PD - 95046A Advanced Process Technology l Dynamic dv/dt Rating l 175C Operating Temperature l Fast Switching l Fully Avalanche Rated l Ease of Paralleling l Simple Drive Requirements l Lead-Free Description IRF640NPbF IRF640NSPbF IRF640NLPbF l Fifth Generation HEXFET (R) Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. The D2Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible onresistance in any existing surface mount package. The D2Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application. The through-hole version (IRF640NL) is available for lowprofile application. HEXFET(R) Power MOSFET D VDSS = 200V RDS(on) = 0.15 G ID = 18A S TO-220AB IRF640NPbF D2Pak IRF640NSPbF TO-262 IRF640NLPbF Absolute Maximum Ratings Parameter ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS EAS IAR EAR dv/dt TJ TSTG www.irf.com Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 srew Max. 18 13 72 150 1.0 20 247 18 15 8.1 -55 to +175 Units A W W/C V mJ A mJ V/ns C 300 (1.6mm from case ) 10 lbf*in (1.1N*m) 1 07/23/10 IRF640N/S/LPbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 200 --- --- 2.0 6.8 --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.25 --- --- --- --- --- --- --- --- --- --- 10 19 23 5.5 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance --- 4.5 LS Internal Source Inductance --- 7.5 Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance --- --- --- 1160 185 53 V(BR)DSS V(BR)DSS/TJ IGSS Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 0.15 VGS = 10V, ID = 11A 4.0 V VDS = VGS, ID = 250A --- S VDS = 50V, ID = 11A 25 VDS = 200V, VGS = 0V A 250 VDS = 160V, VGS = 0V, TJ = 150C 100 VGS = 20V nA -100 VGS = -20V 67 ID = 11A 11 nC VDS = 160V 33 VGS = 10V, See Fig. 6 and 13 --- VDD = 100V --- ID = 11A ns --- RG = 2.5 --- RD = 9.0, See Fig. 10 D Between lead, --- 6mm (0.25in.) nH G from package --- and center of die contact S --- VGS = 0V --- VDS = 25V --- pF = 1.0MHz, See Fig. 5 Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol --- --- 18 showing the A G integral reverse --- --- 72 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 11A, VGS = 0V --- 167 251 ns TJ = 25C, IF = 11A --- 929 1394 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Thermal Resistance RJC RCS RJA RJA www.irf.com Parameter Typ. Max. Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Junction-to-Ambient (PCB mount) --- 0.50 --- --- 1.0 --- 62 40 Units C/W 2 IRF640N/S/LPbF 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 10 1 I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 4.5V 0.1 20s PULSE WIDTH TJ = 25 C 0.01 0.1 1 10 10 4.5V 1 0.1 0.1 100 I D , Drain-to-Source Current (A) 100 TJ = 175 C 10 TJ = 25 C 1 V DS = 50V 20s PULSE WIDTH 6.0 7.0 8.0 9.0 10.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) Fig 1. Typical Output Characteristics 5.0 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 0.1 4.0 20s PULSE WIDTH TJ = 175 C 3.5 ID = 18A 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 VGS = 10V 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF640N/S/LPbF VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) 2000 Coss = Cds + Cgd 1500 Ciss 1000 Coss 500 Crss 20 VGS , Gate-to-Source Voltage (V) 2500 0 10 100 12 8 4 1000 0 20 40 60 80 QG , Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000 100 OPERATION IN THIS AREA LIMITED BY RDS(on) 100 TJ = 175 C ID , Drain Current (A) ISD , Reverse Drain Current (A) V DS= 160V V DS= 100V V DS= 40V 16 0 1 ID = 11A 10 TJ = 25 C 1 0.1 0.2 0.6 0.8 1.0 1.2 1.4 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.irf.com 100us 10 1ms 10ms 1 TC = 25 C TJ = 175 C Single Pulse V GS = 0 V 0.4 10us 1.6 0.1 0.1 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 4 IRF640N/S/LPbF VGS ID , Drain Current (A) ID , Drain Current (A) 0 + V DD - 10V 12 12 4 D.U.T. RG 16 16 8 RD V DS 20 20 Pulse Width 1 s Duty Factor 0.1 % 8 Fig 10a. Switching Time Test Circuit VDS 4 90% 0 25 25 50 75 100 125 150 50 T 75 125 C) , Case100 Temperature (150 TC C , Case Temperature ( C) 175 175 10% VGS td(on) Fig 9. Maximum Drain Current Vs. Case Temperature tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response(Z thJC ) 10 1 D = 0.50 0.20 0.1 PDM 0.10 t1 0.05 0.02 0.01 0.01 0.00001 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 15V L VDS DRIVER D.U.T RG + - VDD IAS 20V 0.01 tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp A EAS , Single Pulse Avalanche Energy (mJ) IRF640N/S/LPbF 600 ID 4.4A 7.6A BOTTOM 11A TOP 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K QG 12V .2F .3F 10 V QGS D.U.T. QGD + V - DS VGS VG 3mA Charge Fig 13a. Basic Gate Charge Waveform www.irf.com IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 IRF640N/S/LPbF Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer + - - + RG * * * * Driver Gate Drive P.W. + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Period D= - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET(R) Power MOSFETs www.irf.com 7 IRF640N/S/LPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB package is not recommended for Surface Mount Application Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 8 IRF640N/S/LPbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 ASS EMBLED ON WW 02, 2000 IN T HE AS SEMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L OR INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER F530S DAT E CODE P = DES IGNAT ES LEAD - FREE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = ASSEMBLY SIT E CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRF640N/S/LPbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN T HE ASSEMBLY LINE "C" Note: "P" in assembly line position indicates "Lead-Free" INT ERNATIONAL RECT IF IER LOGO ASSEMBLY LOT CODE PART NUMBE R DATE CODE YEAR 7 = 1997 WEE K 19 LINE C OR INT ERNATIONAL RECT IF IER LOGO ASSEMBLY LOT CODE PART NUMBER DAT E CODE P = DESIGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEE K 19 A = ASSEMBLY S ITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 10 IRF640N/S/LPbF D2Pak Tape & Reel Infomation Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 30.40 (1.197) MAX. 26.40 (1.039) 24.40 (.961) 4 3 Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 4.2mH Pulse width 400s; duty cycle 2%. This is only applied to TO-220AB package RG = 25, IAS = 11A. This is applied to D 2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. ISD 11A, di/dt 344A/s, VDD V(BR)DSS, TJ 175C Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2010 www.irf.com 11