 54.9 (2.160) 4
HV02 39.1 (1.540) 20.3 (0.800) 40.7 (1.600) 8
HV03 27.2 (1.070) 10.5 (0.415) 28.2 (1.130) 4
HV04 10.2 (0.400) 10.2 (0.400) 11.2 (0.440) 4
HV05 6.35 (0.250) 6.35 (0.250) 7.62 (0.300) 3
HV06 53.3 (2.100) 29.0 (1.140) 54.9 (2.160) 11
High Voltage DIP Leaded (HV Style)
Surface Mount and Thru-Hole HV Styles U.S. Preferred Styles
DIMENSIONS millimeters (inches)
See page 52 for
maximum “A”
Dimension
For “N” Style Leads,
“B” Dimension = “A”
Dimension Plus 0.065".
For “J” & “L” Leads,
“B” Dimension = “A”
Dimension Plus 0.080"
D
A
B
6.35
(0.250) MIN.
0.508 (0.020) TYP.
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
1.397 (0.055)
±0.254 (0.010)
E
C
CHIP SEPARATION
0.254 (0.010) TYP.
0.254 (0.010) TYP.
“N” STYLE LEADS
“J” STYLE LEADS
D
A
B
0.508 (0.020) TYP.
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
1.397 (0.055)
±0.254 (0.010)
E
C
CHIP SEPARATION
0.254 (0.010) TYP.
0.254 (0.010) TYP.
0.254 (0.010) RAD. (TYP.)
1.905 (0.075)
±0.635 (0.025)
TYP.
1.778 (0.070)
±0.254 (0.010)
E
C
CHIP SEPARATION
0.254 (0.010) TYP.
0.254 (0.010) TYP.
0.254 (0.010) RAD. (TYP.)
1.778 (0.070)
1.905 (0.075)
±0.635 (0.025)
TYP.
±0.254 (0.010)
D
A
B
0.508 (0.020) TYP.
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
1.397 (0.055)
±0.254 (0.010)
“L” STYLE LEADS
52
High Voltage DIP Leaded (HV Style)
Surface Mount and Thru-Hole HV Styles U.S. Preferred Styles
1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 1KV 2KV 3KV 4KV 5KV
.086 .024 .011 .0062 .0052 .120 .034 .015 .0088 .0074 .042 .013 .0058 .0030 .0024 .012 .0040 .0018 .0009 .0007 .0048 .0013 .240 .066 .028 .018 .015
.140 .042 .018 .010 .0084 .200 .058 .024 .014 .012 .068 .020 .0090 .0050 .0040 .020 .0066 .0028 .0014 .0012 .0078 .0022 .380 .100 .046 .030 .026
1.10 .260 .150 .066 .052 1.50 .360 .200 .094 .078 .520 .130 .072 .032 .024 .160 .042 --- --- --- .060 --- 3.00 .700 .440 .200 .170
1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 1KV 2KV 3KV 4KV 5KV
.170 .048 .022 .012 .010 .240 .068 .031 .017 .015 .084 .026 .011 .0060 .0048 .025 .0080 .0036 .0018 .0014 .0096 .0027 .480 .130 .056 .036 .031
.280 .084 .036 .020 .016 .400 .110 .048 .028 .024 .130 .040 .018 .010 .0080 .040 .013 .0056 .0028 .0025 .015 .0044 .760 .210 .092 .060 .052
2.20 .520 .300 .130 .100 3.10 .720 .400 .180 .150 1.00 .270 .140 .064 .048 .330 .084 --- --- --- .120 --- 6.00 1.40 .880 .400 .340
Max Capacitance (µF) Available Versus Style with Height (A) of 0.120" - 3.05mm
Max Capacitance (µF) Available Versus Style with Height (A) of 0.480" - 12.2mm
Max Capacitance (µF) Available Versus Style with Height (A) of 0.360" - 9.15mm
Max Capacitance (µF) Available Versus Style with Height (A) of 0.240" - 6.10mm
Max Capacitance (µF) Available Versus Style with Height (A) of 0.650" - 16.5mm
HV01 _ _____AN120 HV02 _ _ ____AN120 HV03 _ _____AN120 HV04 _ _ _ _ _ _ AN120 HV05 _ _ ____AN120 HV06 _ _ ____AN120
AVX
STYLE
C0G
N1500
X7R
HV01 _ _____AN240 HV02 _ _ ____AN240 HV03 _ _____AN240 HV04 _ _ _ _ _ _ AN240 HV05 _ _ ____AN240 HV06 _ _ ____AN240
AVX
STYLE
C0G
N1500
X7R
1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 1KV 2KV 3KV 4KV 5KV
.250 .072 .033 .018 .015 .360 .100 .047 .026 .022 .120 .039 .017 .0090 .0072 .038 .012 .0054 .0027 .0022 .014 .0040 .720 .200 .084 .055 .047
.420 .120 .055 .030 .025 .600 .170 .072 .043 .036 .200 .060 .027 .015 .012 .060 .020 .0084 .0043 .0037 .023 .0066 1.10 .310 .130 .090 .078
3.30 .780 .450 .200 .150 4.70 1.00 .600 .280 .230 1.50 .410 .210 .096 .072 .490 .120 --- --- --- .180 --- 9.00 2.10 1.30 .600 .510
HV01 _ _____AN360 HV02 _ _ ____AN360 HV03 _ _____AN360 HV04 _ _ _ _ _ _ AN360 HV05 _ _ ____AN360 HV06 _ _ ____AN360
AVX
STYLE
C0G
N1500
X7R
1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 1KV 2KV 3KV 4KV 5KV
.340 .096 .044 .024 .020 .480 .130 .063 .035 .030 .160 .052 .023 .012 .0096 .051 .016 .0072 .0036 .0029 .019 .0054 .960 .260 .110 .073 .062
.560 .160 .073 .040 .033 .800 .230 .096 .057 .048 .270 .080 .036 .020 .016 .080 .026 .011 .0057 .0050 .031 .0088 1.50 .420 .180 .120 .100
4.40 1.00 .600 .260 .200 6.30 1.40 .800 .370 .310 2.00 .550 .280 .120 .096 .650 .160 --- --- --- .240 --- 12.0 2.80 1.70 .800 .68
HV01 _ _____AN480 HV02 _ _ ____AN480 HV03 _ _____AN480 HV04 _ _ _ _ _ _ AN480 HV05 _ _ ____AN480 HV06 _ _ ____AN480
AVX
STYLE
C0G
N1500
X7R
1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 1KV 2KV 3KV 4KV 5KV
.430 .120 .056 .031 .026 .610 .170 .079 .044 .037 .210 .065 .029 .015 .012 .064 .020 .009 .0045 .0037 .024 .0068 1.20 .330 .140 .092 .078
.700 .210 .092 .050 .042 1.00 .290 .120 .072 .060 .340 .100 .045 .025 .020 .100 .033 .014 .0072 .0063 .039 .011 1.90 .530 .230 .150 .130
5.50 1.30 .750 .330 .260 7.90 1.80 1.00 .470 .390 2.60 .690 .360 .160 .120 .820 .210 --- --- --- .300 --- 15.0 3.50 2.20 1.00 .850
HV01 _ _____AN650 HV02 _ _ ____AN650 HV03 _ _____AN650 HV04 _ _ _ _ _ _ AN650 HV05 _ _ ____AN650 HV06 _ _ ____AN650
AVX
STYLE
C0G
N1500
X7R
53
High Voltage Leaded (CH Style)
Radial, Dual-in-Line & ‘L’ Lead SMT European Preferred Styles
330 pF to 2.7 µF
1kV to 5kV
-55ºC to +125ºC
1B/C0G and 2C1/X7R Dielectrics
This range of radial, dual-in-line for both through hole and
surface mount products is intended for use in high voltage
power supplies and voltage multiplier circuits. The multilayer
ceramic construction offers excellent volumetric efficiency
compared with other high voltage dielectrics. They are suitable
for both high reliability and industrial applications.
Temperature Coefficient CECC 30 000, (4.24.1)
1B/C0G: A Temperature Coefficient - 0 ± 30ppm/ºC
2C1/X7R: C Temperature Characteristic - ± 15% (0v dc)
Capacitance Test 25ºC
1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz <100 pF)
2C1/X7R: Measured at 1 VRMS max at 1KHz
Dissipation Factor 25°C
1B/C0G: 0.15% max at 1KHz, 1 VRMS (1MHz for <100 pF)
2C1/X7R: 2.5% max at 1KHz, 1 VRMS
Insulation Resistance
1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-µF,
whichever is less
Dielectric Withstanding Voltage 25°C
130% rated voltage for 5 seconds
Life Test (1000 hrs) CECC 30000 (4.23)
1B/C0G & 2C1/X7R: 120% rated voltage at +125ºC.
Aging
1B/C0G: Zero
2C1/X7R: 2.5%/decade hour
ELECTRICAL SPECIFICATIONS
L max.
2.54 (0.100)
±0.5 (0.200)
13 (0.512)
±1.0 (0.039)
2.54 (0.100) ±0.5 (0.200)
2.54 (0.100) ±0.5 (0.200)
3.8 (0.149)
max.
T max.
2.0
(0.079)
max.
L
max.
S ±0.5
(0.020)
S ±0.5 (0.020)
L2 L1
L2 L1
W max.W max.
LW S
No. of
Style Leads
(max) (max) (nom) per side
CH41 9.2 (0.362) 8.7 (0.342) 8.2 (0.323) 3
CH51 10.7 (0.421) 10.7 (0.421) 10.2 (0.400) 4
CH61 14.9 (0.587) 13.6 (0.535) 14.0 (0.551) 5
CH76 21.6 (0.850) 21.6 (0.850) 20.3* (0.800) 6
CH91 24.0 (0.944) 40.6 (1.598) 20.3* (0.800) 14
DIMENSIONS millimeters (inches)
DUAL-IN-LINE
*Tolerance ± 0.8
HOW TO ORDER
CH 41 A C 104 K A 8 0 A 7
Style Size Voltage Dielectric Capacitance Capacitance Specification Finish Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
A = 1kV A = C0G (2 significant J = ±5% A = Non customized 8 = Varnish 0 = Standard A = Standard 0 = Dual in line
G = 2kV C = X7R digits + no. K = ±10% straight
H = 3kV of zeros) M = ±20% 7 = Dual in line
J = 4kV eg. 105 = 1 µF P = -0 +100% ‘L’ style
K = 5kV 106 = 10 µF
107 = 100 µF
54
LHTS
Lead
Style Dia
(max) (max) (max) (nom) (nom)
CV41 10.6 (0.417) 8.70 (0.343) 3.80 (0.150) 8.20 (0.323) 0.70 (0.028)
CV51 11.9 (0.469) 10.7 (0.421) 3.80 (0.150) 10.2 (0.402) 0.90 (0.035)
CV61 16.5 (0.650) 13.6 (0.536) 3.80 (0.150) 15.2 (0.599) 0.90 (0.035)
CV76 22.7 (0.893) 16.6 (0.654) 3.80 (0.150) 21.2* (0.835) 0.90 (0.035)
CV91 22.7 (0.893) 40.6 (1.598) 3.80 (0.150) 21.2* (0.835) 1.20 (0.047)
Part Number format (CVxxxxxxxxxxxA2)
Typical Part Number CV51AC154MA40A2
VERTICALLY MOUNTED RADIAL PRODUCT
High Voltage Leaded (CV Style)
Chip Assemblies European Preferred Styles
*Tolerance ± 0.8mm (0.031)
DIMENSIONS millimeters (inches)
T Max.
H Max.
25 (0.984)
±3 (0.118)
Lead Dia.
See Table
S ±0.5
(0.020)
L Max.
HOW TO ORDER
CV 51 A C 154 M A 8 0 A 2
Style Size Voltage Dielectric Capacitance Capacitance Specification Finish Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
A = 1kV A = C0G (2 significant J = ±5% A = Non customized 8 = Varnish 0 = Standard A = Standard
G = 2kV C = X7R digits + no. K = ±10%
H = 3kV of zeros) M = ±20%
J = 4kV eg. 105 = 1 µF P = -0 +100%
K = 5kV 106 = 10 µF
107 = 100 µF
55
CV41-CH41 CV51-CH51 CV61-CH61 CV76-CH76 CV91-CH91
Styles Styles Styles Styles Styles
Cap pF
330 K
390 J K
470 J K
560 J K
680 J K
820 H J K
1000 H J K
1200 H J K
1500 H J K
1800 G H J K
2200 G H J K
2700 G H J K
3300 G G H J K
3900 G G H J K
4700 G G H J K
5600 A G H J K
6800 A G G H J K
8200 A G G H J K
10000 A G G H J K
12000 A A G H J K
15000 A A G G H J
18000 A G G H J
22000 A A G H
27000 A A G H
33000 A A G H
39000 A G G
47000 A A G
56000 A A G
68000 A A G
82000 AG
100000 AG
120000 A
150000 A
180000 A
220000 A
270000 A
330000 A
1B/C0G ULTRA STABLE CERAMIC
NB Figures in cells refer to size within ordering information
High Voltage Leaded (CH/CV Style)
Chip Assemblies European Preferred Styles
56
2C1/X7R STABLE CERAMIC
CV41-CH41 CV51-CH51 CV61-CH61 CV76-CH76 CV91-CH91
Styles Styles Styles Styles Styles
Cap nF
1.2 K
1.3 K
1.5 J K
2.2 J K
2.7 J K
3.3 J K
3.9 J K
4.7 H J J K
5.6 H J K
6.8 H J K
8.2 G H J K
10 G H J K
12 G H J K
15 G H J K
18 A G H H J K
22 A G H J K
27 A G H J K
33 A G H J K
39 A A G H J K
47 A A G H J K
56 A A G H J K
68 A A G H J
82 A A G G H J
100 A A A G H J
120 A A A G H J
150 A A G H
180 A A A G H
220 A A A G
270 A A A G
330 A A G
390 A A A
470 A A A
560 A A A
680 AA
820 AA
1000 AA
1200 A
1500 A
1800 A
2200 A
2700 A
NB Figures in cells refer to size within ordering information
High Voltage Leaded (CH/CV Style)
Chip Assemblies European Preferred Styles
57
High value, low leakage and small size are difficult parameters
to obtain in capacitors for high voltage systems. AVX special
high voltage MLC radial leaded capacitors meet these
performance characteristics. The added advantage of these
capacitors lies in special internal design minimizing the electric
field stresses within the MLC. These special design criteria
result in significant reduction of partial discharge activity within
the dielectric and having, therefore, a major impact on long-
term reliability of the product. The SV high voltage radial
capacitors are conformally coated with high insulation
resistance, high dielectric strength epoxy eliminating the
possibility of arc flashover.
The SV high voltage radial MLC designs exhibit low ESRs at
high frequency. The same criteria governing the high voltage
design carries the added benefits of extremely low ESR in
relatively low capacitance and small packages. These
capacitors are designed and are ideally suited for applications
such as snubbers in high frequency power converters,
resonators in SMPS, and high voltage coupling/DC blocking.
High Voltage MLC Radials (SV Style)
Application Information on High Voltage MLC Capacitors
C0G Dielectric
General Specifications
Capacitance Range
10 pF to .15 µF
(+25°C, 1.0 ±0.2 Vrms at 1kHz,
for 100 pF use 1 MHz)
Capacitance Tolerances
±5%; ±10%; ±20%
Operating Temperature Range
-55°C to +125°C
Temperature Characteristic
0 ± 30 ppm/°C
Voltage Ratings
1000 VDC thru 5000 VDC (+125°C)
Dissipation Factor
0.15% max.
(+25°C, 1.0 ±0.2 Vrms at 1kHz,
for 100 pF use 1 MHz)
Insulation Resistance (+25°C, at 500V)
100K Mmin. or 1000 M-µF min.,
whichever is less
Insulation Resistance (+125°C, at 500V)
10K Mmin., or 100 M-µF min.,
whichever is less
Dielectric Strength
120% rated voltage, 5 seconds
Life Test
100% rated and +125°C
X7R Dielectric
General Specifications
Capacitance Range
100 pF to 2.2 µF
(+25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances
±10%; ±20%; +80%, -20%
Operating Temperature Range
-55°C to +125°C
Temperature Characteristic
±15% (0 VDC)
Voltage Ratings
1000 VDC thru 5000 VDC (+125°C)
Dissipation Factor
2.5% max.
(+25°C, 1.0 ±0.2 Vrms at 1kHz)
Insulation Resistance (+25°C, at 500V)
100K Mmin., or 1000 M-µF min.,
whichever is less
Insulation Resistance (+125°C, at 500V)
10K Mmin., or 100 M-µF min.,
whichever is less
Dielectric Strength
120% rated voltage, 5 seconds
Life Test
100% rated and +125°C
58
High Voltage MLC Radials (SV Style)
AVX Style Length (L) Height (H) Thickness (T) Lead Spacing LD (Nom)
max max max ±.762 (.030) (S)
SV01 6.35 (0.250) 5.59 (0.220) 5.08 (0.200) 4.32 (0.170) 0.64 (0.025)
SV02/SV52 8.13 (0.320) 7.11 (0.280) 5.08 (0.200) 5.59 (0.220) 0.64 (0.025)
SV03/SV53 9.40 (0.370) 7.62 (0.300) 5.08 (0.200) 6.99 (0.275) 0.64 (0.025)
SV04/SV54 11.4 (0.450) 5.59 (0.220) 5.08 (0.200) 7.62 (0.300) 0.64 (0.025)
SV05/SV55 11.9 (0.470) 10.2 (0.400) 5.08 (0.200) 9.52 (0.375) 0.64 (0.025)
SV06/SV56 14.0 (0.550) 7.11 (0.280) 5.08 (0.200) 10.16 (0.400) 0.64 (0.025)
SV07/SV57 14.5 (0.570) 12.7 (0.500) 5.08 (0.200) 12.1 (0.475) 0.64 (0.025)
SV08/SV58 17.0 (0.670) 15.2 (0.600) 5.08 (0.200) 14.6 (0.575) 0.64 (0.025)
SV09/SV59 19.6 (0.770) 18.3 (0.720) 5.08 (0.200) 17.1 (0.675) 0.64 (0.025)
SV10 26.7 (1.050) 12.7 (0.500) 5.08 (0.200) 22.9 (0.900) 0.64 (0.025)
SV11 31.8 (1.250) 15.2 (0.600) 5.08 (0.200) 27.9 (1.100) 0.64 (0.025)
SV12 36.8 (1.450) 18.3 (0.720) 5.08 (0.200) 33.0 (1.300) 0.64 (0.025)
SV13/SV63 7.62 (0.300) 9.14 (0.360) 5.08 (0.200) 5.08 (0.200) 0.51 (0.020)
SV14/SV64 10.2 (0.400) 11.7 (0.460) 5.08 (0.200) 5.08 (0.200) 0.51 (0.020)
SV15/SV65 12.7 (0.500) 14.2 (0.560) 5.08 (0.200) 10.2 (0.400) 0.64 (0.025)
SV16/SV66 22.1 (0.870) 16.8 (0.660) 5.08 (0.200) 20.1 (0.790) 0.81 (0.032)
SV17/SV67 23.6 (0.930) 19.8 (0.780) 6.35 (0.250) 20.3 (0.800) 0.81 (0.032)
HIGH VOLTAGE RADIAL LEAD
HOW TO ORDER AVX Styles: SV01 THRU SV16
SV01 A A 102 K A A *
AVX Voltage Temperature Capacitance Code Capacitance
Style 1000V = A Coefficient (2 significant digits Tolerance
1500V = S C0G = A + no. of zeros) C0G: J = ±5%
2000V = G X7R = C Examples: K = ±10%
2500V = W 10 pF = 100 M = ±20%
3000V = H 100 pF = 101 X7R: K = ±10%
4000V = J 1,000 pF = 102 M = ±20%
5000V = K 22,000 pF = 223 Z = +80 -20%
220,000 pF = 224
1 µF = 105
LT
H
S
31.75
(1.25)
MIN
LD
LD
S
H
H + 3.683
(0.145)
31.75
(1.250)
min.
L
SV52 thru SV59 and SV63 thru SV67
Note: Capacitors with X7R dielectrics are not intended for applications across
AC supply mains or AC line filtering with polarity reversal. Contact plant for
recommendations.
*Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-49467.
(Except partial discharge testing is not performed and DWV is at 120% rated voltage).
DIMENSIONS millimeters (inches)
SV01 thru SV17
Packaging
(See Note 1)
Note 1:
No suffix signifies bulk packaging
which is AVX standard packaging.
Use suffix “TR1” if tape and reel is
required. Parts are reel packaged
per EIA-468.
TAPE & REEL QUANTITY
Part Pieces
SV01/SV51 1000
SV02/SV52 1000
SV03/SV53 1000
SV04/SV54 1000
SV05/SV55 1000
SV06/SV56 500
SV07/SV57 500
SV08/SV58 500
SV09/SV59 500
SV10 400
SV11 400
SV12 300
SV13/SV63 1000
SV14/SV64 1000
SV15/SV65 500
SV16/SV66 500
SV17/SV67 400
Test
Level
A = Standard
B = Hi-Rel*
Leads
A = Leads
59
C0G
Style 1000V 1500V 2000V 2500V 3000V 4000V 5000V
min./max. min./max. min./max. min./max. min./max.
SV01 100 pF / 1000 pF 10 pF / 330 pF 10 pF / 180 pF 10 pF / 120 pF 10 pF / 82 pF
SV02/SV52 100 pF / 3300 pF 100 pF / 1200 pF 10 pF / 680 pF 10 pF / 470 pF 10 pF / 270 pF 10 pF / 150 pF 10 pF / 100 pF
SV03/SV53 100 pF / 5600 pF 100 pF / 2200 pF 100 pF / 1200 pF 10 pF/ 820 pF 10 pF / 470 pF 10 pF / 270 pF 10 pF / 180 pF
SV04/SV54 100 pF / 2200 pF 10 pF / 820 pF 10 pF / 470 pF 10 pF / 270 pF 10 pF / 180 pF 10 pF / 100 pF 10 pF / 68 pF
SV05/SV55 1000 pF /0.015 µF 100 pF / 5600 pF 100 pF / 3300 pF 100 pF / 2200 pF 100 pF / 1200 pF 10 pF / 680 pF 10 pF / 470 pF
SV06/SV56 100 pF / 6800 pF 100 pF / 2700 pF 100 pF / 1500 pF 10 pF/ 820 pF 10 pF / 560 pF 10 pF / 330 pF 10 pF / 220 pF
SV07/SV57 1000 pF /0.027 µF 1000 pF / 0.012 µF 100 pF / 5600 pF 100 pF / 3900 pF 100 pF /2200 pF 100 pF / 1200 pF 10 pF / 820 pF
SV08/SV58 1000 pF /0.039 µF 1000 pF / 0.018 µF 1000 pF / 0.01 µF 100 pF / 6800 pF 100 pF /3900 pF 100 pF / 2200 pF 100 pF /1500 pF
SV09/SV59 1000 pF /0.068 µF 1000 pF / 0.027 µF 1000 pF / 0.015 µF 1000 pF /0.010 µF 100 pF / 6800 pF 100 pF / 3900 pF 100 pF /2700 pF
SV10 1000 pF / 0.056 µF 1000 pF / 0.022 µF 1000 pF / 0.012 µF 100 pF / 8200 pF 100 pF /5600 pF 100 pF / 3300 pF 100 pF /2200 pF
SV11 1000 pF / 0.082 µF 1000 pF / 0.039 µF 1000 pF / 0.022 µF 1000 pF/0.015 µF 100 pF / 8200 pF 100 pF / 4700 pF 100 pF /3300 pF
SV12 0.01 µF / 0.15 µF 1000 pF / 0.056 µF 1000 pF / 0.033 µF 1000 pF/0.022 µF 1000 pF /0.015 µF 100 pF / 8200 pF 100 pF /5600 pF
SV13/SV63 100 pF / 8200 pF 100 pF / 3300 pF 100 pF / 1800 pF 100 pF / 1200 pF 100 pF / 820 pF 10 pF / 390 pF 10 pF / 270 pF
SV14/SV64 1000 pF /0.015 µF 100 pF / 6800 pF 100 pF / 4700 pF 100 pF / 2700 pF 100 pF / 1500 pF 10 pF / 820 pF 10 pF / 560 pF
SV15/SV65 1000 pF /0.033 µF 1000 pF /0.015 µF 100 pF / 0.01 µF 100 pF / 5600 pF 100 pF /2700 pF 100 pF / 1800 pF 100 pF /1200 pF
SV16/SV66 1000 pF /0.068 µF 1000 pF /0.027 µF 1000 pF / 0.018 µF 1000 pF/0.010 µF 100 pF / 6800 pF 100 pF / 3900 pF 100 pF /2700 pF
SV17/SV67 1000 pF / 0.10 µF 1000 pF /0.056 µF 1000 pF / 0.039 µF 1000 pF /0.022 µF 1000 pF /0.012 µF 100 pF / 6800 pF 100 pF /4700 pF
X7R
SV01 1000 pF / 0.012 µF 100 pF / 3900 pF 100 pF / 1500 pF
SV02/SV52 1000 pF /0.047 µF 1000 pF / 0.015 µF 100 pF / 5600 pF 100 pF / 3900 pF 100 pF / 2700 pF
SV03/SV53 1000 pF /0.082 µF 1000 pF / 0.018 µF 1000 pF / 0.01 µF 100 pF / 6800 pF 100 pF / 4700 pF 100 pF / 1800 pF
SV04/SV54 1000 pF /0.033 µF 100 pF / 6800 pF 100 pF / 3900 pF 100 pF / 2200 pF 100 pF / 1800 pF 100 pF / 820 pF
SV05/SV55 0.01 µF / 0.22 µF 1000 pF / 0.056 µF 1000 pF / 0.027 µF 1000 pF /
0.018 µ
F 1000 pF /0.012 µF 100 pF / 4700 pF
SV06/SV56 0.01 µF / 0.10 µF 1000 pF / 0.033 µF 1000 pF / 0.012 µF 100 pF / 8200 pF 100 pF / 6800 pF 100 pF / 2700 pF 100 pF /1200 pF
SV07/SV57 0.01 µF / 0.39 µF 0.01 µF / 0.10 µF 1000 pF / 0.047 µF 1000 pF/
0.033 µ
F 1000 pF /0.027 µF 1000 pF / 0.01 µF 100 pF /6800 pF
SV08/SV58 0.01 µF / 0.68 µF 0.01 µF / 0.18 µF 1000 pF / 0.082 µF 1000 pF/
0.068 µ
F 1000 pF /0.047 µF 1000 pF /0.018 µF 1000 pF /0.012 µF
SV09/SV59 0.10 µF / 1.00 µF 0.01 µF / 0.27 µF 0.01 µF / 0.12 µF 0.01 µF /
0.10 µ
F 1000 pF /0.068 µF 1000 pF /0.027 µF 1000 pF /0.018 µF
SV10 0.01 µF / 0.82 µF 0.01 µF / 0.22 µF 0.01 µF / 0.10 µF 1000 pF /
0.082 µ
F 1000 pF /0.056 µF 1000 pF /0.022 µF 1000 pF /0.018 µF
SV11 0.10 µF / 1.2 µF 0.01 µF / 0.39 µF 0.01 µF / 0.18 µF 0.01 µF /
0.15 µ
F 0.01 µF / 0.10 µF 1000 pF /0.039 µF 1000 pF /0.027 µF
SV12 0.10 µF / 2.20 µF 0.01 µF / 0.56 µF 0.01 µF / 0.27 µF 0.01 µF /
0.22 µ
F 0.01 µF / 0.15 µF 1000 pF /0.056 µF 1000 pF /0.033 µF
SV13/SV63 0.01 µF / 0.10 µF 1000 pF / 0.033 µF 1000 pF / 0.012 µF 1000 pF /
0.01 µ
F 100 pF / 6800 pF 100 pF / 2700 pF
SV14/SV64 0.01 µF / 0.18 µF 1000 pF / 0.068 µF 1000 pF / 0.022 µF 1000 pF /
0.018 µ
F 1000 pF /0.015 µF 100 pF / 5600 pF
SV15/SV65 0.01 µF / 0.27 µF 0.01 µF / 0.10 µF 1000 pF / 0.033 µF 1000 pF/
0.027 µ
F 1000 pF /0.022 µF 1000 pF / 8200 pF 100 pF /4700 pF
SV16/SV66 0.01 µF / 1.0 µF 0.01 µF / 0.27 µF 0.01 µF / 0.12 µF 0.01 µF /
0.10 µ
F 1000 pF /0.068 µF 1000 pF /0.027 µF 1000 pF /0.018 µF
SV17/SV67 0.01 µF / 1.2 µF 0.01 µF / 0.39 µF 0.01 µF / 0.15 µF 0.01 µF /
0.12 µ
F 1000 pF /0.082 µF 1000 pF /0.039 µF 1000 pF /0.027 µF
High Voltage MLC Radials (SV Style)
Note: Contact factory for other voltage ratings or values.
Specification # Description Capacitance Range
87046 C0G-1000 VDC 10 pF - 0.025 µF
87043 X7R-1000 VDC 100 pF - 0.47 µF
87040 X7R-2000 VDC 100 pF - 0.22 µF
87114 C0G-3000 VDC 10 pF - 8200 pF
87047 X7R-3000 VDC 100 pF - 0.1 µF
87076 C0G-4000 VDC 10 pF - 6800 pF
89044 X7R-4000 VDC 100 pF - 0.056 µF
87077 C0G-5000 VDC 10 pF - 5600 pF
87070 X7R-5000 VDC 100 pF - 0.033 µF
CAPACITANCE VALUE
AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS
These specifications require group A and B testing per MIL-PRF-49467
60
Ceramic Layer Electrode
Terminated
Edge
Terminated
Edge
End Terminations
Margin Electrodes
MLC Chip Capacitors
Basic Construction
Terminations
Standard Nickel Barrier
T = Lead Free Tin Plate
J = 5% minimum Lead Plated
Leach resistance to 90 seconds at 260°C
Solderable plated for dimensional control
Special materials as required
AVX focus is customer satisfaction – Customer satisfaction in
the broadest sense: Products, service, price, delivery, tech-
nical support, and all the aspects of a business that impact
you, the customer.
Our long term strategy is for continuous improvement which
is defined by our Quality Vision 2000. This is a total quality
management system developed by and supported by AVX
corporate management. The foundation of QV2000 is built
upon military and commercial standards and systems
including ISO9001. QV2000 is a natural extension of past
quality efforts with world class techniques for ensuring a total
quality environment to satisfy our customers during this
decade and into the 21st century.
As your components supplier, we invite you to experience
the quality, service, and commitment of AVX.
A multilayer ceramic (MLC) capacitor is a monolithic block
of ceramic containing two sets of offset, interleaved
planar electrodes that extend to two opposite surfaces of
the ceramic dielectric. This simple structure requires a
considerable amount of sophistication, both in material and
in manufacture, to produce it in the quality and quantities
needed in today’s electronic equipment.
QUALITY STATEMENT
61
Table 1: EIA and MIL Temperature Stable and General
Application Codes
In specifying capacitance change with temperature for Class
2 materials, EIA expresses the capacitance change over an
operating temperature range by a 3 symbol code. The
first symbol represents the cold temperature end of the
temperature range, the second represents the upper limit of
the operating temperature range and the third symbol repre-
sents the capacitance change allowed over the operating
temperature range. Table 1 provides a detailed explanation of
the EIA system.
Effects of Voltage – Variations in voltage have little effect
on Class 1 dielectric but does affect the capacitance and
dissipation factor of Class 2 dielectrics. The application of
DC voltage reduces both the capacitance and dissipation
factor while the application of an AC voltage within a
reasonable range tends to increase both capacitance and
dissipation factor readings. If a high enough AC voltage is
applied, eventually it will reduce capacitance just as a DC
voltage will. Figure 2 shows the effects of AC voltage.
Cap. Change vs. A.C. Volts
X7R
Figure 2
Capacitor specifications specify the AC voltage at which to
measure (normally 0.5 or 1 VAC) and application of the
wrong voltage can cause spurious readings.
Typical Cap. Change vs. Temperature
X7R
Figure 3
0VDC
-55 -35 -15 +5 +25 +45 +65 +85 +105 +125
Temperature Degrees Centigrade
Capacitance Change Percent
+20
+10
0
-10
-20
-30
50
40
30
20
10
0
12.5 25 37.5 50
Volts AC at 1.0 KHz
Capacitance Change Percent
MIL CODE
Symbol Temperature Range
A -55°C to +85°C
B -55°C to +125°C
C -55°C to +150°C
Symbol Cap. Change Cap. Change
Zero Volts Rated Volts
Q +15%, -15% +15%, -50%
R +15%, -15% +15%, -40%
W +22%, -56% +22%, -66%
X +15%, -15% +15%, -25%
Y +30%, -70% +30%, -80%
Z +20%, -20% +20%, -30%
Temperature characteristic is specified by combining range and change
symbols, for example BR or AW. Specification slash sheets indicate the
characteristic applicable to a given style of capacitor.
EIA CODE
Percent Capacity Change Over Temperature Range
RS198 Temperature Range
X7 -55°C to +125°C
X5 -55°C to +85°C
Y5 -30°C to +85°C
Z5 +10°C to +85°C
Code Percent Capacity Change
D ±3.3%
E ±4.7%
F ±7.5%
P ±10%
R ±15%
S ±22%
T +22%, -33%
U +22%, - 56%
V +22%, -82%
EXAMPLE – A capacitor is desired with the capacitance value at 25°C
to increase no more than 7.5% or decrease no more than 7.5% from
-30°C to +85°C. EIA Code will be Y5F.
General Description
62
General Description
Effects of Time – Class 2 ceramic capacitors change
capacitance and dissipation factor with time as well as
temperature, voltage and frequency. This change with time is
known as aging. Aging is caused by a gradual re-alignment
of the crystalline structure of the ceramic and produces an
exponential loss in capacitance and decrease in dissipation
factor versus time. A typical curve of aging rate for semi-
stable ceramics is shown in Figure 4.
If a Class 2 ceramic capacitor that has been sitting on the
shelf for a period of time, is heated above its curie point,
(125°C for 4 hours or 150°C for 12hour will suffice) the part
will de-age and return to its initial capacitance and dissi-
pation factor readings. Because the capacitance changes
rapidly, immediately after de-aging, the basic capacitance
measurements are normally referred to a time period some-
time after the de-aging process. Various manufacturers use
different time bases but the most popular one is one day
or twenty-four hours after “last heat.” Change in the aging
curve can be caused by the application of voltage and
other stresses. The possible changes in capacitance due to
de-aging by heating the unit explain why capacitance changes
are allowed after test, such as temperature cycling, moisture
resistance, etc., in MIL specs. The application of high voltages
such as dielectric withstanding voltages also tends to de-age
capacitors and is why re-reading of capacitance after 12 or 24
hours is allowed in military specifications after dielectric
strength tests have been performed.
Typical Curve of Aging Rate
X7R
Figure 4
Effects of Frequency – Frequency affects capacitance
and impedance characteristics of capacitors. This effect is
much more pronounced in high dielectric constant ceramic
formulation than in low K formulations. AVX’s SpiCalci
software generates impedance, ESR, series inductance,
series resonant frequency and capacitance all as functions
of frequency, temperature and DC bias for standard chip
sizes and styles. It is available free from AVX and can be
downloaded for free from AVX website: www.avx.com.
Effects of Mechanical Stress – High “K” dielectric ceramic
capacitors exhibit some low level piezoelectric reactions
under mechanical stress. As a general statement, the piezo-
electric output is higher, the higher the dielectric constant of
the ceramic. It is desirable to investigate this effect before
using high “K” dielectrics as coupling capacitors in extreme-
ly low level applications.
Reliability – Historically ceramic capacitors have been one
of the most reliable types of capacitors in use today.
The approximate formula for the reliability of a ceramic
capacitor is:
Lo=VtXTtY
LtV
oT
o
where
Lo= operating life Tt= test temperature and
Lt= test life To= operating temperature
Vt= test voltage in °C
Vo= operating voltage X,Y = see text
Historically for ceramic capacitors exponent X has been
considered as 3. The exponent Y for temperature effects
typically tends to run about 8.
1 10 100 1000 10,000 100,000
Hours
Capacitance Change Percent
+1.5
0
-1.5
-3.0
-4.5
-6.0
-7.5
Characteristic Max. Aging Rate %/Decade
C0G (NP0)
X7R, X5R
None
2
63
A capacitor is a component which is capable of storing
electrical energy. It consists of two conductive plates (elec-
trodes) separated by insulating material which is called the
dielectric. A typical formula for determining capacitance is:
C = .224 KA
t
C= capacitance (picofarads)
K= dielectric constant (Vacuum = 1)
A= area in square inches
t= separation between the plates in inches
(thickness of dielectric)
.224 = conversion constant
(.0884 for metric system in cm)
Capacitance – The standard unit of capacitance is the
farad. A capacitor has a capacitance of 1 farad when 1
coulomb charges it to 1 volt. One farad is a very large unit
and most capacitors have values in the micro (10-6), nano
(10-9) or pico (10-12) farad level.
Dielectric Constant – In the formula for capacitance given
above the dielectric constant of a vacuum is arbitrarily cho-
sen as the number 1. Dielectric constants of other materials
are then compared to the dielectric constant of a vacuum.
Dielectric Thickness – Capacitance is indirectly propor-
tional to the separation between electrodes. Lower voltage
requirements mean thinner dielectrics and greater capaci-
tance per volume.
Area – Capacitance is directly proportional to the area of the
electrodes. Since the other variables in the equation are
usually set by the performance desired, area is the easiest
parameter to modify to obtain a specific capacitance within
a material group.
Energy Stored – The energy which can be stored in a
capacitor is given by the formula:
E= 12CV2
E= energy in joules (watts-sec)
V= applied voltage
C= capacitance in farads
Potential Change – A capacitor is a reactive component
which reacts against a change in potential across it. This is
shown by the equation for the linear charge of a capacitor:
Iideal = C dV
dt
where
I= Current
C= Capacitance
dV/dt = Slope of voltage transition across capacitor
Thus an infinite current would be required to instantly
change the potential across a capacitor. The amount of
current a capacitor can “sink” is determined by the above
equation.
Equivalent Circuit – A capacitor, as a practical device,
exhibits not only capacitance but also resistance and
inductance. A simplified schematic for the equivalent circuit is:
C= Capacitance L = Inductance
Rs= Series Resistance Rp= Parallel Resistance
Reactance – Since the insulation resistance (Rp) is
normally very high, the total impedance of a capacitor is:
Z = R2
S+ (XC - XL)2
where
Z= Total Impedance
Rs= Series Resistance
XC= Capacitive Reactance = 1
2πfC
XL= Inductive Reactance = 2 πfL
The variation of a capacitor’s impedance with frequency
determines its effectiveness in many applications.
Phase Angle – Power Factor and Dissipation Factor are
often confused since they are both measures of the loss in
a capacitor under AC application and are often almost iden-
tical in value. In a “perfect” capacitor the current in the
capacitor will lead the voltage by 90°.
In practice the current leads the voltage by some other
phase angle due to the series resistance RS. The comple-
ment of this angle is called the loss angle and:
Power Factor (P.F.) = Cos for Sine
Dissipation Factor (D.F.) = tan
for small values of the tan and sine are essentially equal
which has led to the common interchangeability of the two
terms in the industry.
I (Ideal)
I (Actual)
Phase
Angle
Loss
Angle
V
IRs
f
R
LR
C
P
S
General Description
64
General Description
Equivalent Series Resistance – The term E.S.R. or
Equivalent Series Resistance combines all losses both series
and parallel in a capacitor at a given frequency so that the
equivalent circuit is reduced to a simple R-C series
connection.
Dissipation Factor – The DF/PF of a capacitor tells what
percent of the apparent power input will turn to heat in the
capacitor.
Dissipation Factor =E.S.R. = (2 πfC) (E.S.R.)
XC
The watts loss are:
Watts loss = (2 πfCV2) (D.F.)
Very low values of dissipation factor are expressed as their
reciprocal for convenience. These are called the “Q” or
Quality factor of capacitors.
Parasitic Inductance – The parasitic inductance of capac-
itors is becoming more and more important in the decoupling
of today’s high speed digital systems. The relationship
between the inductance and the ripple voltage induced on
the DC voltage line can be seen from the simple inductance
equation:
V = L di
dt
The seen in current microprocessors can be as high as
0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic
inductance can cause a voltage spike of 30mV. While this
does not sound very drastic, with the Vcc for microproces-
sors decreasing at the current rate, this can be a fairly large
percentage.
Another important, often overlooked, reason for knowing
the parasitic inductance is the calculation of the resonant
frequency. This can be important for high frequency, by-pass
capacitors, as the resonant point will give the most signal
attenuation. The resonant frequency is calculated from the
simple equation:
fres = 1
2LC
Insulation Resistance – Insulation Resistance is the
resistance measured across the terminals of a capacitor and
consists principally of the parallel resistance RPshown in the
equivalent circuit. As capacitance values and hence the area
of dielectric increases, the I.R. decreases and hence the
product (C x IR or RC) is often specified in ohm farads or
more commonly megohm-microfarads. Leakage current is
determined by dividing the rated voltage by IR (Ohm’s Law).
Dielectric Strength – Dielectric Strength is an expression of
the ability of a material to withstand an electrical stress.
Although dielectric strength is ordinarily expressed in volts, it
is actually dependent on the thickness of the dielectric and
thus is also more generically a function of volts/mil.
Dielectric Absorption – A capacitor does not discharge
instantaneously upon application of a short circuit, but drains
gradually after the capacitance proper has been discharged.
It is common practice to measure the dielectric absorption
by determining the “reappearing voltage” which appears
across a capacitor at some point in time after it has been fully
discharged under short circuit conditions.
Corona – Corona is the ionization of air or other vapors
which causes them to conduct current. It is especially
prevalent in high voltage units but can occur with low voltages
as well where high voltage gradients occur. The energy
discharged degrades the performance of the capacitor and
can in time cause catastrophic failures.
di
dt
E.S.R. C
65
Surface Mounting Guide
MLC Chip Capacitors
Component Pad Design
Component pads should be designed to achieve good
solder filets and minimize component movement during
reflow soldering. Pad designs are given for the most common
sizes of multilayer ceramic capacitors for both wave and
reflow soldering. The basis of these designs is:
Pad width equal to component width. It is permissible to
decrease this to as low as 85% of component width but it
is not advisable to go below this.
• Pad overlap 0.5mm beneath component.
• Pad extension 0.5mm beyond components for reflow and
1.0mm for wave soldering.
Component Spacing
For wave soldering components, must be spaced sufficiently
far apart to avoid bridging or shadowing (inability of solder to
penetrate properly into small spaces). This is less important
for reflow soldering but sufficient space must be allowed to
enable rework should it be required.
Preheat & Soldering
The rate of preheat should not exceed 4°C/second to
prevent thermal shock. A better maximum figure is about
2°C/second.
For capacitors size 1206 and below, with a maximum
thickness of 1.25mm, it is generally permissible to allow a
temperature differential from preheat to soldering of 150°C.
In all other cases this differential should not exceed 100°C.
For further specific application or process advice, please
consult AVX.
Cleaning
Care should be taken to ensure that the capacitors are
thoroughly cleaned of flux residues especially the space
beneath the capacitor. Such residues may otherwise
become conductive and effectively offer a low resistance
bypass to the capacitor.
Ultrasonic cleaning is permissible, the recommended
conditions being 8 Watts/litre at 20-45 kHz, with a process
cycle of 2 minutes vapor rinse, 2 minutes immersion in the
ultrasonic solvent bath and finally 2 minutes vapor rinse.
1mm (0.04)
1.5mm (0.06)
1mm (0.04)
D1
D2
D3
D4
D5
Case Size D1 D2 D3 D4 D5
0805 3.00 (0.120) 1.00 (0.040) 1.00 (0.040) 1.00 (0.040) 1.25 (0.050)
1206 4.00 (0.160) 1.00 (0.040) 2.00 (0.090) 1.00 (0.040) 1.60 (0.060)
1210 4.00 (0.160) 1.00 (0.040) 2.00 (0.090) 1.00 (0.040) 2.50 (0.100)
*1808 5.60 (0.220) 1.00 (0.040) 3.60 (0.140) 1.00 (0.040) 2.00 (0.080)
*1812 5.60 (0.220) 1.00 (0.040) 3.60 (0.140) 1.00 (0.040) 3.00 (0.120)
*1825 5.60 (0.220) 1.00 (0.040) 3.60 (0.140) 1.00 (0.040) 6.35 (0.250)
*2220 6.60 (0.260) 1.00 (0.040) 4.60 (0.180) 1.00 (0.040) 5.00 (0.200)
*2225 6.60 (0.260) 1.00 (0.040) 4.60 (0.180) 1.00 (0.040) 6.35 (0.250)
*HQCC 6.60 (0.260) 1.00 (0.040) 4.60 (0.180) 1.00 (0.040) 6.35 (0.250)
*3640 10.67 (0.427) 1.52 (0.060) 7.62 (0.300) 1.52 (0.060) 10.16 (0.400)
*HQCE 10.67 (0.427) 1.52 (0.060) 7.62 (0.300) 1.52 (0.060) 10.16 (0.400)
SOLDER PAD DESIGN millimeters (inches)
*AVX recommends reflow soldering only.
66
Surface Mounting Guide
MLC Chip Capacitors
APPLICATION NOTES
Storage
Good solderability is maintained for at least twelve months,
provided the components are stored in their “as received”
packaging at less than 40°C and 70% RH.
Solderability
Terminations to be well soldered after immersion in a 60/40
tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds.
Leaching
Terminations will resist leaching for at least the immersion
times and conditions shown below.
Recommended Soldering Profiles
General
Surface mounting chip multilayer ceramic capacitors
are designed for soldering to printed circuit boards or other
substrates. The construction of the components is such that
they will withstand the time/temperature profiles used in both
wave and reflow soldering methods.
Handling
Chip multilayer ceramic capacitors should be handled with
care to avoid damage or contamination from perspiration
and skin oils. The use of tweezers or vacuum pick ups
is strongly recommended for individual components. Bulk
handling should ensure that abrasion and mechanical shock
are minimized. Taped and reeled components provides the
ideal medium for direct presentation to the placement
machine. Any mechanical shock should be minimized during
handling chip multilayer ceramic capacitors.
Preheat
It is important to avoid the possibility of thermal shock during
soldering and carefully controlled preheat is therefore
required. The rate of preheat should not exceed 4°C/second
and a target figure 2°C/second is recommended. Although
an 80°C to 120°C temperature differential is preferred,
recent developments allow a temperature differential
between the component surface and the soldering temper-
ature of 150°C (Maximum) for capacitors of 1210 size and
below with a maximum thickness of 1.25mm. The user is
cautioned that the risk of thermal shock increases as chip
size or temperature differential increases.
Soldering
Mildly activated rosin fluxes are preferred. The minimum
amount of solder to give a good joint should be used.
Excessive solder can lead to damage from the stresses
caused by the difference in coefficients of expansion between
solder, chip and substrate. AVX terminations are suitable for
all wave and reflow soldering systems. If hand soldering
cannot be avoided, the preferred technique is the utilization of
hot air soldering tools.
Cooling
Natural cooling in air is preferred, as this minimizes stresses
within the soldered joint. When forced air cooling is used,
cooling rate should not exceed 4°C/second. Quenching
is not recommended but if used, maximum temperature
differentials should be observed according to the preheat
conditions above.
Cleaning
Flux residues may be hygroscopic or acidic and must be
removed. AVX MLC capacitors are acceptable for use with all
of the solvents described in the specifications MIL-STD-202
and EIA-RS-198. Alcohol based solvents are acceptable
and properly controlled water cleaning systems are also
acceptable. Many other solvents have been proven successful,
and most solvents that are acceptable to other components
on circuit assemblies are equally acceptable for use with
ceramic capacitors.
Wave
300
250
200
150
100
50
0
Solder Temp.
(Preheat chips before soldering)
T/maximum 150°C
3 sec. max
1 to 2 min
Preheat
Natural
Cooling
230°C
to
250°C
T
Reflow
300
250
200
150
100
50
0
Solder Temp.
10 sec. max
1min
1min
(Minimize soldering time)
Natural
Cooling
220°C
to
250°C
Preheat
Termination Type Solder Solder Immersion Time
Tin/Lead/Silver Temp. °C Seconds
Nickel Barrier 60/40/0 260 ± 5 30 ± 1
67
Surface Mounting Guide
MLC Chip Capacitors
POST SOLDER HANDLING
Once SMP components are soldered to the board, any
bending or flexure of the PCB applies stresses to the soldered
joints of the components. For leaded devices, the stresses are
absorbed by the compliancy of the metal leads and generally
don’t result in problems unless the stress is large enough to
fracture the soldered connection.
Ceramic capacitors are more susceptible to such stress
because they don’t have compliant leads and are brittle in
nature. The most frequent failure mode is low DC resistance or
short circuit. The second failure mode is significant loss of
capacitance due to severing of contact between sets of the
internal electrodes.
Cracks caused by mechanical flexure are very easily identified
and generally take one of the following two general forms:
Type A:
Angled crack between bottom of device to top of solder joint.
Type B:
Fracture from top of device to bottom of device.
Mechanical cracks are often hidden underneath the termina-
tion and are difficult to see externally. However, if one end
termination falls off during the removal process from PCB,
this is one indication that the cause of failure was excessive
mechanical stress due to board warping.
COMMON CAUSES OF
MECHANICAL CRACKING
The most common source for mechanical stress is board
depanelization equipment, such as manual breakapart,
v-cutters and shear presses. Improperly aligned or dull cutters
may cause torqueing of the PCB resulting in flex stresses
being transmitted to components near the board edge.
Another common source of flexural stress is contact during
parametric testing when test points are probed. If the PCB
is allowed to flex during the test cycle, nearby ceramic
capacitors may be broken.
A third common source is board to board connections at
vertical connectors where cables or other PCBs are con-
nected to the PCB. If the board is not supported during the
plug/unplug cycle, it may flex and cause damage to nearby
components.
Special care should also be taken when handling large (>6"
on a side) PCBs since they more easily flex or warp than
smaller boards.
REWORKING OF MLCs
Thermal shock is common in MLCs that are manually
attached or reworked with a soldering iron. AVX strongly
recommends that any reworking of MLCs be done with hot
air reflow rather than soldering irons. It is practically impossible
to cause any thermal shock in ceramic capacitors when
using hot air reflow.
However direct contact by the soldering iron tip often causes
thermal cracks that may fail at a later date. If rework by
soldering iron is absolutely necessary, it is recommended
that the wattage of the iron be less than 30 watts and the
tip temperature be <300ºC. Rework should be performed
by applying the solder iron tip to the pad and not directly
contacting any part of the ceramic capacitor.
68
Surface Mounting Guide
MLC Chip Capacitors
PCB BOARD DESIGN
To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board.
However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC
is located.
Solder Tip Solder Tip
Preferred Method - No Direct Part Contact Poor Method - Direct Contact with Part
No Stress Relief for MLCs Routed Cut Line Relieves Stress on MLC
Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
69
High Voltage MLC Chips
For 600V to 5000V Application
1808 A A 271 K A 1 1 A
HOW TO ORDER
DIMENSIONS millimeters (inches)
AVX Voltage Temperature Capacitance Code Capacitance Test Termination*
Style 600V = C Coefficient (2 significant digits Tolerance Level 1 = Pd/Ag
1206 1000V = A C0G = A + no. of zeros) C0G: J = ±5% A = Standard T = Plated
1210 1500V = S X7R = C Examples: K = ±10% Ni and Sn
1808 2000V = G 10 pF = 100 M = ±20% J = 5% Min Pb
1812 2500V = W 100 pF = 101 X7R: K = ±10%
1825 3000V = H 1,000 pF = 102 M = ±20%
2220 4000V = J 22,000 pF = 223 Z = +80%, -20%
2225 5000V = K 220,000 pF = 224
3640 1 µF = 105
SIZE 1206 1210 1808* 1812* 1825* 2220* 2225* 3640*
(L) Length 3.20 ± 0.2 3.20 ± 0.2 4.57 ± 0.25 4.50 ± 0.3 4.50 ± 0.3 5.7 ± 0.4 5.72 ± 0.25 9.14 ± 0.25
(0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010)
(W) Width 1.60 ± 0.2 2.50 ± 0.2 2.03 ± 0.25 3.20 ± 0.2 6.40 ± 0.3 5.0 ± 0.4 6.35 ± 0.25 10.2 ± 0.25
(0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010)
(T) Thickness 1.52 1.70 2.03 2.54 2.54 3.3 2.54 2.54
Max. (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100)
(t) terminal min. 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030)
max. 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060)
High value, low leakage and small size are difficult parameters to obtain in
capacitors for high voltage systems. AVX special high voltage MLC chips
capacitors meet these performance characteristics and are designed for
applications such as snubbers in high frequency power converters,
resonators in SMPS, and high voltage coupling/DC blocking. These high
voltage chip designs exhibit low ESRs at high frequencies.
Larger physical sizes than normally encountered chips are used to make
high voltage chips. These larger sizes require that special precautions be
taken in applying these chips in surface mount assemblies. This is due
to differences in the coefficient of thermal expansion (CTE) between the
substrate materials and chip capacitors. Apply heat at less than 4°C per
second during the preheat. The preheat temperature must be within 50°C
of the peak temperature reached by the ceramic bodies through the
soldering process. Chips 1808 and larger to use reflow soldering only.
Capacitors may require protective surface coating to prevent external
arcing.
*Note: Leaded terminations are available.
Styles 1825, 2225, & 3640 are available with “N”, “L” or “J” leads as seen on page 9.
“V” denotes uncoated leaded units similar to SM0 product.
“W” denotes leaded epoxy coated units similar to SM5 product.
IE 1825AA103KAV00J would be uncoated leaded part with “J” style leads.
*Reflow Soldering Only
Packaging
1 = 7" Reel
3 = 13" Reel
9 = Bulk
Special
Code
A = Standard
W
L
T
t
70
VOLTAGE 1206 1210 1808 1812 1825 2220 2225 3640
600 min. 10 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF
max. 680 pF 1500 pF 2700 pF 5600 pF 0.012 µF 0.012 µF 0.015 µF 0.047 µF
min. 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF
1000 max. 470 pF 820 pF 1500 pF 2700 pF 6800 pF 0.010 µF 0.010 µF 0.018 µF
min. 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF
1500 max. 150 pF 330 pF 470 pF 1000 pF 2700 pF 2700 pF 3300 pF 8200 pF
min. 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF
2000 max. 68 pF 150 pF 270 pF 680 pF 1800 pF 2200 pF 2200 pF 5600 pF
min. 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF
2500 max. 150 pF 390 pF 1000 pF 1000 pF 1200 pF 3900 pF
min. 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF
3000 max. 100 pF 330 pF 680 pF 680 pF 820 pF 2200 pF
min. 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF
4000 max. 39 pF 100 pF 220 pF 220 pF 330 pF 1000 pF
min. 10 pF
5000 max. 680 pF
VOLTAGE 1206 1210 1808 1812 1825 2220 2225 3640
600 min. 1000 pF 1000 pF 1000 pF 1000 pF 0.01 µF 0.01 µF 0.01 µF 0.01 µF
max. 0.015 µF 0.033 µF 0.056 µF 0.10 µF 0.18 µF 0.22 µF 0.22 µF 0.56 µF
min. 100 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 0.01 µF
1000 max. 5600 pF 0.015 µF 0.018 µF 0.027 µF 0.10 µF 0.10 µF 0.10 µF 0.22 µF
min. 100 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF
1500 max. 1800 pF 3900 pF 6800 pF 0.012 µF 0.033 µF 0.039 µF 0.047 µF 0.068 µF
min. 10 pF 100 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF
2000 max. 1000pF 2200 pF 2700 pF 4700 pF 0.01 µF 0.01 µF 0.015 µF 0.027 µF
min. 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF
2500 max. 1800 pF 3300 pF 6800 pF 8200 pF 0.01 µF 0.022 µF
min. 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF
3000 max. 1500 pF 2200 pF 4700 pF 4700 pF 6800 pF 0.018 µF
min. 100 pF
4000 max. — — 6800 pF
min. 100 pF
5000 max. ——
3300 pF
HIGH VOLTAGE C0G CAPACITANCE VALUES
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES
X7R Dielectric
Performance Characteristics
Capacitance Range 10 pF to 0.047 µF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000 pF use 1 MHz)
Capacitance Tolerances ±5%, ±10%, ±20%
Dissipation Factor 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for 1000 pF use 1 MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic 0 ±30 ppm/°C (0 VDC)
Voltage Ratings 600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K Mmin. or 1000 M- µF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K Mmin. or 100 M- µF min., whichever is less
Dielectric Strength 120% rated voltage for 5 seconds at 50 mA max. current
Performance Characteristics
Capacitance Range 10 pF to 0.56 µF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances ±10%; ±20%; +80%, -20%
Dissipation Factor 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic ±15% (0 VDC)
Voltage Ratings 600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K Mmin. or 1000 M- µF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K Mmin. or 100 M- µF min., whichever is less
Dielectric Strength 120% rated voltage for 5 seconds at 50 mA max. current
High Voltage MLC Chips
For 600V to 5000V Applications
C0G Dielectric
71
Hi-Q®High RF Power
MLC Surface Mount Capacitors
For 600V to 4000V Application
PRODUCT OFFERING
Hi-Q®, high RF power, surface mount MLC capacitors from AVX
Corporation are characterized with ultra-low ESR and dissipation factor
at high frequencies. They are designed to handle high power and
high voltage levels for applications in RF power amplifiers, inductive
heating, high magnetic field environments (MRI coils), medical and
industrial electronics.
Capacitance Range 4.7pF to 6,800pF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000 pF use 1MHz)
Capacitance Tolerances ±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20%
Dissipation Factor 25°C 0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000 pF use 1MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic C0G: 0 ± 30 ppm/°C (-55°C to +125°C)
Voltage Ratings 600, 1000, 1500, 2000, 2500, 3000, 4000VDC
Insulation Resistance 100K Mmin. @ +25°C and 500VDC
10K Mmin. @ +125°C and 500VDC
Dielectric Strength 120% of rated WVDC
DIELECTRIC PERFORMANCE CHARACTERISTICS
HOW TO ORDER
AVX Voltage Temperature Capacitance Code Capacitance Test Termination
Style 600V = C Coefficient (2 significant digits Tolerance Level 1 = Pd/Ag
HQCC 1000V = A C0G = A + no. of zeros) A = Standard T = Plated
HQCE 1500V = S Examples: Ni and Sn
2000V = G 4.7 pF = 4R7 J = 5% Min Pb
2500V = W 10 pF = 100
3000V = H 100 pF = 101
4000V = J 1,000 pF = 102
C = ±0.25pF (<13pF)
D = ±0.50pF (<25pF)
F = ±1% (25pF)
G = ±2% (13pF)
J = ±5%
K = ±10%
M = ±20%
HIGH VOLTAGE CAPACITANCE VALUES (pF)
Style 600 1000 1500 2000 2500 3000 4000
WDC WVDC WVDC WVDC WVDC WVDC WVDC
min./max. min./max. min./max. min./max. min./max. min./max. min./max.
HQCC
2,200 - 2,700 1,500 - 1,800 820 - 1,200 470 - 680 330 - 390 4.7 - 270
HQCE
5,600 - 6,800 3,300 - 4,700 2,200 - 2,700 1,200 - 1,800 820 - 1,000 470-680 4.7-390
A A 271 J A T 1 A
Packaging
1 = 7" Reel
3 = 13" Reel
9 = Bulk
Special
Code
A = Standard
HQCC
STYLE HQCC HQCE
(L) Length 5.84 ± 0.51 9.4 ± 0.51
(0.230 ± 0.020) (0.370 ± 0.020)
(W) Width 6.35 ± 0.51 9.9 ± 0.51
(0.250 ± 0.020) (0.390 ± 0.020)
(T) Thickness 3.3 max. 3.3 max.
Max. (0.130 max.) (0.130 max.)
(t) terminal 0.64 ± 0.38 0.64 ± 0.38
(0.025 ± 0.015) (0.025 ± 0.015)
DIMENSIONS millimeters (inches)
L
W
T
t
Hi-Q®, High RF Power, Ribbon Leaded MLC Capacitors from AVX
Corporation are characterized with ultra-low ESR and dissipation factor
at high frequencies. The HQL-style parts are constructed using non-
magnetic materials. They are designed to handle high power and high
voltage levels for applications in RF power amplifiers, inductive heating,
high magnetic field environments (MRI coils), medical and industrial
electronics.
72
Hi-Q®High RF Power
Ribbon Leaded MLC Capacitors
Capacitance Range 4.7pF to 6,800pF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000pF use 1MHz)
Capacitance Tolerances ±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20%
Dissipation Factor 0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000pF use 1MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristics C0G: 0 ± 30 ppm/°C (-55°C to +125°C)
Voltage Ratings 600, 1000, 1500, 2000, 2500, 3000, 4000
Insulation Resistance 100K Mmin. @ +25°C and 500VDC
10K Mmin. @ +125°C and 500VDC
Dielectric Strength 120% of rated WVDC
DIELECTRIC PERFORMANCE CHARACTERISTICS
HOW TO ORDER
Capacitance Range (pF)
Style 600 1000 1500 2000 2500 3000 4000
WVDC WVDC WVDC WVDC WVDC WVDC WVDC
min./max. min./max. min./max. min./max. min./max. min./max. min./max.
HQLC
2200 - 2700 1500 - 1800 820 - 1200 470 - 680 330 - 390 4.7 - 270
HQLE
5600 - 6800 3300 - 4700 2200 - 2700 1200 - 1800 820 - 1000 470 - 680 4.7 - 390
HQLC
AVX
Style
HQLC
HQLE
A
Voltage
600V = C
1000V = A
1500V = S
2000V = G
2500V = W
3000V = H
4000V = J
A
Temperature
Coefficient
C0G = A
271
Capacitance Code
(2 significant digits
+ no. of zeros)
Examples:
4.7 pF = 4R7
10 pF = 100
100 pF = 101
1,000 pF = 102
J
Capacitance
Tolerance
C = ±0.25pF (<13pF)
D = ±0.50pF (<25pF)
F = ±1% (25pF)
G = ±2% (13pF)
J = ±5%
K = ±10%
M = ±20%
A
Test
Level
A = Standard
A
Lead Style
A = Axial Ribbon
M = Microstrip
73
Hi-Q®High RF Power
Ribbon Leaded MLC Capacitors
Microstrip Leads (Lead Style “M”)
Axial Ribbon Leads (Lead Style “A”)
DIMENSIONS millimeters (inches)
Unit L LLWW
LHH
LTL
Size ±0.51 (0.020) Min. ±0.64 (0.025) ±0.38 (0.015) ±0.64 (0.025) ±0.38 (0.015) Ref.
HQLC 5.72 (0.225) 12.7 (0.500) 6.35 (0.250) 6.10 (0.240) 3.68 (0.145) 0.64 (0.025) 0.10 (0.004)
HQLE 9.40 (0.370) 19.1 (0.750) 10.2 (0.400) 8.89 (0.350) 3.68 (0.145) 0.64 (0.025) 0.25 (0.010)
Note: Side to side lead alignment shall be within ±0.25 (0.010)
Note: Side to side lead alignment shall be within ±0.25 (0.010)
DIMENSIONS millimeters (inches)
Unit L LLWW
LHT
L
Size ±0.51 (0.020) Min. ±0.64 (0.025) ±0.38 (0.015) ±0.64 (0.025) Ref.
HQLC 5.72 (0.225) 12.7 (0.500) 6.35 (0.250) 6.10 (0.240) 3.18 (0.125) 0.10 (0.004)
HQLE 9.40 (0.370) 19.1 (0.750) 10.2 (0.400) 8.89 (0.350) 3.18 (0.125) 0.25 (0.010)
±0.51 (0.020)
74
Hi-Q®High RF Power
MLC Capacitors
0.001
0010
0.100
1.000
100001000100101
Capacitance (pF)
ESR ()
zHM 65.31
zHM 46
zHM 052
zHM 005
Typical ESR vs. Capacitance
HQCC and HQLC
Maximum RMS Current vs. Capacitance
HQCC and HQLC
0.1
1.0
10.0
100.0
1 10 100 1000 10000
Capacitance (pF)
Maximum RMS Current (A)
13.56 MHz
64 MHz
250 MHz
500 MHz
Typical Quality Factor vs. Capacitance
HQCC and HQLC
1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1 10 100 1000 10000
Capacitance (pF)
Quality Factor (-)
13.56 MHz
64 MHz
250 MHz
500 MHz
Typical Series Resonant Frequency vs. Capacitance
HQCC and HQLC
10
100
1000
10000
110 100 1000 10000
Capacitance (pF)
Frequency (MHz)
PERFORMANCE CHARACTERISTICS
75
Hi-Q®High RF Power
MLC Capacitors
Typical ESR vs. Capacitance
HQCE and HQLE
0.001
0.010
0.100
1.000
1 10 100 1000 10000
Capacitance (pF)
13.56 MHz
64 MHz
250 MHz
500 MHz
ESR ()
Maximum RMS Current vs. Capacitance
HQCE and HQLE
0.1
1.0
10.0
100.0
1 10 100 1000 10000
Capacitance (pF)
Maximum RMS Current (A)
13.56 MHz
64 MHz
250 MHz
500 MHz
Typical Quality Factor vs. Capacitance
HQCE and HQLE
1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1 10 100 1000 10000
Capacitance (pF)
Quality Factor (-)
13.56 MHz
64 MHz
250 MHz
500 MHz
Typical Series Resonant Frequency vs. Capacitance
HQCE and HQLE
10
100
1000
10000
1 10 100 1000 10000
Capacitance (pF)
Frequency (MHz)
PERFORMANCE CHARACTERISTICS
76
Tip & Ring
Multilayer Ceramic Chip Capacitors
AVX “Tip & Ring” or “ring detector” Multilayer Ceramic Chip
Capacitors are designed as a standard telecom filter
to block -48 Volts DC telephone line voltage and pass
subscriber’s AC signal pulse (16 to 25Hz, 70 to 90Vrms).
The typical ringing signal is seen on figure on page 77. The
ringer capacitors replace large leaded film capacitors and
are ideal for telecom/modem applications. Using AVX “Tip &
Ring” capacitors not only saves valuable real estate on the
board and reduces the weight of overall product, but also
features standard surface mounting capabilities, so critical to
new and compact designs.
The AVX “Tip & Ring” capacitors are offered in standard
EIA sizes and standard values. They offer excellent high
frequency performance, low ESR and improved temperature
performance over film capacitors.
HOW TO ORDER
1812 P C 104 K A T 1 A
AVX Voltage Temp Capacitance Capacitance Test Packaging Special
Style 250 VDC Coefficient Code Tolerance Level 1 = 7" Reel Code
0805 Telco X7R (2 significant K = ±10% A = Standard 3 = 13" Reel A = Standard
1206 Rating digits + no. M = ±20% 9 = Bulk
1210 of zeros)
1808 Examples:
1812
1,000 pF = 102
1825
22,000 pF = 223
2220 220,000 pF = 224
2225 1 µF = 105
Style 0805 1206 1210 1808* 1812* 1825* 2220* 2225*
(L) Length 2.01 ± 0.20 3.20 ± 0.20 3.2 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.60 ± 0.30 5.60 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.220 ± 0.012) (0.220 ± 0.010)
(W)Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.2 ± 0.20 6.34 ± 0.30 5.10 ± 0.40 6.35 ± 0.25
(0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.200 ± 0.016) (0.250 ± 0.010)
(T) Thickness 1.30 max. 1.50 max. 1.70 max. 1.52 max. 2.00 max. 2.00max. 2.00 max. 2.00 max.
(0.051 max.) (0.059 max.) (0.067 max.) (0.60 max.) (0.080 max.) (0.080 max.) (0.080 max.) (0.080 max.)
(t) terminal 0.50 ± 0.25 0.50 ± 0.25 0.50 ± 0.25 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38
(0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015)
DIMENSIONS millimeters (inches)
*Reflow Soldering Only
Termination
T = Plated
Ni and Sn
J = 5% Min Pb
W
L
T
t
77
250V
Tip & Ring
-250V
-400ms 200ms/div 1.6s
0
-48V
Tip & Ring
Multilayer Ceramic Chip Capacitors
CAPACITANCE RANGE (µF)
“TIP & RING” GRAPH
Capacitance Range 1000 pF to 1.2 µF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances ±10%, ±20%
Dissipation Factor 2.5% max. (25°C, 1.0 ±0.2 Vrms at 1kHz)
Temperature Characteristic X7R ±15% (0 VDC)
Voltage Rating 250 VDC Telco rating
Insulation Resistance (25°C, at 250 VDC) 1000 megohm-microfarad min.
Dielectric Strength 250% rated voltage for 5 seconds at 50 mA max. current
PERFORMANCE CHARACTERISTICS
Size 0805 1206 1210 1808 1812 1825 2220 2225
min. 0.0010 0.0010 0.0010 0.010 0.10 0.33 0.47 0.47
max. 0.022 0.056 0.1 0.22 0.47 1.0 1.0 1.2
78
Metric dimensions will govern.
English measurements rounded and for reference only.
MLC Chips
Packaging of Chip Components
TAPE & REEL QUANTITIES
All tape and reel specifications are in compliance with EIA481 or IEC-286-3.
8mm 12mm 24mm
0805
1206 1808 1812, 1825 3640
1210 2220, 2225, HQCC HQCE
Qty. per Reel/7" Reel 2000 2000 1000 N/A
Qty. per Reel/13" Reel 10,000 4000 4000 1000
REEL DIMENSIONS
Tape A B* CD* N W1W2W3
Size Max. Min. Min. Min. Max.
+1.5 7.9 Min.
8mm 330 1.5 13.0±0.20 20.2 50 8.4 -0.0 14.4 (0.311)
(12.992) (0.059) (0.512±0.008) (0.795) (1.969) (0.331 +.060)(0.567) 10.9 Max.
-0.0 (0.429)
+2.0 11.9 Min.
12mm 330 1.5 13.0±0.20 20.2 50 12.4 -0.0 18.4 (0.469)
(12.992) (0.059) (0.512±0.008) (0.795) (1.969) (0.488 +.079)(0.724) 15.4 Max.
-0.0 (0.607)
+0.5 +2.0 23.9 Min.
24mm 360 1.5 13.0 -0.2 20.2 60 24.4 -0.0 30.4 (0.941)
(14.173) (0.059) (0.512 +.020)(0.795) (2.362) (0.961 +.079)(1.197) 27.4 Max.
-.008 -0.0 (1.079)
AUTOMATIC INSERTION PACKAGING
DIMENSIONS millimeters (inches)
79
Single-In-Line Packages (SIP)
Capacitor Arrays
10987654321
CIRCUIT CONFIGURATION "A"
ONE END LEAD GROUND
10987654321
CIRCUIT CONFIGURATION "B"
ADJACENT LEAD PAIR CAPS
10987654321
CIRCUIT CONFIGURATION "C"
BOTH END LEADS GROUND
0.254
(0.010)
Typ.
0.254
(0.010)
Typ.
1.524 (0.060) Typ.
Length (Max.)
7.62 (0.300)
Max.
3.81
(0.150) Min.
0.508 (0.020) Typ.
2.54 (0.100) Typ.
3.429
(0.135)
Max.
3.429
(0.135)
Max.
Length = [# of Leads x 2.54 (0.100)]
+ 1.27 (0.050)
i.e., 10 Lead SIP = 26.67 (1.050)
STYLE 1
(AVX STD OFFERING)
STYLE C
SIP-style, MLC ceramic capacitor arrays are Single-In-Line,
conformally coated packages. These capacitor networks
incorporate multiple capacitors into a single substrate and,
therefore, offer excellent TC tracking. The utilization of
SIP capacitor arrays minimizes board real estate and
reduces component count in the assembly. Various circuit
configurations and capacitance/voltage values are available.
Dimensions in millimeters (inches)
80
Single-In-Line Packages (SIP)
Capacitor Arrays
SPECIFICATION # DESCRIPTION CIRCUIT LEADS CAPACITANCE RANGE
87112 BX-100 VDC A 8 1000 pF - 0.1 µF
87116 C0G-100 VDC A 8 10 pF - 820 pF
87119 BX-100 VDC C 10 1000 pF - 0.1 µF
87120 C0G-100 VDC C 10 10 pF - 1000 pF
87122 BX-100 VDC B 8 1000 pF - 0.1 µF
88019 BX-100 VDC A 10 1000 pF - 0.1 µF
89086 C0G-100 VDC B 8 10 pF - 820 pF
AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS
*For dimensions, voltages, or capacitance values not specified, please contact factory.
HOW TO ORDER
SP A 1 1 A 561 K A A
AVX Style Circuit Lead Voltage Temperature Capacitance Capacitance Test Number of
See Page 79 Style Coefficient Code Tolerance Level Leads
(A, B, C) Offset = 1 50V = 5 C0G = A (2 significant C0G: K = ±10% A = Standard 2 = 2
Centered = C 100V = 1 X7R = C digits + no. M = ±20% 3 = 3
Z5U = E of zero) X7R: K = ±10% 4 = 4
10 pF = 100 M = ±20% 5 = 5
100 pF = 101 Z = +80%,-20% 6 = 6
1,000 pF = 102 Z5U: M = ±20% 7 = 7
22,000 pF = 223 Z = +80%,-20% 8 = 8
220,000 pF = 224 P = GMV 9 = 9
1 µF = 105 (+100,-0%) A = 10
10 µF = 106 B = 11
100 µF = 107 C = 12
D = 13
E = 14
Maximum Capacitance*
50V 100V
C0G 2200 pF 1500 pF
X7R 0.10 µF 0.033 µF
Z5U 0.39 µF 0.10 µF
81
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style (US Preferred Sizes) / XB Style (European Preferred Sizes)
XF Style (Feed-Through Discoidal)
LOWEST CAPACITANCE IMPEDANCES TO GROUND
Temperature Coefficient
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° +125°C
X7R: C Temperature Coefficient - ±15%, -55° to +125°C
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C
Capacitance Test (MIL-STD-202 Method 305)
C0G: 25°C, 1.0±0.2 Vrms at 1KHz, for 100 pF use 1 MHz
X7R: 25°C, 1.0±0.2 Vrms at 1KHz
Z5U: 25°C, 0.5 Vrms max at 1KHz
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms at 1KHz, for 100 pF use 1 MHz
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms at 1KHz
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
C0G and X7R: 100K Mor 1000 M-µF, whichever is less.
Z5U: 10K Mor 1000 M-µF, whichever is less.
Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G and X7R: 10K Mor 100 M-µF, whichever is less.
Z5U: 1K Mor 100 M-µF, whichever is less.
Dielectric Withstanding Voltage 25°C (Flash Test)*
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. 500V rated units will be tested at 750 VDC
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current.
Life Test (1000 hrs)
C0G and X7R: 200% rated voltage at +125°C (500 Volt units
@ 600 VDC)
Z5U: 150% rated voltage at +85°C
Moisture Resistance (MIL-STD-202 Method 106)
C0G, X7R, Z5U: Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method 104, Condition B)
DC61 5 A 561 K A 5 1 06
AVX Voltage Temperature Capacitance Code Capacitance Test Termination Inside Maximum
Style 50V = 5 Coefficient (2 significant digits Tolerance Level 5 = Silver Diameter Thickness
See Pages 100V = 1 C0G = A + no. of zeros) C0G: J = ±5% A = Standard (AVX Standard) See Pages 06 = 1.52 (0.060)
82-84 200V = 2 X7R = C Examples: K = ±10% 82-84 10 = 2.54 (0.100)
500V = 7 Z5U = E M = ±20%
X7R: K = ±10%
M = ±20%
Z5U: M = ±20%
Z = +80 -20%
P = GMV
For dimensions, voltages or values not specified, please consult factory.
A discoidal MLC capacitor has very low impedance associated with its ground path
since the signal is presented with a multi-directional path. These electrode paths,
which can be as many as 100, allow for low ESR and ESL which are the major ele-
ments in impedance at high frequencies.
The assembled discoidal element or feed-thru allows signal to be fed in through a
chassis or bulkhead, conditioned as it passes through the discoidal, and isolated by
the chassis and discoidal from the original signal. An example of this application
would be in an AFT circuit where the AC noise signal would be required to be
stripped from the DC control signal. Other applications include single line EMI/RFI
suppression, L-C filter construction, and coaxial shield bypass filtering.
The shape of the discoidal lends itself to filter construction. The short length allows
compact construction where L-C construction is desired.
The size freedom associated with this element allows almost any inside/
outside diameter combination. By allowing the inside diameter to equal
the center insulator diameter of a coaxial signal line and special termination tech-
niques, this device will allow bypass filtering of a floating shield to ground.
Discoidal capacitors are available in three temperature coefficients (C0G, X7R, Z5U)
and a variety of sizes, the most standard of which appear in this catalog.
INSERTION LOSS
0 100 200 300 400 500 600 700 800 900 1000
SINGLE CHIP
DISCOIDAL
0
-10
-20
-30
-40
-50
-60
-70
-80
f (MHz)
(dB)
HOW TO ORDER
OD*
ID
T Max.
These surfaces are metallized
.127 (0.005). minimum wide except
for DC61, DC26 and DC63
where metallized surfaces
are .127 (0.005) maximum.
*Tol. = .254 (0.010) or 3%, whichever is greater
+
-
ELECTRICAL SPECIFICATIONS
APPLICATION INFORMATION ON DISCOIDAL
10 pF = 100
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1 µF = 105
AVX’s DC Series 50V, 100V, 200V, C0G
and X7R parts are capable of meeting
the requirements of MIL-PRF-31033.
82
Inside Diameter:
SIZE AND CAPACITANCE SPECIFICATIONS Dimensions: millimeters (inches)
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
*Outside Diameter:
Tolerance is ±0.254 (0.010) or 3%
whichever is greater
1 = .635+.127 (.025+.005)
-.051 -.002
2 = .762+.127 (.030+.005)
-.051 -.002
3 = .914+.127 (.036+.005)
-.051 -.002
4 = 1.07+.127 (.042+.005)
-.051 -.002
5 = 1.27±.127 (0.050±.005)
6 = 1.52±.127 (0.060±.005)
7 = 1.73±.127 (0.068±.005)
EIA
Characteristic C0G
AVX Style DC61 DC26 DC63 DC04 DC65 DC66 DC67 DC69 DC32 DC70 DC02 DC71 DC05 DC73 DC72
Outside 2.54 3.43 3.81 4.83 5.33 5.97 6.73 8.13 8.51 8.89 9.40 9.78 12.70 15.24 16.26
Diameter (OD)* (0.100) (0.135) (0.150) (0.190) (0.210) (0.235) (0.265) (0.320) (0.335) (0.350) (0.370) (0.385) (0.500) (0.600) (0.640)
Thickness 1.52 1.52 1.52 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54
Maximum (T) (0.060) (0.060) (0.060) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100)
Inside 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7
Diameter No. (ID) 1,2 1,2,3 1,2,3,4 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
Voltage
cap. in pF 10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
47,000
56,000
68,000
82,000
100,000
120,000
150,000
180,000
220,000
270,000
330,000
390,000
470,000
560,000
680,000
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style
83
*Outside Diameter:
Tolerance is ±0.254 (0.010) or 3%
whichever is greater
SIZE AND CAPACITANCE SPECIFICATIONS Dimensions: millimeters (inches)
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
EIA
Characteristic
X7R
AVX Style DC61 DC26 DC63 DC04 DC65 DC66 DC67 DC69 DC32 DC70 DC02 DC71 DC05 DC73 DC72
Outside 2.54 3.43 3.81 4.83 5.33 5.97 6.73 8.13 8.51 8.89 9.40 9.78 12.70 15.24 16.26
Diameter (OD)* (0.100) (0.135) (0.150) (0.190) (0.210) (0.235) (0.265) (0.320) (0.335) (0.350) (0.370) (0.385) (0.500) (0.600) (0.640)
Thickness 1.52 1.52 1.52 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54
Maximum (T) (0.060) (0.060) (0.060) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100)
Inside 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7
Diameter No. (ID) 1,2 1,2,3 1,2,3,4 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
Voltage
cap. in pF 56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
47,000
56,000
68,000
82,000
100,000
120,000
150,000
180,000
220,000
270,000
330,000
390,000
470,000
560,000
680,000
820,000
1.0 µF
1.2 µF
1.5 µF
1.8 µF
2.2 µF
2.7 µF
3.3 µF
3.9 µF
6.8 µF
Inside Diameter:
1 = .635+.127 (.025+.005)
-.051 -.002
2 = .762+.127 (.030+.005)
-.051 -.002
3 = .914+.127 (.036+.005)
-.051 -.002
4 = 1.07+.127 (.042+.005)
-.051 -.002
5 = 1.27±.127 (0.050±.005)
6 = 1.52±.127 (0.060±.005)
7 = 1.73±.127 (0.068±.005)
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style
84
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
SIZE AND CAPACITANCE SPECIFICATIONS Dimensions: millimeters (inches)
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style
Inside Diameter:
1 = .635+.127 (.025+.005)
-.051 -.002
2 = .762+.127 (.030+.005)
-.051 -.002
3 = .914+.127 (.036+.005)
-.051 -.002
4 = 1.07+.127 (.042+.005)
-.051 -.002
5 = 1.27±.127 (0.050±.005)
6 = 1.52±.127 (0.060±.005)
7 = 1.73±.127 (0.068±.005)
*Outside Diameter:
Tolerance is ±0.254 (0.010) or 3%
whichever is greater
EIA
Characteristic Z5U
AVX Style DC61 DC26 DC63 DC04 DC65 DC66 DC67 DC69 DC32 DC70 DC02 DC71 DC05 DC73 DC72
Outside 2.54 3.43 3.81 4.83 5.33 5.97 6.73 8.13 8.51 8.89 9.40 9.78 12.70 15.24 16.26
Diameter (OD)* (0.100) (0.135) (0.150) (0.190) (0.210) (0.235) (0.265) (0.320) (0.335) (0.350) (0.370) (0.385) (0.500) (0.600) (0.640)
Thickness 1.52 1.52 1.52 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54
Maximum (T) (0.060) (0.060) (0.060) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100)
Inside 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7
Diameter No. (ID) 1,2 1,2,3 1,2,3,4 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
Voltage
cap. in pF 1800
2200
2700
3300
3900
4700
5600
6800
8200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
47,000
56,000
68,000
82,000
100,000
120,000
150,000
180,000
220,000
270,000
330,000
390,000
470,000
560,000
680,000
820,000
1.0 µF
1.2 µF
1.5 µF
1.8 µF
2.2 µF
2.7 µF
3.3 µF
3.9 µF
4.7 µF
5.6 µF
6.8 µF
8.2 µF
10.0 µF
12.0 µF
15.0 µF
85
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – C0G
Type Terminations Reference Mechanical Characteristics
Silver XB..C•....• --
palladium
CECC 30600
Tinned
XB..C•....• MB
silver palladium MIL 11015 D
Conformance
Silver XF..C•....• -- to
palladium
CK12
TYPE
Tinned
silver palladium XF..C•....• MB
OD
e
bm
ID
bm
OD
e20
(0.787)
min.
20
(0.787)
min.
Ø
REFERENCES
ELECTRICAL CHARACTERISTICS
OD ID bm Ø e
Size XB/XF XB/XF...MB XB XB...MB min (XF) min max
03 3.8 ± 0.3 4.1 ± 0.4 0.7 ± 0.15 > 0.4 0.1 0.5 1 See
(0.150 ± 0.012) (0.161 ± 0.016) (0.028 ± 0.006) (> 0.016) (0.004) (0.020) table
04 3.8 ± 0.3 1.2 ± 0.15 0.1 1 on
(0.150 ± 0.012) (0.047 ± 0.006) (0.004) page
08 7.9 ± 0.3 8.2 ± 0.4 0.8 ± 0.15 > 0.5 0.2 0.6 1 86
(0.311 ± 0.012) (0.323 ± 0.016) (0.031 ± 0.006) (> 0.020) (0.008) (0.024)
Dielectric Class C0G
Temperature Coefficient 0 ± 30 ppm/°C
Climatic Category -55 / 125 / 56
Operating Temperature -55 +125°C
Rated Voltage (UR) 50 to 400V
Test Voltage (Ue) 2.5 UR
Tangent of Loss Angle
C < 50 pF tg δ< 1.5 150 + 7 10-4
(CR)
C 50 pF tg δ< 15(10-4)
Insulation Resistance Ri 100 G
DIMENSIONS millimeters (inches)
HOW TO ORDER
XB 06 Z G 0104 K --
AVX Style Size Class Voltage Capacitance Tolerance Packaging
XB 03 C = NP0 D = 63 EIA code J = 5% -- : bulk
XF 04 Z = X7R E = 100 on 3 or 4 K = 10%
06 F = 160 digits M = 20%
07 G = 250
08 I = 400
09 J = 500 (optional)
10
14
15
86
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – C0G
RATED VOLTAGE – RATED CAPACITANCES
Size
03 04 08
Capacitance Rated Voltage - UR(V)/Ur code
CR
DD F
10 pF
15 pF
22 pF
33 pF
47 pF
68 pF
100 pF
150 pF
220 pF
330 pF
470 pF
680 pF
1000 pF
1500 pF
2200 pF
3300 pF
4700 pF
6800 pF
10 nF
15 nF
22 nF
33 nF
47 nF
68 nF
100 nF
Thickness emax 1.4 (0.055) 1.4 (0.055) 1.8 (0.071)
mm (inches)
50/63
50/63
160
• other values, please contact us
• for tinned types, add 0.5 (0.020) to emax
87
OD ID bm Ø e
Size XB/XF XB/XF...MB XB XB...MB min (XF) min max
03 3.8 ± 0.3 4.1 ± 0.4 0.7 ± 0.15 > 0.4 0.1 0.5 1.0
(0.150 ± 0.012) (0.161 ± 0.016) (0.028 ± 0.006) (> 0.016) (0.004) (0.020) (0.039)
04 3.8 ± 0.3 1.2 ± 0.15 0.1 1.0
(0.150 ± 0.012) (0.047 ± 0.006) (0.004) (0.039)
06 6.4 ± 0.3 6.7 ± 0.4 1.7 ± 0.15 > 0.5 0.2 0.6 1.0 See
(0.252 ± 0.012) (0.264 ± 0.016) (0.067 ± 0.006) (> 0.020) (0.008) (0.024) (0.039)
07 7.3 ± 0.3 7.6 ± 0.4 1.7 ± 0.15 > 0.5 0.2 0.6 1.0 table
(0.287 ± 0.012) (0.299 ± 0.016) (0.067 ± 0.006) (> 0.020) (0.008) (0.024) (0.039) on
08 7.9 ± 0.3 8.2 ± 0.4 0.8 ± 0.15 > 0.5 0.2 0.6 1.0 page
(0.311 ± 0.012) (0.323 ± 0.016) (0.031 ± 0.006) (> 0.020) (0.008) (0.024) (0.039)
09 8.4 ± 0.4 8.7 ± 0.5 1.6 ± 0.3 > 0.5 0.2 0.6 1.0 88
(0.331 ± 0.016) (0.343 ± 0.020) (0.063 ± 0.012) (> 0.020) (0.008) (0.024) (0.039)
10 9.6 ± 0.4 9.9 ± 0.5 1.2 ± 0.15 > 0.9 0.2 1.0 1.0
(0.378 ± 0.016) (0.390 ± 0.020) (0.047 ± 0.006) (> 0.035) (0.008) (0.039) (0.039)
14 14.0 ± 0.5 14.3 ± 0.6 1.7 ± 0.3 > 0.9 0.2 1.0 1.0
(0.551 ± 0.020) (0.563 ± 0.024) (0.067 ± 0.012) (> 0.035) (0.008) (0.039) (0.039)
15 15.0 ± 0.5 15.3 ± 0.6 2.3 ± 0.3 > 0.9 0.2 1.0 1.0
(0.591 ± 0.020) (0.602 ± 0.024) (0.091 ± 0.012) (> 0.035) (0.008) (0.039) (0.039)
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – X7R
Type Terminations Reference Mechanical Characteristics
Silver XB..Z•....• --
palladium
Tinned CECC 30700
silver palladium XB..Z•....• MB MIL 11015 D
Conformance
Silver XF..Z•....• --
to
palladium
CK12, CK13, CK14
TYPES
Tinned
silver palladium XF..Z•....• MB
OD
e
bm
ID
bm
OD
e20
(0.787)
min.
20
(0.787)
min.
Ø
REFERENCES
ELECTRICAL CHARACTERISTICS
DIMENSIONS millimeters (inches)
Dielectric Class X7R
Temperature Coefficient C/C ± 15% (-55 +125°C)
Climatic Category -55 / 125 / 56
Operating Temperature -55 +125°C
Rated Voltage (UR) 50 to 400V
Test Voltage (Ue) 2.5 UR
Tangent of Loss Angle tg δ250(10-4)
Insulation Resistance
C 10 nF Ri 100 G
C > 10 nF Ri xC 1000s
88
• other values, please contact us
• for tinned types, add 0.5 (0.020) to emax
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – X7R
RATED VOLTAGE – RATED CAPACITANCES
Size
03-04 06 07 08-09 10 14-15
Capacitance UR- (V)/Code UR
CR
D DEFGDEFGIDEFGIDEFGIDEFGI
100 pF
150 pF
220 pF
330 pF
470 pF
680 pF
1000 pF
1500 pF
2200 pF
3300 pF
4700 pF
6800 pF
10 nF
15 nF
22 nF
33 nF
47 nF
68 nF
100 nF
150 nF
220 nF
330 nF
470 nF
680 nF
1 µF
1.5 µF
2.2 µF
3.3 µF
4.7 µF
emax mm (inches) 1.4 2 2 2 2 3 3 3 3 3 1.8 3 1.8 3 3 3 3 3 3 3 3.5 3.5 3.5 3.5 3.5
(0.055)
(
0.079)
(
0.079)
(
0.079)
(
0.079)
(
0.118)
(
0.118)
(
0.118)
(
0.118)
(
0.118)
(
0.071)
(
0.118)
(
0.071)
(
0.118)
(
0.118)
(
0.118)
(
0.118)
(
0.118)
(
0.118)
(
0.118)
(
0.138)
(
0.138)
(
0.138)
(
0.138) (0.138)
50/63
50/63
100
160
250
50/63
100
160
250
400
50/63
100
160
250
400
50/63
100
160
250
400
50/63
100
160
250
400
89
Filtered Arrays
XD... Type
TYPES L P D d bm maxi Thickness
maxi
XD07 7.00 ± 0.15 2.54 1.70 ± 0.15 1.00 ± 0.10 0.3 2mm
(4 capacitors) (0.275 ± 0.006) (0.100) (0.067 ± 0.006) (0.039 ± 0.0039)
XD06 6.00 ± 0.15 2.54 1.70 ± 0.15 1.00 ± 0.10 0.3 2mm
(4 capacitors) (0.236± 0.006) (0.100) (0.067 ± 0.006) (0.039 ± 0.0039)
XD03 6.00 x 3.00 ± 0.15 2.54 1.70 ± 0.15 1.0 ± 0.10 0.3 1.5mm
(2 capacitors) (0.236 x 0.118 ± 0.006) (0.100) (0.067 ± 0.006) (0.039 ± 0.0039)
STYLE & DIMENSIONS millimeters (inches)
HOW TO ORDER
XD 06 Z F 0153 K --
AVX Style Size Class Voltage Capacitance Tolerance Packaging
XD 03 C = NP0 F = 200 EIA code NP0 F = ±1% SUFFIX
06 Z = X7R J = 500 on 3 or 4 G = ±2% Burn-in 100% 168H = T5
07 digits J = ±5% Burn-in 100% 48H = T3
K = ±10% No burn-in = --
X7R J = ±5%
K = ±10%
M = ±20%
FEATURES
• To be used beneath a connector
• Provide an EMI filtered signal line between electronic modules
• Effective insertion loss from 1MHz up to ~ 1GHz
• Surface mount compatible
L
P
D
d
bm
PL
tm
Cap. Range X7R NP0
(each cap.) 200VDC 500VDC 200VDC 500VDC
XD07... 33nF 120nF 4.7nF 18nF 470pF 1500pF 220pF 620pF
XD06... 15nF 68nF 2.2nF 10nF 220pF 750pF 120pF 330pF
XD03... 8.2nF 39nF 1nF 4.7nF 180pF 390pF 82pF 180pF
CAPACITANCE vs VOLTAGE TABLE
ELECTRICAL CHARACTERISTICS
Dielectric Class X7R NP0
Temperature Coefficient C/C ± 15% (-55 +125°C) 0 ± 30ppm/°C
Climatic Category 55 / 125 / 56 55 / 125 / 56
Rated Voltage (UR) 200 VDC 500VDC 200VDC 500VDC
Test Voltage (Ue)2 x U
R1.5 x UR2 x UR1.5 x UR
Tangent of Loss Angle - DF tg δ250(10-4) tg δ15(10-4)
Insulation Resistance C 10nF = Ri 100 GRi 100 G
C > 10nF = Ri x C 1000s
Terminations: Silver – Palladium – Platinum, on 4 or only 2 sides of the array
90
Size NP0* X7R**
50V 100V 200V 50V 100V 200V
0805 4.7 1500pF 4.7 1500pF 10 470pF 0.47 68nF 0.47 39nF 0.33 18nF
1206 10 4700pF 10 4700pF 10 1500pF 1 180nF 1 100nF 0.1 39nF
1210 10 8200pF 10 8200pF 22 2700pF 10 330nF 4.7 220nF 0.47 100nF
1812 0.1 18nF 0.1 18nF 0.47 5.6nF 47 680nF 10 470nF 1 180nF
2220 0.47 39nF 0.47 39nF 0.1 12nF 0.1 1.5µF 0.047 1µF 4.7 390nF
CECC Ceramic Chips
HOW TO ORDER
AN 13 Z E 0104 JT3
AVX Style Size Class Voltage Capacitance Tolerance Packaging
AN = Nickel Barrier 12 = 0805 C = NP0 D = 50/63 EIA code NP0 F = ±1% SUFFIX
+ SnPb finish 20 = 1206 Z = X7R E = 100 on 3 or 4 G = ±2% Burn-in 100% 168H = T5
AC = Silver Palladium 13 = 1210 F = 200 digits J = ±5% Burn-in 100% 48H = T3
14 = 1812 K = ±10% No burn-in = --
15 = 2220 X7R J = ±5%
K = ±10%
M = ±20%
FEATURES
High Reliability CECC Ceramic Chips Capacitors for Military & Avionics applications
CAPACITANCE vs VOLTAGE TABLE
* NP0 Class (range available with tolerance: 1, 2, 5, 10%)
** X7R Class (range available with tolerance: 5, 10, 20%)
Available Reliability Levels:
Suffix: -- = qualified following CECC 32101-801 [no burn-in]
Suffix: T3 = according to CECC 32100-002 or 003; Established reliability level
(Equivalent to MIL-R) [100% burn-in: 48H @ 2 x Ur]
Suffix: T5 = according to CECC 32100-002 or 003; Established reliability level
(Equivalent to MIL-S) [100% burn-in: 168H @ 2 x Ur]
QUALIFIED VS CECC 32101-801
Class: NP0 + X7R (2C1/BX available on request)
Sizes: 0805, 1206, 1210, 1812, 2220 (0603 qualification pending)
Voltages: 50, 100, 200 (500V on request)
Terminations: Silver Palladium or Nickel barrier + tin lead finish
91
The manufacturing facilities have IS09001 approval. Customers
requiring BS9100 approved components are requested to
follow these steps:
1. The customer shall submit a specification for the required
components to AVX for approval. Once agreed a Customer
Detail Specification (CDS) number will be allocated by AVX
to this specification. This number with its current revision
must be quoted at the time of order placement.
2. If the customer has no specification, then AVX will supply a
copy of the standard CDS for the customer’s approval and
signature. As in 1 above, when agreed this CDS number
must be quoted at order entry. In the event of agreement
not being reached the component cannot be supplied to
BS9100.
For assistance contact: EMAP Specification Engineering
Dept. AVX Ltd. Coleraine, Northern Ireland
Telephone ++44 (0)28703 44188, Fax ++44 (0)28703 55527
Unless otherwise stated in the appropriate data sheet parts
are supplied in a waffle pack.
PROCUREMENT OF COMPONENTS OF
BS9100 (CH/CV RANGE 50-500V)
Baseline Management
A Dedicated Facility / BS9100 Requirements
Baseline Products —
A Selection of Options
As a matter of course, AVX maintains a
level of quality control that is sufficient
to guarantee whatever reliability specifi-
cations are needed. However, AVX
goes further. There are over 65 quality
control and inspection operations that
are available as options to a customer.
Any number may be requested and
written into a baseline process. The
abbreviated list that follows indicates
the breadth and thoroughness of avail-
able Q.C. services at AVX:
Ultrasonic Scanning
Destructive Physical Analysis (DPA)
X-Ray
Bondability Testing
Sorting and Matching to
Specification Limits
Temperature and Immersion
Cycling
Load/Humidity Life Testing
Dye Penetration Evaluation
100% Ceramic Sheet Inspection
Voltage Conditioning
Termination Pull Testing
Pre-encapsulation Inspection
Within the “specials” area, AVX accom-
modates a broad variety of customer
needs. The AVX facilities are capable of
developing and producing the most
reliable and advanced MLCs available
anywhere in the world today. Yet it is
equally adept at making volume “custom”
components that may differ only in
markings or lead placement from the
standard catalog part.
Stretching the Limits
Advanced Products are developed to
meet the extraordinary needs of specific
applications. Requirements may include:
low ESR, low ESL, voltages up to 10’s
of thousands, advanced decoupling
designs for frequencies up to 10’s of
megahertz, temperatures up to 200°C,
extremely high current discharge, ability
to perform in high radiation or toxic
atmospheres, or minimizing piezoelectric
effect in high vibration environments.
In addition, solving customer packaging
problems, aside from addressing circuit
problems, is available. Special lead
frames for high current or special
mounting requirements are examples.
Multiple ceramic chip package designs
per customer requirements are also
available.
Advanced Products always begin with
a joint development program involving
AVX and the customer. In undersea
cable components, for example,
capacitance and impedance ratings
had to be maintained within 1% over
the multi-year life of the system. In this
case, Advanced Products not only
met the parametric requirements of the
customer, but accelerated life testing of
3,500 units indicated an average life
expectancy of over 100,000 years.
Baseline Program Management
Baseline Program Management has
been AVX’s forte over the years. This is
both a product and a service function
designed to provide the customer the
full capabilities of AVX in meeting their
program requirements. AVX has had
Baseline and Program Management in
the following major systems:
—AT&T Undersea Cable
—Minuteman
—Peacekeeper
—STC Undersea Cable
—CIT Undersea Cable
—Raytheon-Hawk Missile
—Trident
—Small Missile Program
—Northrop - Peacekeeper
—Sparrow Program
—Space Station
—European Space Agency (ESA)
—Commercial Satellite Program
—Arianne 4 & 5
—EuroFighter (Typhoon)
—EH101 (Merlin)
AVX technical personnel stand ready to
answer any questions and provide any
information required on your programs
from the most exotic Hi-Rel part to the
simplest variation on a standard. Put the
experience, technology and facilities of
the leading company in multilayer
ceramics to work for you. No other
source offers the unique combination of
capability and commitment to advanced
application specific components.
PACKAGING
92
Advanced Application
Specific Products
Examples of Special Packaging and Custom
Lead Configurations from Advanced Products
Custom Lead
Configurations. . .
optimum 3D packaging, high current
applications and high reliability stress
relief mounting.
Custom
Packaging. . .
eliminate reliability concerns with multiple
component assembly.
Many other innovations are available from Advanced Products. Let them apply these ideas
to your application specific programs.
93
NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given
herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements
or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not
recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are
typical and may not apply to all applications.
© AVX Corporation
AVX Products Listing
For more information please visit
our website at
http://www.avx.com
CONNECTORS
2mm Hard-Metric for CompactPCI®
Automotive Connectors
Board to Board Connectors –
SMT and Through-Hole
Card Edge
Compression
Custom Designed Connectors
Customized Backpanel, Racking and
Harnessing Services
DIN 41612 Connectors
FFC/FPC Connectors
Insulation Displacement Connectors
I/O Connectors
Memory Card Connectors
CF, PCMCIA, SD, MMC
MOBOTM, I/O, Board to Board and
Battery Connectors
Press-fit Connectors
Varicon®
Wire to Board, Crimp or IDC
PASSIVES
Capacitors
Multilayer Ceramic
Tantalum
Microwave
Glass
Film
Power Film
Power Ceramic
Ceramic Disc
Trimmer
BestCap™
Resistors
Arrays
Timing Devices
Resonators
Oscillators
Crystals
Filters
EMI
SAW
Dielectric
Thin Film
Inductors
Fuses
Capacitors
Couplers
Baluns
Filters
Integrated Passive
Components
Low Inductance Chip Arrays
Capacitor Arrays
Dual Resonance Chips
Custom IPCs
Voltage Suppressors,
Varistors and Thermistors
Acoustical Piezos
S-AP0M0505-C
Contact:
AVX Myrtle Beach, SC
Corporate Offices
Tel: 843-448-9411
FAX: 843-448-1943
AVX Northwest, WA
Tel: 360-699-8746
FAX: 360-699-8751
AVX North Central, IN
Tel: 317-848-7153
FAX: 317-844-9314
AVX Mid/Pacific, CA
Tel: 510-661-4100
FAX: 510-661-4101
AVX Southwest, AZ
Tel: 602-678-0384
FAX: 602-678-0385
AVX South Central, TX
Tel: 972-669-1223
FAX: 972-669-2090
AVX Southeast, GA
Tel: 404-608-8151
FAX: 770-972-0766
AVX Canada
Tel: 905-238-3151
FAX: 905-238-0319
AVX Limited, England
European Headquarters
Tel: ++44 (0) 1252-770000
FAX: ++44 (0) 1252-770001
AVX/ELCO, England
Tel: ++44 (0) 1638-675000
FAX: ++44 (0) 1638-675002
AVX S.A., France
Tel: ++33 (1) 69-18-46-00
FAX: ++33 (1) 69-28-73-87
AVX GmbH, Germany
Tel: ++49 (0) 8131-9004-0
FAX: ++49 (0) 8131-9004-44
AVX srl, Italy
Tel: ++390 (0)2 614-571
FAX: ++390 (0)2 614-2576
AVX Czech Republic
Tel: ++420 465-358-111
FAX: ++420 465-323-010
A KYOCERA GROUP COMPANY
http://www.avx.com
AVX/Kyocera, Singapore
Asia-Pacific Headquarters
Tel: (65) 6286-7555
FAX: (65) 6488-9880
AVX/Kyocera, Hong Kong
Tel: (852) 2-363-3303
FAX: (852) 2-765-8185
AVX/Kyocera, Korea
Tel: (82) 2-785-6504
FAX: (82) 2-784-5411
AVX/Kyocera, Taiwan
Tel: (886) 2-2698-8778
FAX: (886) 2-2698-8777
AVX/Kyocera, Malaysia
Tel: (60) 4-228-1190
FAX: (60) 4-228-1196
Elco, Japan
Tel: 045-943-2906/7
FAX: 045-943-2910
Kyocera, Japan - AVX
Tel: (81) 75-604-3426
FAX: (81) 75-604-3425
Kyocera, Japan - KDP
Tel: (81) 75-604-3424
FAX: (81) 75-604-3425
AVX/Kyocera, Shanghai, China
Tel: 86-21 6341 0300
FAX: 86-21 6341 0330
AVX/Kyocera, Tianjin, China
Tel: 86-22 2576 0098
FAX: 86-22 2576 0096
USA
EUROPE
ASIA-PACIFIC