This is information on a product in full production.
May 2017 DocID027181 Rev 5 1/40
STA8090FG
Fully integrated GPS/Galileo/GLONASS/BeiDou/QZSS receiver
with embedded RF and in-package Flash
Datasheet - production data
Features
STMicroelectronics® positioning receiver with
48 tracking channels and 2 fast acquisition
channels supporting GPS, Galileo, GLONASS,
BeiDou and QZSS systems
Single die standalone receiver embedding RF
Front-End and low noise amplifier
-162 dBm indoor sensitivity (tracking mode)
Fast TTFF < 1 s in Hot start and 30 s in Cold
Start
High performance ARM946 MCU (up to
196 MHz)
256 Kbyte embedded SRAM
In-Package SQI Flash Memory (16 or 32 Mbits)
Real Time Clock (RTC) circuit
32-bit Watch-dog timer
3 UARTs
1 I2C master interface
1 Synchronous Serial Port (SSP, Motorola-SPI
supported)
USB2.0 full speed (12 MHz) with integrated
physical layer transceiver
2 Controller Area Network (CAN)
2 channels ADC (10 bits)
1 Secure-Digital Multimedia Memory Card
Interfaces (SDMMC)
1 Multichannel Serial Port (MSP)
Power Management Unit (PMU) embedding
switching regulator
Operating condition:
Main voltage regulator (VINL): 1.6V to 4.3V
Backup voltage (VINB): 1.6V to 4.3V
Digital voltage (VDD): 1.0 V to 1.32 V
RF core voltage (VCC): 1.2 V ± 10%
IO Ring Voltage (VddIO): 1.8 V ± 5% or
3.3 V ± 10%
Package:
TFBGA99 (5 x 6 x 1.2 mm) 0.5 mm pitch
Ambient temperature range: -40/+85°C
Description
STA8090FG belongs to Teseo III family products.
STA8090FG is a single die standalone positioning
receiver IC working on multiple constellations
(GPS/Galileo/GLONASS/BeiDou/QZSS).
STA8090FG, thanks to the ARM9 and wide IOs
availability, can be used as microcontroller with
GNSS capability, allowing a very compact design
offering 256 kByte of internal RAM and 16 Mbits
or 32 Mbits of internal Flash.
The minimal BOM makes STA8090FG the ideal
solution for cost competitive and small footprint
products such as OBD dongle, insurance boxes,
trackers, telematics, portable, hands-held
portable and sports accessories.
STA8090FGBD can also run TESEO-DRAW the
STMicroelectronics dead reckoning firmware.
5'#("YYNN
("1($'5
www.st.com
Contents STA8090FG
2/40 DocID027181 Rev 5
Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 TFBGA99 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Power supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Main function pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Test/emulated dedicated pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Communication interface pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Multimedia card pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 General purpose pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 RF Front-end pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 RF front end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 GPS/Galileo/GLONASS/BeiDou Base Band (G3BB+) processor . . . . . . 17
3.3 MCU Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 AHB slaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 APB peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 SSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.4 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.5 SDMMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.6 MTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.7 WDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.8 GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.9 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.10 RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.11 MSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID027181 Rev 5 3/40
STA8090FG Contents
3
4.2 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Recommended DC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.8 AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8.1 RF electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8.2 Oscillator electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8.3 OSCI oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.8.4 ADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.8.5 Flash specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 TFBGA99 5 x 6 x 1.2 mm package information . . . . . . . . . . . . . . . . . . . . 35
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
List of tables STA8090FG
4/40 DocID027181 Rev 5
List of tables
Table 1. TFBGA99 connection diagram (with CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2. TFBGA99 connection diagram (no CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Power supply pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Main function pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. Test/emulated dedicated pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 6. Communication interface pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 7. Multimedia card pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 8. General purpose pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 9. RF Front-end pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 10. TCM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 12. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 13. Frequency limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 14. Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 15. Recommended DC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 16. SMPS DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 17. LDO1 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18. LDO2 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 19. Low voltage detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Table 20. I/O buffers DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 21. 1.0 V I/O buffers DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 22. RFACHAIN – GALGPS filter and VGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 23. RFCHAIN – GLONASS/BeiDou filter and VGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 24. Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 25. Crystal recommended specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 26. Oscillator amplifier specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 27. Characteristics of external slow clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 28. SARADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 29. Flash specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 30. TFBGA99 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 31. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DocID027181 Rev 5 5/40
STA8090FG List of figures
5
List of figures
Figure 1. STA8090FG system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. 32.768 kHz crystal connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 3. SARADC connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 4. TFBGA99 5 x 6 x 1.2 mm package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 5. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Overview STA8090FG
6/40 DocID027181 Rev 5
1 Overview
STA8090FG is one of the part number of Teseo III STA8090x series.
STA8090FG is a highly integrated single-chip standalone GNSS receiver designed for
positioning system applications.
STA8090FG embeds the new ST GNSS positioning engine capable of receiving signals
from multiple satellite navigation systems, including the US GPS, European Galileo,
Russia's GLONASS, Chinese BeiDou and Japan's QZSS.
The STA8090FG ability of tracking simultaneously the signals from multiple satellites
regardless of their constellation, makes this chip capable of delivering exceptional accuracy
in urban canyons and in the environments where buildings and other obstructions make
satellite visibility challenging.
STA8090FG embeds innovative power management with switching regulator for power
consumption optimization.
The extended voltage supply ranges from 1.6 V to 4.3 V, the 1.8 V and 3.3 V I/O compliance
support makes the STA8090FG the suitable solution for different user applications.
The STA8090FG combines a high performance ARM946 microprocessor with I/O
capabilities and enhanced peripherals. It supports USB2.0 standard at full speed (12 Mbps)
with on-chip PHY.
The chip embeds backup logic with real time clock.
STA8090FG can host customer code on top of STMicroelectronics GNSS library.
Customers can develop on TeseoIII their application code by using a software development
kit based on different real time operating systems.
STA8090FGBD can be offered also bundled with STMicroelectronics dead reckoning
firmware called TESEO-DRAW; TESEO-DRAW firmware is a multi-sensors data fusion hub
for Teseo family IC's.
The STA8090FG, using STMicroelectronics CMOSRF Technology, is housed in a
TFBGA99 (5 x 6 x 1.2 mm) package with stacked 16 Mbit or 32 Mbit Flash memory.
DocID027181 Rev 5 7/40
STA8090FG Pin description
39
2 Pin description
2.1 Block diagram
Figure 1. STA8090FG system block diagram
$+%
,&
078*3,2:'
%.B'RPDLQ
26&,
,62
&(//
$3%
%ULGJH
35&&
57&
%.5$0.%
*%%&RUUHODWRU (QJLQH
*&,)
**,)
)DVW$FT
&KDQQHO
7UN
&KDQQHOV
0X[
$FT
5$0V
$3%
%ULGJH
&/2&.B*(1
7HVW
FRQWUROOHU
-7$*
,2V
9,&
$50
,&DFKH
.%
'&DFKH
.%
+,*+63((',7&0
.%
+,*+63((''7&0
.%
,'6:,7&+$%/(
[.%
$3%
*5),3
63,,)
5)
6HFWLRQ
/1$
6HFWLRQ
$'&
**
$'&
*&
26&,
3//
$QWHQQD
6HQVLQJ
5LQJ
26&,
063
308
6036/'2/'2%./'2
%DQGJDS%LDV2VFLOODWRU/9'V
$'&
8$57
5[7[
8$57
)XOO 663
8$57
5[7[ 6'00&
$3%
%ULGJH
&$1
$3%
%ULGJH
&$1
()7
)/$6+
0ERU0E
86%
,)
64,
,)
("1($'5
Pin description STA8090FG
8/40 DocID027181 Rev 5
2.2 TFBGA99 pin configuration
Table 1. TFBGA99 connection diagram (with CAN)
1234567 89
AVINM VINM SPI_CLK SPI_CSN VINL1 VOL1 GND VINB VOB
BVLX VLX SPI_DI UART0_
TX
UART0_
CTS
UART2_
RX GPIO1 GPIO0 GND
CGND GND SPI_DO VDDIO_
R1
UART2_
TX
UART0_
RTS VDD_SQI VDD_
ADC Reserved
DVOM GND TMS UART0_
DSR
UART0_
DTR GND ADC_IN2 GND RTC_XTO
EVDD_ANA TDO TRSTn UART0_
DCD VDDD UART0_
RX ADC_IN1 WAKEUP0 RTC_XTI
FGND TDI VDDD VDDD GND GND WAKEUP1 STDBYn RSTn
GUSB_DP TCK VDDD GND GND GND STDBY_
OUT
PMU_
CFG
XTAL_
OUT
HUSB_DM GPIO10 MMC_D3 MMC_
CLK TP_IF_N GND GND VCC_PLL XTAL_IN
JCAN0_TX GPIO11 MMC_D2 MMC_
CMD TP_IF_P GND GND ANT_
SENSE2
VCC_
CHAIN
KCAN0_RX VDDIO_
R2 GPIO2 MMC_D1 GND_LNA GND_LNA GND_LNA GND ANT_
SENSE1
LGND I2C_SD I2C_CLK MMC_D0 VCC_RF LNA_IN VOL2 VINL2 GND
DocID027181 Rev 5 9/40
STA8090FG Pin description
39
2.3 Power supply pins
Table 2. TFBGA99 connection diagram (no CAN)
1234567 89
AVINM VINM SPI_CLK SPI_CSN VINL1 VOL1 GND VINB VOB
BVLX VLX SPI_DI UART0_
TX
UART0_
CTS
UART2_
RX GPIO1 GPIO0 GND
CGND GND SPI_DO VDDIO_
R1
UART2_
TX
UART0_
RTS VDD_SQI VDD_
ADC Reserved
DVOM GND TMS UART0_
DSR
UART0_
DTR GND ADC_IN2 GND RTC_XTO
EVDD_ANA TDO TRSTn UART0_
DCD VDDD UART0_
RX ADC_IN1 WAKEUP0 RTC_XTI
FGND TDI VDDD VDDD GND GND WAKEUP1 STDBYn RSTn
GUSB_DP TCK VDDD GND GND GND STDBY_
OUT
PMU_
CFG
XTAL_
OUT
HUSB_DM GPIO10 MMC_D3 MMC_
CLK TP_IF_N GND GND VCC_PLL XTAL_IN
JUART0_
TX GPIO11 MMC_D2 MMC_
CMD TP_IF_P GND GND ANT_
SENSE2
VCC_
CHAIN
KUART0_
RX
VDDIO_
R2 GPIO2 MMC_D1 GND GND GND GND_LNA ANT_
SENSE1
LGND I2C_SD I2C_CLK MMC_D0 VCC_RF LNA_IN VOL2 VINL2 GND
Table 3. Power supply pins
Symbol I/O voltage I/O Description STA8090FG
VCC_CHAIN 1.2 V PWR Analog supply voltage for RF chain (1.2V) J9
VCC_PLL 1.2 V PWR Analog supply voltage for PLL RF (1.2V) H8
VCC_RF 1.2 V PWR Analog supply voltage for RF (1.2V) L5
VDD_ADC 1.8 V PWR Digital supply voltage for ADC (1.8V) C8
VDD_SQI 1.8 V PWR Digital supply voltage for SQI C7
VDDD 1.1 V PWR Digital supply voltage E5, F3, F4, G3
VDDIO_R1 1.8 V or 3.3 V PWR Digital supply voltage for I/O ring 1 (1.8 V or 3.3 V) C4
VDDIO_R2 3.3V PWR Digital supply voltage for I/O ring 2 (3.3 V) K2
VINB 1.6 V - 4.3 V PWR Backup LDO input supply voltage (1.6 V to 4.3 V) A8
VINL1 1.6 V - 4.3 V PWR LDO1 input supply voltage (1.6 V to 4.3 V) A5
VINL2 1.6 V - 4.3 V PWR LDO2 input supply voltage (1.6 V to 4.3 V) L8
Pin description STA8090FG
10/40 DocID027181 Rev 5
2.4 Main function pins
VINM 1.6 V - 4.3 V PWR SMPS coil input supply (1.6 V to 4.3 V) A1, A2
VDD_ANA 1.6 V - 4.3 V PWR SMPS input supply (1.6 V to 4.3 V) E1
VLX 0 V - 4.3 V PWR SMPS coil output B1, B2
VOB 1.0V PWR LDO backup output voltage (1.0 V) A9
VOL1 1.1 V or 1.8 V PWR
LDO1 output voltage:
PMU_CFG = high -> 1.1 V (it can be also configured to
1.2 V)
PMU_CFG = low -> 1.8 V
A6
VOL2 1.2 V PWR LDO2 output voltage (1.2 V) L7
VOM 1.1 V or 1.8 V PWR
SMPS output voltage
PMU_CFG = high -> 1.8 V
PMU_CFG = low -> 1.1 V (it can be also configured to
1.2 V)
D1
GND GND GND Ground
A7, B9, C1,
C2, D2, D6,
D8, F1, F5, F6,
G4, G5, G6,
H6, H7, J6, J7,
K8, L1, L9
GND_LNA GND GND Ground K5, K6, K7
Table 3. Power supply pins (continued)
Symbol I/O voltage I/O Description STA8090FG
Table 4. Main function pins
Symbol I/O voltage I/O Description STA8090FG
ADC_IN1 1.4 V – 0 V typ
range I ADC Analog input [1] E7
ADC_IN2 1.4 V – 0 V typ
range I ADC Analog input [2] D7
PMU_CFG 1.0 V I
Power management unit config pin
High -> VOL1 = 1.1 V, VOM = 1.8 V
Low -> VOL1 = 1.8 V, VOM = 1.1 V
G8
RSTn 1.0 V I Reset Input with Schmitt-Trigger characteristics and noise
filter. F9
RTC_XTI 1.0 V (max) I Input of the 32 KHz oscillator amplifier circuit and input of
the internal real time clock circuit. E9
RTC_XTO 1.0 V (max) O Output of the oscillator amplifier circuit. D9
STDBY_OUT 1.0 V O When low, indicates the chip is in Standby mode G7
STDBYn 1.0 V I
When low, the chip is forced in Standby Mode - All pins in
high impedance except the ones powered by Backup
supply
F8
DocID027181 Rev 5 11/40
STA8090FG Pin description
39
2.5 Test/emulated dedicated pins
2.6 Communication interface pins
WAKEUP0 1.0 V I WAKEUP from STANDBY mode E8
WAKEUP1 1.0 V I WAKEUP from STANDBY mode F7
Table 4. Main function pins (continued)
Symbol I/O voltage I/O Description STA8090FG
Table 5. Test/emulated dedicated pins
Symbol I/O voltage I/O Description STA8090FG
TCK VDDIO_R2 I JTAG Test Clock G2
TDI VDDIO_R2 I JTAG Test Data In F2
TDO VDDIO_R2 O JTAG Test Data Out E2
TMS VDDIO_R2 I JTAG Test Mode Select D3
TRSTn VDDIO_R2 I JTAG Test Circuit Reset E3
TP_IF_N 1.2 V O Diff.Test Point for IF – Negative H5
TP_IF_P 1.2 V O Diff.Test Point for IF – Positive J5
Table 6. Communication interface pins
Symbol I/O
voltage I/O Alternative
function Function Description STA8090FG
CAN0_RX(1) VDDIO_R2
IAF0
(default) CAN0_RX(1) CAN0 receive data input
K1
I AF1 UART0_RX UART0 Rx data
I AF2 Tsense External temperature capture
port
I/O AF3 I2C_SD I2C serial data
CAN0_TX(1) VDDIO_R2
OAF0
(default) CAN0_TX(1) CAN0 transmit data output
J1
O AF1 UART0_TX UART0 Tx data
I/O AF2 GPIO7 General purpose I/O #7
O AF3 I2C_CLK I2C clock
I2C_CLK VDDIO_R2
OAF0
(default) I2C_CLK I2C clock
L3
I/O AF1 GPIO8 General purpose I/O #8
O AF2 CAN1_TX(1) CAN1 transmit data output
O AF3 SPI_CLK SPI clock
Pin description STA8090FG
12/40 DocID027181 Rev 5
I2C_SD VDDIO_R2
I/O AF0
(default) I2C_SD I2C serial data
L2
I/O AF1 GPIO9 General purpose I/O #9
I AF2 CAN1_RX(1) CAN1 receive data input
O AF3 SPI_CSN SPI chip select active low
SPI_CLK VDDIO_R1
OAF0
(default) SPI_CLK SPI clock
A3
I/O AF1 GPIO25 General purpose I/O #25
O AF2 SQI_CLK SQI Flash clock
O AF3 MMC_CLK Multimedia Clock line
SPI_CSN VDDIO_R1
OAF0
(default) SPI_CSN SPI chip select active low /
IO_Power Sel Ring 1
A4
I/O AF1 GPIO24 General purpose I/O #24
O AF2 SQI_CEN SQI Flash chip enable
I/O AF3 MMC_CMD Multimedia card command line
SPI_DI VDDIO_R1
IAF0
(default) SPI_DI SPI serial data input / BOOT2
B3
I/O AF1 Tsense External temperature capture
port
I/O AF2 SQI_SIO1/SO SQI Flash data IO 1 / ser. output
I/O AF3 MMC_D0 Multimedia card data 0
SPI_DO VDDIO_R1
OAF0
(default) SPI_DO SPI serial data output
C3
I/O AF1 GPIO27 General purpose I/O #27
I/O AF2 SQI_SIO0/SI SQI Flash data IO 0 / ser. input
I/O AF3 MMC_D1 Multimedia card data 1
UART0_CTS VDDIO_R1
IAF0
(default) UART0_CTS UART0 clear to send
B5
I/O AF1 GPIO15 General purpose I/O #15
O AF2 i2s_out_sclk MSP serial clock output
O AF3 Clock GNSS GNSS clock out
UART0_DCD VDDIO_R1
IAF0
(default) UART0_DCD UART0 data carrier detect
E4
I/O AF1 GPIO17 General purpose I/O #17
O AF2 i2s_out_sdata MSP serial data output
O AF3 Clock GNSS GNSS clock out
Table 6. Communication interface pins (continued)
Symbol I/O
voltage I/O Alternative
function Function Description STA8090FG
DocID027181 Rev 5 13/40
STA8090FG Pin description
39
UART0_DSR VDDIO_R1
IAF0
(default) UART0_DSR UART0 data set ready
D4
I/O AF1 GPIO16 General purpose I/O #16
O AF2 i2s_out_lrclk MSP left/right clock output
O AF3 Sign GC GLONASS and BeiDou 3-bit
coding output (Sign)
UART0_DTR VDDIO_R1
OAF0
(default) UART0_DTR UART0 data terminal read
D5
I/O AF1 GPIO18 General purpose I/O #18
I AF2 Timer_ICAPA Extended function timer - input
capture A
O AF3 Mag_1 GG GPS and Galileo 3-bit coding
Output (MAG1)
UART0_RTS VDDIO_R1
OAF0
(default) UART0_RTS UART0 request to send
C6
I/O AF1 GPIO14 General purpose I/O #14
O AF2 TCXO_OUT TCXO out clock
O AF3 Sign GG GPS and Galileo 3-bit coding
output (Sign)
UART0_RX VDDIO_R1
IAF0
(default) UART0_RX UART0 Rx data
E6
O AF1 SPI_DO SPI serial data output
I/O AF2 SQI_SIO2 SQI Flash data IO 2
I AF3 Timer_ICAPA Extended Function Timer - Input
Capture A
UART0_TX VDDIO_R1
OAF0
(default) UART0_TX UART0 Tx data / BOOT1
B4
I AF1 SPI_DI Serial data input
I/O AF2 SQI_SIO3 SQI Flash data IO 3
O AF3 Timer_OCMPA Extended Function Timer –
Output Compare A
UART2_RX VDDIO_R1
IAF0
(default) UART2_RX UART 2 Rx data
B6
I/O AF1 GPIO28 General purpose I/O #28
I/O AF2 I2C_SD I2C serial data
I/O AF3 MMC_D2 Multimedia card data 2
Table 6. Communication interface pins (continued)
Symbol I/O
voltage I/O Alternative
function Function Description STA8090FG
Pin description STA8090FG
14/40 DocID027181 Rev 5
2.7 Multimedia card pins
UART2_TX VDDIO_R1
OAF0
(default) UART2_TX UART 2 Tx data / BOOT0
C5
I/O AF1 GPIO29 General purpose I/O #29
O AF2 I2C_CLK I2C clock
I/O AF3 MMC_D3 Multimedia card data 2
USB_DM VDDIO_R2
USB AF0 USB_DM USB D- signal
H1
IAF1
(default) UART1_RX UART1 Rx data
I AF2 CAN1_RX(1) CAN1 receive data input
I/O AF3 I2C_SD I2C serial data
USB_DP VDDIO_R2
USB AF0 USB_DP USB D+ signal
G1
OAF1
(default) UART1_TX UART1 Tx data
O AF2 CAN1_TX(1) CAN1 transmit data output
O AF3 I2C_CLK I2C clock
1. Only for STA8090FGB and STA8090FGBD.
Table 6. Communication interface pins (continued)
Symbol I/O
voltage I/O Alternative
function Function Description STA8090FG
Table 7. Multimedia card pins
Symbol I/O voltage I/O Alternative
function Function Description STA8090FG
MMC_CLK VDDIO_R2
OAF0
(default) MMC_CLK Multimedia Clock line
H4
O AF1 i2s_out_lrclk MSP left/right clock output
I AF2 Timer_ICAPA Extended Function Timer -
Input Capture A
I/O AF3 GPIO4 General purpose I/O #4
MMC_CMD VDDIO_R2
I/O AF0
(default) MMC_CMD Multimedia card command line
J4
O AF1 i2s_out_sdata MSP serial data output
O AF2 CAN0_TX(1) CAN0 transmit data output
I/O AF3 GPIO5 General purpose I/O #5
DocID027181 Rev 5 15/40
STA8090FG Pin description
39
2.8 General purpose pins
MMC_D0 VDDIO_R2
I/O AF0
(default) MMC_D0 Multimedia card data 0
L4
O AF1 i2s_out_sclk MSP serial clock output
I/O AF2 I2C_SD I2C serial data
I/O AF3 GPIO20 General purpose I/O #20
MMC_D1 VDDIO_R2
I/O AF0
(default) MMC_D1 Multimedia card data 1
K4
I AF1 i2s_in_sdata MSP serial data input
O AF2 Sign GC GLONASS and BeiDou 3-bit
coding output (Sign)
I/O AF3 GPIO21 General purpose I/O #21
MMC_D2 VDDIO_R2
I/O AF0
(default) MMC_D2 Multimedia card data 2
J3
I/O AF1 Reserved Reserved
I AF2 CAN0_RX(1) CAN0 receive data input
I/O AF3 Tsense External temperature capture
port
MMC_D3 VDDIO_R2
I/O AF0
(default) MMC_D3 Multimedia card data 2
H3
I/O AF1 Reserved Reserved
O AF2 Sign GG GPS 3-bit coding output (Sign)
I/O AF3 GPIO23 General purpose I/O #23
1. Only for STA8090FGB.
Table 7. Multimedia card pins (continued)
Symbol I/O voltage I/O Alternative
function Function Description STA8090FG
Table 8. General purpose pins
Symbol I/O
voltage I/O Alternative
function Function Description STA8090FG
GPIO0 VDDIO_R1
I/O AF0 (default) GPIO0 General purpose I/O #0
B8
I AF1 PPS_IN Pulse per second input
O AF2 Timer_OCMPB Extended Function Timer – Output
Compare B
O AF3 Mag_0 GC GLONASS and BeiDou 3-bit coding
Output (MAG0)
Pin description STA8090FG
16/40 DocID027181 Rev 5
2.9 RF Front-end pins
GPIO1 VDDIO_R1
I/O AF0 (default) GPIO1 General purpose I/O #1 / BOOT3
B7
I AF1 i2s_in_sdata MSP serial data input
O AF2 PPS_OUT Pulse per second output
I/O AF3 Tsense External temperature capture port
GPIO2 VDDIO_R2
I/O AF0 (default) GPIO2 General purpose I/O #2
K3
I/O AF1 Reserved Reserved
I AF2 Timer_ICAPB Extended Function Timer – Input
Capture B
O AF3 Mag_1 GC GLONASS and BeiDou 3-bit coding
Output (MAG1)
GPIO10 VDDIO_R2
I/O
AF0
(default),
AF1
GPIO10 General purpose I/O #10
H2
I AF2 Timer_ICAPA Extended Function Timer – Input
Capture A
O AF3 Timer_OCMPB Extended Function Timer – Output
Compare B
GPIO11 VDDIO_R2
I/O
AF0
(default),
AF1
GPIO11 General purpose I/O #11
J2
O AF2 Timer_OCMPA Extended Function Timer – Output
Compare A
I AF3 Timer_ICAPB Extended Function Timer – Input
Capture B
Table 8. General purpose pins (continued)
Symbol I/O
voltage I/O Alternative
function Function Description STA8090FG
Table 9. RF Front-end pins
Symbol I/O voltage I/O Description STA8090FG
ANT_SENSE1 3.3 V I Antenna sensing input 1 K9
ANT_SENSE2 3.3 V I Antenna sensing input 2 J8
LNA_IN 1.2 V I Low Noise Amplifier Input L6
XTAL_IN 1.2 V I Input Side of Crystal Oscillator or TCXO Input H9
XTAL_OUT 1.2 V O Output Side of Crystal Oscillator G9
DocID027181 Rev 5 17/40
STA8090FG General description
39
3 General description
3.1 RF front end
The RF front-end is able to down-convert both the GPS-Galileo signal from 1575.42 MHz to
4.092 MHz (4 Fo, being F0 = 1.023 MHz), the GLONASS signal from 1601.718 MHz to
8.57 MHz and the BeiDou signal from 1561.098 MHz to 10.23 MHz.
It embeds high performance LNA minimizing external component count and two LDOs to
supply the internal core facilitating requirements for external power supply. A three bits ADC
converts the IF signals to sign (SIGN) and magnitude (MAG0 and MAG1). They can be
sampled or not by SPI. The magnitude bits are internally integrated in order to control the
variable gain amplifiers. The VGA gain can be also set by the SPI interface.
The RF tuner accepts a wide range of reference clocks (10 to 52 MHz) and can generate
64 Fo sampling clock for the baseband and 192 Fo clock for MCU subsystem.
3.2 GPS/Galileo/GLONASS/BeiDou Base Band (G3BB+)
processor
STA8090FG integrates G3BB+ proprietary IP, which is the ST last generation high-
sensitivity Baseband processor fully compliant with GPS, Galileo, GLONASS and BeiDou
systems.
The baseband receives, from the embedded RF Front-End, two separate IF signals coded
in sign-magnitude digital format on 3 bits and the related clocks. The Galileo/GPS
(GALGPS) and GLONASS/BeiDou (GNSCOM) signals at the base band inputs are
centered on 4.092 MHz, 8.57 MHz and 10.23 MHz.
The baseband processes the two IF signals performing data codification, sample rate
conversion and final frequency conversion to zero IF before acquisition and tracking
correlations.
The baseband processor has the capability of acquiring and tracking the Galileo, GPS,
GLONASS and BeiDou signals in a simultaneous or single way, or a combination of three,
being GLONASS and BeiDou mutually exclusive. The number of tracking channels to be
used is programmable; the unused tracking channels can be powered down.
A complete multi-OS software library is provided by ST to handle GPS processing,
managing satellite acquisition, tracking, pseudo-range calculation and positioning,
generating the output in the standard NMEA message format or in a ST binary format. The
library includes support of ST self-trained assisted GPS (ST-AGPS), a complete and
scalable solution for assisting GPS start-up with autonomous and server-based ephemeris
prediction and extension.
3.3 MCU Subsystem
The implemented sub-system includes an AHB Lite bus matrix.
An ARM946 core is embedded in the sub-system and masters the AHB bus. The totally
available TCM SRAM is 256 KB. The amount of memory on ITCM and DTCM can be
configured by the ARM946 (see Table 10: TCM Configuration). ITCM can be configured as
General description STA8090FG
18/40 DocID027181 Rev 5
Ni x 16 KB; DTCM can be configured as 128 + Nd x 16 KB, where Ni + Nd = 8, Ni 1.
3.3.1 AHB slaves
G3 APB port that allows to interface with the G3BB acquisition memory and control
registers.
512 Kbytes ROM
Vectored Interrupt Controller (VIC).
SQI flash memory controller
3 x ARM946 APB peripheral bus (APB1, APB2, APB3).
Vectored Interrupt Controller (VIC)
This Vectored Interrupt Controller (VIC) allows the operative system interrupt handler to
quickly dispatch interrupt service routines in response to peripheral interrupts. It provides a
software interface to the interrupt system. There are up to 64 interrupt lines. The VIC uses a
bit position for each different interrupt source.
The software can control each request line to generate software interrupts. Each interrupt
line can be independently enabled and configured to trigger a non-vectored Normal Interrupt
Request (IRQ) or Fast Interrupt Request (FIQ) to the ARM946 CPU. Sixteen interrupt lines
can also be selected to trigger a vectored IRQ.
The VIC has two operation modes: the user mode and the privilege mode, in order to have
the possibility to set (or not) one level of protection during execution.
FS USB device controller
Full speed USB device with transceiver.
It is an AHB slave. When active it requires a 48 MHz clock XTAL_IN.
Table 10. TCM Configuration
TCMcfg [2] TCMcfg [1] TCMcfg [0] ITCM DTCM
00016 KB 240 KB
00132 KB 224 KB
01048 KB 208 KB
01164 KB 192 KB
10080 KB 176 KB
10196 KB 160 KB
110112 KB 144 KB
1 1 1 128 KB 128 KB
DocID027181 Rev 5 19/40
STA8090FG General description
39
3.4 APB peripherals
3.4.1 CAN
The 2 CAN(a) cores perform communication according to the CAN protocol version 2.0 part
A and B. The bit rate can be programmed to values up to 1 MBit/s. For the connection to the
physical layer, additional transceiver hardware is required.
CAN consists of the CAN core, message RAM, message handler, control registers and
module. For communication on a CAN network, individual message objects are configured.
The message objects and identifier masks for acceptance filtering of received messages are
stored in the message RAM. All functions concerning the handling of messages are
implemented in the message handler. These functions include acceptance filtering, the
transfer of messages between the CAN core and the message RAM, and the handling of
transmission requests as well as the generation of the module interrupt.
The register set of the CAN can be accessed directly by the CPU through the module
interface. These registers are used to control/configure the CAN core and the message
handler and to access the message RAM.
CAN features
Supports CAN protocol version 2.0 part A and B
32 messages objects
Each message object has its own identifier mask
Maskable interrupt
Disabled automatic re-transmission mode for time triggered CAN applications
Programmable loop-back mode for self-test operation
Two 16-bit module interfaces to the AMBA APB bus from ARM
3.4.2 SSP
The SSP is a master interface for synchronous serial communication with peripheral
devices that have Motorola SPI.
The SSP performs serial-to-parallel conversion on data received from a peripheral device
on SPI_DI pin, and parallel-to-serial conversion on data written by CPU for transmission on
SPI_DO pin. The transmit and receive paths are buffered with internal FIFO memories
allowing up to 32 x 32-bit values to be stored independently in both transmit and receive
modes. FIFOs may be burst-loaded or emptied by the system processor or DMA, from one
to eight words per transfer. Each 32-bit word from the system fills one entry in FIFO.
The SSP includes a programmable bit rate clock divider and prescaler to generate the serial
output clock SSPCLK from the on-chip clock. One combined interrupt is delivered, which is
asserted from several internal maskable events.
a. STA8090FGB and STA8090FGBD only (see Figure 5: Ordering information scheme).
General description STA8090FG
20/40 DocID027181 Rev 5
SSP features
The SSP has the following features:
Parallel-to-serial conversion on data written to an internal 32-bit wide, 32-location deep
transmit FIFO
Serial-to-parallel conversion on received data, buffering it in a 32-bit wide, 32-location
deep receive FIFO
Programmable data frame size from 4 to 32 bits
Programmable clock bit rate and prescaler
Programmable clock phase and polarity in SPI mode
3.4.3 UART
The UARTx (x = 0|1|2) performs serial-to-parallel conversion on data asynchronously
received from a peripheral device on UARTx_RX pin, and parallel-to-serial conversion on
data written by CPU for transmission on UARTx_TX pin. The transmit and receive paths are
buffered with internal FIFO memories allowing up to 64 data byte for transmission, and 64
data byte with 4-bit status (break, frame, parity, and overrun) for receive.
UART features
The UARTx (x = 0|1|2) are Universal Asynchronous Receiver/Transmitter that support much
of the functionality of the industry-standard 16C650 UART. The main features are:
Programmable baud rates up to UARTCLK / 16 (1.5 Mbps with UARTCLK at 24 MHz),
or up to UARTCLK / 8 (3.0 Mbps with UARTCLK at 24 MHz), with fractional baud-rate
generator
5, 6, 7 or 8 bits of data
Even, odd, stick or no-parity bit generation and detection
1 or 2 stop bit generation
Support of the modem control functions CTS, RTS, plus DCD, DSR, RTS, DTS and RI
(UART0 only)
Support of software flow control using programmable Xon/Xoff characters
False start bit detection
Line break generation and detection
Separate 8-bit wide, 64-deep transmit FIFO and 12-bit wide, 64-deep receive FIFO
Programmable FIFO disabling for 1-byte depth data path
These UARTs vary from industry-standard 16C650 on some minor points which are:
Receive FIFO trigger levels
The internal register map address space, and the bit function of each register differ
The deltas of the modem status signals are not available
1.5 stop bits is not supported
Independent receive clock feature is not supported
DocID027181 Rev 5 21/40
STA8090FG General description
39
3.4.4 Flash
The STA8090FG integrates 16 Mbits or 32 Mbits of Flash Memory. This eliminates the need
of the external Flash simplifying the routing associated to integrate a GPS receiver into a
customer board.
3.4.5 SDMMC
STA8090FG features an SD/MMC host.
3.4.6 MTU
The 2 Multi Timer Units provide access to eight interrupt generating programmable 32-bit
Free-Running decrementing Counters (FRCs). The FRCs have their own clock input,
allowing the counters to run from a much slower clock than the system clock.
The FRC is the part of the timer that performs the counting. There are four instantiations of
the FRC block in each MTU, allowing eight counts to be performed in parallel. The 32-bit
counter in the FRC is split up into two 16-bit counters.
3.4.7 WDT
Watchdog Timer (WDT) provides a way of recovering from software crashes. The watchdog
clock is used to generate a regular interrupt (WDOGINT), depending on a programmed
value.
The watchdog monitors the interrupt and asserts a reset signal (WDOGRES) if the interrupt
remains unserviced for the entire programmed period. You can enable or disable the
watchdog unit as required.
Note: Watchdog is stalled when the ARM processor is in Debug mode.
3.4.8 GPIO
The GPIO block provides twenty-one (21) programmable inputs or outputs. Each input or
output can be controlled in two modes:
software mode through an APB bus interface
alternate mode, where GPIO becomes a peripheral input or output line
Any GPIO input can be independently enabled or disabled (masked) for interrupt
generation. User can select for each GPIO which edge (rising, falling, both) will trigger an
interrupt.
3.4.9 ADC
10 bit SAR ADC operating at 1.8 V analog supply. It can convert up to 2 single ended
channels with analog input multiplexer at 500KSPS
3.4.10 RTC
This is an always-on power domain dedicated to RTC logic (backup system) with 32 Kbyte
SRAM and supplied with a dedicated voltage regulator.
The RTC provides a high resolution clock which can be used for GPS. It keeps the time
when the system is inactive and can be used to wake the system up when a programmed
General description STA8090FG
22/40 DocID027181 Rev 5
alarm time is reached. It has a clock trimming feature to compensate for the accuracy of the
32.768 kHz crystal and a secured time update.
RTC features
47-bit counter clocked by 32.768 kHz clock
32-bit for the integer part (seconds) and 15-bit for the fractional part
The integer part and the fractional part are readable independently
The counter, once enabled, can be stopped
Integer part load register (32-bit)
Fractional part load register (15-bit)
Load bit to transfer the content of the entire load register (integer+fractional part) to the
47-bit counter. Once set by the MCU this bits is cleared by the hardware to signal to the
MCU that the RTC has been updated.
3.4.11 MSP
The STA8090FG provides one MSP transmitter block.
Element (data) size from 8 to 32 bits, LSB or MSB first
Programmable frequency shift clock for data transfer
Direct interface to:
Industry-standard codecs and serially connected A/D and D/A devices
IIS compliant devices
SPI compliant devices
Transmit first-in, first-out memory buffers (FIFOs), 32 bits wide, 8 locations deep
DocID027181 Rev 5 23/40
STA8090FG Electrical characteristics
39
4 Electrical characteristics
4.1 Parameter conditions
Unless otherwise specified, all voltages are referred to GND.
4.2 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25°C.
4.3 Typical values
Unless otherwise specified, typical data are based on TA = 25°C, Vddio = 1.8 V, Vdd = 1.20 V.
They are given only as design guidelines and are not tested.
4.4 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
4.5 Absolute maximum ratings
This product contains devices to protect the inputs against damage due to high static
voltages, however it is advisable to take normal precautions to avoid application of any
voltage higher than the specified maximum rated voltages.
Table 11 lists the absolute maximum rating for STA8090FG.
Table 11. Voltage characteristics
Symbol Parameter Min. Max. Unit
VCC_CHAIN Analog supply voltage for RF chain (1.2 V) -0.3 1.32 V
VCC_PLL Analog supply voltage for PLL RF (1.2 V) -0.3 1.32 V
VCC_RF Analog supply voltage for RF (1.2 V) -0.3 1.32 V
VDD_ADC Digital supply voltage for ADC (1.8 V) -0.3 1.98 V
VDD_SQI Digital supply voltage for SQI -0.3 1.95 V
VDDD Power supply pins for the core logic. -0.3 1.32 V
VDDIO_R1 Digital supply voltage for I/O ring 1 (1.8 V or 3.3 V) -0.3 3.63 V
VDDIO_R2 Digital supply voltage for I/O ring 2 (3.3 V) -0.3 3.63 V
VINB Backup LDO input supply voltage (1.6 V to 4.3 V) -0.3 4.8 V
VINL1 LDO1 input supply voltage (1.6 V to 4.3 V) -0.3 4.8 V
Electrical characteristics STA8090FG
24/40 DocID027181 Rev 5
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.
VINL2 LDO2 input supply voltage (1.6 V to 4.3 V) -0.3 4.8 V
VINM SMPS coil input supply (1.6 V to 4.3 V) -0.3 4.8 V
VDD_ANA SMPS input supply (1.6 V to 4.3 V) -0.3 4.8 V
VESD-HBM Electrostatic discharge, human body model(1).-22kV
VESD-CDM Electrostatic discharge, charge device model(2). -250 250 V
1. Balls sustaining only ±500 V are: A1, A2, A5, A6, A7, A8, A9, B1, B2, B9, C1, C2, D1, D2, D9, E1, E9, F1,
L7 and L8.
2. Ball L6 (LNA_IN) sustains only ±150 V.
Table 11. Voltage characteristics (continued)
Symbol Parameter Min. Max. Unit
Table 12. Thermal characteristics
Symbol Parameter Min. Max. Unit
Toper Operative ambient temperature -40 85 °C
TjOperative junction temperature -40 125 °C
Tst Storage temperature -55 150 °C
Rj-amb Thermal resistance junction to ambient(1)
1. According to JEDEC specification on a 2 layers board.
41 °C/W
Table 13. Frequency limits
Symbol Parameter Test condition Min. Typ. Max. Unit
FCLK Operating ARM9 CPU frequency VDDD = 1.2 V;
TC = 85 °C(1)
1. Not tested in production.
196 MHz
FAHB AHB frequency 49 MHz
DocID027181 Rev 5 25/40
STA8090FG Electrical characteristics
39
4.6 Recommended DC operating conditions
Table 15 lists the functional recommended operating DC parameters for STA8090FG.
Table 14. Power consumption
Symbol Parameter Test condition Min. Typ. Max. Unit
PRF RFIP power (total VINL2)
G2 = GPS/Galileo;
Tamb = 25 °C;
VINL2 = 1.8 V
—25 mW
G2 + GLONASS;
Tamb = 25 °C;
VINL2 = 1.8 V
—35 mW
G2 + COMPASS;
Beidou2
Tamb = 25 °C;
VINL2 = 1.8 V
—35 mW
PMVR(1)
1. Not tested in production.
Switchable area power;
(total VINL1)
fARM = 196 MHz;
fAHB = 49 MHz;
Tamb = 25 °C;
VINL1 = 1.8 V; UART
active; other peripherals
inactive
—90 mW
PLPVR(1) Always ON area power
(total VINB)
fARM = 196 MHz;
fAHB = 49 MHz;
Tamb = 25 °C; VINB = 3.3 V
—1 mW
PIO(1) IO rings power (total
VDDIO_R1 + VDDIO_R2)
fARM = 196 MHz;
fAHB = 49 MHz;
Tamb = 25 °C;
VINL1 = 1.8 V; UART
active; other peripherals
inactive
—4 mW
IDStandby
Standby mode supply
current RTC
running = 32.768 KHz;
Tamb = 25 °C; VINB = 1.8 V
—29μA
IDDeepStandby
Deep standby mode
supply current(2)
2. STDBY_OUT pin not supported in deep standby.
—7μA
Table 15. Recommended DC operating conditions
Symbol Parameter Min. Typ. Max. Unit
VCC_CHAIN Analog supply voltage for RF chain (1.2 V) 1.08 1.20 1.32 V
VCC_PLL Analog supply voltage for PLL RF (1.2 V) 1.08 1.20 1.32 V
VCC_RF Analog supply voltage for RF (1.2 V) 1.08 1.20 1.32 V
VDD_ADC Digital supply voltage for ADC (1.8 V) 1.71 1.80 1.89 V
VDD_SQI Flash power supply. 1.71 1.80 1.89 V
Electrical characteristics STA8090FG
26/40 DocID027181 Rev 5
4.7 DC characteristics
Table 16 specifies the SMPS voltage regulator characteristics.
Table 17 specifies the LDO1 voltage regulator characteristics.
VDDD Power supply pins for the core logic. 1.00 1.10 1.32 V
VDDIO_R1
Digital supply voltage for I/O ring 1 (1.8 V) 1.71 1.80 1.89 V
Digital supply voltage for I/O ring 1 (3.3 V) 3.00 3.30 3.60 V
VDDIO_R2 Digital supply voltage for I/O ring 2 (3.3 V) 3.00 3.30 3.60 V
VINB Backup LDO input supply voltage (1.6 V to 4.3 V) 1.60 4.30 V
VINL1
LDO1 input supply voltage to generate 1.1 V and 1.2 V 1.60 4.30 V
LDO1 input supply voltage to generate 1.8 V 2.10 4.30 V
VINL2 LDO2 input supply voltage to generate 1.2 V 1.60 4.30 V
VINM
SMPS coil input supply voltage to generate 1.1 V and
1.2 V 1.60 4.30 V
SMPS coil input supply voltage to generate 1.8 V 2.10 4.30 V
VDD_ANA SMPS input supply (1.6 V to 4.3 V) 1.60 4.30 V
TCOperating case temperature -40 85 °C
Table 15. Recommended DC operating conditions (continued)
Symbol Parameter Min. Typ. Max. Unit
Table 16. SMPS DC characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
VOM
Output voltage (1.2 V) 1.6 V V
INM 4.3 V;
IOM 100 mA 1.08 1.20 1.32 V
Output voltage (1.1 V) 1.6 V V
INM 4.3 V;
IOM 100 mA 1.0 1.10 1.21 V
Output voltage (1.8 V) 2.1 V V
INM 4.3 V;
IOM 100 mA 1.71 1.80 1.89 V
IOM Output current 0 100 mA
DocID027181 Rev 5 27/40
STA8090FG Electrical characteristics
39
Table 18 specifies the LDO2 voltage regulator characteristics.
Table 19 specifies the low voltage detection thresholds
Table 20 lists the DC characteristics for all the IO digital buffers expect for the following input
buffers: STBYn (F8), STDBY_OUT (G7), WAKEUP0 (E8), WAKEUP1 (F7), PMU_CFG (G8)
and RSTn (F9).
Table 17. LDO1 DC characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
VOL1
Output voltage (1.2V) 1.6 V V
INL1 4.3 V;
IOL1 70 mA 1.08 1.20 1.32 V
Output voltage (1.1V) 1.6 V V
INL1 4.3 V;
IOL1 70 mA 1 1.10 1.21 V
Output voltage (1.8V) 2.1 V V
INL1 4.3 V;
IOL1 70 mA 1.71 1.80 1.89 V
IOL1 Output current 0 70 mA
Table 18. LDO2 DC characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
VOL2 Output voltage 1.6 V V
INL2 4.3 V;
IOL2 30 mA 1.08 1.20 1.32 V
IOL2 Output current 0 30 mA
Table 19. Low voltage detection thresholds
Parameter Min. Typ. Max. Unit
Input LVD always
on and main VRs(1)
1. Not tested in production.
Upper voltage threshold 1.680 V
Lower voltage threshold 1.650 V
Output LVD always
on VR(1)
Upper voltage threshold 0.995 V
Lower voltage threshold 0.935 V
Output LVD main
VR(1)
Upper voltage threshold @ VOL1/M = 1.2 V 1.142 V
Lower voltage threshold @ VOL1/M = 1.2 V 1.076 V
Upper voltage threshold @ VOL1/M = 1.1 V 1.048 V
Lower voltage threshold @ VOL1/M = 1.1 V 0.986 V
Output LVD main
VR(1)
Upper voltage threshold @ VOL1/M = 1.8 V 1.645 V
Lower voltage threshold @ VOL1/M = 1.8 V 1.626 V
Electrical characteristics STA8090FG
28/40 DocID027181 Rev 5
Table 21 lists the DC characteristics for the 1.0 V IO digital buffers input buffers: STBYn
(F8), STDBY_OUT (G7), WAKEUP0 (E8), WAKEUP1 (F7), PMU_CFG (G8) and RSTn (F9).
4.8 AC characteristics
4.8.1 RF electrical specifications
Table 20. I/O buffers DC characteristics
Symbol Parameter Test
conditions Min. Typ. Max. Unit
VIL(1)
1. Excludes oscillator inputs RTC_XTI and XTAL_IN. Refer to oscillator electrical specifications.
Logical input low level voltage
VDDIO = 1.8 V -0.3 0.3 * VDDIO V
VDDIO = 3.3V -0.3 0.8 V
VIH(1) Logical input high level
voltage
VDDIO = 1.8 V 0.7 * VDDIO —V
DDIO + 0.3 V
VDDIO = 3.3V 2.0 VDDIO + 0.3 V
VHYST(2)
2. Apply to all digital inputs unless specified otherwise.
Schmitt-trigger hysteresis 50 mV
VOL Low level output voltage
VDDIO = 1.8 V 0.4 V
VDDIO = 3.3V 0.4 V
VOH High level output voltage
VDDIO = 1.8 V VDDIO - 0.4 V
VDDIO = 3.3V VDDIO - 0.4 V
Table 21. 1.0 V I/O buffers DC characteristics
Symbol Parameter Test conditions Min. Typ. Max. Unit
VIL Logical input low level voltage VOB = 1.0 V -0.3 0.35 * VOB V
VIH Logical input high level voltage VOB = 1.0 V 0.65 * VOB —V
OB + 0.3 V
VOL Low level output voltage VOB = 1.0 V 0.2 V
VOH High level output voltage VOB = 1.0 VV
OB - 0.2 V
Table 22. RFACHAIN – GALGPS filter and VGA
Symbol Parameter Test conditions Min Typ Max Unit
S11(1) Input return loss GPS band -8 dB
fIF IF frequency PLL in default condition with
26Mhz as reference 4.045 MHz
NF Noise figure NF overall chain with AGC set
at 0 dB —2
(1) dB
CG
Conversion gain from
RF input to ADC input
VGA at max gain 119 dB
VGA at min gain 69 dB
DocID027181 Rev 5 29/40
STA8090FG Electrical characteristics
39
IP1dB
RF-IF-VGA input
compression point VGA min -80 dBm
IRR Image rejection ratio 20 dB
BWGPS -3dB IF bandwidth
GPS mode 2.4 MHz
BWGAL Galileo mode 4.8 MHz
ATT Alias frequency
rejection
F = 60 MHz
(fs = 65.474 MHz) —30 dB
TgGPS IF filter group delay
variation
GPS mode 200(1) ns
TgGAL Galileo mode 30(1) ns
1. Not tested in production.
Table 22. RFACHAIN – GALGPS filter and VGA (continued)
Symbol Parameter Test conditions Min Typ Max Unit
Electrical characteristics STA8090FG
30/40 DocID027181 Rev 5
Table 23. RFCHAIN – GLONASS/BeiDou filter and VGA
Symbol Parameter Test conditions Min Typ Max Unit
S11(1)
1. Not tested in production.
Input return loss
GLONASS band -10
dB
BeiDou band -7
fIFGNS/BDU
IF frequency for
GLONASS PLL in default condition
with 26 Mhz as
reference
8.519
MHz
IF frequency for BeiDou 10.277
NF Noise figure NF overall chain with
AGC set at 0 dB —2
(1) dB
CG
Conversion gain from
RF input to ADC input
VGA at max gain 118 dB
VGA at min gain 68 dB
IP1dB
RF-IF-VGA input
compression point VGA min -80 dBm
IRR Image rejection ratio 25 dB
BWGNS/BDU -3dB IF bandwidth 10 MHz
ATT Alias frequency rejection F = 53 MHz
(fs = 65.474 MHz) —30 dB
TgGNS/BDU
IF filter group delay
variation —20
(1) ns
Table 24. Synthesizer
Symbol Parameter Min. Typ. Max. Unit
FTCXO_XTAL Input frequency for xtal amplifier (1)
1. That amplifier can be used as a TCXO input buffer.
10 52 MHz
RDIV Reference divider range 1 63
NDIV Loop divider range 56 2047
FLO LO operating frequency 3142.656 MHz
DocID027181 Rev 5 31/40
STA8090FG Electrical characteristics
39
4.8.2 Oscillator electrical specifications
This device contains two oscillators:
a 32.768 kHz oscillator/buffer for RTC circuit.
an OSCI oscillator/buffer in the RF Front-End
When used in oscillator mode, each oscillator requires a specific crystal, with parameters
that must be as close as possible to the following recommended values. When used in input
buffer mode, an external clock source must be applied.
32.768 kHz OSCI32 oscillator specifications
The 32.768 kHz OSCI32 oscillator is connected between RTC_XTI (oscillator amplifier
input) and RTC_XTO (oscillator amplifier output). It also requires two external capacitors of
18 pF(b), as shown on Figure 2.
OSCI32 is disabled by default and must be enabled by setting bit28-OSCI_EN of
PRCC_BACKUP_REG0 to have 32.768KHz oscillation when an XTAL pi-network is
connected to RTC_XTI/RTC_XTO pins.
The recommended oscillator specifications are shown in Table 25:
The oscillator amplifier specifications are shown in the following table:
b. Using crystal with recommended characteristics as per Table 25.
Table 25. Crystal recommended specifications
Symbol Parameter Min. Typ. Max. Unit
FSXTAL Crystal frequency(1)
1. Not tested in production.
32.768 kHz
LMSXTAL Motion inductance(1) —5kH
CMSXTAL Motional capacitance(1) 5.0 fF
COSXTAL Shunt capacitance(1) 1.3 pF
ESR Resonance resistance(1) 80 kΩ
CL External load capacitance(1) —18pF
Table 26. Oscillator amplifier specifications
Symbol Parameter Min. Typ. Max. Unit
TSStartup time(1)
1. Not tested in production.
0.3 0.6 s
DL Drive level(1) <0.1 μW
RLC Required load capacitance(1) 12.5 pF
GM Startup transconductance 22.5 33.6 μA/V
Electrical characteristics STA8090FG
32/40 DocID027181 Rev 5
Figure 2. 32.768 kHz crystal connection
To drive the 32.768 kHz crystal pins from an external clock source:
Disable the oscillator (bit28-OSCI_EN = 0b in PRCC_BACKUP_REG0 register). This
disables the internal inverter, thus reducing the power consumption to minimum.
Drive the RTC_XTI pin with a square signal or a sine wave.
4.8.3 OSCI oscillator specifications
The supported values of the embedded BOOT ROM are 16.368 MHz, 24.00 MHz,
26.00 MHz and 48.00 MHz.
The default values supported by the GNSS binary image is 26 MHz and 48 MHz, to enable
USB peripheral the 48 MHz is mandatory.
4.8.4 ADC specifications
This section gives the AC specification of the 10 bit Successive Approximation Register
ADC embedded in STA8090FG device. It is controlled by the ARM9 MCU through a
wrapper and an APB bridge as depicted in Figure 3 and it has a maximum conversion rate
of 1MSPS with 8 muxed analog input channels capability. An internal voltage reference is
used and analog/digital power supplies connections are implemented inside the device
without any needs of dedicated external pins.
Table 27. Characteristics of external slow clock input
Symbol Parameter Min. Typ. Max. Unit
TJIT (cc) Cycle-to-cycle jitter -70 70 ps
TJIT (per) Period jitter -70 70 ps
Variation -500 500 ppm
TDUTY Duty cycle 45 55 %
CL=18pF
CL=18pF 32.768 kHz
Crystal
RTC_XTII RCT_XTO
Device
DocID027181 Rev 5 33/40
STA8090FG Electrical characteristics
39
Figure 3. SARADC connections
REFP
REFN
AVDD
AGND
VDD
GND
AIN0
AIN1
AIN7
EN
EOC
START
CLK
V
REF
D[9:0]
SARADC
ADC WRAPPER
SEL[2:0]
VINL1 VDD12_MVR
APB
Bridge2
ADC_IN1
ADC_IN2
ADC_IN8
GND
Table 28. SARADC specifications
Symbol Parameter Min. Typ. Max. Unit
VADCIN ADC_IN input range VGND-0.3 VINL1+0.3 V
VADCCR Conversion range VGND —V
REF V
VREF Voltage reference 1.35 1.4 1.45 V
CIN Input capacitance(1)
1. Not tested in production.
5.5 7.0 8.5 pF
RIN
Input mux resistance (total
equivalent sampling resistance)(2)
2. Pad input capacitance included.
1.5 2.0 2.5 k
FCLK Clock frequency 2.5 15 MHz
CLK Clock duty cycle 45 50 55 %
TSUP Start up time(1)(3)
3. From EN=1.
——20μs
TCConversion time 14 cycles
TSSampling time 3 cycles
INL
Performance
< +/- 2 LSB
DNL < +/- 2 LSB
Electrical characteristics STA8090FG
34/40 DocID027181 Rev 5
4.8.5 Flash specifications
This section gives the AC specification of the embedded Flash in STA8090FG device.
Table 29. Flash specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
fCSerial clock frequency QPI mode - 4 read
instructions 78 MHz
tSE Sector erase cycle time
Size = 16 Mb 60 200 ms
Size = 32 Mb 35 200 ms
tBE32
Block erase (32 KB) cycle time Size = 16 Mb 0.25 1 s
Block erase (32 KB) cycle time Size = 32 Mb 0.2 1 s
tBE
Block erase (64 KB) cycle time Size = 16 Mb 0.5 2 s
Block erase (64 KB) cycle time Size = 32 Mb 0.35 2 s
tCE Chip erase time
Size = 16 Mb 12.5 25 s
Size = 32 Mb 25 50 s
tPP Page program cycle time
Size = 16 Mb 0.008 +
(n x 0.004) 3ms
Size = 32 Mb 0.008 +
(n x 0.004) 3ms
DocID027181 Rev 5 35/40
STA8090FG Package and packing information
39
5 Package and packing information
5.1 ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.2 TFBGA99 5 x 6 x 1.2 mm package information
Table 30. TFBGA99 package dimensions
Symbol Min. Typ. Max
A 1.20
A1 0.15
A2 0.28
A4 0.60
b 0.25 0.30 0.35
D 5.85 6.00 6.15
D1 5.00
E 4.85 5.00 5.15
E1 4.00
e 0.50
F 0.50
ddd 0.08
eee 0.15
fff 0.05
Package and packing information STA8090FG
36/40 DocID027181 Rev 5
Figure 4. TFBGA99 5 x 6 x 1.2 mm package dimension
("1($'5
DocID027181 Rev 5 37/40
STA8090FG Ordering information
39
6 Ordering information
Figure 5. Ordering information scheme
Packing
Qualified Grade
TR = Tape and Reel
<blank> = Tray
D = GNSS + DRAW
<blank> = GNSS only
B = Industrial Grade (with CAN)
<blank> = Industrial Grade (no CAN)
G = GPS/Galileo/GLONASS/BeiDou/QZSS
4 = 32 Mbit
<blank> = 16 Mbit
Teseo III with Stacked Flash
STA8090F TR
B
Example code:
Family identifier
4
Flash size
G
GNSS
/CAN Bus
D
Support
Draw
Revision history STA8090FG
38/40 DocID027181 Rev 5
7 Revision history
Table 31. Document revision history
Date Revision Changes
21-Nov-2014 1 Initial release.
04-Dec-2014 2
Table 5: Test/emulated dedicated pins
TDI, TMS: updated description
Table 6: Communication interface pins
SPI_DI: updated description
Table 8: General purpose pins
GPIO1: updated description
Table 19: Low voltage detection thresholds
Input LVD always on and main VRs: removed minimum and maximun values
05-Nov-2015 3
Updated Features and Description
Updated Chapter 1: Overview
Updated Figure 1: STA8090FG system block diagram
Table 3: Power supply pins:
VOL1 VOM, VDDD: updated description
Updated Section 3.4.3: UART and Section 3.4.4: Flash
Added Section 3.4.5: SDMMC and Section 3.4.11: MSP
Table 11: Voltage characteristics:
–V
ESD-HBM, VESD-CDM: updated values
Table 14: Power consumption:
–P
RF: updated typical value for GPS/Galileo
–P
MVR, PLPVR, PIO: added note
–I
DSLEEP: updated value
Table 15: Recommended DC operating conditions:
–V
INL1, VINL2, VINM: updated parameter
Table 16: SMPS DC characteristics:
–V
OM: set min and max values as TBD, removed condition for Output voltage at 1.0 V
Table 17: LDO1 DC characteristics:
–V
OL1: set min and max values as TBD, removed condition for Output voltage at 1.0 V
Table 18: LDO2 DC characteristics:
–V
OL2: set min and max values as TBD
Table 19: Low voltage detection thresholds:
Output LVD main VR: removed condition for Output voltage at 1.0 V
Table 22: RFACHAIN – GALGPS filter and VGA:
S11: Added note
–C
G: updated values
Table 23: RFCHAIN – GLONASS/BeiDou filter and VGA:
S11: Added note
–C
G: updated values
Table 26: Oscillator amplifier specifications:
–T
S: updated minimum value
Updated Section 4.8.3: OSCI oscillator specifications,
Section 4.8.5: Flash specifications and Chapter 6: Ordering information
DocID027181 Rev 5 39/40
STA8090FG Revision history
39
22-Mar-2017 4
Added STA8090FGBD option for DRAW support.
Updated Section 1: Overview
Table 14: Power consumption
Updated Min., Typ. and Max. values
Table 16: SMPS DC characteristics
Updated Min., Typ. and Max. values
Table 17: LDO1 DC characteristics
Updated Min., Typ. and Max. values
Table 18: LDO2 DC characteristics
Updated Min., Typ. and Max. values
Updated Figure 5: Ordering information scheme
29-May-2017 5
Updated:
Table 14: Power consumption: removed IDSLEEP and added IDStandby and IDDeepStandby
parameters.
Table 31. Document revision history (continued)
Date Revision Changes
STA8090FG
40/40 DocID027181 Rev 5
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved