Numerical Index 2N4228-2N4319 alz MAXIMUM RATINGS ELECTRICAL CHARACTERISTICS i= = = = = BE | = | REPLACE | PAGE Po [Bl Ty | Vos | Vee |= bre @ Ic Veeisani @ le 2 f |= RE VES | ment | wumper | USE $ 3 2 2\ uy. [B) 2l8 =a @ 25C | | C | (volts) | (volts) 3 (min) (max) >} (volts) = 3 Sl3 2N4228 |S | P 2N4402] 5-34 RFA 300M) A 125 60 401 0 150 150M 200M] T 2N4231 |S |N LPA 35W} C 200} 40] 0 25) 100 1L.5A 0.7 1.5A 1.0M} T 2N4232 {S|N LPA 35W] C 200 60} 0 25} 100] 1.54 0.7 1.5A 1.0M) T 2N4233 |S |N LPA 35Wy) C 200) 80) 0 25) 100; L.5A 0.7 L.5A 1.OM) T 2N4234 |S | P 7-156 | PMS 1.0W} A | 200 40 40] 0 30} 150) 250M 0.6 1.0A 3.0M) T 2N4235 |S | P 7-156 | PMS 1.0W/ A 200: 60 60/0 30) 150 250M 0.6 1.0A 3.0M) T 2N4236 |S | P 7-156 | PMS L.OW) A 200: 80 80] 0 301 150 250M 0.6 1.0A 3.0M} T 2N4237 [S | P 7-161] LPA 5.0W) C 175 50 40) 0 40] 160 500M 2.5 1.0A 40] E 10M) T 2N4238 |S | P 7-161 | LPA 5. OW] C 175 80 60,0 40} 160) 500M 2.5 1.0A 40) E 10M) T 2N4239 |S |P 7-161) LPA 5.0wWyC 175 100 60} 0 40} 160 SOOM 2.5 1.0A 40) E 160M] T 2N4240 |S JN LPA 35W] C 440 300] 0 30] 240) 0.75A 15M) T 2N4242 7G |P LPA LOSW}A 80 60/0 40 80 5.0A 500K] T 2N4243 |G [P LPA 105W/ A 60 45/0 40 80 5.0A 500K; T 2N4244 |G | P LPA 105W/ A 40 30,0 40) 80 5.0A 500K] T 2N4245 1G | P LPA LOSWIA 80 6010 6ol 120 5.0A 5QQK) T 2N4246 |G | P LPA 1LO5wW] A 60 45{0 60] 120 5.0A 500K} T 2N4247 |G | P LPA 105W] A 40 30) 0 60} 120 5.0A 500K] T 2N4248 7S | P 2N5086} 5-55 AFA 200M[ A 125 40 40] 0 50) E 40M} T 2N4249 |S | P 2N5086) 5-55 AFA 200M! A 125 60 60/0 100] E 40M] T 2N4250 |S | P 2N5087| 5-55 AFA 200M] A 125 40 40] 0 250) E 40M| T 2N4251 )S | N MSA 250M) A 200 45 10) 0 100 10M, 1300M) T 2N4252 |S |N RFA 200M] A 175 30 18] 0 50 2.0M 600M] T 2N4253 |S ]N RFA 200Mi A L175 30 1810 30 2.0M 600M} T 2N4254 |S [N MPS6547} 5-135 | AFA 200M] A 175 30 18] 0 50 2.0M 2N4255 |S |[N MPS6547} 5-135 | AFA 200M} A 175 30 18/0 30 2.0M 2N4256 |S |N 2N3904| 5-11 AFA 200M A 30 30\S 500 2.0M 2N4257 |S }P uss 200M! A 125 6.0 6.0/0 30] 120 10M 500M) T 2N4258 |S | P HSS 200M] A 125 12 12/0 30] 120 10M 700M) T 2N4259 |S |N RFA L75M)A 175 40 30] 0 70, E 2N4260 |S | P 8-298 | HNS 200M] A 200 15 15]0 30! 150 10M 15 10M 16] E] 1500M| T 2N4261 |S | P 8-298 | HNS 200M} A 200 5.0 15}0 30; 150 15A i5 10M 20] E] 2000M] T 2N4262 |S [N LPA L.SWICc 25 1o}o 75 Q.3A 600M} T 2N4263 |S |N LPA L.5Sw/c 25 10/0 75 0.3A 800M] T 2N4264 |S |N 5=29 MSA 31L0M/A 135 30 15/0 40} 160 10M 300M; T 2N4265 |S | P 5-29 HSS 310M]A 135 30 12]0 100] 400 15A 0.22 10M 300M) T 2N4.267 thru Field Effect Transistors, see Table on Page 1-166 2N4 268 2N4269 |S [N AFC 360M/A | 200} 200; 140/0 200 10M 2N4270 |S |N AFC 580M] A 200 200 140}0 200 10M 2N4271 |S |N LPA 5.0W}C 175 140}0 20; 140 0.24 20M; T 2N4272 |S JN LPA 5.0W) C 175 140)0 20) 140 L.OA 10M] T 2N4273 |S UN LPA 25WIC 175 14010 20) 140 1.0A LOM) T 2N4274 |S [N HSS 280M] A 125 30 12/0 18 100M 400M] T 2N4275 |S |[N HSS 280M] A 125 40 15]0 18 100M 400M] T 2N4276 1G | P 7-163 | LPA 1L70W|C 110 30 20/0 60] 120 15A 0.15 15A 2.0K) E 2N4277 |G |P 7-163 | LPA 170w] C 110 30 2010 80] 180 154 0.15 15A 2.0K] E 2N4278 |G }P 7-163 | LPA 170wW] Cc 110 45 30/0 60! 120 15A 0.15 15A 2.0K] E 2N4279 |G | P 7-163 | LPA 170Ww;C | 110 45 30/0 80} 180 15A] 0.15 15A 2.0K) E 2N4280 |G | P 7-163 | LPA 1L70W] C 110 60 4510 60] 120 15A 0.15 15A 2.0K] E 2N4281 |G | P 7-163 | LPA 170W| Cc 110 60 45]|0 80] 180 15A 0.15 1L5A 2.0K] E 2N4282 |G }P 7-163 | LPA 170w| Cc 110 75 60}0 60] 120 15A 0.15 15A 2.0K] E 2N4283 |G | P 7-163 | LPA 170W/C 110 75 60/0 80} 180 15A 0.15 I5A 2.0K] E 2N4284 1S |P 250M, A 165 25 2510 600 L.OM 2N4285 |S | P 250M} A 165 35 35/0 600 1.0M 2N4286 |S |[N MPS6515} 5-109 | AFA 250M] A 1590 30 25/0 600] E 40M] T 2N4287 |S |N MPS6566|{ 5-148 | AFA 250M] A 150 45 45]0 600] E 40M} T 2N4288 1S | P MPS6518) 5-113 | AFA 250M/A 150 30 25/0 600] E 40M} T 2N4289 |S | P 2N5086] 5-55 AFA 250M{A 150 60 45]0 600] E 40M| T 2N4290 |S {P MPS6533}) 5-118 | AFA 250M) 4 150 30 20)0 600) E 40M) T 2N4291 {S | P MPS6534| 5-118 | AFA 250M] A 150 40 30,0 600) E 40m} T 2N4292 |S |N MPS918 5-74 AFA 200M] A 150 30 15]0 20 3.0M 600M] T 2N4293 |S |N MPS918 5-74 AFA 200M} A 150 30 15}0 60] E 600M] T 2N4294 |S |N 2N4264) 5-29 HSS 200M] A 150 30 12}0 30] 120 10M 400M] T 2N4295 |S |N 2N4264] 5-29 HSS 200M[A 150 40 15/0 40| 120 10M 500M] T 2N4296 [S [N LPA 20W}C 350 250]0 50] 150] 0.05A 20M) T 2N4297 {S [N LPA 20W]C 350 250]0 75} 300! 0.05A 20M] T 2N4298 |S |N LPA 20W| 500 350}0 25 75] 0.05A 20M; T 2N4299 |S |N LPA 20WIC 500 350]0 50] 150] 0.05A 20M} T 2N4300 |S |N LPA 15Wic 100 80]0 30] 120} 1.0A 30M} T 2N4301 |S [N LPA 50w|c 100 80/0 30[ 120 5.04 40M| T 2N4302 thru Field Effect Transistors, see Table on Page 1-166 2N4304 2N4305 |S |[N LPA 1.5WlA 120 80/0 50] 150 1.04 2N4306 |S |N LPA 4.0WlA 120 80)0 50] 150 1L.0A 2N4307 |S |N LPA L.SWIA 100 6010 50} 150] 1.04 2N4308 {S |N LPA 4.0W/A 100 60/0 50} 150 1.0A 2N4309 [|S [N LPA L.5WIA 120 80/0 50] 150 1.0A 2N4310 |S [N LPA 4.0WA 120 80/0 40] 120 1.0A 2N4311 {S |N LPA 1.5WIA 100 60/0 40] 120 1.0A 2N4312 |S |N LPA 4.0W]A 100 60}0 40} 120; 1.0A 2N4313 }S |P CHP 200M} A 125 12 12]0 30] 120 30M 700M] T 2N4314 |S [P LPA 1.0W]A 90 65/0 50} 250] O.15A 200M] T 2N4.316 thru. |Thyristors, see Table on Page 1-154 2N4319 | | | | [ | 1-147WA AK WGMWCWQ BC6CDWIK'W''';=).W'WYDQQD} BCWw@CiCK BCWwc 170W By me cTemnGicr2a | Va ) 45V | 60V | 75Vv | 90V = , 0.3 MHz | 70.36 50-100 2N2152 | 2N2153 | 2N2154 | 2N2155 80-160 2N2156 | 2N2157 | 2N2158 | 2N2159 O-AMP ~ HIGH-CURRENT, Veet LOW-SATURATION SWITCH bre ic= 504 O1V _ le = 20 A, Veg == 2 W=5A po= 170M | *7 (heg = 20 min @ te = 50 A} Vea 15V 10-36 40-130 2N2728 PSO" AMP sich Dc Gai h v asv | 6ov | 75V LOW. SATURATION SWITCH cishiaz2v LS Pp = 170W (hg = 15 min @ lc =60A) | Vee 45V 60V 75 fr 0.3 MHz | = ; 1036 60-120 2N4048 | 2N4049 | 2Na050 80-180 2N4051 | 2N4052 | 2N4053 p 6O-AMP bc CAIN LOW-SATURATION SWITCH extshtecoy PME SOV | 45 | OV | 75 Po = 170W {hye = 15 min @ ' = 60 A) Ves 30V 45V 60V 75V f 0.3 MHz eos 60-120 2N4276 | 2N4278 | 2N4280| 2N4282 10-3 80-180 2N4277 | 2N4279 | 2N4281 | 2N4283 6O- AMP HIGH-CURRENT HIGH GAR reWITCH _. be oy [ved 45 | sow | 75v | sv P,=170W (tye = 12 min ic=500) Ves 45V 60V 75V 90V fr 0.3 MHz 7 30-60 MP500 | MP501 | MP502| MP503 | TO-36 50-100 mp5o04 | MP505 | MP506| MP507 p 150-AMP POWER-PAC ASSEMBLY LOW-SATURATION SWITCH ca tbon Vex | _60V 75N P, = 250 W . ~ gy Va = 2.04 Veio 45V 60V 6, = 0.33C/W 7% a ie case 118 (Ox 15 min MP801 MP800 a tTo order units with soider lugs: (TO-41 Case): add the prefix MP" in place of 2N"' (i.e. MP2137). order odd numbered devices (i.e. 2N1163). #Alloy Diffused Epitaxial Process #For epoxy encapsulated PAC add 'A" to device type (i.e. MP801A) 7-10Power Transistors 2N4276 (GERMANIUM) Vceo = 20-60 V thru Ic = 60A P, = 170W 2n4283 PNP germanium power transistors designed for high current applications requiring high-gain and low satu- ration voltages. CASE 3A (TO-3) MAXIMUM RATINGS Ratin 2N4276 | 2N4278 | 2N4280| 2N4282 Unit 9 Symbol | 5N4277 | 2N4279 | 2N4281 | 2N4283 7 7 Collector-Emitter Voltage Voro 20 30 45 60 Vdc Collector-Emitter Voltage Vors 30 45 60 75 Vde Collector-Base Voltage Vos 30 45 60 15 Vde Emitter-Base Voltage Ves 20 25 30 40 Vac Collector Current Continuous * Io* 60 Adc Total Device Dissipation @ Ty = 25C Ph 170 Watts Derate above 25C 2.0 w/C Operating and Storage Junction Ty Tot c Temperature Range & | .___. -65 to +110 + THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction to Case | 65, 0.5 C/w FIGURE 1 AVERAGE POWER-TEMPERATURE DERATING CURVE 200 | | FOR TRANSIENT THERMAL RESISTANCE AND B 160 SAFE OPERATING AREA INFORMATION, E SEE FIGURES 2 & 3. = S S 120 = 2 & 80 = oOo ~ x 49 0 20 40 60 80 100 120 Tc, CASE TEMPERATURE (C) JEDEC Registered Values, For True Capability See Figure 3. 7-163Power Transistors 2N4276 thru 2N4283 (continued) ELECTRICAL CHARACTERISTICS (Te = 25C unless otherwise noted) [ Characteristic Symbol | Min | Max Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltaget BV ogot Vde Me =1.0 Adc, bb = 0) 2N4276, 2N427T 20 - 2N4278, 2N4279 30 - 2N4280, 2N4281 45 - 2N4282, 2N4283 60 - Collector-Emitter Breakdown Voltage BY ops Vdc (Ig = 300 mAdc, Var = 0) 2N4276, 2N4277 30 - 2N4278, 2N4279 45 - 2N4280, 2N4281 60 - 2N4282, 2N4283 715 - Floating Potential Vepr Vde Vop = 30 Vdc, I = 0) 2N4276, 2N4277 - 0.5 ' Vog = 45 Vde, ln = 0) 2N4278, 2N4279 - 0.5 Vop = 60 Vdc, Ih = 0) 2N4280, 2N4281 - 0.5 Wop = 15 Vde, hh = 0) 2N4282, 2N4283 - 0.5 Collector Cutoff Current Torx mAdc Vor = 20 Vde, V pE(oft) = 2.0 Vdc, To = +71C) 2N4276, 2N4277 - 15 = = = c - (Vog = 30 Vde, VpE(ot) 2.0 Vde, T= +71 ) 2N4278, 2N4279 15 Vor = 45 Vde, VieR(oft) = 2.0 Vde, Te = +71C) 2N4280, 2N4281 - 15 Vor = 60 Vdc, VE (oft) = 2.0 Vdc, To = +71C) 2N4282, 2N4283 - 15 Collector Cutoff Current loBo mAdc = 2. = - 0. (Vo 7 2-0 Vde, I, = 9) 2 Wop = 30 Vde, Ip = 0) 2N4276, 2N4277 - 4.0 (Vop 2 45 Vde, Ty = 0) 2N4278, 2N4279 - 4.0 (op = 60 Vdc, I = 0) 2N4280, 2N4281 - 4.0 Von = 15 Vdc, Ib = 0) 2N4282, 2N4283 - 4.0 Emitter Cutoff Current IeB0 mAdc (Vip = 20 Vde, I, = 0) 2N4276, 2N4277 - 4.0 (Vp = 20 Vde, 1, = 0, Ta = #71C) - 15 (Vor = 25 Vdc, I, = 0) 2N4278, 2N4279 - 4.0 Vor = 25 Vdc, To =9, To = +T1C) - 15 Ver = 30 Vdc, To = 0) 2N4280, 2N4281 - 4.0 (Vor = 30 Vdc, I =0, To = 471C) - 15 Vor = 40 Vde, Io = 0) 2N4282, 2N4283 - 4.0 Vor = 40 Vde, I =0, Te = +71C) - 15 ON CHARACTERISTICS DC Current Gaint hppt - Me =15 Ade, Vor = 2.0 Vdc) 2N4276, 2N4278, 2N4280, 2N4282 60 120 2N4277, 2N4279, 2N4281, 2N4283 80 180 (Io = 60 Adc, Vor = 2.0 Vdc) 15 - Collector-Emitter Saturation Voltaget Vv, + Vde (Ig = 15 Ade, I, = 1-0 Ade) CE(sat) - 0.15 (I, = 60 Adc, Ip = 6.0 Adc) - 0.3 Base-Emitter Saturation Voltaget Vv t Vde (Ig = 15 Ade, I, = 1.0 Adc) BE(sat) - 0.6 (Ig = 60 Ade, 1, = 6.0 Ade) - 1.0 SMALL SIGNAL CHARACTERISTICS Common-Emitter Cutoff Frequency fue kHz Qe = 15 Ade, Vor = 2.0 Vdc) 2.0 - + To avoid excessive heating of the collector junction, perform test with pulse method. 7-1642N4276 thru 2N4283 (continued) 10 0.5 0.3 0.2 OL 0.03 0.02 T (ty, D}, TRANSIENT THERMAL RESISTANCE , NORMALIZED Ic, COLLECTOR CURRENT (AMP) 1.0 Power Transistors FIGURE 2 TRANSIENT THERMAL RESISTANCE DUTY CYCLE, D = t, 02 03 05 10 20 30 5.0 10 20 50 AC {max} = 0.5C/W Fic (typ) = 0.4C/W SINGLE PULSE: Ty(pkj Te = Bye rity) Por REPETITIVE PULSES: Typ) Te = Oye tt, DIP, 100 200 300 500 1000 2000 3000 5000 ty, PULSE WIDTH (ms) FIGURE 3 ~ ACTIVE REGION SAFE OPERATING AREA Ty = 110C CURVES APPLY BELOW RATED Veto de 20 30 50 7.0 10 20 30 50 70 100 Voce, COLLECTOR-EMITTER VOLTAGE (VOLTS) FIGURE 4 SWITCHING TEST CIRCUIT There are two limitations on the power handling ability of a transistor: junction temperature and secondary break- down. Safe operating area curves indicate lc Vce limits of the transistor that must be observed for reliable operation; i.e. the transistor must not be subjected to greater dissipa- tion than the curves indicate. The data of Figure 3 is based on Tyjpx) = 110C; Tc is variable depending on conditions. Pulse curves are valid for duty cycles to 10% provided Tyipi) < 110C. Tijpsy may be calculated from the data in Figure 2. At high case tempera- tures, thermal limitations will reduce the power that can be handled to values Jess than the limitations imposed by secondary breakdown. FIGURE 5 SWITCHING TIMES Veo = 30 TO OBTAIN DATA FOR FIGURE 5, Ra & Ry WERE VARIED. Vor and \j LEVELS REMAINED APPROXIMATELY ) Yoo = 30V t, c vol AS SHOWN. R oF Rp 82 Yo Yo Vee + ~ ip is 0 in 4 The switching performance of this transistor is determined primarily by the gain-bandwidth product, f;*, and the behavior of the base-spreading resistance, fy! In the case of rise time, the base-spreading resistance plays a small part, and the test circuit delivers a constant current step of turn-on current to the transistor (lg,). Therefore, the curve of t, on Figure 5 follows theory closely, ie: twos ket TE 2artr From the curve, it can be seen that fy is roughly constant with current; using the equation, its large signa! value can be calculated to be approximately 120 wri at the 20-Amp level. A tower supply voltage will increase rise time slightly Turn-off time is slow because of conductivity modulation which occurs in the base region. When the transistor is held on in saturation, the base region becomes filled with excess charge: ie.. charge in excess of that * ty = fag x Mie lg) = Ic /10 isrjeny = bes 1 Wott t, TIME (ys) 5.0 7.0 10 20 30 Ic, COLLECTOR CURRENT (AMP) 10 20 30 necessary to suStain the circuit limited value of fc. As a result, the base resistivity and consequently fy" become very low. During turn off, as the excess charge is reduced, the accompanying increase in resistivity causes amarked reduction in the turn-off current, igz. as Can be seen from the wave- forms of Figure 4. During fall time, the ig; current is very low causing an extended fall time. Only a slight improvement in turn-off performance is achieved with a "speed-up" capacitor placed across Rg. This unusual behavior occurs be- cause ry limits the amount of reverse current which can be achieved. Also, it seems evident that rp increases with apptied reverse current, so that efforts to speed up the turn-off behavior are somewhat futile. tn most applications, switching time will be close to the values shown on Figure 5. Deiay time is not shown as it is negligtble in comparison to the other times. 7-165 50 10 0.7 0.5 0.3 0.2 0.1 007 0.05 0.03 0.02 0.01 10000 70 1002N4276 thru 2N4283 (continued) Power Transistors - TYPICAL DC CHARACTERISTICS FIGURE 6 DC CURRENT GAIN Ty = 100C Ty = 25C y= 55 Veg = 2.0 (NOTE 1) hee, DC CURRENT GAIN, NORMAL!ZED 07 10 20 30 50 7.0 10 20 30 =50 70 fc, COLLECTOR CURRENT (AMP) FIGURE 8 EFFECTS OF BASE-EMITTER RESISTANCE 1000 Voce = 20V wn 2S S 300 lo = 10 Ices 200 lo = 5.0 Ices S Ss = 2.0 lees wn oa -> Nw Se 8s Ree, EXTERNAL BASE-EMITTER RESISTANCE (Q2) Rw oos FOR VALUES OF Ices SEE FIGURE 10 2 0 20 40 60 80 100 Ty, JUNCTION TEMPERATURE (C) FIGURE 10 COLLECTOR CUTOFF REGION 10 =20V APPROXIMATE Vee = 209 WHERE le = loro = 10 = 9, 5 T, = 100C = 5 2 1 Ty = 100C 3 10 4 5 Ty = 60C 8 Ty = 60C lo = Ices 10 Ty = 25C BIAS T, = 25C FORWARD BIAS y= 10-! +04 +0.2 0 0.2 Vee, BASE-EMITTER VOLTAGE (VOLTS) NOTE 1: Data is obtained from pulse tests and adjusted to nullify the effect of lcao- +0.6 FIGURE 7 COLLECTOR SATURATION REGION =3.0A lo = 10A Vee, COLLECTOR-EMITTER VOLTAGE (VOLTS) Q 0.005 0.01 0.02 005 Ol 02 05 10 Ig, BASE CURRENT (AMP) FIGURE 9 ON VOLTAGES B 3 Vee(on) @ Vee = 2.0 3 = 3 > Vee{sar) @ Ic/lp = 10 Vee {sat} @ te/ly = 10 10 20 3.0 50 7.0 10 20 30 Ic, COLLECTOR CURRENT (AMP} FIGURE 11 TEMPERATURE COEFFICIENTS +2.0 *APPLIES FOR lo/Iy < beg/2 +L e *ONo for Vee(sat) > = = a 2 5-10 8 OVe for Vee 2.0 3.0 10 20 3.0 50 7.0 10 20 30 te, COLLECTOR CURRENT (AMP) 7-166 lo = 50A Ty = 25C (NOTE 1} 2.0 5.0 50.70 50 70