A
AV
V6
60
0A
A
D
Du
ua
al
l
O
Ou
ut
tp
pu
ut
t
H
Ha
al
lf
f-
-b
br
ri
ic
ck
k
T
Te
ec
ch
hn
ni
ic
ca
al
l
R
Re
ef
fe
er
re
en
nc
ce
e
N
No
ot
te
es
s
48V Input, 5V/3.3V and 3.3V/2.5V Dual Output
48V Input, 5V/3.3V and 3.3V/2.5V Dual Output
75W DC-DC Converter
75W DC-DC Converter
(REV 01)
(REV 01)
-1-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 Publishing Date: 20020625
Introduction
Introduction
AV60A dual output series provides two inde-
pendent and fully regulated positive outputs,
the outputs are also separately trimmable. A
remote on/off feature is included as standard.
AV60A dual output isolated DC/DC converters
is built using the industry standard half-brick
pin-out and package 61.0mm x 57.9mm x
12.7mm (2.4" x 2.28" x 0.5"). Typical efficien-
cies are 82% for the 5V/3.3V outputs, and 80%
for the 3.3V/2.5V outputs. The AV60A dual out-
put series is available with 2:1 input range of
36V-75V, and with output combination of
5V/3.3V and 3.3V/2.5V at maximum current of
15 Amps. The maximum current can be drawn
from either output, or in any combination, as
long as the total output current does not exceed
15 Amps. The output power is 75W. The input-
output isolation is 1500Vdc.
AV60A dual output series is designed to meet
CISPR22, FCC Class A, UL, TUV, and CSA
certifications.
Features
Features
1. Two independent positive outputs
2. Each output is separately trimmable
3. CNT function
4. High efficiency
5. High power density
6. Low output noise
7. Metal baseplate
8. Input undervoltage protection
9. Short circuit protection
10. Over current protection
11. Output overvoltage protection
12. Wide operating case temperature:
-40°C ~ 100°C
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-2-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-3-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
T
Typical Application
ypical Application
Fuse*
Trim2
+Vo1
-Vo1
-Vo2
+Vo2
-Vin
CNT
+Vin C4
CASE
Vin C1
CNT Load2
C2 Load1
C3
C5
Trim1
C6
Block Diagram
Block Diagram
NOTE: The figure is Positive Logic Control, if the CNT pin is left open, the converter will default to “control
on” operation. Negative Logic Control is also available.
Positive Logic Control: Low=Off, Negative Logic Control: Low=On,
High=On. High=Off.
Recommended External components:
Fuse* : Recommended: 3~4A.
C1 : Recommended 470µF/100V.
C3=C5 : Recommended electrolytic capacitor of 470µF/16V.
C2=C4 : Recommended metallitic film capacitor of 0.47µF/16V.
C6 : Recommended 0.01µF/1500V.
EMI
Filter OCP
PWM
+Vin
-Vin
CNT
To -Vin
Feed-
back
1
2
3
4
5
6
+Vo1
-Vo1
Trim1
PWM Error
AMP
8
7+Vo2
-Vo2
9Trim2
Ordering Information
Ordering Information
AV60A-048L-050D033 48 5, 3.3 15, 15* 30 150 80 82 Io1=15A, Io2=0A
82 Io1=7.5A, Io2=7.5A
79 Io1=1.5A, Io2=15A
AV60A-048L-033D025 48 3.3, 2.5 15, 15* 25 150 78 80 Io1=15A, Io2=0A
80 Io1=7.5A, Io2=7.5A
76 Io1=1.5A, Io2=15A
AV60A-048L-050D033N* 48 5, 3.3 15, 15* 30 150 80 82 Io1=15A, Io2=0A
82 Io1=7.5A, Io2=7.5A
79 Io1=1.5A, Io2=15A
AV60A-048L-033D025N* 48 3.3, 2.5 15, 15* 25 150 78 80 Io1=15A, Io2=0A
80 Io1=7.5A, Io2=7.5A
76 Io1=1.5A, Io2=15A
Note: The maximum output current of auxiliary output Vo2 is 12A when the case temperature is between 80~100°C.
The products with suffix ‘N’ refer to the negative logic control products, default is positive logic control.
The products with suffix ‘-7’ refer to products with pin length of 5.8mm.
The products with suffix ‘-6’ refer to products with pin length of 3.8mm.
The products with suffix ‘-8’ refer to products with pin length of 2.8mm.
Default pin length is 4.8mm.
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-4-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Model Input Output Output Ripple Noise Efficiency notes and conditions
Number Voltage Voltage Current (mV rms) (mV pp) ( % )
( V ) ( V ) ( A ) max max min typ
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-5-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Absolute Maximum Rating
Absolute Maximum Rating
Input Voltage(continuous) -0.3 80 Vdc
Input Voltage(peak/surge) -0.3 100 Vdc 100ms non-repetitive
Case temperature -40 100 °C
storage temperature -55 125 °C
Input Characteristics
Input Characteristics
Input Voltage Range 36 48 75 Vdc
Input Reflected Current 200 mAp-p Vin=48V, Io1=7.5A, Io2=7.5A
T urn-of f Input Voltage 30 33 35 V Io1=7.5A, Io2=7.5A
T urn-on Input Voltage 31 34 36 V Io1=7.5A, Io2=7.5A
T urn On Time 5 ms
T urn On Delay 10 ms
CNT Function
CNT Function
Logic High 5 15 Vdc Reverse logic option available.
Logic Low 0 1.2 Vdc
Control Current 2 mA
General Specifications
General Specifications
MTBF 2300 k Hrs Bellcore TR332, 25°C
Isolation 1500 Vdc
Pin solder temperature 260 °C wave solder < 15 s
Hand Soldering Time 5 s iron temperature 425°C
Weight 65 grams
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
A
AV60A-048L-033D025(N) Output Characteristics
V60A-048L-033D025(N) Output Characteristics
Power 75 W
Output Current 15/15 A
Output Setpoint Voltage 3.25 3.3 3.35 Vdc V in=48V, Io1=7.5A, Io2=7.5A
2.45 2.5 2.55 Vdc Vin=48V, Io1=7.5A,Io2=7.5A
Line Regulation
Vo1 ±0.2 %Vo Vin=36~75V, Io1=7.5A, Io2=7.5A
Vo2 ±0.2 %Vo Vin=36~75V, Io1=7.5A, Io2=7.5A
Load Regulation
V o1 ±0.5 %Vo Io1=0~15A, Io2=0A, Vin=48V
Vo2 ±0.5 %Vo Io1=1.5A, Io2=0~15A, Vin=48V
Dynamic Response
50-75% load 5 %Vo Ta=25°C, DI/Dt=1A/10µs
200 µs Ta=25°C, DI/Dt=1A/10µs
50-25% load 5 %Vo Ta=25°C, DI/Dt=1A/10µs
200 µs Ta=25°C, DI/Dt=1A/10µs
Current Limit Threshold 16.5 25 A Vin=48V,Io1+Io2
Short Circuit Current 170 Iomax% Vin=48V, Io1=Io2=7.5A
Efficiency 78 80 % Vin=48V, Io1=Io2=7.5A
T rim Range 90 110 %V o
Over Voltage Protection Setpoint 4.0 5 V V o=3.3V
3.0 3.9 V Vo=2.5V
Temperature Regulation 0.03 %Vo/°C
Ripple (rms) 25 mV ( 0-20MHz BW )
Noise (p-p) 150 mV ( 0-20MHz BW )
Over Temperature Protection 105 °C Vin=48V, Io1=7.5A, Io2=7.5A
Switching Frequency 300 kHz
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-6-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Min Typ Max Units Notes
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-7-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
A
AV60A-048L-050D033(N) Output Characteristics
V60A-048L-050D033(N) Output Characteristics
Power 75 W
Output Current 15/15 A
Output Setpoint Voltage 4.95 5 5.05 Vdc Vin=48V, Io1=7.5A, Io2=7.5A
3.25 3.3 3.35 Vdc Vin=48V, Io1=7.5A,Io2=7.5A
Line Regulation
Vo1 ±0.2 %Vo Vin=36~75V, Io1=7.5A, Io2=7.5A
Vo2 ±0.2 %Vo Vin=36~75V, Io1=7.5A, Io2=7.5A
Load Regulation
Vo1 ±0.5 %Vo Io1=0~15A, Io2=0A, Vin=48V
Vo2 ±0.5 %Vo Io1=0.5A, Io2=0~15A, Vin=48V
Dynamic Response
50-75% load 5 %Vo T=25°C, DI/Dt=1A/10µs
200 µs T=25°C, DI/Dt=1A/10µs
50-25% load 5 %Vo T=25°C, DI/Dt=1A/10µs
200 µs T=25°C, DI/Dt=1A/10µs
Current Limit Threshold 16.5 25 A Vin=48V,Io1+Io2
Short Circuit Current 170 Iomax% Vin=48V, Io1=Io2=7.5A
Efficiency 80 82 % Vin=48V, Io1=Io2=7.5A
T rim Range 90 110 %V o
Over Voltage Protection 5.75 7 V Vo=5V
4.0 5 V Vo=3.3V
Temperature Regulation 0.03 %Vo/°C
Ripple (rms) 30 mV ( 0-20MHz BW )
Noise (p-p) 150 mV ( 0-20MHz BW )
Over Temperature Protection 105 °C Vin=48V, Io1=7.5A, Io2=7.5A
Switching Frequency 300 kHz
Characteristic Min Typ Max Units Notes
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-8-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Curves
Characteristic Curves
AV60A-048L-050D033(N) Typical Efficiency vs Vin
5V:load variable; 3.3V:no load AV60A-048L-050D033(N) Typical Efficiency vs Vin
5V@0.5A; 3.3V:load variable
50
60
70
80
90
0 3 6 9 12 15
Output Current (amps)
Vin=75V
Vin=48V
Vin=36V
Efficiency (%)
60
65
70
75
80
85
03691215
Output Current (amps)
Vin=75V
Vin=48V
Vin=36V
Efficiency (%)
AV60A-048L-033D025(N) Typical Efficiency vs Vin
3.3V:load variable; 2.5V:no load AV60A-048L-033D025(N) Typical Efficiency vs Vin
3.3V@1.5A; 2.5V:load variable
50
60
70
80
90
03691215
Output Current (amps)
Efficiency (%)
Vin=75V
Vin=48V
Vin=36V
60
65
70
75
80
0 3 6 9 12 15
Output Current (amps)
Efficiency (%)
Vin=75V
Vin=48V
Vin=36V
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-9-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Curves
Characteristic Curves (continued )
(continued )
AV60A-048L-050D033(N)
Typical Cross Regulation AV60A-048L-033D025(N)
Typical Cross Regulation
4.976
4.984
4.992
5.000
5.008
03691215
Output Voltage Vo1 (volts)
Output Current Io2 (amps)
Vin=75V
Vin=48V
Vin=36V
3.3
3.31
3.32
3.33
3.34
0 3 6 9 12 15
Output Voltage Vo1 (volts)
Output Current Io2 (amps)
Vin=75V
Vin=48V
Vin=36V
AV60A-048L-050D033(N)
Typical Overcurrent Performance AV60A-048L-033D025(N)
Typical Overcurrent Performance
1.1
1.7
2.3
2.9
3.5
4.1
4.7
5.3
0 3 6 9 12 15 18 21
Output Voltage (volts)
Output Current (amps)
Vin=75V
Vin=48V
Vin=36V
0
0.6
1.2
1.8
2.4
3.0
3.6
0 3 6 9 12 15 18 21
Output Voltage (volts)
Output Current (amps)
Vin=75V
Vin=48V
Vin=36V
Characteristic Curves
Characteristic Curves (continued )
(continued )
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-10-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AV60A-048L-033D025(N) Typical Output Voltage
Startup From Power On
AV60A-048L-050D033(N) Typical Output Voltage
Startup From Power On
Output
Current
Io2(A)
-40°C 80° 100°C
SOA
Case
Temperature
15A max
12A
AV60A-048L-033D025(P) Typical Transient
Response 25%- 50%- 25% AV60A-048L-050D033(P) Typical Transient
Response 25%- 50%- 25%
Typical Output Current Safe Operating Area vs
Case Temperature (Natural Convection)
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-11-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Pin Location
Pin Location
The +Vin and -Vin input connection pins are
located as shown in Figure 1. AV60A dual out-
put converters have a 2:1 input voltage range
and 48 Vin converters can accept 36-75 Vdc.
Care should be taken to avoid applying reverse
polarity to the input which can damage the con-
verter.
Input Characteristic
Input Characteristic
Fusing
Fusing
The AV60A dual output power module has
no internal fuse. An external fuse must
always be employed! To meet international
safety requirements, a 250 Volt rated fuse
should be used. If one of the input lines is con-
nected to chassis ground, then the fuse must
be placed in the other input line.
Standard safety agency regulations require
input fusing. Recommended fuse ratings for the
AV60A dual output series are 6-8A.
Input Reverse V
Input Reverse Voltage Protection
oltage Protection
Under installation and cabling conditions where
reverse polarity across the input may occur,
reverse polarity protection is recommended.
Protection can easily be provided as shown in
Figure 2. In both cases the diode rating is
7.5A/100V. Placing the diode across the
inputs rather than in-line with the input
offers an advantage in that the diode only
conducts in a reverse polarity condition,
which increases circuit efficiency and ther-
mal performance.
Input Undervoltage Protection
Input Undervoltage Protection
The AV60A series is protected against under-
voltage on the input. If the input voltage drops
below the acceptable range, the converter will
shut down. It will automatically restart when the
undervoltage condition is removed.
Input Filter
Input Filter
Input filters are included in the converters to
help achieve standard system emissions certifi-
cations. Some users however, may find that
additional input filtering is necessary. The
AV60A series has an internal switching fre-
quency of 300 kHz, so a high frequency capac-
itor mounted close to the input terminals pro-
duces the best results. To reduce reflected
noise, a capacitor can be added across the
input as shown in Figure 3, forming a πfilter. A
470µF/100V electrolytic capacitor is recom-
mended for C1.
For conditions where EMI is a concern, a differ-
+Vin
CNT
CASE
-Vin
2.40
(60.96)
2.28
(57.91)
Trim1
-Vo1
+Vo1
Trim2
-Vo2
+Vo2
Fig.1 Pins Location
( baseplate-side footprint )
+Vin
-Vin
+Vin
-Vin
Fig.2. Reverse Polarity Protection Circuits
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-12-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
ent input filter can be used. Figure 4 shows an
input filter designed to reduce EMI effects. C1is
a 470µF/100V electrolytic capacitor, and C2is a
1µF/100V metal film or ceramic high frequency
capacitor, Cy1 and Cy2 are each
1000pF/1500Vdc high frequency ceramic
capacitors, and L1 is a 1mH common mode
choke.
When a filter inductor is connected in series
with the power converter input, an input capac-
itor C1should be added. An input capacitor C1
should also be used when the input wiring is
long, since the wiring can act as an inductor.
Failure to use an input capacitor under these
conditions can produce large input voltage
spikes and an unstable output.
CNT Function
CNT Function
The AV60A dual output series provides a con-
trol function allowing the user to turn the output
on and off using an external circuit. Two remote
on/off options are available. Positive logic
applying a voltage less than 1.2V to the CNT
pin will disable the output, and applying a volt-
age greater than 5V will enable it. Negative
logic applying a voltage less than 1.2V to the
CNT pin will enable the output, and applying a
voltage greater than 5V will disable it. The per-
formance of the converter between these two
points will depend on the individual converter
and whether the control voltage is increasing or
decreasing.
If the CNT pin is left open, the converter will
default to “control on” operation for posi-
tive logic, but default to “Control off” for
negative logic. The maximum voltage that
can be applied to the control pin is 15 volts.
If the CNT function is not used:
Negative logic: connect CNT pin to Vi(-).
Positive logic: leave CNT pin open.
+Vin
-Vin
C1
C2Cy1
Cy2 L1
Fig.4 EMI Reduction Input Filter
-Vin
CNT
-Vin
CNT
-Vin
CNT
-Vin
CNT
Fig.8 Relay Control
Fig.5 Simple Control
Fig.6 Transistor Control
Fig.7 Isolated Control
+Vin
-Vin
C1
Fig.3 Ripple Rejection Input Filter
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-13-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Input-Output Characteristic
Input-Output Characteristic
Safety Consideration
Safety Consideration
For safety-agency approval of the system in
which the power module is used, the power
module must be installed in compliance with the
spacing and separation requirements of the
end-use safety agency standard, i.e., UL1950,
CSA C22.2 No. 950-95, and EN60950. The
input-to-output 1500VDC isolation is an opera-
tional insulation. The DC/DC power module
should be installed in end-use equipment, in
compliance with the requirements of the ulti-
mate application, and is intended to be supplied
by an isolated secondary circuit. When the sup-
ply to the DC/DC power module meets all the
requirements for SELV(<60Vdc), the output is
considered to remain within SELV limits (level
3). If connected to a 60Vdc power system, dou-
ble or reinforced insulation must be provided in
the power supply that isolates the input from
any hazardous voltages, including the ac
mains. One Vi pin and one Vo pin are to be
grounded or both the input and output pins are
to be kept floating. Single fault testing in the
power supply must be performed in combina-
tion with the DC/DC power module to demon-
strate that the output meets the requirement for
SELV. The input pins of the module are not
operator accessible.
Note: Do not ground either of the input pins of
the module, without grounding one of the output
pins. This may allow a non-SELV voltage to
appear between the output pin and ground.
Case Grounding
Case Grounding
For proper operation of the module, the case or
baseplate of the The AV60A dual output series
module does not require a connection to a
chassis ground. If the series is not in a metallic
enclosure in a system, it may be advisable to
directly ground the case to reduce electric field
emissions. Leaving the case floating can help
to reduce magnetic field radiation from common
mode noise currents. If the case has to be
grounded for safety or other reasons, an induc-
tor can be connected to chassis at DC and AC
line frequencies, but be left floating at switching
frequencies. Under the condition, the safety require-
ments are met and the emissions are minimized.
Output Characteristics
Output Characteristics
Minimum Load Requirement
Minimum Load Requirement
In order to maintain proper operation and spec-
ifications, there is a 1.5A minimum load require-
ment on +Vo1(3.3V output) for AV60A-048L-
033D025(N), and 0.5A minimum load require-
ment on +Vo1(5V output) for AV60A-048L-
050D033(N). Contact the factory for details.
Output Over-V
Output Over-Voltage Protection
oltage Protection
The over-voltage protection has a separate
feedback loop which activates when the output
voltage is between 120% and 150% of the
nominal output voltage. When an over-voltage
condition occurs, a “ turn off “ signal was sent
to the input of the module which will shut down
the output. The module will restart after power
on again.
Output T
Output Trimming
rimming
Users can increase or decrease the output volt-
age by adding an external resistor between the
TRIM pin and either the Vo (+ ) or Vo ( - ) pins.
The trim resistor should be positioned close to
the module. If the trim feature is not used,
leave the TRIM pin open.
Trimming up by more than 10% of the nominal
output may damage the converter. Trimming
down more than 10% can cause the converter
to regulate improperly. Trim down and trim up
circuits and equations are shown in following
Figures.
Note that at elevated output voltages the
maximum power rating of the module
remains the same, and the output current
capability will decrease correspondingly.
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-14-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Where Vo is the output voltage after trim-up. 
Ru1 is in k.
Load
Ru1
-Vin
Case
CNT
+Vin Trim1
Trim2
Vo1-
Vo1+
Vo2+
Vo2-
5V Out: Ru1=
( 5.76 - Vo' ) x 3.3
Vo' - 5
3.3V Out: Ru1=
( 3.776 - Vo' ) x 5.11
Vo' - 3.3
AV60A-048L-050D033(N):
AV60A-048L-033D025(N):
Fig.9 Output Voltage Vo1 Trim-up
Adjustment Resistor Value (k)
Output Voltage Trim-up ( volts )
5
5.05
5.1
5.15
5.2
5.25
5.3
5.35
5.4
5.45
5.5
0 5 10 15 20 25 30 35 40 45 50
Fig.10 Typical Trim-up Curves for
AV60A-048L-050D033(N) 5V Outputs
Adjustment Resistor Value (k)
Output Voltage Trim-up ( volts )
3.333
3.366
3.399
3.432
3.465
3.498
3.531
3.564
3.597
3.63
2 101826344250586674
Fig.11 Typical Trim-up Curves for
AV60A-048L-033D025(N) 3.3V Outputs
3.3V Out: Ru2=
( 5.825 - Vo' ) x 0.33
Vo' - 3.3
Load
Ru2
-Vin
CNT
+Vin Trim1
Trim2
Vo1-
Vo1+
Vo2+
Vo2-
2.5V Out: Ru2=
( 3.1388 - Vo' ) x 10
Vo' - 2.5
Where Vo is the output voltage after trim-up. 
Ru2 is in k.
AV60A-048L-050D033(N):
AV60A-048L-033D025(N):
Case
Fig.12 Output Voltage Vo2 Trim-up
Adjustment Resistor Value (k)
Output Voltage Trim-up ( volts )
3.333
3.366
3.399
3.432
3.465
3.498
3.531
3.564
3.597
3.63
0 3 6 9 12 15 18 21 24 27
Fig.13 Typical Trim-up Curves for
AV60A-048L-050D033(N) 3.3V Outputs
2.525
2.55
2.575
2.6
2.625
2.65
2.675
2.7
2.725
2.75
0 25 50 75 100 125150175 200 225 250
Adjustment Resistor Value (k)
Output Voltage Trim-up ( volts )
Fig.14 Typical Trim-up Curves for
AV60A-048L-033D025(N) 2.5V Outputs
component-side footprint
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-15-
Load
R
d1
-Vin
CASE
CNT
+Vin Trim1
Trim2
Vo1-
Vo1+
Vo2+
Vo2-
Where Vo' is the output voltage after trim-down. 
Rd1 is in k.
AV60A-048L-050D033(N):
AV60A-048L-033D025(N):
5V Out: Rd1=
( Vo' - 4.42 ) x 4.3
5-Vo'
3.3V Out: Rd1=
( Vo' - 2.785) x 6.8
3.3-Vo'
Fig.15 Output Voltage Vo1 Trim-down
Adjustment Resistor Value (k)
Output Voltage Trim-down ( volts )
4.5
4.55
4.6
4.65
4.7
4.75
4.8
4.85
4.9
4.95
5
0 5 10 15 20 25 30 35 40 45
Adjustment Resistor Value (k)
Output Voltage Trim-down ( volts )
2.97
3.003
3.036
3.069
3.102
3.135
3.168
3.201
3.234
3.267
3.3
0 102030405060708090100
Fig.17 Typical Trim-down Curves for
AV60A-048L-033D025(N) 3.3V Outputs
Load
Rd2
-Vin
Case
CNT
+Vin Trim1
Trim2
Vo1-
Vo1+
Vo2+
Vo2-
Where Vo' is the output voltage after trim-down. 
Rd2 is in k.
2.5V Out: Rd2 =
( Vo' - 2.0773 ) x 15.11
2.5-Vo'
3.3V Out: Rd2 =
( Vo' - 2.89 ) x 0.66
3.3-Vo'
AV60A-048L-050D033(N):
AV60A-048L-033D025(N):
Fig.18 Output Voltage Vo2 Trim-down
Adjustment Resistor Value (k)
Output Voltage Trim-down ( volts )
2.97
3.003
3.036
3.069
3.102
3.135
3.168
3.201
3.234
3.267
3.3
012345678
2.25
2.275
2.3
2.325
2.35
2.375
2.4
2.425
2.45
2.475
0 25 50 75 100125150175200225250
Adjustment Resistor Value (k)
Output Voltage Trim-down ( volts )
Fig.20 Typical Trim-down Curves for
AV60A-048L-033D025(N) 2.5V Outputs
Fig.16 Typical Trim-down Curves for
AV60A-048L-050D033(N) 5V Outputs Fig.19 Typical Trim-down Curves for
AV60A-048L-050D033(N) 3.3V Outputs
component-side footprint
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-16-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Output Over-Current Protection
Output Over-Current Protection
AV60A dual output DC/DC converters feature
continuously current limiting as part of their
Overcurrent Protection (OCP) circuits. When
output current exceeds 110 to 140% of rated
current, such as during a short circuit condition,
the output will shutdown immediately, and can
tolerate short circuit conditions indefinitely.
When the overcurrent condition is removed, the
converter will automatically restart.
Output Filters
Output Filters
When the load is sensitive to ripple and noise,
an output filter can be added to minimize the
effects. A simple output filter to reduce output
ripple and noise can be made by connecting a
capacitor across the output as shown in Figure
21. The recommended value for the output
capacitor C1 is 470µF/16V.
Extra care should be taken when long leads or
traces are used to provide power to the load.
Long lead lengths increase the chance for
noise to appear on the lines. Under these con-
ditions C2 can be added across the load as
shown in Figure 22. The recommended compo-
nent for C2 is 470µF/16V capacitor and con-
necting a 0.1µF ceramic capacitor C1 in paral-
lel generally.
Decoupling
Decoupling
Noise on the power distribution system is not
always created by the converter. High speed
analog or digital loads with dynamic power
demands can cause noise to cross the power
inductor back onto the input lines. Noise can be
reduced by decoupling the load. In most cases,
connecting a 10 µF tantalum capacitor in paral-
lel with a 0.1µF ceramic capacitor across the
load will decouple it. The capacitors should be
connected as close to the load as possible.
Ground Loops
Ground Loops
Ground loops occur when different circuits are
given multiple paths to common or earth
ground, as shown in Figure 23. Multiple ground
points can slightly different potential and cause
current flow through the circuit from one point to
another. This can result in additional noise in all
the circuits. To eliminate the problem, circuits
should be designed with a single ground con-
nection as shown in Figure 24.
Parallel Power Distribution
Parallel Power Distribution
Figure 25 shows a typical parallel power distri-
bution design. Such designs, sometimes called
daisy chains, can be used for very low output
currents, but are not normally recommended.
The voltage across loads far from the source
+Vout
-Vout
Load
C1C2
Fig.22 Output Ripple Filter For a Distant
Load
+Vout
-Vout
Load
C1
Fig.21. Output Ripple Filter
+Vout
-Vout
Load Load
RLine
RLine RLine
RLine
RLine
+Vout
-Vout
Load Load
RLine
RLine RLine
RLine
RLine
RLine
Ground
Loop
Fig.23 Ground Loops
Fig.24 Single Point Ground
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-17-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
can vary greatly depending on the IR drops
along the leads and changes in the loads clos-
er to the source. Dynamic load conditions
increase the potential problems.
Radial Power Distribution
Radial Power Distribution
Radial power distribution is the preferred
method of providing power to the load. Figure
26 shows how individual loads are connected
directly to the power source. This arrangement
requires additional power leads, but it avoids
the voltage variation problems associated with
the parallel power distribution technique.
Mixed Distribution
Mixed Distribution
In the real world a combination of parallel and
radial power distribution is often used. Dynamic
and high current loads are connected using a
radial design, while static and low current loads
can be connected in parallel. This combined
approach minimizes the drawbacks of a parallel
design when a purely radial design is not feasi-
ble.
Thermal Management
Thermal Management
T
Technologies
echnologies
AV60A dual output series modules feature high
efficiency, the 5V/3.3 V output units have typical
efficiency of 82% at full load, and the 3.3V/2.5V
output units have typical efficiency of 80% at full
load. With less heat dissipation and tempera-
ture-resistant components such as ceramic
capacitors, these modules exhibit good behav-
ior during prolonged exposure to high tempera-
tures. Maintaining the operating case tempera-
ture (Tc) within the specified range help keep
internal-component temperatures within their
specifications which in turn help keep MTBF
from falling below the specified rating. Proper
cooling of the power modules is also necessary
for reliable and consistent operation.
Basic Thermal Management
Basic Thermal Management
Measuring the case temperature of the module
(Tc) as the method shown in Figure 28 can ver-
ify the proper cooling. Figure 28 shows the
metal surface of the module and the pin loca-
tions. The module should work under 90°C for
the reliability of operation and TCmust not
exceed 100 °C while operating in the final sys-
tem configuration. The measurement can be
made with a surface probe after the module has
reached thermal equilibrium. If a heat sink is
mounted to the case, make the measurement
as close as possible to the indicated position. It
makes the assumption that the final system
configuration exists and can be used for a test
environment.
The following text and graphs show guidelines
to predict the thermal performance of the mod-
ule for typical configurations that include heat
sinks in natural or forced airflow environments.
Note that Tc of module must always be checked
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2
RL3
RG1 RG2
RG3
RL = Lead Resistance
RG = Ground Lead Resistance
Load 4
RL4
RG4
Fig.27 Mixed Power Distribution
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2
RL3
RG1 RG2
RG3
RL = Lead Resistance
RG = Ground Lead Resistance
Fig.26 Radial Power Distribution
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2 RL3
RG1 RG2 RG3
I1 + I2 + I3I2 + I3I3
RL = Lead Resistance
RG = Ground Lead Resistance
Fig.25 Parallel Power Distribution
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-18-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
in the final system configuration to verify proper
operational due to the variation in test condi-
tions.
Thermal management acts to transfer the heat
dissipated by the module to the surrounding
environment. The amount of power dissipated
by the module as heat (PD) is got by the equa-
tion below:
PD= PI -PO
where : PIis input power;
POis output power;
PD is dissipated power.
Also, module efficiency (η) is defined as the fol-
lowing equation:
ηη = PO / PI
If eliminating the input power term, from two
above equations can yield the equation below:
PD = PO( 1 - ηη) /ηη
The module power dissipation then can be cal-
culated through the equation.
Because each power module output voltage
has a different power dissipation curve, a plot of
power dissipation versus output current over
three different line voltages is given in each
module-specific data sheet. The typical power
dissipation curves of AV60A series are shown
as figure 29 to figure 32.
29.0 (1.14)
30.5 (1.2)
+Vin
CASE
CNT
-Vin
MEASURE CASE
TEMPERATURE HERE
Pin-side View
Dimensions: millimeters (inches)
Trim1
-Vo1
+Vo1
Trim2
-Vo2
+Vo2
Fig.28 Case Temperature Measurement
( component-side footprint )
3.00
5.00
7.00
9.00
11.00
13.00
15.00
17.00
19.00
0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
Output Current (amps)
Power Dissipation (W)
Vin=75V
Vin=48V
Vin=36V
Fig.29 AV60A-048L-050D033(N) Power Dissipation
Curves, 5V:load variable, 3.3V:no load
5.00
7.00
9.00
11.00
13.00
15.00
17.00
0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
Output Current (amps)
Power Dissipation (W)
Vin=75V
Vin=48V
Vin=36V
Fig.30 AV60A-048L-050D033(N) Power Dissipation
Curves, 5V@1.5A, 3.3V:load variable
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
Output Current (amps)
Power Dissipation (W)
Vin=75V
Vin=48V
Vin=36V
Fig.31 AV60A-048L-033D025(N) Power Dissipation
Curves, 3.3V:load variable, 2.5V:no load
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-19-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Module Derating
Module Derating
Experiment Setup
Experiment Setup
From the experimental set up shown in figure
33, the derating curves as figure 34 can be
drawn. Note that the PWB ( printed-wiring
board ) and the module must be mounted verti-
cally. The passage has a rectangular cross-
section. The clearance between the facing
PWB and the top of the module is kept 13 mm
(0.5 in.) constantly.
Convection W
Convection Without Heat Sinks
ithout Heat Sinks
Heat transfer can be enhanced by increasing
the airflow over the module. Figure 34 shows
the maximum power that can be dissipated by
the module.
In the test, natural convection airflow was mea-
sured at 0.05 m/s to 0.1 m/s (10 ft./min. to 20
ft./min.). The 0.5 m/s to 4.0 m/s (100 ft./min. to
800 ft./min.) curves are tested with externally
adjustable fans. The appropriate airflow for a
given operating condition can be determined
through figure 34.
Example 1. How to calculate the minimum
airflow required to maintain a desired Tc?
If a AV60A-048L-050D033(N) module operates
with a 48V line voltage, a 15 A of Io2, and a 40
°C maximum ambient temperature, What is the
minimum airflow necessary for the operating?
Determine PD( referenced Fig.30 ) with con-
dition:
Vin = 48V, lO1 = 1.5A, lO2 = 15A
Get: PD= 15.5W
From: TA= 40 °C
Determine airflow ( Fig.34 ):
v = 2 m/s ( 400 ft./min. )
Ambient Temperature, TA (°C)
Power Dissipation P
D
(W)
4.0 m/s
(800 ft./min.)
1.0 m/s
(200 ft./min.)
2.0 m/s
(400 ft./min.)
3.0 m/s
(600 ft./min.)
0.5 m/s
(100 ft./min.)
Natural Convection
(10-20 ft./min.)
25
20
15
10
5
0 0 10 20 30 40 50 60 70 80 90 100
Fig.34 Forced Convection Power Derating
without Heat Sink
3.00
4.50
6.00
7.50
9.00
10.50
12.00
13.50
15.00
0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
Output Current (amps)
Power Dissipation (W)
Vin=75V
Vin=48V
Vin=36V
Fig.32 AV60A-048L-033D025(N) Power Dissipation
Curves, 3.3V@1.5A, 2.5V:load variable
Dimensions: millimeters (inches).
facing PWB
PWB
Module
50.8(2.0)
Air velocity and
Ambient Temperature
Testing Point
Air flow
13(0.5)
Fig.33 Experiment Set Up
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-20-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Example 2. How to calculate the maximum
output power of a module in a certain con-
vection and a max. TA?
What is the maximum power output for a
AV60A-048L-050D033(N) operating at follow-
ing conditions:
Vin = 48V
v = 2.0 m/s (400 ft./min.)
TA= 40 °C
Determine PD( Fig.34 )
PD= 16 W
Determine IO(Fig. 29 ):
IO= 14.5 A
Calculate PO:
PO= (VO) x (IO) = 5 x 14.5 = 72.5 W
Although the two examples above use 100 ° C
as the maximum case temperature, for
extremely high reliability applications, one may
design to a lower case temperature as shown in
Example 4 on page 22.
Heat Sink Configuration
Heat Sink Configuration
Several standard heat sinks are available for
the AV60A dual output modules as shown in
Figure 35 to Figure 37.
The heat sinks mount to the top surface of the
module with screws torqued to 0.56 N-m (5 in.-
lb). A thermally conductive dry pad or thermal
grease is placed between the case and the
heat sink to minimize contact resistance (typi-
cally 0.1°C/W to 0.3°C/W) and temperature dif-
ferential.
Nomenclature for heat sink configurations is as
follows:
WDxyyy40
where:
x = fin orientation: longitudinal (L) or trans
verse (T)
yyy = heat sink height (in 100ths of inch)
For example, WDT5040 is a heat sink that is
transverse mounted (see Figure 25) for a 61
mm x 57.9 mm (2.4 in.x 2.28 in.) module with a
heat sink height of 0.5 in.
Heatsink Mounting Advice
Heatsink Mounting Advice
A crucial part of the thermal design strategy is
the thermal interface between the baseplate of
the module and the heatsink. Inadequate mea-
sures taken here will quickly negate any other
attempts to control the baseplate temperature.
For example, using a conventional dry insulator
can result in a case-heatsink thermal imped-
ance of >0.5°C/W, while use one of the rec-
ommended interface methods (silicon grease
or thermal pads available from ASTEC) can
result in a case-heatsink thermal impedance
around 0.1°C/W.
Dimensions: millimeters (inches).
WDT10040
61 (2.4)
WDT02540
WDT05040
57.9
(2.28)
1/4 IN.
1/2 IN.
1 IN.
Fig.37 Transverse Fins Heat Sink
89.1(3.51)
57.0
(2.24) 11.8
(0.465)
4.9(0.193)
Dimensions: millimeters (inches).
Fig.35 Non Standard Heatsink
Dimensions: millimeters (inches).
57.9 (2.28)
61
(2.4)
WDL10040
WDL02540
WDL05040
1/4 IN.
1/2 IN.
1 IN.
Fig.36 Longitudinal Fins Heat Sink
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-21-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Natural Convection with Heat Sink
Natural Convection with Heat Sink
The power derating for a module with the heat
sinks ( shown as figure 35 to figure 37) in nat-
ural convection is shown in figure 39. In this
test, nature convection generates airflow about
0.05 m/s to 0.1 m/s ( 10ft./min to 20ft./min ).
Figure 39 can be used for heat-sink selection in
natural convection environment.
Example 3. How to select a heat sink?
What heat sink would be appropriate for a
AV60A-048L-033D025(N) in a natural convec-
tion environment at nominal line, full load, and
maximum ambient temperature of 40°C?
Determine PD( referenced Fig.31 ) with con-
dition:
Vin = 48 V
IO= 15 A
TA= 40 °C
Get: PD= 11.5 W
Determine Heat Sink (Fig.39 ):
1/2 in. allows up to TA = 40 °C
Basic Thermal Model
Basic Thermal Model
There is another approach to analyze module
thermal performance, to model the overall ther-
mal resistance of the module. This presentation
method is especially useful when considering
heat sinks. The following equation can be used
to calculate the total thermal resistance .
RCA =TC, max / PD
Where RCA is the total module thermal resis-
tance.
TC, max is the maximum case temperature
rise.
PD is the module power dissipation.
In this model, PD, TC, max, and RCA are equals
to current flow, voltage drop, and electrical
resistance, respectively, in Ohm's law, as
shown in Figure 40. Also, TC, max is defined as
the difference between the module case tem-
perature (TC) and the inlet ambient temperature
(TA).
TC, max = TC-TA
Where TCis the module case temperature;
TA is the inlet ambient temperature.
For AV60A dual output series converters, the
module's thermal resistance values versus air
PDTHERMAL
RESISTANCE
RcA
Fig.40 Basic Thermal Resistance Model
Fig.38 Heat Sink Mounting
010203040 90100
0
20
25
30
35
LOCAL AMBIENT TEMPERATURE, TA (°C)
POWER DISSIPATION, P
D
(W)
15
10
5
50 60 70 80
1 1/2 in.
1 in.
1/2 in.
1/4 in.
NONE
Fig.39 Heat Sink Power Derating Curves,
Natural Convection
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-22-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
velocity have been determined experimentally
and shown in figure 41. The highest values on
each curve represents the point of natural con-
vection.
Figure 41 is used for determining thermal per-
formance under various conditions of airflow
and heat sink configurations.
Example 4. How to determine the allowable
minimum airflow to heat sink combinations
necessary for a module under a desired Tc
and a certain condition?
Although the maximum case temperature for
the AV60A dual output series converters is
100°C, you can improve module reliability by
limiting Tc,max to a lower value. How to
decide? For example, what is the allowable
minimum airflow for AV60A-048L-050D033(N)
heat sink combinations at desired Tc of 80 °C?
The working condition is as following:
Vin = 48V
IO1 = 1.5 A
IO2 = 13.5 A
TA= 40 °C.
Determine PD( Fig.30 )
PD= 13.5 W
Then solve RCA::
RCA = TC, max / PD
RCA = (TCTA)/ PD
RCA = (80 40)/ 13.5 = 3 °C/W
determine air velocity from figure 41:
If no heat sink:
v = 2.7 m/s (540 ft./min.)
If 1/4 in. heat sink:
v = 1.9 m/s (380 ft./min.)
If 1/2 in. heat sink:
v = 1.2 m/s (24 ft./min.)
If 1 in. heat sink:
v = 0.4 m/s (80 ft./min.)
Example 5. How to determine case tempera-
ture ( Tc ) for the various heat sink configu-
rations at certain air velocity?
What is the allowable Tc for AV60A-048L-
033D025(N) heat sink configurations at desired
air velocity of 2.0 m/s, and it is operating at a 48
V line voltage, a total output current of 15A, a
40 °C maximum ambient temperature?
Determine PD( Fig. 32. ) with condition:
Vi = 48V
IO1 = 1.5 A, IO2 = 13.5 A
TA= 40 °C
v = 2.0 m/s (400 ft./min.)
Get: PD= 11.5 W
Determine TC:TC= (RCA x PD) + TA
Determine the corresponding thermal resis-
tances ( RCA ) from Figure 41:
No heat sink: RCA = 3.8 °C/W
TC= (3.8 x 11.5) + 40 = 83.7 °C
1/4 in. heat sink: RCA = 2.8 °C/W
TC= (2.8 x 11.5) + 40 = 72.2 °C
1/2 in. heat sink: RCA = 2.0 °C/W
TC= (2 x 11.5) + 40 = 63 °C
1 in. heat sink: RCA = 1.2 °C/W
TC= (1.2 x 11.5) + 40 = 53.8 °C
In this configuration, the module does not need
the heat sink and the power module does not
exceed the maximum case temperature of
100°C.
0 0.5(100) 1.0(200) 1.5(300) 2.0(400) 2.5(500) 3.0(600)
0
1
5
6
7
8
Air Velocity m/s (ft./min.)
4
3
2
Case-Ambient Thermal Resistance
R
CA
(°C/W)
1 in. heat sink
1/2 in. heat sink
1/4 in. heat sink
NO heat sink
Fig.41 Case-to-Ambient Thermal Resistance
Curves; Either Orientation
AA
AAVV
VV66
6600
00AA
AA
DD
DDUU
UUAA
AALL
LL
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
HH
HHAA
AALL
LLFF
FF-
-BB
BBRR
RRII
IICC
CCKK
KK
PP
PPOO
OOWW
WWEE
EERR
RR
CC
CCOO
OONN
NNVV
VVEE
EERR
RRTT
TTEE
EERR
RRSS
SS
33
3366
66VV
VVDD
DDCC
CC
TT
TTOO
OO
77
7755
55VV
VVDD
DDCC
CC
II
IINN
NNPP
PPUU
UUTT
TT,,
,,
77
7755
55
WW
WWAA
AATT
TTTT
TT
OO
OOUU
UUTT
TTPP
PPUU
UUTT
TT
-23-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Mechanical Considerations
Mechanical Considerations
Installation
Installation
Although AV60A dual output converters can be
mounted in any orientation, free air-flowing
must be taken. Normally power components
are always put at the end of the airflow path or
have the separate airflow paths. This can keep
other system equipment cooler and increase
component life spans.
Soldering
Soldering
AV60A dual output converters are compatible
with standard wave soldering techniques.
When wave soldering, the converter pins
should be preheated for 20-30 seconds at
110°C, and wave soldered at 260°C for less
than 15 seconds.
When hand soldering, the iron temperature
should be maintained at 450°C and applied to
the converter pins for less than 5 seconds.
Longer exposure can cause internal damage to
the converter. Cleaning can be performed with
cleaning solvent IPA or with water.
MTBF
MTBF
The MTBF, calculated in accordance with
Bellcore TR-NWT-000332 is 2,300,000 hours.
Obtaining this MTBF in practice is entirely pos-
sible. It means providing forced air cooling of at
least 300 LFM. If the ambient air temperature is
expected to exceed +25°C, then we also
advise a heatsink on the AV60A series, orient-
ed for the best possible cooling in the air
stream.
ASTEC can supply replacements for converters
from other manufacturers, or offer custom solu-
tions. Please contact the factory for details.
Mechanical Chart
Mechanical Chart (
( baseplate-side footprint
baseplate-side footprint )
)
-Vin
Case
CNT
+Vin
+Vo2
-Vo2
Trim2
5.1 (0.2)
10.16 (0.4)
15.24 (0.6)
4.8 (0.19) 48.26 (1.9)
10.16 (0.4)
10.16 (0.4)
7.62 (0.3)
57.9 (2.28)
61.0 (2.4)
mm (inches)
5.8 (0.23) Optional
12.7 (0.5)
Mounting Inserts
M3 thru hole x4
7.62 (0.3)
7.62 (0.3)
7.62 (0.3)
5.1 (0.2)
+Vo1
-Vo1
Trim1
10 - Φ1.0(0.04)
12.70 (0.5)
Pin Length Option
3.80mm ! 0.25mm
0.150in. ! 0.010in.
2.80mm ! 0.25mm
0.110in. ! 0.010in.
5.8mm ! 0.5mm
0.228in. ! 0.020in.
Device Code Suffix
-6
-8
-7
Tolerances:
Inches Millimeters
.xx !0.020 .x !0.5
.xxx !0.010 .xx !0.25
Pins
>4mm !0.02inch ( !0.5mm)
<4mm !0.01inch ( !0.25mm)
PART NUMBER DESCRIPTION
ss pp
c
-0 iv L- xxx f yy h n -p-mx-Options
p = Pin Length
Omit this digit for Standard 5mm
6 = 3.8mm, 7= 5.8mm
iv = Input Voltage 8 = 2.8mm
05 = Range centered on 5V
12 = Range centered on 12V Enable Logic Polarity
24 = 18 to 36(2:1), 9 to 36V(4:1) Omit for Positive Enable Logic
36 = 20 to 60V N = Negative Enable
46 = 18V to 75V (4:1) Except: AK60C-20H, BK60C-30H
48 = Typ 36 to 75V Omit for Negative Logice
P = Positive Logic
c = Pinout compatability
A= Astec Footprint or "non Lucent" footprint H = High Efficiency (Synch rect.)
C= Ind Std, Exact Lucent drop in Omit H if Conventional Diode (low Eff)
yy = Output Current
pp = Package Type ie. 08 = 8 Amps
40 = 1" x 2" SMD
42 = 1.5" x 2" SMD f = # of Outputs
45 = 1.45" X 2.3" (1/4 Brk) F = Single Output
60 = 2.4" X 2.3" (1/2 Brk) D = Dual Output
80 = Full size 4.6" x 2.4"
72= 2.35" X 3.3 (3/4 Brk) xxx = Output Voltage
Format is XX.X (ie 1.8V = 018)
ss = Series
AA = 1/2brick Dual (Old designator)
AK = Ind Std sizes (1/4, 1/2, full) <150W mx = Options
AM/BM = Full size, astec pin out M1,M2 = .25" Height Heatsink
AL = Half size, astec pin-out M3,M4 = .5" height Heatsink
BK = Ind Std size =>150W or feature rich M5.M6 = 1.0" Height Heatsink
AV = Avansys Product
Note: For some products, they may not conform with the PART NUMBER DESCRIPTION above absolutely.
REVISION Q ATTACHMENT I Page 1 of 2
NEW PART NUMBER DESCRIPTION
Acs ii V1 V2 V3Vin -e t p Mx
Output Voltage
A = 5.0V E = 7.5V
F = 3.3V B = 12V, C = 15V
G = 2.5V L = 8V, H = 24V, R = 28V
D = 2.0V / 2.1V Omit V2 and V3 if Single Output
Y = 1.8V Omit V3 if Dual Output
M = 1.5V ie for Dual Output 5 and 3.3V
K = 1.2V V1 =A, V2 = F, V3 =Omit
J = 0.9V V1 =A, V2 = F, V3 =Omit
ii = Output Current Max
ie 60 = 60 Amps Vin = Input Voltage range
300 = 250V to 450V
S = Size 48 = 36V to 75V
F = Full Brick 24 = 18V to 36V
H = Half Brick 03 = 1.8V to 5.0V
Q = Quarter Brick 08 = 5.0V to 13.0V
S = 1 X 2 18 Pin SMT PFC: Power Factor Corrected
E = 1 X 2 Thru Hole
C = (.53X1.3X.33) SMT (Austin Lite drop in) E = Enable Logic for > 15W
V = Conventional Package (2X2.56") or ( Omit this digit for Positive enable
A = SIP N = Negative Logic
W = Convent pkg (Wide 2.5X3) E = Enable Logic for < 15W
R = 1 X 1 Thru Hole Omit this digit for no enable option
A = SIP 1 = Negative Logic
T = 1.6 X 2 4 = Positive Logic
c = Construction Trim for 1W to 15W
E = Enhanced Thermals (Baseplate or adapter plate) 9 = Trim Added
I = Integrated (Full Featured) Hong Kong models
L = Low Profile (Open Frame, No case - Isolated)
P = Open Frame (SIP or SMT) non-isolated P = Pin Length
Omit this digit for Standard 5mm
6 = 3.8mm
8 = 2.8mm
7 = 5.8 mm
Mx - Factory Options
customer Specific
Note: For some products, they may not conform with the NEW PART NUMBER DESCRIPTION above absolutely.
REVISION Q ATTACHMENT I Page 2 of 2