FEATURES * * * * HIGH VOLTAGE -- 400V (200V) LOW QUIESCENT CURRENT -- 10mA HIGH OUTPUT CURRENT -- 4A PROGRAMMABLE CURRENT LIMIT PATENTED 12-PIN SIP PACKAGE STYLE DP APPLICATIONS * * * * Formed leads availablewith package styles ED & EE PIEZOELECTRIC POSITIONING HIGH VOLTAGE INSTRUMENTATION ELECTROSTATIC TRANSDUCERS PROGRAMMABLE POWER SUPPLIES UP TO 390V TYPICAL APPLICATION DESCRIPTION The PA92 is a high voltage, low quiescent current MOSFET operational amplifier designed as a low cost solution for driving continuous output currents up to 4A and pulse currents up to 7A. The safe operating area (SOA) has no second breakdown limitations and can be observed for all type loads by choosing an appropriate current limiting resistor. The MOSFET output stage is biased AB for linear operation. External compensation provides flexibility in choosing bandwidth and slew rate for the application. APEX's Power SIP package uses a minimum of board space allowing for high density circuit boards. The Power SIP package is electrically isolated. EQUIVALENT SCHEMATIC LOW POWER, PIEZOELECTRIC POSITIONING Piezo positioning may be applied to the focusing of segmented mirror systems. The composite mirror may be composed of hundreds of elements, each requiring focusing under computer control. In such complex systems the PA92 reduces the costs of power supplies and cooling with its advantages of low cost and low quiescent power consumption while increasing circuit density with the SIP package. GAIN CC* RC 1 150pF 100 2 100pF 100 3 47pF 0 12 10pF 0 *CC Never to be <10pF. CC to be rated for the full supply voltage +V to -Vs. Use ceramic NPO (COG) type. EXTERNAL CONNECTIONS PHASE COMPENSATION APEX MICROTECHNOLOGY CORPORATION * TELEPHONE (520) 690-8600 * FAX (520) 888-3329 * ORDERS (520) 690-8601 * EMAIL prodlit@apexmicrotech.com 1 PA92 ABSOLUTE MAXIMUM RATINGS SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS SUPPLY VOLTAGE, +VS to -VS OUTPUT CURRENT, source, sink, peak POWER DISSIPATION, continuous @ TC = 25C INPUT VOLTAGE, differential INPUT VOLTAGE, common mode TEMPERATURE, pin solder - 10s max. TEMPERATURE, junction2 TEMPERATURE RANGE, storage OPERATING TEMPERATURE RANGE, case 400V 7A, within SOA 80W 20V VS 260C 150C -40 to +85C -25 to +85C SPECIFICATIONS INPUT OFFSET VOLTAGE, initial OFFSET VOLTAGE, vs. temperature OFFSET VOLTAGE, vs. supply OFFSET VOLTAGE, vs. time BIAS CURRENT, initial BIAS CURRENT, vs. supply OFFSET CURRENT, initial INPUT IMPEDANCE, DC INPUT CAPACITANCE COMMON MODE VOLTAGE RANGE3 COMMON MODE REJECTION, DC NOISE VCM = 90V 100KHz BW, RS = 1K, CC = 10pF GAIN OPEN LOOP, @ 15Hz GAIN BANDWIDTH PRODUCT at 1MHz POWER BANDWIDTH PHASE MARGIN RL = 2K, CC = 10pF RL = 2K, CC = 10pF RL = 2K, CC = 10pF Full temperature range POWER SUPPLY VOLTAGE 5 CURRENT, quiescent, THERMAL RESISTANCE, AC, junction to case 4 RESISTANCE, DC, junction to case RESISTANCE, junction to air TEMPERATURE RANGE, case TYP MAX UNITS 2 15 10 75 200 4 50 1011 4 10 50 25 98 1 mV V/C V/V V/kh pA pA/V pA pF V dB Vrms 94 111 18 30 60 dB MHz kHz VS 12 4 VS 10 V A V/s nf s Full temperature range IO = 4A CC = 10pF Full temperature range CC = 10pF, 2V step See note 5 Full temperature range, F > 60Hz Full temperature range, F < 60Hz Full temperature range Meets full range specifications VS 15 80 OUTPUT VOLTAGE SWING3 CURRENT, continuous SLEW RATE, AV = 100 CAPACITIVE LOAD, AV = +1 SETTLING TIME to .1% RESISTANCE, no load MIN 2000 500 TEST CONDITIONS 1 PARAMETER 50 1 1 10 50 150 10 200 14 V mA 1 1.5 C/W C/W C/W C 30 -25 +85 NOTES: 1. Unless otherwise noted: TC = 25C, DC input specifications are value given. Power supply voltage is typical rating. RC = 100 CC = 150pF. 2. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF. 3. +VS and -VS denote the positive and negative power supply rail respectively. 4. Rating applies if the output current alternates between both output transistors at a rate faster than 60Hz. 5. Derate max supply rating .625 V/C below 25C case. No derating needed above 25C case. CAUTION The PA92 is constructed from MOSFET transistors. ESD handling procedures must be observed. The exposed substrate contains beryllia (BeO). Do not crush, machine, or subject to temperatures in excess of 850C to avoid generating toxic fumes. APEX MICROTECHNOLOGY CORPORATION * 5980 NORTH SHANNON ROAD * TUCSON, ARIZONA 85741 * USA * APPLICATIONS HOTLINE: 1 (800) 546-2739 2 PA92 TYPICAL PERFORMANCE GRAPHS APEX MICROTECHNOLOGY CORPORATION * TELEPHONE (520) 690-8600 * FAX (520) 888-3329 * ORDERS (520) 690-8601 * EMAIL prodlit@apexmicrotech.com 3 OPERATING CONSIDERATIONS PA92 GENERAL INPUT PROTECTION Please read Application Note 1 "General Operating Considerations" which covers stability, supplies, heat sinking, mounting, current limit, SOA interpretation, and specification interpretation. Visit www.apexmicrotech.com for design tools that help automate tasks such as calculations for stability, internal power dissipation, current limit; heat sink selection; Apex's complete Application Notes library; Technical Seminar Workbook; and Evaluation Kits. Although the PA92 can withstand differential voltages up to 20V, additional external protection is recommended. Low leakage, low capacitance JFETs connected as diodes are recommended (e.g. 2N4416, Q1-Q4 in Figure 2). The differential input voltage will be clamped to 1.4V. This is sufficient overdrive to produce maximum power bandwidth. CURRENT LIMIT For proper operation, the current limit resistor (RCL) must be connected as shown in the external connection diagram. For optimum reliability the resistor value should be set as high as possible. The value is calculated as follows; with the maximum practical value of 16 ohms. .65 RCL = ILIM SAFE OPERATING AREA (SOA) The MOSFET output stage of this power operational amplifier has two distinct limitations: 1. The current handling capability of the MOSFET geometry and the wire bonds. 2. The junction temperature of the output MOSFETs. NOTE: The output stage is protected against transient flyback. However, for protection against sustained, high energy flyback, external fast-recovery diodes should be used. SAFE OPERATING CURVES The safe operating area curves define the maximum additional internal power dissipation the amplifier can tolerate when it produces the necessary output to drive an external load. Unidirectional zener diode transient suppressors are recommended as protection on the supply pins. See Figure 2. The zeners clamp transients to voltages within the power supply rating and also clamp power supply reversals to ground. Whether the zeners are used or not, the system power supply should be evaluated for transient performance including power-on overshoot and power-off polarity reversals as well as line regulation. Conditions which can cause open circuits or polarity reversals on either power supply rail should be avoided or protected against. Reversals or opens on the negative supply rail is known to induce input stage failure. Unidirectional transzorbs prevent this, and it is desirable that they be both electrically and physically as close to the amplifier as possible. STABILITY The PA92 is externally compensated and performance can be tailored to the application. Use the graphs of small signal response and power response as a guide. The compensation capacitor CC must be rated at 500V working voltage. An NPO capacitor is recommended. The compensation network CCRC must be mounted closely to the amplifier pins 4 and 5 to avoid spurious oscillation. QUIESCENT CURRENT REDUCTION When pin 3 (IQ) is shorted to pin 5 (CC2) the AB biasing of the output stage is disabled. This lowers quiescent power but also raises distortion since the output stage is then class C biased. The output stage bias current is nominally set at 1mA. Pin 3 may be left open if not used. POWER SUPPLY PROTECTION This data sheet has been carefullyCORPORATION checked and is believed to beNORTH reliable, however, no responsibility is assumed for possible inaccuracies omissions. All specificationsHOTLINE: are subject to1 change notice. APEX MICROTECHNOLOGY * 5980 SHANNON ROAD * TUCSON, ARIZONA 85741 * orUSA * APPLICATIONS (800)without 546-2739 4 PA92U REV H OCTOBER 2004 (c) 2004 Apex Microtechnology Corp.