Document Number: PF3000
Rev. 6.0, 8/2015
Freescale Semiconductor
Advance Information
© Freescale Semiconductor, Inc., 2014 - 2015. All rights reserved.
* This document contains certain information on a new product.
Specifications and information herein are subject to change without notice.
Power Management Integrated
Circuit (PMIC) for i.MX 7 & i.MX 6SL/
SX/UL
The PF3000 is a Power Management Integrated Circuit (PMIC) designed
specifically for use with the Freescale i.MX 7 and i.MX 6SL/SX/UL application
processors. With up to four buck converters, six linear regulators, RTC supply,
and coin-cell charger, the PF3000 can provide power for a complete system,
including applications processors, memory, and system peripherals. This device
is powered by SMARTMOS technology.
Features:
Four adjustable high efficiency buck regulators: 1.75 A, 1.5 A, 1.25 A, 1.0 A
Selectable modes: PWM, PFM, APS
•5.0 V, 600 mA boost regulator with PFM or Auto mode
Six adjustable general purpose linear regulators
Input voltage range: 2.8 V to 4.5 V or 3.7 V to 5.5 V
OTP (One Time Programmable) memory for device configuration
Programmable start-up sequence and timing
Selectable output voltage, frequency, soft start
•I
2C control
Coin cell charger and always ON RTC supply
DDR reference voltage
-40 °C to +125 °C Operating Junction Temperature
Figure 1. PF3000 Simplified Application Diagram
POWER MANAGEMENT
PF3000
Applications:
Tablets
eReaders
Wearables
POS terminals
Industrial control
Medical monitoring
Home automation
Home security/energy management
EP SUFFIX
98ASA00719D
48 QFN 7.0 X 7.0
Camera
Audio
Codec
Cluster/HUD
External AMP
Microphones
Speakers
Front USB
POD
Rear USB
POD
Rear Seat
Infotaiment
Sensors
i.MX
I2CI2C
PF3000
Li CELL
Charger
COINCELL Main Supply
2.8 – 5.5 V
GPS
MIPI
uPCIe
Camera
VREFDDR
DDR Memory
SD-MMC/
NAND Mem.
SATA
HDD
WAM
GPS/MIPI
HDMI
LDVS Display
USB
Ethernet
CAN
SW3
0.90to 1.65V@1.5A
SW1A
0.7to1.425V,1.8V,3.3V@1.0 A
SW1B
0.70to 1.475V@1.75A
SW2
1.50to1.85V@1.25A
or2.5to 3.3V@1.25A
SWBST
5.00to 5.15V@0.6A
Switching regulators
VLDO2
0.80 to 1.55 V @250 mA
VLDO1
1.8 to 3.3 V @100 mA
VCC_SD
1.80 to 1.85 V @ 100 mA
or 2.85 to 3.3 V @ 100 mA
V33
2.85 - 3.3 V @ 350 mA
VLDO3
1.8 - 3.3 V @ 100 mA
VLDO4
1.8 - 3.3 V @ 350 mA
RESETBMCU
PWRON
SD_VSEL
STANDBY
Linear
regulators
Parallel control/GPIOS
INTB
Processor SOC
Processor
ARM Core
DDR MEMORY
INTERFACE
SATA - FLASH
NAND - NOR
Interfaces
Analog Integrated Circuit Device Data
2Freescale Semiconductor
PF3000
Table of Contents
1 Orderable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Functional Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6 Functional Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Power Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3.1 Control Logic & Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3.2 One-time-programmable Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3.4 16 MHz and 32 kHz Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.5 Optional Front-end Input LDO Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3.6 Internal Core Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3.7 VREFDDR Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3.8 Buck Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3.9 Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.10 LDO Regulators Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.11 VSNVS LDO/Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.5.1 State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
6.5.2 State Machine Flow Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.5.3 Performance Characteristics Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
6.6 Control Interface I2C Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.6.1 I2C Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
6.6.2 I2C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
6.6.3 Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
6.6.4 Interrupt Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
6.6.5 Specific Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
6.6.6 Register Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
7 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.1 Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.1 Rating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.2 Estimation of Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.1Packaging Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Analog Integrated Circuit Device Data
Freescale Semiconductor 3
PF3000
ORDERABLE PARTS
1 Orderable Parts
The PF3000 is available with pre-programmed OTP memory configurations. The devices are identified using the program codes from
Ta b l e 1 . Details of the OTP programming for each device can be found in Table 42.
Table 1. Orderable Part Variations
Part Number Temperature (TA)Package Programming Options Qualification Tier Notes
MC32PF3000A0EP
-40 °C to 85 °C
48 QFN 7.0 mm x 7.0 mm
with exposed pad
0 - Not programmed
Consumer (1)
MC32PF3000A1EP 1 (i.MX 7 with DDR3L)
MC32PF3000A2EP 2 (i.MX 7 with LPDDR3)
MC32PF3000A3EP 3 (i.MX 6 Series with DDR3L)
MC32PF3000A4EP 4 (i.MX 6 Series with DDR3)
MC32PF3000A5EP 5 (i.MX 6 Series with LPDDR2)
MC32PF3000A6EP 6 (i.MX 6UL with LPDDR2)
MC32PF3000A7EP 7 (i.MX 6UL with DDR3L)
MC34PF3000A0EP
-40 °C to 105 °C
0 - Not programmed
Industrial (1)
MC34PF3000A1EP 1 (i.MX 7 with DDR3L)
MC34PF3000A2EP 2 (i.MX 7 with LPDDR3)
MC34PF3000A3EP 3 (i.MX 6 Series with DDR3L)
MC34PF3000A4EP 4 (i.MX 6 Series with DDR3)
MC34PF3000A5EP 5 (i.MX 6 Series with LPDDR2)
MC34PF3000A6EP 6 (i.MX 6UL with LPDDR2)
MC34PF3000A7EP 7 (i.MX 6UL with DDR3L)
Notes
1. For Tape and Reel, add an R2 suffix to the part number.
Analog Integrated Circuit Device Data
4Freescale Semiconductor
PF3000
GENERAL DESCRIPTION
2 General Description
The PF3000 is the Power Management Integrated Circuit (PMIC) designed primarily for use with Freescale’s i.MX 7 series of multi-media
application processors. It is also capable of providing full power solution to i.MX 6SL/SX/UL processors.
2.1 Features
This section summarizes the PF3000 features.
Input voltage range to PMIC: 2.8 V to 4.5 V, or 3.7 V to 5.5 V (2)
Buck regulators
Configurable three to four channels
SW1A/B, 2.75 A (single); 0.7 V to 1.425 V, 1.8 V, 3.3 V
•SW1A, 1.0 A (independent); 0.7 V to 1.425 V, 1.8 V, 3.3 V
SW1B 1.75 A (independent); 0.7 V to 1.475 V
SW2, 1.25 A; 1.50 V to 1.85 V or 2.50 V to 3.30 V
•SW3, 1.5 A; 0.90 V to 1.65 V
Dynamic voltage scaling
Modes: PWM, PFM, APS
Programmable output voltage
Programmable current limit
Programmable soft start sequence
Programmable PWM switching frequency
Boost regulator
SWBST, 5.0 to 5.15 V, 0.6 A, OTG support
Modes: PFM and Auto
OCP fault interrupt
•LDOs
VCC_SD, 1.8 V to 1.85 V or 2.85 V to 3.30 V, 100 mA based on SD_VSEL
V33, 2.85 V to 3.30 V, 350 mA
VLDO1, 1.8 V to 3.3 V, 100 mA
VLDO2, 0.80 V to 1.55 V, 250 mA
VLDO3, 1.8 V to 3.3 V, 100 mA
VLDO4, 1.8 V to 3.3 V, 350 mA
Always ON RTC Regulator/Switch VSNVS 3.0 V, 1.0 mA
DDR memory reference voltage, VREFDDR, 0.5 V to 0.9 V, 10 mA
OTP (One time programmable) memory for device configuration, user-programmable start-up sequence and timing
Battery backed memory including coin cell charger
•I
2C interface
User programmable Standby, Sleep/LPSR, and Off modes
Notes
2. 2.8 V to 4.5 V when VIN is used at input. 3.7 V to 5.5 V when VPWR is used as input.
Analog Integrated Circuit Device Data
Freescale Semiconductor 5
PF3000
GENERAL DESCRIPTION
2.2 Functional Block Diagram
Figure 2. Functional Block Diagram
Logic and Control
Switching Regulators
SW1A
(0.7 V to 1.425 V,
1.8 V, 3.3 V, 1.0 A)
Linear Regulators
SW2
(1.50 V to 1.85 V, 1.25 A)
or (2.50 V to 3.30 V, 1.25 A)
SW3
(0.90 V to 1.65 V, 1.5 A)
Boost Regulator
(5.0 V to 5.15 V, 600 mA)
USB OTG Supply
VLDO1
(1.8 V to 3.3 V, 100 mA)
VLDO2
(0.80 V to 1.55 V, 250 mA)
VCC_SD
(1.80 V or 1.85 V, 100 mA)
or (2.85 V or 3.3 V, 100 mA)
V33
( 2.85 V to 3.30 V, 350 mA)
VLDO3
(1.8 V to 3.3 V, 100 mA)
VLDO4
(1.8 V to 3.3 V, 350 mA)
Bias & References
Parallel MCU Interface Regulator Control
VSNVS
(1.0 V to 3.0 V, 1.0 mA)
RTC supply with coin cell
charger
PF3000 Functional Internal Block Diagram
I2C Communication & Registers
Power Generation
Fault Detection and Protection
DDR Voltage Reference
Current Limit
VPWR Front End LDO Overvoltage Indicator
Internal Core Voltage Reference
Thermal
OTP Startup Configuration
Sequence and
Timing
OTP Prototyping
(Try before burn) Voltage
Phasing and
Frequency Selection
SW1B
(0.70 V to 1.475 V , 1.75 A)
Analog Integrated Circuit Device Data
6Freescale Semiconductor
PF3000
INTERNAL BLOCK DIAGRAM
3 Internal Block Diagram
Figure 3. PF3000 Simplified Internal Block Diagram
VIN
INTB
LICELL
SWBSTFB
SWBSTLX
O/P
Drive
SWBST
600 mA
Boost
PWRON
STANDBY
ICTEST
SCL
SDA
VDDIO
SW3
1.5A
Buck
VCOREDIG
VCOREREF
SD_VSEL
GNDREF
SW1AIN
SW1AFB
SW1ALX
SW1BLX
SW1A
1A
Buck
VSNVS
VSNVS
Li Cell
Charger
RESETBMCU
SW2
1.25A
Buck
VLDO1
100 mA
VLDO1
VLDO1IN
VLDO2
250 mA
VLDO2
VCC_SD
1.8V/3.15V
100 mA
VCC_SD
V33
2.85V- 3.30V
350 mA
V33
VLDO3
100 mA
VLDO3
VLDO34IN
VLDO4
350 mA
VLDO4
Best
of
Supply
OTP
VREFDDR
VDDOTP
VINREFDDR
VHALF
VCORE
PF3000
CONTROL
Clocks
32 kHz and 16 MHz
Initialization State Machine
I2C
Interface
Clocks and
resets
I2C Register
map
Trim-In-Package
O/P
Drive
O/P
Drive SW1BIN
SW2FB
SW2LX
O/P
Drive
SW2IN
SW3IN
SW3FB
SW3LX
O/P
Drive
GNDREF2
Supplies
Control
DVS Control
DVS CONTROL
Reference
Generation
Core Control logic
GNDREF2
GNDREF1
SW1B
1.75A
Buck
SW1BFB
LDO
LDOG
VPWR
VLDO2IN
VREF
VIN2
VIN2
Analog Integrated Circuit Device Data
Freescale Semiconductor 7
PF3000
PIN CONNECTIONS
4 Pin Connections
4.1 Pinout Diagram
Figure 4. Pinout Diagram
INTB
SD_VSEL
RESETBMCU
STANDBY
ICTEST
SW1AFB
SW1AIN
SW1ALX
SW1BLX
SW1BIN
SW1BFB
GNDREF1
VLDO1IN
VLDO1
VLDO2
VLDO2IN
SW2LX
SW2IN
SW2FB
VLDO3
VLDO34IN
VLDO4
VHALF
VINREFDDR
PWRON
VDDIO
SCL
SDA
VCOREREF
VCOREDIG
VIN
VCORE
GNDREF
VDDOTP
VIN2
SWBSTFB
LICELL
SWBSTLX
VSNVS
VCC_SD
V33
VPWR
LDOG
SW3LX
SW3IN
SW3FB
GNDREF2
VREFDDR
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
36
35
34
33
32
31
30
29
28
27
26
25
48
47
46
45
44
43
42
41
40
39
38
37
EP
Transparent Top View
Analog Integrated Circuit Device Data
8Freescale Semiconductor
PF3000
PIN CONNECTIONS
4.2 Pin Definitions
Table 2. Pin Definitions
Pin Number Pin Name Pin
Function Type Definition
1 INTB O Digital Open drain interrupt signal to processor
2 SD_VSEL I/O Digital
Input from i.MX processor to select VCC_SD regulator voltage
• SD_VSEL=0, VCC_SD = 2.85 V to 3.3 V
• SD_VSEL= 1, VCC_SD = 1.8 V to 1.85 V
3 RESETBMCU O Digital Open drain reset output to processor
4 STANDBY I Digital Standby input signal from processor
5 ICTEST I Digital and
Analog Reserved pin. Connect to GND in application
6 SW1AFB (3) I Analog
SW1A output voltage feedback pin. Route this trace separately from the high current
path and terminate at the output capacitance or near the load, if possible for best
regulation
7SW1AIN
(3) I Analog Input to SW1A regulator. Bypass with at least a 10 µF ceramic capacitor and a 0.1 µF
decoupling capacitor as close to the pin as possible
8 SW1ALX (3) O Analog
Switcher 1A switch node connection. Connect to SW1A inductor when used in SW1A
independent mode. Connect to SW1BLX and connect to SW1AB inductor when using
SW1A/B as a single regulator
9 SW1BLX (3) O Analog
Switcher 1B switch node connection. Connect to SW1B inductor when used in SW1B
independent mode. Connect to SW1ALX and connect to SW1AB inductor when using
SW1A/B as a single regulator
10 SW1BIN (3) I Analog Input to SW1B regulator. Bypass with at least a 10 µF ceramic capacitor and a 0.1 µF
decoupling capacitor as close to the pin as possible
11 SW1BFB (3) I Analog SW1B output voltage feedback pin. Route this trace separately from the high current
path and terminate at the output capacitor or near the load, if possible for best regulation
12 GNDREF1 GND GND Ground reference for SW1A/B. Connect to GND. Keep away from high current ground
return paths
13 VLDO1IN I Analog VLDO1 input supply. Bypass with a 1.0 µF decoupling capacitor as close to the pin as
possible
14 VLDO1 O Analog VLDO1 regulator output. Bypass with a 2.2 µF ceramic output capacitor
15 VLDO2 O Analog VLDO2 regulator output. Bypass with a 4.7 µF ceramic output capacitor
16 VLDO2IN I Analog VLDO2 input supply. Bypass with a 1.0 µF decoupling capacitor as close to the pin as
possible
17 SW2LX (3) O Analog Switcher 2 switch node connection.Connect to SW2 inductor
18 SW2IN (3) I Analog Input to SW2 regulator. Bypass with at least a 10 µF ceramic capacitor and a 0.1 µF
decoupling capacitor as close to the pin as possible
19 SW2FB (3) I Analog SW2 output voltage feedback pin. Route this trace separately from the high current path
and terminate at the output capacitor or near the load, if possible for best regulation
20 VLDO3 O Analog VLDO3 regulator output. Bypass with a 2.2 µF ceramic output capacitor
21 VLDO34IN I Analog VLDO3 and VLDO4 input supply. Bypass with a 1.0 µF decoupling capacitor as close to
the pin as possible
22 VLDO4 O Analog VLDO4 regulator output. Bypass with a 2.2 µF ceramic output capacitor
23 VHALF I Analog Half supply reference for VREFDDR. Bypass with 0.1 µF to ground.
24 VINREFDDR I Analog VREFDDR regulator input. Connect a 0.1 µF capacitor between VINREFDDR and
VHALF pin. Ensure there is at least 1.0 µF net capacitance from VINREFDDR to ground
25 VREFDDR O Analog VREFDDR regulator output.Bypass with 1.0 µF to ground
Analog Integrated Circuit Device Data
Freescale Semiconductor 9
PF3000
PIN CONNECTIONS
26 GNDREF2 GND GND Reference ground for SW2 and SW3 regulators. Connect to GND. Keep away from high
current ground return paths
27 SW3FB (3) I Analog SW3 output voltage feedback pin. Route this trace separately from the high current path
and terminate at the output capacitor or near the load, if possible for best regulation
28 SW3IN (3) I Analog Input to SW3 regulator. Bypass with at least a 10 µF ceramic capacitor and a 0.1 µF
decoupling capacitor as close to the pin as possible
29 SW3LX (3) O Analog Switcher 3 switch node connection. Connect the SW3 inductor
30 LDOG O Analog Connect to gate of front-end LDO external pass P-MOSFET. Leave floating if VPWR
LDO is not used
31 VPWR I Analog Input to optional front-end VPWR LDO for systems with input voltage > 4.5 V
32 V33 O Analog V33 regulator output. Bypass with a 4.7 µF ceramic output capacitor
33 VCC_SD O Analog Output of VCC_SD regulator. Bypass with a 2.2 µF ceramic output capacitor.
34 VSNVS O Analog VSNVS regulator/switch output. Bypass with 0.47 µF capacitor to ground.
35 SWBSTLX (3) I/O Analog SWBST switch node connection. Connect to SWBST inductor and anode of Schottky
diode
36 LICELL I/O Analog Coin cell supply input/output. Bypass with 0.1 µF capacitor. Connect to optional coin cell.
37 SWBSTFB (3) I Analog SWBST output voltage feedback pin. Route this trace separately from the high current
path and terminate at the output capacitor
38 VIN2 I Analog Input to VCC_SD, V33 regulators and SWBST control circuitry. Connect to VIN rail and
bypass with 10 µF capacitor
39 VDDOTP I Digital &
Analog Supply to program OTP fuses. Connect VDDOTP to GND during normal application
40 GNDREF GND GND Ground reference for IC core circuitry. Connect to ground. Keep away from high current
ground return paths
41 VCORE O Analog Internal analog core supply. Bypass with 1 µF capacitor to ground
42 VIN I Analog
Main IC supply. Bypass with 1.0 µF capacitor to ground. Connect to system input supply
if voltage 4.5 V. Connect to drain of external PFET when VPWR LDO is used for
systems with input voltage > 4.5 V
43 VCOREDIG O Analog Internal digital core supply. Bypass with 1.0 µF capacitor to ground
44 VCOREREF O Analog Main band gap reference. Bypass with 220 nF capacitor to ground
45 SDA I/O Digital I2C data line (open drain). Pull up to VDDIO with a 4.7 k resistor
46 SCL I Digital I2C clock. Pull up to VDDIO with a 4.7 k resistor
47 VDDIO I Analog Supply for I2C bus. Bypass with 0.1 µF ceramic capacitor. Connect to 1.7 to 3.6 V
supply. Ensure that VDDIO is always lesser than or equal to VIN
48 PWRON I Digital Power ON/OFF input from processor
-EPGNDGND
Expose pad. Functions as ground return for buck and boost regulators. Tie this pad to
the inner and external ground planes through vias to allow effective thermal dissipation
Notes
3. Unused switching regulators should be connected as follows: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be
connected to VIN with a 0.1 F bypass capacitor.
Table 2. Pin Definitions (continued)
Analog Integrated Circuit Device Data
10 Freescale Semiconductor
PF3000
GENERAL PRODUCT CHARACTERISTICS
5 General Product Characteristics
5.1 Absolute Maximum Ratings
Table 3. Absolute Maximum Voltage Ratings
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.
Symbol Description Value Unit Notes
ELECTRICAL RATINGS
VPWR, ICTEST, LDOG, SWBSTLX -0.3 to 7.5 V
VIN, VIN2, VLDO1IN, VLDO34IN, SW1AIN,
SW1BIN, SW2IN, SW3IN, SW1ALX, SW1BLX,
SW2LX, SW3LX
-0.3 to 4.8 V
VDDOTP OTP programming input supply voltage -0.3 to 10.0 V (4)
SWBSTFB Boost switcher feedback -0.3 to 5.5 V
INTB, SD_VSEL, RESETBMCU, STANDBY,
SW1AFB, SW1BFB, SW2FB, SW3FB, VLDO1,
VLDO2IN, VLDO3, VLDO4, VHALF,
VINREFDDR, VREFDDR, V33, VCC_SD,
VSNVS, LICELL, VCORE, SDA, SCL, VDDIO,
PWRON
-0.3 to 3.6 V
VLDO2 VLDO2 Linear regulator output -0.3 to 2.5 V
VCOREDIG Digital core supply voltage output -0.3 to 1.65 V
VCOREREF Bandgap reference voltage output -0.3 to 1.5 V
VESD
ESD Ratings
• Human Body Model
• Charge Device Model
2000
500
V(5)
Notes
4. 10 V Maximum voltage rating during OTP fuse programming. 7.5 V Maximum DC voltage rated otherwise.
5. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 ), and the Charge Device Model
(CDM), Robotic (CZAP = 4.0 pF).
Analog Integrated Circuit Device Data
Freescale Semiconductor 11
PF3000
GENERAL PRODUCT CHARACTERISTICS
5.2 Thermal Characteristics
Table 4. Thermal Ratings
Symbol Description (Rating) Min. Max. Unit Notes
THERMAL RATINGS
TA
Ambient Operating Temperature Range
• Industrial version
• Consumer version
-40
-40
105
85
C
TJOperating Junction Temperature Range -40 125 C(6)
TST Storage Temperature Range -65 150 C
TPPRT Peak Package Reflow Temperature (8) C(7) (8)
QFN48 THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS
RJA
Junction to Ambient, Natural Convection
• Four layer board (2s2p)
• Eight layer board (2s6p)
24
15
°C/W
(9) (10)
(11)
RJB Junction to Board 11 °C/W (12)
RJCBOTTOM Junction to Case Bottom 1.4 °C/W (13)
JT Junction to Package Top
• Natural Convection 1.3 °C/W (14)
Notes
6. Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Thermal
Protection Thresholds for thermal protection features.
7. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a
malfunction or permanent damage to the device.
8. Freescale's package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and
moisture sensitivity levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view
all orderable parts (i.e. MC33xxxD enter 33xxx), and review parametrics..
9. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
10. The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.
11. Per JEDEC JESD51-6 with the board horizontal.
12. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the
board near the package.
13. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
14. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC
JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT (JT).
Analog Integrated Circuit Device Data
12 Freescale Semiconductor
PF3000
GENERAL PRODUCT CHARACTERISTICS
5.3 Current Consumption
The current consumption of the individual blocks is described in detail in the following table.
Table 5. Current Consumption Summary
TA= -40 °C to 105 °C, VPWR= 0 V (External pass FET is not populated), VIN = 3.6 V, VDDIO = 1.7 V to 3.6 V, LICELL = 1.8 V to 3.3 V,
VSNVS = 3.0 V, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VPWR = 0 V,
VDDIO = 3.3 V, LICELL = 3.0 V, VSNVS = 3.0 V and 25 °C, unless otherwise noted.
Mode PF3000 Conditions System Conditions Typical MAX Unit Notes
Coin Cell VSNVS from LICELL, All other blocks
off, VIN = 0.0 V No load on VSNVS 4.0 7.0 A(15) (16)
Off
VSNVS from VIN or LICELL
Wake-up from PWRON active
32 kHz RC on
All other blocks off
VIN UVDET
No load on VSNVS, PMIC able to
wake-up 16 25 A(15) (16)
Sleep LPSR
VSNVS from VIN
Wake-up from PWRON active
Trimmed reference active
SW3 PFM. All other regulators off.
Trimmed 16 MHz RC off
32 kHz RC on
VREFDDR disabled
No load on any of the regulators. 130 (15)
200 (18) 220 (15) A(17)
LDO1 & LDO3 activated in addition to
SW3 No load on any of the regulators. 170 (15)
260 (18) 248 (15) A(17)
Standby
VSNVS from either VIN or LICELL
SW1A in PFM
SW1B in PFM
SW2 in PFM
SW3 in PFM
SWBST off
Trimmed 16 MHz RC enabled
Trimmed reference active
VLDO1-4 enabled
V33 enabled
VCC_SD enabled
VREFDDR enabled
No load on any of the regulators. 297 450 A(17)
ON
VSNVS from VIN
SW1A in APS
SW1B in APS
SW2 in APS
SW3 in APS
SWBST off
Trimmed 16 MHz RC enabled
Trimmed reference active
VLDO1-4 enabled
V33 enabled
VCC_SD enabled
VREFDDR enabled
No load on any of the regulators. 1.2 mA
Notes
15. At 25 °C only.
16. When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 A, typically.
17. For PFM operation, headroom should be 300 mV or greater.
18. At 105 °C only.
Analog Integrated Circuit Device Data
Freescale Semiconductor 13
PF3000
GENERAL PRODUCT CHARACTERISTICS
5.4 Electrical Characteristics
Table 6. Electrical Characteristics – Front-end Input LDO
All parameters are specified at TA = -40 °C to 105 °C, VPWR = 5.0 V, VIN = 4.4 V, IVIN = 300 mA, typical external component values, unless
otherwise noted. Typical values are characterized at VPWR = 5.0 V, VIN = 4.4 V, IVIN = 300 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min Typ Max Unit Notes
FRONT END INPUT LDO (VPWR LDO)
VPWR
Operating Input Voltage
• In Regulation
• In Dropout Operation
4.6
3.7
5.5
4.6
V (19)
VIN
On Mode Output Voltage, 4.6 V < VPWR < 5.5 V,
0.0 mA < IVIN < 3000 mA 4.3 4.4 4.55 V
IVIN Operating Load Current at VIN, 3.7 V < VPWR < 5.5 V 0.0 3.0 A
ILDOGQ ON mode Quiescent Current, No load, 5.0 10 mA
VIN
Low Power Mode Output Voltage, 4.6 V < VPWR < 5.5 V
0.0 mA < IVIN < 1.0 mA 3.7 4.5 V
VIN_OFF
Off Mode Output Voltage, (CL = 100 F) 4.6 V < VPWR < 5.5 V,
0.0 mA < IVIN < 35 A3.2 4.8 V
ILDOQLP
Low Power Mode Quiescent Current, No load (Standby/Sleep/LPSR
states) 150 300 A
VPWRUV
VPWR Under Voltage Threshold (Upon undervoltage condition the
external pass FET is turned off) 3.1 3.7 V
VPWROV
VPWR Overvoltage Threshold (Upon overvoltage condition interrupt is
asserted at INTB) 5.5 6.5 V
IVINUVILIMIT VPWR LDO Current Limit under VIN short circuit (Vin < UVDET) 300 mA
IVINLEAKAGE
Reverse Leakage current from VIN to VPWR, No external pass FET,
VPWR is grounded, device is in OFF state ––1.0µA
IVPWROFF VPWR LDO Off Mode Quiescent Current 75 A(20)
Notes
19. While the front end LDO can handle spikes up to 7.5 V at VPWR for as long as 200 µs, the circuit is not expected to be continuously operated
when VPWR is above 5.5 V.
20. This specification gives the leakage current in the VPWR LDO block. Total OFF mode current includes the quiescent current from the other blocks
as specified in Table 5.
Analog Integrated Circuit Device Data
14 Freescale Semiconductor
PF3000
GENERAL PRODUCT CHARACTERISTICS
Table 7. Static Electrical Characteristics – SW1
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, typical external component
values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V,
ISW1x = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min Typ Max Unit Notes
SWITCH MODE SUPPLY SW1A/B (SINGLE PHASE)
VSW1AIN
VSW1BIN
Operating Input Voltage 2.8 4.5 V (21), (22)
VSW1AB Nominal Output Voltage Table 53 –V
VSW1ABACC
Output Voltage Accuracy
PWM, APS, 2.8 V < VSW1xIN < 4.5 V, 0 < ISW1AB < 2.75 A
0.7 V VSW1AB 1.2 V
PFM, APS, 2.8 V < VSW1xIN < 4.5 V, 0 < ISW1AB < 2.75A
1.225 V < VSW1AB < 1.425 V
PFM, steady state, 2.8 V < VSW1xIN < 4.5 V, 0 < ISW1AB < 150 mA
1.8 V VSW1AB 1.425 V
PWM, APS, 2.8 V < VSW1xIN < 4.5 V, 0 < ISW1AB < 2.75A
1.8 V < VSW1AB < 3.3 V
PFM, steady state, 2.8 V < VSW1xIN < 4.5 V, 0 < ISW1AB < 150 mA
1.8 V VSW1AB 3.3 V
-25
-25
-45
-6.0
-6.0
25
35
45
6.0
6.0
mV
mV
mV
%
%
ISW1AB
Rated Output Load Current,
• 2.8 V VSW1xIN 4.5 V, 0.7 V < VSW1AB < 1.425 V, 1.8V, 3.3V 2750 mA
ISW1ABQ
Quiescent Current
• PFM Mode
• APS Mode
22
300
µA
ISW1ABLIM
Current Limiter Peak Current Detection , Current through Inductor
• SW1xILIM = 0
• SW1xILIM = 1
3.5
2.6
5.5
4.0
7.5
5.4
A
VSW1AB Output Ripple 5.0 mV
RSW1ABDIS Discharge Resistance 600
SWITCH MODE SUPPLY SW1A (INDEPENDENT)
VSW1AIN Operating Input Voltage 2.8 4.5 V (21), (22)
VSW1A Nominal Output Voltage Table 53 –V
VSW1AACC
Output Voltage Accuracy
PWM, APS, 2.8 V < VSW1AIN < 4.5 V, 0 < ISW1A < 1.0 A
0.7 V VSW1A 1.2 V
PFM, APS, 2.8 V < VSW1AIN < 4.5 V, 0 < ISW1A < 1.0 A
1.225 V < VSW1A < 1.425 V
PFM, steady state, 2.8 V < VSW1AIN < 4.5 V, 0 < ISW1A < 50 mA
0.7 V VSW1A 1.425V
PWM, APS, 2.8 V < VSW1AIN < 4.5 V, 0 < ISW1A < 1.0 A
1.8 V < VSW1A < 3.3 V
PFM, steady state, 2.8 V < VSW1AIN < 4.5 V, 0 < ISW1A < 50 mA
1.8 V VSW1A 3.3 V
-25
-25
-45
-6.0
-6.0
25
35
45
6.0
6.0
mV
mV
mV
%
%
ISW1A
Rated Output Load Current
2.8 V < VSW1AIN < 4.5 V, 0.7 V < VSW1A < 1.425 V, 1.8V, 3.3V 1000 mA
Notes
21. The maximum operating input voltage is 4.55 V when VPWR LDO is used
22. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied
at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between
1.8 V and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.
Analog Integrated Circuit Device Data
Freescale Semiconductor 15
PF3000
GENERAL PRODUCT CHARACTERISTICS
SWITCH MODE SUPPLY SW1A (INDEPENDENT) (CONTINUED)
ISW1AQ
Quiescent Current
• PFM Mode
• APS Mode
50
250
µA
ISW1ALIM
Current Limiter Peak Current Detection, Current through Inductor
• SW1AILIM = 0
• SW1AILIM = 1
1.78
1.3
2.75
2.0
3.7
2.7
A
VSW1A Output Ripple 5.0 mV
RONSW1AP SW1A P-MOSFET RDSON, at VSW1AIN = 3.3 V 265 295 m
RONSW1AN SW1A N-MOSFET RDSON, at VSW1AIN = 3.3 V 300 370 m
ISW1APQ SW1A P-MOSFET Leakage Current, VSW1AIN = 4.5 V ––10.5µA
ISW1ANQ SW1A N-MOSFET Leakage Current, VSW1AIN = 4.5 V ––3.5µA
RSW1ADIS Discharge Resistance 600
SWITCH MODE SUPPLY SW1B (INDEPENDENT)
VSW1BIN Operating Input Voltage 2.8 4.5 V (23), (24)
VSW1B Nominal Output Voltage Table 53 –V
VSW1BACC
Output Voltage Accuracy
• PWM, APS, 2.8 V < VSW1BIN < 4.5 V, 0 < ISW1B < 1.75 A
0.7 V < VSW1B < 1.2 V
• PWM, APS, 2.8 V < VSW1BIN < 4.5 V, 0 < ISW1B < 1.75 A
1.225 V < VSW1B < 1.475 V
• PFM, steady state 2.8 V < VSW1BIN < 4.5 V, 0 < ISW1B < 50 mA
0.7 V < VSW1B < 1.475 V
-25
-25
-45
25
35
45
mV
ISW1B
Rated Output Load Current
2.8 V < VSW1BIN < 4.5 V, 0.7 V < VSW1B < 1.475 V 1750 mA
ISW1BQ
Quiescent Current
• PFM Mode
• APS Mode
50
150
µA
ISW1BLIM
Current Limiter Peak Current Detection, Current through Inductor
• SW1BILIM = 0
• SW1BILIM = 1
2.4
1.725
3.50
2.65
4.725
3.575
A
VSW1B Output Ripple 5.0 mV
RONSW1BP SW1B P-MOSFET RDSON, at VSW1BIN = 3.3 V 195 225 m
RONSW1BN SW1B N-MOSFET RDSON, at VSW1BIN = 3.3 V 228 295 m
ISW1BPQ SW1B P-MOSFET Leakage Current, VSW1BIN = 4.5 V ––12µA
ISW1BNQ SW1B N-MOSFET Leakage Current, VSW1BIN = 4.5 V ––4.0µA
RSW1BDIS Discharge Resistance During OFF Mode 600
Notes
23. The maximum operating input voltage is 4.55 V when VPWR LDO is used.
24. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied
at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between
1.8 V and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.
Table 7. Static Electrical Characteristics – SW1 (continued)
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, typical external component
values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V,
ISW1x = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min Typ Max Unit Notes
Analog Integrated Circuit Device Data
16 Freescale Semiconductor
PF3000
GENERAL PRODUCT CHARACTERISTICS
Table 8. Dynamic Electrical Characteristics - SW1
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, typical external component
values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V, ISW1x =
100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min Typ Max Unit Notes
SWITCH MODE SUPPLY SW1A/B (SINGLE PHASE)
VSW1ABOSH
Start-up Overshoot, ISW1AB = 0 mA, DVS clk = 25 mV/4 s, VIN =
VSW1xIN = 4.5 V, VSW1AB = 1.425 V ––66mV
tONSW1AB
Turn-on Time, Enable to 90% of end value, ISW1AB = 0 mA, DVS clk =
25 mV/4 s, VIN = VSW1xIN = 4.5 V, VSW1AB = 1.425 V 500 µs
SWITCH MODE SUPPLY SW1A (INDEPENDENT)
VSW1AOSH
Start-up Overshoot, ISW1A = 0 mA, DVS clk = 25 mV/4.0 s, VIN =
VSW1AIN = 4.5 V, VSW1A = 1.425 V ––66mV
tONSW1A
Turn-on Time, Enable to 90% of end value, ISW1A = 0 mA, DVS clk =
25 mV/4.0 s, VIN = VSW1AIN = 4.5 V, VSW1A = 1.425 V 500 µs
SWITCH MODE SUPPLY SW1B (INDEPENDENT)
VSW1BOSH
Start-up Overshoot, ISW1B = 0 mA, DVS clk = 25 mV/4.0 s, VIN =
VSW1BIN = 4.5 V, VSW1B = 1.475 V ––66mV
tONSW1B
Turn-on Time, Enable to 90% of end value, ISW1B = 0 mA, DVS clk =
25 mV/4 s, VIN = VSW1BIN = 4.5 V, VSW1B = 1.475 V 500 µs
Table 9. Static Electrical Characteristics – SW2
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, typical external component
values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,
and 25 °C, unless otherwise noted.
Symbol Parameter Min Typ Max Unit Notes
SWITCH MODE SUPPLY SW2
VSW2IN Operating Input Voltage 2.8 4.5 V (25), (26)
VSW2 Nominal Output Voltage Table 55 –V
VSW2ACC
Output Voltage Accuracy
• PWM, APS, 2.8 V VSW2IN 4.5 V, 0 ISW2 1.25 A
• 1.50 V VSW2 1.85 V
• 2.5 V VSW2 3.3 V
• PFM, 2.8 V VSW2IN 4.5 V, 0 ISW2 50 mA
• 1.50 V VSW2 1.85 V
• 2.5 V VSW2 3.3 V
-3.0%
-6.0%
-6.0%
-6.0%
3.0%
6.0%
6.0%
6.0%
%
ISW2
Rated Output Load Current,
2.8 V < VSW2IN < 4.5 V, 1.50 V < VSW2 < 1.85 V, 2.5 V < VSW2 < 3.3 V 1250 – mA (27)
ISW2Q
Quiescent Current
• PFM Mode
• APS Mode (Low output voltage settings)
• APS Mode (High output voltage settings, SW2_HI=1)
23
145
305
µA
Notes
25. The maximum operating input voltage is 4.55 V when VPWR LDO is used.
26. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at
the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V
and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.
27. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VSW2IN - VSW2) = ISW2*
(DCR of Inductor +RONSW2P + PCB trace resistance).
Analog Integrated Circuit Device Data
Freescale Semiconductor 17
PF3000
GENERAL PRODUCT CHARACTERISTICS
SWITCH MODE SUPPLY SW2 (CONTINUED)
ISW2LIM
Current Limiter Peak Current Detection, Current through Inductor
• SW2ILIM = 0
• SW2ILIM = 1
1.625
1.235
2.5
1.9
3.375
2.565
A
VSW2 Output Ripple 5.0 mV
RONSW2P SW2 P-MOSFET RDSON at VIN = VSW2IN = 3.3 V 215 245 m
RONSW2N SW2 N-MOSFET RDSON at VSW2IN = VSW2IN = 3.3 V 258 326 m
ISW2PQ SW2 P-MOSFET Leakage Current, VIN = VSW2IN = 4.5 V 10.5 µA
ISW2NQ SW2 N-MOSFET Leakage Current, VIN = VSW2IN = 4.5 V ––3.0µA
RSW2DIS Discharge Resistance during OFF mode 600
Table 10. Dynamic Electrical Characteristics - SW2
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, typical external component
values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,
and 25 °C, unless otherwise noted.
Symbol Parameter Min Typ Max Unit Notes
SWITCH MODE SUPPLY SW2
VSW2OSH
Start-up Overshoot, ISW2 = 0.0 mA, DVS clk = 25 mV/4 s, VIN =
VSW2IN = 4.5 V ––66mV
tONSW2
Turn-on Time, Enable to 90% of end value, ISW2 = 0.0 mA, DVS clk =
25 mV/4 s, VIN = VSW2IN = 4.5 V 500 µs
Table 11. Static Electrical Characteristics – SW3
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, typical external component
values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless
otherwise noted.
Symbol Parameter Min Typ Max Unit Notes
SWITCH MODE SUPPLY SW3
VSW3IN Operating Input Voltage 2.8 4.5 V (28), (29)
VSW3 Nominal Output Voltage Table 57 –V
VSW3ACC
Output Voltage Accuracy
• PWM, APS, 2.8 V < VSW3IN < 4.5 V, 0 < ISW3 < 1.5 A, 0.9 V < VSW3
< 1.65 V
• PFM, steady state (2.8 V < VSW3IN < 4.5 V, 0 < ISW3 < 50 mA), 0.9 V
< VSW3 < 1.65 V
-3.0%
-6.0%
3.0%
6.0%
%
ISW3
Rated Output Load Current, 2.8 V < VSW3IN < 4.5 V, 0.9 V < VSW3 <
1.65 V, PWM, APS mode 1500 mA (30)
Notes
28. The maximum operating input voltage is 4.55 V when VPWR LDO is used.
29. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at
the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V
and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.
30. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VSW3IN - VSW3) =
ISW3* (DCR of Inductor +RONSW3P + PCB trace resistance).
Table 9. Static Electrical Characteristics – SW2 (continued)
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, typical external component
values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,
and 25 °C, unless otherwise noted.
Symbol Parameter Min Typ Max Unit Notes
Analog Integrated Circuit Device Data
18 Freescale Semiconductor
PF3000
GENERAL PRODUCT CHARACTERISTICS
SWITCH MODE SUPPLY SW3 (CONTINUED)
ISW3Q
Quiescent Current
• PFM Mode
• APS Mode
50
150
µA
ISW3LIM
Current Limiter Peak Current Detection, Current through Inductor
• SW3ILIM = 0
• SW3ILIM = 1
1.95
1.45
3.0
2.25
4.05
3.05
A
VSW3 Output Ripple 5.0 mV
RONSW3P SW3 P-MOSFET RDSON at VIN = VSW3IN = 3.3 V 205 235 m
RONSW3N SW3 N-MOSFET RDSON at VIN = VSW3IN = 3.3 V 250 315 m
ISW3PQ SW3 P-MOSFET Leakage Current, VIN = VSW3IN = 4.5 V ––12µA
ISW3NQ SW3 N-MOSFET Leakage Current, VIN = VSW3IN = 4.5 V ––4.0µA
RSW3DIS Discharge Resistance During Off Mode 600
Table 12. Dynamic Electrical Characteristics - SW3
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, typical external component
values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless
otherwise noted.
Symbol Parameter Min Typ Max Unit Notes
VSW3OSH
Start-up Overshoot, ISW3 = 0.0 mA, DVS clk = 25 mV/4 s, VIN =
VSW3IN = 4.5 V ––66mV
tONSW3
Turn-on Time, Enable to 90% of end value, ISW3 = 0 mA, DVS clk =
25 mV/4 s, VIN = VSW3IN = 4.5 V 500 µs
Table 13. Static Electrical Characteristics - SWBST
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSWBSTIN = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, typical external
component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at VIN = VSWBSTIN = 3.6 V, VSWBST = 5.0 V,
ISWBST = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameters Min Typ Max Unit Notes
SWITCH MODE SUPPLY SWBST
VSWBSTIN Input Voltage Range 2.8 4.5 V (31), (32)
VSWBST Nominal Output Voltage Table 59 –V
ISWBST
Continuous Load Current
• 2.8 V VIN 3.0 V
• 3.0 V VIN 4.5 V
500
600
mA
VSWBSTACC
Output Voltage Accuracy, 2.8 V VIN 4.5 V, 0 < ISWBST
< ISWBSTMAX
-4.0 – 3.0 %
ISWBSTQ Quiescent Current (Auto Mode) 222 289 A
Notes
31. The maximum operating input voltage is 4.55 V when VPWR LDO is used.
32. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at
the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V
and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.
Table 11. Static Electrical Characteristics – SW3 (continued)
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, typical external component
values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless
otherwise noted.
Symbol Parameter Min