FN9349 Rev.1.00 Page 1 of 56
Feb 8, 2019
FN9349
Rev.1.00
Feb 8, 2019
RAA210825
Pin-Configurable 25A DC/DC Power Module with PMBus Interface
DATASHEET
The RAA210825 is a pin-strap configurable 25A
step-down PMBus-compliant DC/DC power supply
module that integrates a digital PWM controller,
synchronous MOSFETs, power inductor, and passive
components. Only input and output capacitors are needed
to finish the design. Because of its thermally-enhanced
HDA packaging technology, the module can deliver up to
25A of continuous output current without the need for
airflow or additional heat sinking. The RAA210825
simplifies configuration and control of Renesas digital
power technology while offering an upgrade path to full
PMBus configuration through the pin-compatible
ISL8277M.
The RAA210825 uses ChargeMode™ control
architecture, which responds to a transient load within a
single switching cycle. The RAA210825 comes with a
preprogrammed configuration for operating in a pin-strap
mode. Output voltage, switching frequency, input
UVLO, soft-start/stop delay and ramp times, and the
device SMBus address can be programmed with external
pin-strap resistors. A standard PMBus interface
addresses fault management, in addition to real-time full
telemetry and point-of-load monitoring.
The RAA210825 is available in a 41 Ld compact
17mmx19mm HDA module with very low profile height
of 3.6mm, suitable for automated assembly by standard
surface mount equipment. The RAA210825 is RoHS
compliant by exemption.
Related Literature
For a full list of related documents, visit our website
RAA210825 product page
Features
25A single channel output current
•Wide V
IN range: 4.5V to 14V
Programmable output voltage
0.6V to 5V output voltage settings
±1.2% accuracy over line/load/temperature
PMBus interface and/or Pin-Strap mode
Pin-strap mode for standard settings
•V
OUT, switching frequency, input UVLO,
soft-start/stop and external sync
Real time telemetry for VIN, VOUT, IOUT,
temperature, duty cycle, and switching frequency
ChargeMode control loop architecture
296kHz to 1.06MHz fixed switching frequency
operations
No compensation required
Fast single clock cycle transient response
Complete input and output over/undervoltage, output
current, and temperature protections with fault
logging
PowerNavigator supported
Thermally enhanced HDA package
Applications
Server, telecom, storage, and datacom
Industrial/ATE and networking equipment
General purpose power for ASIC, FPGA, DSP, and
memory
FN9349 Rev.1.00 Page 2 of 56
Feb 8, 2019
RAA210825
Figure 1. Complete Digital Switch-Mode Power Supply
Figure 2. Small Package for High Power Density
Note:
1. Only bulk input and output capacitors are required to finish the design.
RAA210825
VOUT
VIN
VDD
VOUT
VSEN+
VSEN-
VIN
PMBus
Interface
VDRVIN
VDRVOUT
CIN COUT
10µF
SALRT
SDA
SCL
SGND PGND
10µF
EN
ENABLE
VCC
VR55
10µF
3.6mm
19mm
17mm
FN9349 Rev.1.00 Page 3 of 56
Feb 8, 2019
RAA210825
Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 RAA210825 Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3. Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Efficiency Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Transient Response Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Derating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 SMBus Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Soft-Start Delay and Ramp Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Power-Good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Switching Frequency and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Loop Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Input Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 SMBus Module Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 Output Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.10 Output Prebias Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.11 Output Overcurrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.12 Thermal Overload Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.13 Phase Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.14 Monitoring Using SMBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.15 Snapshot Parameter Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5. PCB Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Thermal Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 PCB Layout Pattern Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Thermal Vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Stencil Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Reflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
FN9349 Rev.1.00 Page 4 of 56
Feb 8, 2019
RAA210825
6. PMBus Command Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1 PMBus Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 PMBus Use Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7. PMBus Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.1 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2 Datasheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9. Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
FN9349 Rev.1.00 Page 5 of 56
Feb 8, 2019
RAA210825 1. Overview
1. Overview
1.1 Typical Application Circuit
Figure 3. Typical Single-Phase Application Circuit for 1.2V/25A Output
Table 1. RAA210825 Design Matrix Guide and Output Voltage Response
VIN
(V)
VOUT
(V)
Input Capacitors
(Note 6) Output Capacitors
ASCR
Gain
(Note 7)
ASCR
Residual
(Note 7)
Frequency
(kHz)
VOUT Dev
Peak-Peak
(mV) (Note 8)
5 0.7 3x22µF Ceramic + 2x150µF POS 12x100µF Ceramic + 6x470µF POS 300 70 296 51
5 0.7 3x22µF Ceramic + 2x150µF POS 8x100µF Ceramic + 4x470µF POS 500 90 615 66
12 0.7 3x22µF Ceramic + 2x150µF POS 12x100µF Ceramic + 6x470µF POS 270 70 296 70
12 0.7 3x22µF Ceramic + 2x150µF POS 8x100µF Ceramic + 4x470µF POS 500 90 615 70
5 0.8 3x22µF Ceramic + 2x150µF POS 12x100µF Ceramic + 5x470µF POS 300 80 296 59.5
5 0.8 3x22µF Ceramic + 2x150µF POS 8x100µF Ceramic + 3x470µF POS 400 90 615 80
12 0.8 3x22µF Ceramic + 2x150µF POS 12x100µF Ceramic + 5x470µF POS 350 80 296 65
12 0.8 3x22µF Ceramic + 2x150µF POS 8x100µF Ceramic + 3x470µF POS 400 90 615 80
5 0.9 3x22µF Ceramic + 2x150µF POS 12x100µF Ceramic + 4x470µF POS 350 80 364 70
5 0.9 3x22µF Ceramic + 2x150µF POS 6x100µF Ceramic + 2x470µF POS 400 80 615 90
12 0.9 3x22µF Ceramic + 2x150µF POS 12x100µF Ceramic + 4x470µF POS 350 80 364 70
12 0.9 3x22µF Ceramic + 2x150µF POS 6x100µF Ceramic + 2x470µF POS 400 80 615 88
RAA210825
VIN
VDD
SGND
PGND
VOUT
VSEN+
VSEN-
SALRT
SDA
SCL
PMBus
Interface
VDRVIN
VDRVOUT
C1
C2+3x22μF
2x150μF
C3
10μF
R1
2.2Ω
C5
C4
10μF
10μF
C7C8+
10x10F
2x470μF
(POSCAP)
VR6
VR5
V25
VDDC
VSWH
PHASE
R3
R4
R5
R3, R4, R5 = 4.7kΩ
EN
VAUX
3.3V to 5V
VIN
4.5V to 14V
VOUT
1.2V 25A
SS/UVLO
VCC
VR55
10μF
C6
VSET
Pin-Strap Resistors
SA
SYNC
ASCR
CFG
R6R7R8R9R10 R11
20
R2
Notes:
2. R3 and R4 are not required if the PMBus host already has I2C pull-up resistors.
3. R2 is optional but recommended to sink possible ~100µA back-flow current from the VSEN+ pin. Back-flow current is present only
when the module is in a disabled state with power still available at the VDD pin.
4. R6 through R11 can be selected according to the tables for the pin-strap resistor setting in this document .
5. Internal reference supply pins (V25, VDDC, VR5, VR6) do not need external capacitors and can be no connect. Refer to PCB
Layout Guidelines” on page 29 for more information.
Note 5
Note 2
Note 4
Note 3
FN9349 Rev.1.00 Page 6 of 56
Feb 8, 2019
RAA210825 1. Overview
5 1 3x22µF Ceramic + 2x150µF POS 12x100µF Ceramic + 3x470µF POS 300 80 364 83
5 1 3x22µF Ceramic + 2x150µF POS 6x100µF Ceramic + 2x470µF POS 400 90 615 92
12 1 3x22µF Ceramic + 2x150µF POS 12x100µF Ceramic + 3x470µF POS 350 90 364 79
12 1 3x22µF Ceramic + 2x150µF POS 6x100µF Ceramic + 2x470µF POS 400 90 615 100
5 1.2 3x22µF Ceramic + 2x150µF POS 10x100µF Ceramic + 2x470µF POS 250 90 364 90
5 1.2 3x22µF Ceramic + 2x150µF POS 4x100µF Ceramic + 2x470µF POS 400 80 727 100
12 1.2 3x22µF Ceramic + 2x150µF POS 10x100µF Ceramic + 2x470µF POS 250 100 364 115
12 1.2 3x22µF Ceramic + 2x150µF POS 4x100µF Ceramic + 2x470µF POS 400 80 727 105
5 1.5 3x22µF Ceramic + 2x150µF POS 8x100µF Ceramic + 2x470µF POS 300 80 471 93
5 1.5 3x22µF Ceramic + 2x150µF POS 4x100µF Ceramic + 2x470µF POS 400 80 727 104
12 1.5 3x22µF Ceramic + 2x150µF POS 8x100µF Ceramic + 2x470µF POS 270 90 471 120
12 1.5 3x22µF Ceramic + 2x150µF POS 4x100µF Ceramic + 2x470µF POS 400 80 727 111
5 1.8 3x22µF Ceramic + 2x150µF POS 6x100µF Ceramic + 1x470µF POS 200 100 471 150
5 1.8 3x22µF Ceramic + 2x150µF POS 4x100µF Ceramic + 1x470µF POS 300 90 727 155
12 1.8 3x22µF Ceramic + 2x150µF POS 6x100µF Ceramic + 1x470µF POS 200 100 471 165
12 1.8 3x22µF Ceramic + 2x150µF POS 4x100µF Ceramic + 1x470µF POS 270 90 727 155
5 2.5 3x22µF Ceramic + 2x150µF POS 4x100µF Ceramic + 1x470µF POS 230 90 615 166
12 2.5 3x22µF Ceramic + 2x150µF POS 4x100µF Ceramic + 1x470µF POS 250 100 615 166
12 3.3 3x22µF Ceramic + 2x150µF POS 4x100µF Ceramic + 1x470µF POS 250 100 615 175
12 5 3x22µF Ceramic + 2x150µF POS 4x100µF Ceramic + 1x470µF POS 270 90 727 190
Notes:
6. CIN bulk capacitor is optional only for energy buffer from the long input power supply cable.
7. ASCR gain and residual are selected to ensure that the phase margin is higher than 60° at ambient room temperature (+25°C).
8. Peak-to-peak voltage deviation is measured under 0%-50% load transient and slew rate = 15A/µs.
9. Frequency is selected to achieve best efficiency at full load. Higher frequency can be selected because less output capacitance
is required to meet the transient response specification.
Table 2. Recommended I/O Capacitor in Table 1
Vendors Value Part Number
MURATA, Input Ceramic 22µF, 25V, 1210 GRM32ER71E226KE15L
Taiyo Yuden, Input Ceramic 22µF, 25V, 1210 TMK325BJ226MM-T
MURATA, Output Ceramic 100µF, 6.3V, 1210 GRM32EC80J107ME20L
TDK, Output Ceramic 100µF, 6.3V, 1210 C3225X5R0J107M
SANYO POSCAP, Input Bulk 150µF, 16V 16TQC150MYF
SANYO POSCAP, Output Bulk 470µF, 6.3V 6TPE470MI
Table 1. RAA210825 Design Matrix Guide and Output Voltage Response (Continued)
VIN
(V)
VOUT
(V)
Input Capacitors
(Note 6) Output Capacitors
ASCR
Gain
(Note 7)
ASCR
Residual
(Note 7)
Frequency
(kHz)
VOUT Dev
Peak-Peak
(mV) (Note 8)
FN9349 Rev.1.00 Page 7 of 56
Feb 8, 2019
RAA210825 1. Overview
1.2 RAA210825 Internal Block Diagram
Figure 4. Block Diagram
Digital Controller
SGND
SCL
SALRT
SA
SYNC
SGND
PWM Out
PMBus/I2C
Interface
SDA
ADC-10
CSA
VSA
Supervisor
Internal Temp
Sensor
Protection
OC/UC
D-PWM
PLL
SYNC
Out
Power Management
SS OV/UV Interleave
VDD
Snapshot
OT/UT
VOUT
0.3µH
Logic
VIN
PGND
Regulator
Driver and FETs
VIN
VDRVIN
VDD
VSEN+
VSEN-
ADC-10
VR55
VR5
LDO
VR6
VDDC
FB
PGND
332
ChargeMode
Control
:
V25
VCC
VDRVOUT
VDRVOUT
PG
EN
VSET
SS/UVLO
ASCR
CFG
NVM
FN9349 Rev.1.00 Page 8 of 56
Feb 8, 2019
RAA210825 1. Overview
1.3 Ordering Information
Part Number
(Notes 11, 12)
Part
Marking
Temp Range
(°C)
Tape and Reel
(Units) (Note 10)
Package
(RoHS Compliant)
Pkg.
Dwg. #
RAA2108252GLG#AG0 RAA2108252 -40 to +85 - 41 Ld 17x19 HDA Y41.17x19
RAA2108252GLG#HG0 RAA2108252 -40 to +85 500 41 Ld 17x19 HDA Y41.17x19
RAA2108252GLG#MG0 RAA2108252 -40 to +85 100 41 Ld 17x19 HDA Y41.17x19
RTKA2108252H00000BU Evaluation Board
Notes:
10. Refer to TB347 for details about reel specifications.
11. These Pb-free plastic packaged products are RoHS compliant by EU exemption 7C-I and 7A. They employ special Pb-free
material sets; molding compounds/die attach materials and NiPdAu plate-e4 termination finish, which is compatible with both
SnPb and Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or
exceed the Pb-free requirements of IPC/JEDEC J STD-020.
12. For Moisture Sensitivity Level (MSL), see the RAA210825 device page. For more information about MSL, see TB363.
Table 3. Key Differences Between Family of Parts
Part Number Description VIN Range (V) VOUT Range (V) IOUT (A)
RAA210825 25A DC/DC single channel Power Module 4.5 - 14 0.6 - 5 25
RAA210833 33A DC/DC single channel Power Module 4.5 - 14 0.6 - 5 33
RAA210850 50A DC/DC single channel Power Module 4.5 - 14 0.6 - 5 50
RAA210870 70A DC/DC single channel Power Module 4.5 - 14 0.6 - 2.5 70
RAA210925 25A/25A DC/DC dual channel Power Module 4.5 - 14 0.6 - 5 25/25
Table 4. Comparison of Simple Digital and Full Digital Parts
ISL8277M RAA210825
VIN (V) 4.5-14 4.5-14
VOUT (V) 0.6-5 0.6-5
IOUT (Max) (A) 25 25
fSW (kHz) 296-1067 296-1067
Digital PMBus Programmablility for
Configuration of Modules
All PMBus commands, NVM access to
store module configuration
Configuration of modules supported using
pin-strap resistors. Digital programmability
supports configuration changes during
run-time operation with a subset of PMBus
commands. No NVM access to store module
configuration
Power Navigator Support Yes Yes
SYNC Capability Yes Yes
Current Sharing Multi-Modules No No
DDC Pin (Inter-Device Communication) Ye s No
Note: For a full comparison of all the RAA210XXX and ISL827XM product offerings please visit the simple-digital module family
page.
FN9349 Rev.1.00 Page 9 of 56
Feb 8, 2019
RAA210825 1. Overview
1.4 Pin Configurations
1.5 Pin Descriptions
41 Ld HDA
Top View
Pin Label Type Description
2 ASCR I ChargeMode control ASCR parameters selection pin. Used to set ASCR gain and residual values.
6 VSEN+ I Differential output voltage sense feedback. Connect to the positive output regulation point.
7 VSEN- I Differential output voltage sense feedback. Connect to the negative output regulation point.
8 VDRVOUT PWR Output of internal regulator for powering internal MOSFET driver. Connect a 10µF bypass capacitor
to this pin. The regulator output is dedicated to powering internal MOSFET drivers. Do not use this
regulator for any other purpose. For applications with VIN less than 5.2V, use an external 5V supply
or connect this pad to VIN.
9 VDRVIN PWR Input supply to internal regulator for powering internal MOSFET drivers. Connect this pad to VIN.
10 VCC PWR Bias pin for internal regulator. Connect VCC pad to VR55 pin directly with a short loop trace. Not
recommended to power external circuit.
11 VIN PWR Main input supply. Refer to PCB Layout Guidelines” on page 29 for the decoupling capacitors
placement from VIN to PGND.
12, 23, 31, 34 PGND PWR Power ground. Refer to PCB Layout Guidelines” on page 29 for the PGND pad connections and
decoupling capacitors placement.
VDRVOUT
VIN
NC
ASCR
VSEN -
NC
NC
VSEN+
NC
PGND
VCC
SYNC
SGND
VOUT
SGND
VSWH
PGND
PG
SS/UVLO
PGND
PHASE
VDRVIN
NC
NC
1
2
3
4
5
6
7
8
9
10
11
12 13
14
15
16
172627
28
29
30
31 32
33
34
35
36
37
38
39
40
1819202122232425
41
VR55
9
SALRT
NC
NC
EN
SCL
SDA
SA
CFG
VSET
SGND
PGND
VDD
VDDCV25 VR5 VR6
FN9349 Rev.1.00 Page 10 of 56
Feb 8, 2019
RAA210825 1. Overview
13 VSWH PWR Switch node. Refer to PCB Layout Guidelines” on page 29 for connecting VSWH pads to
electrically isolate the PCB copper island to dissipate internal heat.
14 VOUT PWR Power supply output. Range: 0.6V to 5V. Refer to the Derating Curves” on page 17 for maximum
recommended output current at various output voltages.
15, 27, 40 SGND PWR Controller signal ground. Refer to PCB Layout Guidelines” on page 29 for the SGND pad
connections.
16 VDD PWR Input supply to digital controller. Connect VDD pad to VIN supply.
17 EN I External enable input. Logic high enables the module.
18 SCL I/O Serial clock input. A pull-up resistor is required for this application.
19 SDA I/O Serial data. A pull-up resistor is required for this application.
20 SALRT O Serial alert. A pull-up resistor is required for this application.
21 SA I Serial bus address select pin. Refer to Table 11 on page 25 for list of resistor values to set various
serial bus address.
24 CFG I Clock source configuration. If the clock source is set to internal, the internal
FREQUENCY_SWITCH needs to be set according to SYNC pin resistor setting. If the clock source
is external, the internal FREQUENCY_SWITCH is set according to the CFG pin resistor, see
Table 8 on page 23.
25 VSET I Output voltage selection pin. Refer to Table 5 on page 19 for list of resistor values to set various
output voltages.
28 PG O Power-good output configured as an open drain.
29 SS/UVLO I Soft-start/stop and undervoltage lockout selection pin. Used to set turn on/off delay and ramp time
in addition to input UVLO threshold levels. Refer to Table 6 on page 21 and Table 10 on page 24 for
list of resistors.
30 PHASE PWR Switch node pad for DCR sensing. Electrically shorted inside to VSWH, but for higher current
sensing accuracy connect PHASE pad to VSWH pad externally. Refer to PCB Layout Guidelines
on page 29.
35 VR6 PWR 6V Internal reference supply voltage.
36 VR5 PWR 5V Internal reference supply voltage.
37 VDDC PWR VDD Clean. Noise at the VDD pin is filtered by an internal ferrite bead and capacitor. For VDD > 6V,
leave this pin as no connect. For 5.5 VDD 6V, connect the VDDC pin to the VR6 pin. For
4.5 VDD < 5.5V, connect the VDDC pin to the VR6 and VR5 pin.
38 V25 PWR 2.5V Internal reference supply voltage.
39 SYNC I/O Clock synchronization input. Used to set the frequency of the internal switch clock or to sync to an
external clock. If using external synchronization, the external clock must be active before enable.
Refer to Table 7 on page 22 for list of resistor values to program various switching frequencies.
41 VR55 PWR Internal 5.5V bias for internal regulator use only. Connect VR55 pin directly to VCC pin. Not
recommended to power external circuit.
1, 3, 4, 5, 22,
26, 32, 33
NC These are test pins and are not electrically isolated. Leave these pins as no connect.
Pin Label Type Description
FN9349 Rev.1.00 Page 11 of 56
Feb 8, 2019
RAA210825 2. Specifications
2. Specifications
2.1 Absolute Maximum Ratings
2.2 Thermal Information
Parameter Minimum Maximum Unit
Input Supply Voltage, VIN Pin -0.3 17 V
Input Supply Voltage for Controller, VDD, VDDC Pin -0.3 17 V
Input Gate Driver Supply Voltage, VDRVIN Pin -0.3 17 V
Output Voltage, VOUT Pin -0.3 6 V
Output Gate Driver Supply Voltage, VDRVOUT Pin -0.3 6 V
Switch Node Referenced to PGND Pin, VSWH Pin -0.3 25 V
Switch Node for DCR Sensing Referenced to SGND Pin, PHASE Pin -0.3 25 V
Input Bias Voltage for internal Regulator, VCC Pin -0.3 6.5 V
6V Internal Reference Supply Voltage, VR6 Pin -0.3 6.6 V
Internal Reference Supply Voltage, VR5, VR55 Pin -0.3 6.5 V
2.5V Internal Reference Supply Voltage, V25 Pin -0.3 3 V
Logic I/O Voltage for EN, PG, ASCR, SA, SCL, SDA, SALRT, SYNC,
SS/UVLO, VSET
-0.3 6.0 V
Analog Input Voltages
VSEN+, XTEMP+ -0.3 6.0 V
VSEN-, XTEMP- -0.3 0.3 V
ESD Rating Value Unit
Human Body Model (Tested per JS-001-2017) 2 kV
Machine Model (Tested per JESD22-A115C) 200 V
Charged Device Model (Tested per JS-002-2014) 750 V
Latch-Up (Tested per JESD78E; Class 2, Level A) 100 mA
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may
adversely impact product reliability and result in failures not covered by warranty.
Thermal Resistance (Typical) JA (°C/W) JC (°C/W)
41 Ld HDA Package (Notes 13, 14)7.5 2.2
Notes:
13. JA is measured in free air with the module mounted on an evaluation board 3x4.5 inch in size with 2oz surface and 2oz buried
planes and multiple via interconnects as specified the RTKA2108252H00000BU Evaluation Board User Guide on the
RAA210825 product page.
14. For JC, the “case temp” location is the center of the package underside.
Parameter Minimum Maximum Unit
Maximum Junction Temperature (Plastic Package) +125 °C
Storage Temperature Range -55 +150 °C
Pb-Free Reflow Profile Refer to Figure 29
FN9349 Rev.1.00 Page 12 of 56
Feb 8, 2019
RAA210825 2. Specifications
2.3 Recommended Operating Conditions
2.4 Electrical Specifications
Parameter Minimum Maximum Unit
Input Supply Voltage Range, VIN 4.5 14 V
Input Supply Voltage Range for Controller, VDD 4.5 14V
Output Voltage Range, VOUT 0.65V
Output Current Range, IOUT(DC) (Note 17)025A
Operating Junction Temperature Range, TJ-40 +125 °C
VIN = VDD = 12V, fSW = 533kHz, COUT = 1340µF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.
Boldface limits apply across the operating temperature range, -40°C to +85°C.
Parameter Symbol Test Conditions
Min
(Note 15)Typ
Max
(Note 15)Unit
Input and Supply Characteristics
Input Supply Current for
Controller
IDD VIN = VDD = 12V, VOUT = 0V, module
not enabled
40 50 mA
6V Internal Reference Supply
Voltage
VR6 5.5 6.1 6.6 V
Internal Regulator Output
Voltage
VDRVOUT VCC connected to VR55 5.2 V
5V Internal Reference Supply
Voltage
VR5 IVR5 < 5mA 4.5 5.2 5.5 V
2.5V Internal Reference Supply
Voltage
V25 2.25 2.50 2.75 V
5.5V Internal Reference Supply
Voltage
VR55 VDD > 6V; 0 - 80mA 5.7 V
Input Supply Voltage for
Controller Readback Resolution
VDD_READ_RES ±20 mV
Input Supply Voltage for
Controller Readback Total Error
(Note 18)
VDD_READ_ERR PMBus read ±2 %FS
Output Characteristics
Output Voltage Adjustment
Range
VOUT_RANGE VIN > VOUT + 1.8V 0.54 5.50 V
Output Voltage Set-Point
Range
VOUT_RES ±0.025 %
Output Voltage Set-Point
Accuracy (Notes 16, 18)
VOUT_ACCY Includes line, load, and temperature
(-20°C ≤ TA ≤ +85°C)
-1.2 +1.2 %VOUT
Output Voltage Readback
Resolution
VOUT_READ_RES ±20 mV
Output Voltage Readback Total
Error (Note 18)
VOUT_READ_ERR PMBus read -2 +2 %VOUT
Output Current Readback
Resolution
IOUT_READ_RES 10 Bits
Output Current Range
(Note 17)
IOUT_RANGE 25 A
Output Current Readback Total
Error
IOUT_READ_ERR PMBus read at max load at ambient
room temperature
±3 A
FN9349 Rev.1.00 Page 13 of 56
Feb 8, 2019
RAA210825 2. Specifications
Soft-Start and Sequencing
Delay Time From Enable to
VOUT Rise
tON_DELAY Configured using pin-strap resistor or
PMBus
2 300 ms
tON_DELAY Accuracy tON_DELAY_ACCY ±2 ms
Output Voltage Ramp-Up Time tON_RISE Configured using pin-strap resistor or
PMBus
0.5 120 ms
Output Voltage Ramp-Up Time
Accuracy
tON_RISE_ACCY ±250 µs
Delay Time From Disable to
VOUT Fall
tOFF_DELAY Configured using pin-strap resistor or
PMBus
2 300 ms
tOFF_DELAY Accuracy tOFF_DELAY_ACCY ±2 ms
Output Voltage Fall Time tOFF_FALL Configured using pin-strap resistor or
PMBus
0.5 120 ms
Output Voltage Fall Time
Accuracy
tON_FALL_ACCY ±250 µs
Power-Good
Power-Good Delay VPG_DELAY 4ms
Temperature Sense
Temperature Sense Range TSENSE_RANGE Configured using PMBus -50 150 C
Internal Temperature Sensor
Accuracy
INT_TEMPACCY Tested at +100°C -5 +5 C
Fault Protection
VDD Undervoltage Threshold
Range
VDD_UVLO_RANGE Measured internally 4.18 16 V
VDD Undervoltage Threshold
Accuracy (Note 18)
VDD_UVLO_ACCY ±2 %FS
VDD Undervoltage Response
Time
VDD_UVLO_DELAY 10 µs
VOUT Overvoltage Threshold
Range
VOUT_OV_RANGE Factory default 1.15VOUT V
Configured using pin-strap resistor or
PMBus
1.05VOUT VOUT_MAX V
VOUT Undervoltage Threshold
Range
VOUT_UV_RANGE Factory default 0.85VOUT V
Configured using pin-strap resistor or
PMBus
0 0.95VOUT V
VOUT OV/UV Threshold
Accuracy (Note 16)
VOUT_OV/UV_ACCY -2 +2 %
VOUT OV/UV Response Time VOUT_OV/UV_DELAY 10 µs
Output Current Limit Set-Point
Accuracy (Note 18)
ILIMIT_ACCY Tested at IOUT_OC_FAULT_LIMIT =
30A
±10 %FS
Output Current Fault Response
Time (Note 19)
ILIMIT_DELAY Factory default 5 tSW
Over-temperature Protection
Threshold (Controller Junction
Temperature)
TJUNCTION Factory default +115 C
Configured using PMBus -40 +125 C
Thermal Protection Hysteresis TJUNCTION_HYS +15 C
VIN = VDD = 12V, fSW = 533kHz, COUT = 1340µF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.
Boldface limits apply across the operating temperature range, -40°C to +85°C. (Continued)
Parameter Symbol Test Conditions
Min
(Note 15)Typ
Max
(Note 15)Unit
FN9349 Rev.1.00 Page 14 of 56
Feb 8, 2019
RAA210825 2. Specifications
Oscillator and Switching Characteristics
Switching Frequency Range fSW_RANGE Configured using pin-strap resistor or
PMBus
296 1067 kHz
Switching Frequency Set-Point
Accuracy
fSW_ACCY -5 +5 %
Minimum Pulse Width Required
from External SYNC Clock
EXT_SYNCPW Measured at 50% amplitude 150 ns
Drift Tolerance for External
SYNC Clock
EXT_SYNCDRIFT External SYNC clock equal to
500kHz is not supported
-10 +10 %
Logic Input/Output Characteristics
Bias Current at the Logic Input
Pins
ILOGIC_BIAS EN, CFG, PG, SA, SCL, SDA,
SALRT, SYNC, UVLO, VSET
-100 +100 nA
Logic Input Low Threshold
Voltage
VLOGIC_IN_LOW 0.8 V
Logic Input High Threshold
Voltage
VLOGIC_IN_HIGH 2.0 V
Logic Output Low Threshold
Voltage
VLOGIC_OUT_LOW 2mA sinking 0.5 V
Logic Output High Threshold
Voltage
VLOGIC_OUT_HIGH 2mA sourcing 2.25 V
PMBus Interface Timing Characteristic
PMBus Operating Frequency fSMB 100 400 kHz
Notes:
15. Compliance to datasheet limits is assured by one or more methods: Production test, characterization, and/or design.
16. VOUT measured at the termination of the VSEN+ and VSEN- sense points.
17. The MAX load current is determined by the thermal Derating Curves” on page 17.
18. “FS” stand for full scale of recommended maximum operation range.
19. “tSW” stands for time period of operation switching frequency.
VIN = VDD = 12V, fSW = 533kHz, COUT = 1340µF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.
Boldface limits apply across the operating temperature range, -40°C to +85°C. (Continued)
Parameter Symbol Test Conditions
Min
(Note 15)Typ
Max
(Note 15)Unit
FN9349 Rev.1.00 Page 15 of 56
Feb 8, 2019
RAA210825 3. Typical Performance Curves
3. Typical Performance Curves
3.1 Efficiency Performance
Operating conditions: TA = +25°C, no air flow. COUT = 1340µF. Typical values are used unless otherwise noted.
Figure 5. Efficiency vs Output Current at VIN = 5V,
fSW = 364kHz for Various Output Voltages
Figure 6. Efficiency vs Switching Frequency at VIN = 5V,
IOUT = 25A for Various Output Voltages
Figure 7. Efficiency vs Output Current at VIN = 12V,
fSW = 364kHz for Various Output Voltages
Figure 8. Efficiency vs Switching Frequency at VIN = 12V,
IOUT = 25A for Various Output Voltages
60
65
70
75
80
85
90
95
4 6 8 101214161820222425
Efficiency (%)
IOUT (A)
3.3Vout 2.5Vout
1.8Vout 1.5Vout
1.2Vout 1Vout
0.8Vout 0.7Vout
75
77
79
81
83
85
87
89
91
93
95
296 320 364 400 421 471 516 533 615 727 800 842 889 1067
Efficiency (%)
Switching Frequency (kHz)
0.7Vout 0.8Vout
1Vout 1.2Vout
1.5Vout 1.8Vout
2.5Vout 3.3Vout
60
65
70
75
80
85
90
95
4 6 8 101214161820222425
Efficiency (%)
IOUT (A)
5Vout 3.3Vout
2.5Vout 1.8Vout
1.5Vout 1.2Vout
1Vout 0.8Vout
0.7Vout
70
75
80
85
90
95
296 320 364 400 421 471 516 533 615 727 800 842 889 1067
Efficiency (%)
Switching Frequency (kHz)
0.7Vout 0.8Vout
1Vout 1.2Vout
1.5Vout 1.8Vout
2.5Vout 3.3Vout
5Vout
FN9349 Rev.1.00 Page 16 of 56
Feb 8, 2019
RAA210825 3. Typical Performance Curves
3.2 Transient Response Performance
Operating conditions: Step load 0A to 12.5A, IOUT slew rate = 15A/µs, TA = +25°C, OLFM airflow. Typical values used unless otherwise noted.
Figure 9. 5VIN to 0.9VOUT Transient Response,
fSW = 364kHz, COUT = 12x100µF Ceramic + 4x470µF
POSCAP
Figure 10. 5VIN to 1.8VOUT Transient Response,
fSW = 615kHz, COUT = 3x100µF Ceramic + 2x470µF
POSCAP
Figure 11. 12VIN to 0.8VOUT Transient Response,
fSW = 296kHz, COUT = 12x100µF Ceramic + 5x470µF
POSCAP
Figure 12. 12VIN to 1.5VOUT Transient Response,
fSW = 727kHz, COUT = 4x100µF Ceramic + 2x470µF
POSCAP
Figure 13. 12VIN to 2.5VOUT Transient Response,
fSW = 615kHz, COUT = 4x100µF Ceramic + 1x470µF
POSCAP
Figure 14. 12VIN to 3.3VOUT Transient Response,
fSW = 615kHz, COUT = 4x100µF Ceramic + 1x470µF
POSCAP
ASCR Gain = 350
ASCR Residual = 80
VOUT: 50mV/Div
IOUT: 10A/Div
100µs/Div
ASCR Gain = 250
ASCR Residual = 90
VOUT: 50mV/Div
IOUT: 10A/Div
100µs/Div
ASCR Gain = 350
ASCR Residual = 80
VOUT: 50mV/Div
IOUT: 10A/Div
100µs/Div
ASCR Gain = 400
ASCR Residual = 80
VOUT: 50mV/Div
IOUT: 10A/Div
100µs/Div
ASCR Gain = 250
ASCR Residual = 100
VOUT: 100mV/Div
IOUT: 10A/Div
100µs/Div
ASCR Gain = 250
ASCR Residual = 100
VOUT: 100mV/Div
IOUT: 10A/Div
100µs/Div
FN9349 Rev.1.00 Page 17 of 56
Feb 8, 2019
RAA210825 3. Typical Performance Curves
3.3 Derating Curves
All of the following curves were plotted at TJ = +120°C
Figure 15. 5VIN to 1VOUT, 364kHz Figure 16. 12VIN to 1VOUT, 364kHz
Figure 17. 5VIN to 1.2VOUT, 364kHz Figure 18. 12VIN to 1.2VOUT, 364kHz
Figure 19. 5VIN to 1.8VOUT, 471kHz Figure 20. 12VIN to 1.8VOUT, 471kHz
0
5
10
15
20
25
30
20 30 40 50 60 70 80 90 100 110 120
Load Current (A)
Temperature (oC)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
20 40 60 80 100 120
Load Current (A)
Temperature (oC)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
20 30 40 50 60 70 80 90 100 110 120
Load Current (A)
Temperature (oC)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
20 30 40 50 60 70 80 90 100 110 120
Load Current (A)
Temperature (oC)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
20 40 60 80 100 120
Load Current (A)
Temperature (oC)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
20 40 60 80 100 120
Load Current (A)
Temperature (oC)
0 LFM 200 LFM
400 LFM
FN9349 Rev.1.00 Page 18 of 56
Feb 8, 2019
RAA210825 3. Typical Performance Curves
Figure 21. 5VIN to 2.5VOUT, 615kHz Figure 22. 12VIN to 2.5VOUT, 615kHz
Figure 23. 5VIN to 3.3VOUT, 615kHz Figure 24. 12VIN to 3.3VOUT, 615kHz
Figure 25. 12VIN to 5VOUT, 727kHz
All of the following curves were plotted at TJ = +120°C (Continued)
0
5
10
15
20
25
30
20 40 60 80 100 120
Load Current (A)
Temperature (oC)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
20 40 60 80 100 120
Load Current (A)
Temperature (oC)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
20 40 60 80 100 120
Load Current (A)
Temperature (oC)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
20 40 60 80 100 120
Load Current (A)
Temperature (oC)
0 LFM 200 LFM
400 LFM
0
5
10
15
20
25
30
20 40 60 80 100 120
Load Current (A)
Temperature (oC)
0 LFM
200 LFM
400 LFM
FN9349 Rev.1.00 Page 19 of 56
Feb 8, 2019
RAA210825 4. Functional Description
4. Functional Description
4.1 SMBus Communications
The RAA210825 provides an SMBus digital interface that enables the user to configure the module operation in
addition to monitoring the input and output parameters. The RAA210825 can be used with any SMBus host device.
In addition, the module is compatible with PMBus Power System Management Protocol Specification Parts I & II
version 1.2. The RAA210825 accepts most standard PMBus commands. Renesas recommends tying the enable pin
to SGND when PMBus commands are issued.
The SMBus device address is the only parameter that must be set by external pins.
4.2 Output Voltage Selection
The output voltage may be set to a voltage between 0.6V and 5V provided that the input voltage is higher than the
desired output voltage by an amount sufficient to maintain regulation.
The VSET pin sets the output voltage to any values between 0.6V and 5V, as shown in Table 5. The RSET resistor is
placed between the VSET pin and SGND. A standard 1% resistor is recommended.
Table 5. Output Voltage Resistor Settings
VOUT (V) VSET_GROUP (set by SA pin) RSET (kΩ)
0.600 Group 0 10
0.650 Group 0 11
0.675 Group 0 12.1
0.690 Group 0 13.3
0.700 Group 0 14.7
0.710 Group 0 16.2
0.720 Group 0 17.8
0.730 Group 0 19.6
0.740 Group 0 21.5
0.750 Group 0 23.7
0.760 Group 0 26.1
0.770 Group 0 28.7
0.780 Group 0 31.6
0.790 Group 0 34.8
0.800 Group 0 38.3
0.810 Group 0 42.2
0.820 Group 0 46.4
0.830 Group 0 51.1
0.840 Group 0 56.2
0.850 Group 0 61.9
0.860 Group 0 68.1
0.870 Group 0 75
0.880 Group 0 82.5
0.890 Group 0 90.9
0.900 Group 0 100
0.910 Group 0 110
0.920 Group 0 121
0.930 Group 0 133
FN9349 Rev.1.00 Page 20 of 56
Feb 8, 2019
RAA210825 4. Functional Description
By default, VOUT_MAX is set 110% higher than VOUT by the pin-strap resistor, which can be changed to any value
up to 5.5V with PMBus Command VOUT_MAX.
0.940 Group 0 147
0.950 Group 0 162
0.960 Group 0 178
0.970 Group 0 Connect to SGND
0.980 Group 0 OPEN
0.990 Group 0 Connect to V25
1.000 Group 1 Connect to SGND
1.030 Group 1 10
1.050 Group 1 11
1.100 Group 1 12.1
1.120 Group 1 13.3
1.150 Group 1 14.7
1.200 Group 1 OPEN
1.250 Group 1 16.2
1.300 Group 1 17.8
1.350 Group 1 19.6
1.400 Group 1 21.5
1.500 Group 1 23.7
1.600 Group 1 26.1
1.650 Group 1 28.7
1.700 Group 1 31.6
1.800 Group 1 34.8
1.850 Group 1 38.3
1.900 Group 1 42.2
2.000 Group 1 46.4
2.100 Group 1 51.1
2.200 Group 1 56.2
2.300 Group 1 61.9
2.400 Group 1 68.1
2.500 Group 1 Connect to V25
2.600 Group 1 75
2.700 Group 1 82.5
2.800 Group 1 90.9
2.900 Group 1 100
3.000 Group 1 110
3.200 Group 1 121
3.300 Group 1 133
3.400 Group 1 147
3.600 Group 1 162
5.000 Group 1 178
Table 5. Output Voltage Resistor Settings (Continued)
VOUT (V) VSET_GROUP (set by SA pin) RSET (kΩ)
FN9349 Rev.1.00 Page 21 of 56
Feb 8, 2019
RAA210825 4. Functional Description
4.3 Soft-Start Delay and Ramp Times
The RAA210825 follows an internal start-up procedure after power is applied to the VDD pin. The module
requires approximately 60ms to 70ms to check for specific values stored in its internal memory and programmed
by pin-strap resistors. When this process is complete, the device is ready to accept commands from the PMBus
interface and the module is ready to be enabled. If the module is synchronizing to an external clock source, the
clock frequency must be stable prior to asserting the EN pin.
It may be necessary to set a delay from when an enable signal is received until the output voltage starts to ramp to
its target value. In addition, the designer may wish to precisely set the time required for VOUT to ramp to its target
value after the delay period has expired. These features can be used as part of an overall inrush current management
strategy or to precisely control how fast a load IC is turned on. The RAA210825 gives the system designer several
options for precisely and independently controlling both the delay and ramp time periods. The soft-start delay
period begins when the EN pin is asserted and ends when the delay time expires.
The soft-start delay (TON_DELAY) and ramp-up time (TON_RISE) can be set to custom values with pin-strap
resistors or PMBus. When the delay time is set to 0ms, the device begins its ramp-up after the internal circuitry has
initialized (approximately 2ms). When the soft-start ramp period is set to 0ms, the output ramps up as quickly as
the output load capacitance and loop settings allow. In general, set the soft-start ramp to a value greater than 500µs
to prevent inadvertent fault conditions due to excessive inrush current.
Similar to the soft-start delay and ramp-up time, the delay (TOFF_DELAY) and ramp-down time (TOFF_FALL)
for soft-stop/off can be set to custom values with pin-strap resistors or PMBus. In addition, the module can be
configured as “immediate off” with the command ON_OFF_CONFIG, such that the internal MOSFETs are turned
off immediately after the delay time expires.
The SS/UVLO pin can program the soft-start/stop delay time and ramp time to some typical values as shown in
Table 6. A standard 1% resistor is required.
Table 6. Soft-Start/Stop Resistor Settings
Resistor (kΩ) Delay Time (ms) Ramp Time (ms)
Open 5 5
Connect to V25 10 10
Connect to SGND 5 2
12.1 5 2
13.3 5 5
14.7 5 10
16.2 10 2
17.8 10 5
19.6 10 10
21.5 20 5
23.7 20 10
26.1 5 2
28.7 5 5
31.6 5 10
34.8 10 2
38.3 10 5
42.2 10 10
46.4 20 5
51.1 20 10
56.2 5 2
FN9349 Rev.1.00 Page 22 of 56
Feb 8, 2019
RAA210825 4. Functional Description
4.4 Power-Good
The RAA210825 provides a Power-Good (PG) signal that indicates the output voltage is within a specified
tolerance of its target level and no fault condition exists. By default, the PG pin asserts if the output is within 10%
of the target voltage. These limits and the polarity of the pin may be changed with PMBus command
POWER_GOOD_ON.
A PG delay period is defined as the time from when all conditions within the RAA210825 for asserting PG are met
to when the PG pin is actually asserted. This feature is commonly used instead of using an external reset controller
to control external digital logic. A fixed PG delay of 4ms is programmed for RAA210825.
4.5 Switching Frequency and PLL
The device’s switching frequency is configurable from 296kHz to 1067kHz using the pin-strap method as shown in
Table 7, or by using a PMBus command FREQUENCY_SWITCH.
61.9 5 5
68.1 5 10
75 10 2
82.5 10 5
90.9 10 10
100 20 5
110 20 10
Table 7. Switching Frequency Resistor Settings
fSW (kHz) RSET (kΩ)
296 14.7, or connect to SGND
320 16.2
348 17.8
364 19.6
400 21.5
421 23.7
471 26.1
516 28.7
533 31.6, or OPEN
615 34.8
640 38.3
696 42.2
727 46.4
800 51.1
842 56.2
889 61.9
1067 68.1,orconnecttoV25
Table 6. Soft-Start/Stop Resistor Settings (Continued)
Resistor (kΩ) Delay Time (ms) Ramp Time (ms)
FN9349 Rev.1.00 Page 23 of 56
Feb 8, 2019
RAA210825 4. Functional Description
The RAA210825 incorporates an internal Phase-Locked Loop (PLL) to clock the internal circuitry. The PLL can also be
driven by an external clock source connected to the SYNC pin. Set this configuration by connecting a resistor to the
CFG pin. If the clock source is internal, the internal frequency is set according to the SYNC pin resistor settings. If
the clock source is external, the internal frequency is set according to the resistor connected to the CFG pin as
shown in Table 8. The incoming clock signal must be stable when the enable pin is asserted. The external clock
signal must not vary more than 10% from its initial value and should have a minimum pulse width of 150ns.
Note: If the pin-strap method is used, a standard 1% resistor is required.
4.6 Loop Compensation
The module loop response is programmable using the pin-strap method or the PMBus command ASCR_CONFIG
according to Table 9. A standard 1% resistor is required. The RAA210825 uses the ChargeMode control algorithm
that responds to output current changes within a single PWM switching cycle, achieving a smaller total output
voltage variation with less output capacitance than traditional PWM controllers.
Table 8. External Frequency Sync Settings
Clock Source Internal FREQUENCY_SWITCH (kHz) RSET (kΩ)
Internal Determined by SYNC resistor 10, or OPEN
External 296 11
External 340 12.1
External 390 13.3
External 444 14.7
External 516 16.2, or connect to SGND
External 593 17.8
External 696 19.6
External 800 21.5
External 941 23.7
External 1067 26.1, or Connect to V25
Table 9. ASCR Resistor Settings
ASCR Gain ASCR Residual RSET (kΩ)
80 70 10
120 70 Connect to SGND
200 70 OPEN
250 70 11
270 70 12.1
300 70 13.3
120 80 14.7
160 80 16.2
200 80 17.8
230 80 19.6
300 80 21.5
350 80 23.7
400 80 26.1
120 90 28.7
160 90 31.6
210 90 34.8
FN9349 Rev.1.00 Page 24 of 56
Feb 8, 2019
RAA210825 4. Functional Description
4.7 Input Undervoltage Lockout (UVLO)
The Input Undervoltage Lockout (UVLO) prevents the RAA210825 from operating when the input falls below a
preset threshold, indicating the input supply is out of its specified range. The UVLO threshold (VUVLO) can be set
between 4.18V and 16V using the pin-strap method as shown in Table 10, or by using a PMBus command
VIN_UV_FAULT_LIMIT. A standard 1% resistor is required.
The module shuts down immediately when the UVLO threshold is reached. The fault needs to be cleared for the
module to restart.
230 90 38.3
250 90 42.2
270 90 46.4
300 90 51.1
350 90 56.2
380 90 61.9
400 90 68.1
500 90 75
600 90 82.5
120 100 90.9
160 100 100
200 100 110
250 100 Connect to V25
300 100 121
350 100 133
400 100 147
500 100 162
600 100 178
Table 10. UVLO Resistor Settings
Resistor (kΩ) UVLO (V)
Open 4.2
Connect to V25 4.5
Connect to SGND 4.5
12.1 4.5
13.3 4.5
14.7 4.5
16.2 4.5
17.8 4.5
19.6 4.5
21.5 4.5
23.7 4.5
26.1 4.2
28.7 4.59
Table 9. ASCR Resistor Settings (Continued)
ASCR Gain ASCR Residual RSET (kΩ)
FN9349 Rev.1.00 Page 25 of 56
Feb 8, 2019
RAA210825 4. Functional Description
4.8 SMBus Module Address Selection
Each module must have its own unique serial address to distinguish between other devices on the bus. The module
address is set by connecting a resistor between the SA pin and SGND. Table 11 lists the available module
addresses. This pin can also be used to make VSET_Group selection as shown in Table 11. A standard 1% resistor
is required.
31.6 5.06
34.8 5.57
38.3 6.13
42.2 6.75
46.4 7.42
51.1 8.18
56.2 10.8
61.9 10.8
68.1 10.8
75 10.8
82.5 10.8
90.9 10.8
100 10.8
110 10.8
Table 11. SMBus Address and VSET Group Resistor Settings
RSET (kΩ) SMBus Address VSET_GROUP
10 19h Group 0
11 1Ah Group 0
12.1 1Bh Group 0
13.3 1Ch Group 0
14.7 1Dh Group 0
16.2 1Eh Group 0
17.8 1Fh Group 0
19.6 20h Group 0
21.5 21h Group 0
23.7 22h Group 0
26.1 23h Group 0
28.7 24h Group 0
31.6 25h Group 0
34.8 26h Group 0
38.3 27h Group 0
42.2 28h Group 0
46.4 29h Group 0
51.1 19h Group 1
56.2 1Ah Group 1
Table 10. UVLO Resistor Settings (Continued)
Resistor (kΩ) UVLO (V)
FN9349 Rev.1.00 Page 26 of 56
Feb 8, 2019
RAA210825 4. Functional Description
4.9 Output Overvoltage Protection
The RAA210825 has an internal output overvoltage protection circuit that can protect sensitive load circuitry from
being subjected to a voltage higher than its prescribed limits. A hardware comparator compares the actual output
voltage (seen at the VSEN+ and VSEN- pins) to a threshold set to 15% higher than the target output voltage. The fault
threshold can be programmed to a desired level with PMBus command VOUT_OV_FAULT_LIMIT. If the VSEN+
voltage exceeds this threshold, the module initiates an immediate shutdown without retry.
Internal to the module, a 332Ω resistor is populated from VOUT to VSEN+ to protect the device from overvoltage
conditions in case of an open at VSENSE pin and differential remote sense traces due to assembly error. As long as
differential remote sense traces have low resistance, VOUT regulation accuracy is not sacrificed.
4.10 Output Prebias Protection
An output prebias condition exists when an externally applied voltage is present on a power supply’s output before
the power supply’s control IC is enabled. Certain applications require that the converter not be allowed to sink
current during start-up if a prebias condition exists at the output. The RAA210825 provides prebias protection by
sampling the output voltage prior to initiating an output ramp.
If a prebias voltage lower than the target voltage exists after the preconfigured delay period has expired, the target
voltage is set to match the existing prebias voltage, and both drivers are enabled. The output voltage is then ramped
to the final regulation value at the preconfigured ramp rate.
The actual time the output takes to ramp from the prebias voltage to the target voltage varies, depending on the
prebias voltage, however, the total time elapsed from when the delay period expires and when the output reaches its
target value matches the preconfigured ramp time (see Figure 26 on page 27).
If a prebias voltage is higher than the target voltage after the preconfigured delay period has expired, the target
voltage is set to match the existing prebias voltage, and both drivers are enabled with a PWM duty cycle that would
ideally create the prebias voltage.
When the preconfigured soft-start ramp period has expired, the PG pin is asserted (assuming the prebias voltage is
not higher than the overvoltage limit). The PWM then adjusts its duty cycle to match the original target voltage,
and the output ramps down to the preconfigured output voltage.
If a prebias voltage is higher than the overvoltage limit, the device does not initiate a turn-on sequence and declares
an overvoltage fault condition.
61.9 1Bh Group 1
68.1 1Ch Group 1
75 1Dh Group 1
82.5 1Eh Group 1
90.9 1Fh Group 1
100 20h Group 1
110 21h Group 1
121 22h Group 1
133 23h Group 1
147 24h Group 1
162 25h Group 1
Connect to SGND 26h Group 1
178 27h Group 1
OPEN 28h Group 1
Table 11. SMBus Address and VSET Group Resistor Settings (Continued)
RSET (kΩ) SMBus Address VSET_GROUP
FN9349 Rev.1.00 Page 27 of 56
Feb 8, 2019
RAA210825 4. Functional Description
Figure 26. Output Responses to Prebias Voltages
4.11 Output Overcurrent Protection
The RAA210825 can protect the power supply from damage if the output is shorted to ground or if an overload
condition is imposed on the output. Average output overcurrent fault threshold can be programmed with PMBus
command IOUT_OC_FAULT_LIMIT. The module automatically programs the peak inductor current fault
threshold by reading real-time input voltage, switching frequency, and VOUT_COMMAND to calculate the
inductor ripple current.
The default response from an overcurrent fault is an immediate shutdown with a continuous retry of 70ms delay.
4.12 Thermal Overload Protection
The RAA210825 includes a thermal sensor that continuously measures the internal temperature of the module and
shuts down the controller when the temperature exceeds the preset limit. The default temperature limit is set to
+115°C in the factory, but can be changed with PMBus command OT_FAULT_LIMIT.
The response from an over-temperature fault is an immediate shutdown without retry.
4.13 Phase Spreading
When multiple point-of-load converters share a common DC input supply, adjust the clock phase offset of each
device, such that not all devices start to switch simultaneously. Setting each converter to start its switching cycle at
a different point in time can dramatically reduce input capacitance requirements and efficiency losses. Because the
peak current drawn from the input supply is effectively spread out over a period of time, the peak current drawn at
any given moment is reduced, and the power losses proportional to the IRMS2 are reduced dramatically.
To enable phase spreading, all converters must be synchronized to the same switching clock. The phase offset
between devices is determined from the lower four bits of the SMBus address of each interleaved device. The
phase offset of each device can set to any value between 0° and 360° in 22.5° increments. This functionality can
also be accessed using the PMBus command INTERLEAVE.
Desired Output
Voltage
Prebias Voltage
VOUT
Time
TON-DELAY TON-RISE
Desired Output
Voltage
Prebias Voltage
VOUT
Time
VPREBIAS < VTARGET
VPREBIAS > VTARGET
TON-RISE
TON-DELAY
FN9349 Rev.1.00 Page 28 of 56
Feb 8, 2019
RAA210825 4. Functional Description
4.14 Monitoring Using SMBus
A system controller can monitor a wide variety of different RAA210825 system parameters using the following
PMBus commands:
READ_VIN
READ_VOUT
READ_IOUT
READ_INTERNAL_TEMP
READ_DUTY_CYCLE
READ_FREQUENCY
MFR_READ_VMON
4.15 Snapshot Parameter Capture
The RAA210825 offers a special feature to capture parametric data and fault status following a fault event. A detailed
description is provided in the SNAPSHOT (EAh) and SNAPSHOT_CONTROL (F3h) sections of the PMBus
Command Descriptions” on page 35.
Table 12. INTERLEAVE Settings from SA
SA SA in Binary Low 4-Bits INTERLEAVE Phase Shift in Degrees
19h 00011001 1001 9 202.5
1Ah 00011010 1010 10 225
1Bh 00011011 1011 11 247.5
1Ch 00011100 1100 12 270
1Dh 00011101 1101 13 292.5
1Eh 00011110 1110 14 315
1Fh 00011111 1111 15 337.5
20h 00100000 0000 0 0
21h 00100001 0001 1 22.5
22h 00100010 0010 2 45
23h 00100011 0011 3 67.5
24h 00100100 0100 4 90
25h 00100101 0101 5 112.5
26h 00100110 0110 6 135
27h 00100111 0111 7 157.5
28h 00101000 1000 8 180
29h 00101001 1001 9 202.5
FN9349 Rev.1.00 Page 29 of 56
Feb 8, 2019
RAA210825 5. PCB Layout Guidelines
5. PCB Layout Guidelines
To achieve stable operation, low losses, and good thermal performance, some layout considerations are necessary.
•For V
DD > 6V, the recommended PCB layout is shown in Figure 27. Leave V25, VDDC, VR5, and VR6 as “No
Connect (NC)”.
For 5.5V VDD 6V, connect the VDDC pin to the VR6 pin. For 4.5 VDD < 5.5V, connect the VDDC pin to the
VR6 and VR5 pin. An RC filter is required at the input of the VDRVIN pin if input supply is shared with the VIN pin.
Establish a separate SGND plane and PGND plane, then connect the SGND to the PGND plane as shown in
Figure 28 in the middle layer. For making connections between SGND/PGND on the top layer and other layers, use
multiple vias for each pin to connect to the inner SGND/PGND layer. Do not connect SGND directly to PGND on a
top layer. Connecting SGND directly to PGND without establishing an SGND plane bypasses the decoupling
capacitor at internal reference supplies, making the controller susceptible to noise.
Place ceramic capacitors between VIN and PGND, VOUT and PGND, and the bypass capacitors between VDD and
the ground plane, as close to the module as possible to minimize high frequency noise.
Use large copper areas for power path (VIN, PGND, VOUT) to minimize conduction loss and thermal stress. Also,
use multiple vias to connect the power planes in different layers. Extra ceramic capacitors at VIN and VOUT can be
placed on the bottom layer under VIN and VOUT pads when multiple vias are used for connecting copper pads on
top and bottom layers.
Connect differential remote-sensing traces to the regulation point to achieve a tight output voltage regulation. Route a trace
from and VSEN+ to the point-of-load where the tight output voltage is desired. Avoid routing any sensitive signal traces,
such as the VSENSE signal near VSWH pads.
For noise sensitive applications, Renesas recommends that the user connect the VSWH pads only on the top layer;
however, thermal performance is sacrificed. External airflow might be required to keep module heat at desired level.
For applications where switching noise is less critical, an excellent thermal performance can be achieved in the
RAA210825 module by increasing copper mass attached to VSWH pad. To increase copper mass on the VSWH node,
create copper islands in the middle and bottom layers under the VSWH pad and connect them to the top layer with
multiple vias. Make sure to shield those copper islands with a PGND layer to avoid any interference to noise sensitive
signals.
Figure 27. Recommended Layout - Top PCB Layer
EN
SYNC
SCL
SDA
SALRT
SA
CFG
VSET
NC
SGND
ASCR
VSEN -
NC
NC
VSEN+
NC
A
B
C
SGND
VDD
VOUT
SGND
VSWH
PGND
VIN
PGND
PG
UVLO
PGND
PHASE
NC NC
VDDCVR25 VR5 VR6
PGND
NC
CVIN
CVDD
SGND
PGND
NC
VDRVOUT
VDRVIN
C
CVOUT
VR55
VCC
RC
C
FN9349 Rev.1.00 Page 30 of 56
Feb 8, 2019
RAA210825 5. PCB Layout Guidelines
Figure 28. Recommended Layout - Connect SGND to PGND in the Middle PCB Layer After
Establishing Separate SGND and PGND
5.1 Thermal Considerations
Experimental power loss curves, along with θJA from thermal modeling analysis, can be used to evaluate the
thermal consideration for the module. The derating curves are derived from the maximum power allowed while
maintaining the temperature below the maximum junction temperature of +125°C. In actual application, consider
other heat sources and design margins.
5.2 Package Description
The RAA210825 uses the High Density Array (HDA) no-lead package. This kind of package has advantages, such as
good thermal and electrical conductivity, low weight, and small size. The HDA package is applicable for surface
mounting technology and is being more readily used in the industry. The RAA210825 contains several types of
devices, including resistors, capacitors, inductors, and control ICs. The RAA210825 is a copper lead-frame based
package with exposed copper thermal pads, which have good electrical and thermal conductivity. The copper lead
frame and multi-component assembly is overmolded with polymer mold compound to protect these devices.
The package outline, a typical PCB land pattern design, and a typical stencil opening edge position are shown in the
Package Outline Drawing section starting on page 49. The module has a small size of 17mmx19mmx3.6mm.
Figure 29 on page 31 shows typical reflow profile parameters. These guidelines are general design rules. Users can
modify parameters according to their application.
5.3 PCB Layout Pattern Design
The bottom of the RAA210825 is a lead-frame footprint, which is attached to the PCB by surface mounting process.
The PCB land pattern is shown in the Package Outline Drawing section starting on page 49.
The PCB layout pattern is an array of solder mask defined PCB lands which align with the perimeters of the HDA
exposed pads and I/O termination dimensions. The thermal lands on the PCB layout also feature an array of solder
mask defined lands and should match 1:1 with the package exposed die pad perimeters. The exposed solder mask
defined PCB land area should be 50-80% of the available module I/O area.
PGND
Connect SGND to PGND in the
middle layer
SGND
SGND
SGND
SGND
PGND
PGND
PGND
FN9349 Rev.1.00 Page 31 of 56
Feb 8, 2019
RAA210825 5. PCB Layout Guidelines
5.4 Thermal Vias
A grid of 1.0mm to 1.2mm pitch thermal vias, which drops down and connects to buried copper plane(s), should be
placed under the thermal land. The vias should be about 0.3mm to 0.33mm in diameter with the barrel plated to
about 1.0 ounce copper. Although adding more vias (by decreasing via pitch) improves the thermal performance,
diminishing returns are seen as more and more vias are added. Simply use as many vias as practical for the thermal
land size and that your board design rules allow.
5.5 Stencil Pattern Design
Reflowed solder joints on the perimeter I/O lands should have about a 50µm to 75µm (2 mil to 3 mil) standoff
height. The solder paste stencil design is the first step in developing optimized, reliable solder joints.
The stencil aperture size to solder mask defined PCB land size ratio should typically be 1:1. The aperture width can
be reduced slightly to help prevent solder bridging between adjacent I/O lands. A typical solder stencil pattern is
shown in the Package Outline Drawing section starting on page 49.
Consider the symmetry of the whole stencil pattern when designing its pads. A laser cut, stainless steel stencil with
electropolished trapezoidal walls is recommended. Electropolishing “smooths” the aperture walls resulting in
reduced surface friction and better paste release, which reduces voids. Using a Trapezoidal Section Aperture (TSA)
also promotes paste release and forms a “brick like” paste deposit that assists in firm component placement. A
0.1mm to 0.15mm stencil thickness is recommended for this large pitch (1.3mm) HDA.
5.6 Reflow Parameters
Due to the low mount height of the HDA, aNo Clean Type 3 solder paste per ANSI/J-STD-005 is recommended.
Nitrogen purge is also recommended during reflow. A system board reflow profile depends on the thermal mass of
the entire populated board, thus it is not practical to define a specific soldering profile just for the HDA. The profile
given in Figure 29 is provided as a guideline, to be customized for varying manufacturing practices and
applications.
.
Figure 29. Typical Reflow Profile
0300100 150 200 250 350
0
50
100
150
200
250
300
Temperature (°C)
Duration (s)
Slow Ramp (3°C/s MAX)
and Soak From +150°C
to +200°C for 60s~180s
Ramp Rate 1.5°C from +70°C to +90°C
Peak Temperature ~+245°C;
Typically 60s-150s Above +217°C
Keep Less than 30s within 5°C of Peak Temp.
FN9349 Rev.1.00 Page 32 of 56
Feb 8, 2019
RAA210825 6. PMBus Command Summary
6. PMBus Command Summary
Command
Code
Command
Name Description Type
Data
Format
Default
Value
Default
Setting Pg#
01h OPERATION Sets Enable, Disable R/W Byte BIT 35
02h ON_OFF_CONFIG Configures the EN pin and
PMBus commands to turn the
unit ON/OFF.
R/W Byte BIT 16h Hardware
Enable, Soft
Off
35
03h CLEAR_FAULTS Clears fault indications. Send Byte 35
21h VOUT_COMMAND Sets the nominal value of the
output voltage.
R/W Word L16u Pin-Strap 36
24h VOUT_MAX Sets the maximum possible
value of VOUT
. 110% of
pin-strap VOUT
.
R/W Word L16u 1.1 x VOUT
Pin-Strap
36
33h FREQUENCY_SWITCH Sets the switching frequency. R/W Word L11 Pin-Strap 36
37h INTERLEAVE Configures a phase offset
between devices sharing a
SYNC clock.
R/W Word BIT Set based on
PMBus
Address
36
40h VOUT_OV_FAULT_LIMIT Sets the VOUT overvoltage
fault threshold.
R/W Word L16u 1.15 x VOUT
Pin-Strap
37
44h VOUT_UV_FAULT_LIMIT Sets the VOUT undervoltage
fault threshold.
R/W Word L16u 0.85 x VOUT
Pin-Strap
37
46h IOUT_OC_FAULT_LIMIT Sets the IOUT average
overcurrent fault threshold.
R/W Word L11 DBC0h 30A 37
4Bh IOUT_UC_FAULT_LIMIT Sets the IOUT average
undercurrent fault threshold.
R/W Word L11 DC3Fh -30A 37
4Fh OT_FAULT_LIMIT Sets the over-temperature
fault threshold.
R/W Word L11 EB98h +115°C 38
53h UT_FAULT_LIMIT Sets the under-temperature
fault threshold.
R/W Word L11 E530h -45°C 38
55h VIN_OV_FAULT_LIMIT Sets the VIN overvoltage fault
threshold.
R/W Word L11 D3A0h 14.5V 38
59h VIN_UV_FAULT_LIMIT Sets the VIN undervoltage
fault threshold.
R/W Word L11 Pin-Strap 38
5Eh POWER_GOOD_ON Sets the voltage threshold for
Power-good indication.
R/W Word L16u 0.9 x VOUT
Pin-Strap
39
60h TON_DELAY Sets the delay time from
ENABLE to start of VOUT rise.
R/W Word L11 Pin-Strap 39
61h TON_RISE Sets the rise time of VOUT
after ENABLE and
TON_DELAY.
R/W Word L11 Pin-Strap 39
64h TOFF_DELAY Sets the delay time from
DISABLE to start of VOUT fall.
R/W Word L11 Pin-Strap 39
65h TOFF_FALL Sets the fall time for VOUT
after DISABLE and
TOFF_DELAY.
R/W Word L11 Pin-Strap 40
78h STATUS_BYTE Returns an abbreviated status
for fast reads.
Read Byte BIT 00h No Faults 40
79h STATUS_WORD Returns information with a
summary of the unit's fault
condition.
Read Word BIT 0000h No Faults 41
FN9349 Rev.1.00 Page 33 of 56
Feb 8, 2019
RAA210825 6. PMBus Command Summary
7Ah STATUS_VOUT Returns the VOUT specific
status.
Read Byte BIT 00h No Faults 41
7Bh STATUS_IOUT Returns the IOUT specific
status.
Read Byte BIT 00h No Faults 42
7Ch STATUS_INPUT Returns specific status
specific to the input.
Read Byte BIT 00h No Faults 42
7Dh STATUS_TEMP Returns the temperature
specific status.
Read Byte BIT 00h No Faults 42
7Eh STATUS_CML Returns the communication,
logic, and memory specific
status.
Read Byte BIT 00h No Faults 43
80h STATUS_MFR_SPECIFIC Returns the VMON and
external sync clock specific
status.
Read Byte BIT 00h No Faults 43
88h READ_VIN Returns the input voltage
reading.
Read Word L11 44
8Bh READ_VOUT Returns the output voltage
reading.
Read Word L16u 44
8Ch READ_IOUT Returns the output current
reading.
Read Word L11 44
8Dh READ_INTERNAL_TEMP Returns the temperature
reading internal to the device.
Read Word L11 44
94h READ_DUTY_CYCLE Returns the duty cycle reading
during the ENABLE state.
Read Word L11 44
95h READ_FREQUENCY Returns the measured
operating switch frequency.
Read Word L11 44
DFh ASCR_CONFIG Configures ASCR control
loop.
R/W Block CUS Pin-Strap 45
E4h DEVICE_ID Returns the 16-byte
(character) device identifier
string.
Read Block ASCII Reads Device
Version
45
E5h MFR_IOUT_OC_FAULT_RESPONSE Configures the IOUT
overcurrent fault response.
R/W Byte BIT B9h Disable and
Retry with
70ms delay
45
E6h MFR_IOUT_UC_FAULT_RESPONSE Configures the IOUT
undercurrent fault response.
R/W Byte BIT B9h Disable and
Retry with
70ms delay
46
EAh SNAPSHOT Returns 32-byte read-back of
parametric and status values.
Read Block BIT 46
F3h SNAPSHOT_CONTROL Snapshot feature control
command.
R/W Byte BIT 47
F5h MFR_VMON_OV_FAULT_LIMIT Returns the VMON
overvoltage threshold.
Read Word L11 CB00h 6V 47
F6h MFR_VMON_UV_FAULT_LIMIT Returns the VMON
undervoltage threshold.
Read Word L11 CA00h 4V 47
F7h MFR_READ_VMON Returns the VMON voltage
reading. VMON is used to
monitor VDRVOUT (Pin 8)
voltage through an internal
16:1 resistor divider.
Read Word L11 47
Command
Code
Command
Name Description Type
Data
Format
Default
Value
Default
Setting Pg#
FN9349 Rev.1.00 Page 34 of 56
Feb 8, 2019
RAA210825 6. PMBus Command Summary
6.1 PMBus Data Formats
Linear-11 (L11) - L11 data format uses 5-bit two’s compliment exponent (N) and 11-bit two’s compliment
mantissa (Y) to represent real world decimal value (X). The relation between the real world decimal value (X), N
and Y is: X = Y · 2N
Linear-16 Unsigned (L16u) - The L16u data format uses a fixed exponent (hard-coded to N = -13h) and a 16-bit
unsigned integer mantissa (Y) to represent real world decimal value (X). The relation between the real world
decimal value (X), N and Y is: X = Y · 2-13
Linear-16 Signed (L16s) - The L16s data format uses a fixed exponent (hard-coded to N = -13h) and a 16-bit
two’s compliment mantissa (Y) to represent real world decimal value (X).
Relation between the real world decimal value (X), N, and Y is: X = Y · 2-13
Bit Field (BIT) - An explanation of Bit Field is provided in PMBus on PMBus Command Descriptions” on
page 35.
Custom (CUS) - An explanation of custom data format is provided in PMBus PMBus Command Descriptions
on page 35. A combination of Bit Field and integer are common type of custom data format.
ASCII (ASC) - A variable length string of text characters that uses the ASCII data format.
6.2 PMBus Use Guidelines
The PMBus is a powerful tool for configuring devices for circuit performance optimization. When configuring a
device in a circuit, the device should be disabled whenever most settings are changed with PMBus commands. Some
exceptions to this recommendation are OPERATION, ON_OFF_CONFIG, CLEAR_FAULTS, VOUT_COMMAND,
and ASCCR_CONFIG. Any command can be read while the device is enabled. Many commands do not take effect
until after the device has been re-enabled, hence the recommendation that commands that change device settings are
written while the device is disabled.
In addition, there should be a 2ms delay between repeated READ commands sent to the same device. When sending
any other command, a 5ms delay is recommended between repeated commands sent to the same device.
Commands not listed in the PMBus command summary are not allowed for customer use, and are reserved for factory
use only. Issuing reserved commands may result in unexpected operation
Data Byte High Data Byte Low
Exponent (N) Mantissa (Y)
76543210 76543210
FN9349 Rev.1.00 Page 35 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
7. PMBus Command Descriptions
OPERATION (01h)
Definition: Sets the Enable and Disable.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: 40h
Units: N/A
ON_OFF_CONFIG (02h)
Definition: Configures the interpretation and coordination of the OPERATION command and the ENABLE pin (EN).
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: 16h (Device starts from ENABLE pin with soft off)
Units: N/A
CLEAR_FAULTS (03h)
Definition: Clears all fault bits in all registers and releases the SALRT pin (if asserted) simultaneously. If a fault
condition still exists, the bit reasserts immediately. This command does not restart a device if it has shut down, it only
clears the faults.
Data Length in Bytes: 0
Data Format: N/A
Type: Send only
Default Value: N/A
Units: N/A
Reference: N/A
Settings Actions
00h Immediate off
40h Soft off
80h On
Settings Actions
00h Device starts any time power is present regardless of the ENABLE pin or OPERATION command states.
16h Device starts from the ENABLE pin with soft off.
17h Device starts from the ENABLE pin with immediate off.
1Ah Device starts from the OPERATION command.
FN9349 Rev.1.00 Page 36 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
VOUT_COMMAND (21h)
Definition: Sets or reports the target output voltage. This command cannot set a value higher than either VOUT_MAX
or 110% of the pin-strap VOUT setting.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: Pin-strap setting
Units: Volts
Range: 0V to VOUT_MAX
VOUT_MAX (24h)
Definition: Sets an upper limit on the output voltage the unit can command regardless of any other commands or
combinations. The command provides a safeguard against a user accidentally setting the output voltage to a possibly
destructive level rather than to be the primary output overprotection. The default value can be changed using PMBus.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 1.10 x VOUT pin-strap setting
Units: Volts
Range: 0V to 5.5V
FREQUENCY_SWITCH (33h)
Definition: Sets the switching frequency of the device. Initial default value is defined by a pin-strap and this value can
be overridden by writing this command using PMBus. If an external SYNC is utilized, this value should be set as close
as possible to the external clock value. The output must be disabled when writing this command.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: kHz
Range: 296kHz to 1067kHz
INTERLEAVE (37h)
Definition: Configures the phase offset of a device that is sharing a common SYNC clock with other devices. The
phase offset of each device can be set to any value between 0° and 360° in 22.5° increments.
Data Length in Bytes: 2
Data Format: BIT
Type: R/W
Default Value: Pin-strap setting of SA
Bits Purpose Value Description
15:8 Reserved 0 Reserved
7:4 Group Number 0 to 15 Sets the number of rails in the group. A value of 0 is interpreted as 16
3:0 Position in Group 0 to 15 Sets position of the device's rail within the group
FN9349 Rev.1.00 Page 37 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
VOUT_OV_FAULT_LIMIT (40h)
Definition: Sets the VOUT overvoltage fault threshold.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 1.15 x VOUT pin-strap setting
Units: V
Range: 0V to VOUT_MAX
VOUT_UV_FAULT_LIMIT (44h)
Definition: Sets the VOUT undervoltage fault threshold. This fault is masked during ramp or when disabled.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 0.85 x VOUT pin-strap setting
Units: V
Range: 0V to VOUT_MAX
IOUT_OC_FAULT_LIMIT (46h)
Definition: Sets the IOUT average overcurrent fault threshold. The device automatically calculates the peak inductor
overcurrent fault limit.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: DBC0h (30A)
Units: A
Range: -100A to 100A
IOUT_UC_FAULT_LIMIT (4Bh)
Definition: Sets the IOUT average undercurrent fault threshold. The device automatically calculates the valley inductor
undercurrent fault limit.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: DC3Fh (-30A)
Units: A
Range: -100A to 100A
FN9349 Rev.1.00 Page 38 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
OT_FAULT_LIMIT (4Fh)
Definition: Sets the temperature at which the device should indicate an over-temperature fault. Note that the
temperature must drop below OT_FAULT_LIMIT to clear this fault.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: EB98h (+115˚C)
Units: Celsius
Range: 0°C to +150°C
UT_FAULT_LIMIT (53h)
Definition: Sets the temperature, in degrees Celsius, of the unit where it should indicate an under-temperature fault.
Note that the temperature must rise above UT_FAULT_LIMIT to clear this fault.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E530h (-45°C)
Units: Celsius
Range: -55°C to +25°C
VIN_OV_FAULT_LIMIT (55h)
Definition: Sets the VIN overvoltage fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: D3A0h (14.5V)
Units: V
Range: 0V to 16V
VIN_UV_FAULT_LIMIT (59h)
Definition: Sets the VIN undervoltage fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: V
Range: 0V to 12V
FN9349 Rev.1.00 Page 39 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
POWER_GOOD_ON (5Eh)
Definition: Sets the voltage threshold for Power-good indication. Power-good asserts after the output voltage exceeds
POWER_GOOD_ON and deasserts when the output voltage is less than VOUT_UV_FAULT_LIMIT. Renesas
recommends to set POWER_GOOD_ON higher than VOUT_UV_FAULT_LIMIT.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 0.9 x VOUT pin-strap setting
Units: V
TON_DELAY (60h)
Definition: Sets the delay time from when the device is enabled to the start of VOUT rise.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: CA80h (5ms)
Units: ms
Range: 2ms to 300ms
TON_RISE (61h)
Definition: Sets the rise time of VOUT after ENABLE and TON_DELAY.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: CA80h (5ms)
Units: ms
Range: 1ms to 120ms
TOFF_DELAY (64h)
Definition: Sets the delay time from DISABLE to start of VOUT fall.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: CA80h (5ms)
Units: ms
Range: 2ms to 300ms
FN9349 Rev.1.00 Page 40 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
TOFF_FALL (65h)
Definition: Sets the fall time for VOUT after DISABLE and TOFF_DELAY.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: CA80h (5ms)
Units: ms
Range: 0ms to 120ms
STATUS_BYTE (78h)
Definition: Returns one byte of information with a summary of the most critical faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 BUSY A fault was declared because the device was busy and unable to respond.
6 OFF This bit is asserted if the unit is not providing power to the output, regardless of the reason,
including simply not being enabled.
5 VOUT_OV_FAULT An output overvoltage fault occurred.
4 IOUT_OC_FAULT An output overcurrent fault occurred.
3 VIN_UV_FAULT An input undervoltage fault occurred.
2 TEMPERATURE A temperature fault occurred.
1 CML A communications, memory, or logic fault occurred.
0 NONE OF THE ABOVE A fault not listed in Bits 7:1 occurred.
FN9349 Rev.1.00 Page 41 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
STATUS_WORD (79h)
Definition: Returns two bytes of information with a summary of the unit's fault condition. Based on the information in
these bytes, the host can get more information by reading the appropriate status registers. The low byte of the
STATUS_WORD is the same register as the STATUS_BYTE (78h) command.
Data Length in Bytes: 2
Data Format: BIT
Type: Read only
Default Value: 0000h
Units: N/A
STATUS_VOUT (7Ah)
Definition: Returns one data byte with the status of the output voltage.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
15 VOUT An output voltage fault occurred.
14 IOUT/POUT An output current or output power fault occurred.
13 INPUT An input voltage, input current, or input power fault occurred.
12 MFG_SPECIFIC A manufacturer specific fault occurred.
11 POWER_GOOD# The POWER_GOOD signal, if present, is negated.
10 Reserved Reserved
9 OTHER A bit in STATUS_OTHER is set.
8 UNKNOWN A fault type not given in Bits 15:1 of the STATUS_WORD was detected.
7 BUSY A fault was declared because the device was busy and unable to respond.
6 OFF This bit is asserted if the unit is not providing power to the output, regardless of the reason,
including simply not being enabled.
5 VOUT_OV_FAULT An output overvoltage fault occurred.
4 IOUT_OC_FAULT An output overcurrent fault occurred.
3 VIN_UV_FAULT An input undervoltage fault occurred.
2 TEMPERATURE A temperature fault occurred.
1 CML A communications, memory, or logic fault occurred.
0 NONE OF THE ABOVE A fault not listed in Bits 7:1 occurred.
Bit Number Status Bit Name Meaning
7 VOUT_OV_FAULT Indicates an output overvoltage fault.
6:5 Reserved Reserved
4 VOUT_UV_FAULT Indicates an output undervoltage fault.
3:0 N/A These bits are not used.
FN9349 Rev.1.00 Page 42 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
STATUS_IOUT (7Bh)
Definition: Returns one data byte with the status of the output current.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
STATUS_INPUT (7Ch)
Definition: Returns input voltage status information.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
STATUS_TEMP (7Dh)
Definition: Returns one byte of information with a summary of any temperature related faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 IOUT_OC_FAULT An output overcurrent fault occurred.
6:5 Reserved Reserved
4 IOUT_UC_FAULT An output undercurrent fault occurred.
3:0 N/A These bits are not used.
Bit Number Status Bit Name Meaning
7 VIN_OV_FAULT An input overvoltage fault occurred.
6:5 Reserved Reserved
4 VIN_UV_FAULT An input undervoltage fault occurred.
3:0 N/A These bits are not used.
Bit Number Status Bit Name Meaning
7 OT_FAULT An over-temperature fault occurred.
6:5 Reserved Reserved
4 UT_FAULT An under-temperature fault occurred.
3:0 N/A These bits are not used.
FN9349 Rev.1.00 Page 43 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
STATUS_CML (7Eh)
Definition: Returns one byte of information with a summary of any communications, logic, and/or memory errors.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default Value: 00h
Units: N/A
STATUS_MFR_SPECIFIC (80h)
Definition: Returns one byte of information providing the status of the device's voltage monitoring and clock
synchronization faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default value: 00h
Units: N/A
Bit Number Meaning
7 Invalid or unsupported PMBus command was received.
6 The PMBus command was sent with invalid or unsupported data.
5 Packet error was detected in the PMBus command.
4 Memory/logic fault was detected.
3:2 Reserved
1 A PMBus command tried to write to a Read only or protected command, or a communication fault other than the ones
listed in this table occurred.
0 Reserved
Bit Number Field Name Meaning
7:4 Reserved Reserved
3 External Switching Period Fault Loss of external clock synchronization occurred.
2 Reserved Reserved
1 VMON UV Fault The voltage on the VMON pin dropped below the level set by VMON_UV_FAULT.
0 VMON OV Fault The voltage on the VMON pin rose above the level set by VMON_OV_FAULT.
FN9349 Rev.1.00 Page 44 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
READ_VIN (88h)
Definition: Returns the input voltage reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: V
READ_VOUT (8Bh)
Definition: Returns the output voltage reading.
Data Length in Bytes: 2
Data Format: L16u
Type: Read only
Units: V
READ_IOUT (8Ch)
Definition: Returns the output current reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: N/A
Units: A
READ_INTERNAL_TEMP (8Dh)
Definition: Returns the controller junction temperature reading from internal temperature sensor.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: °C
READ_DUTY_CYCLE (94h)
Definition: Reports the actual duty cycle of the converter during the enable state.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: %
READ_FREQUENCY (95h)
Definition: Reports the actual switching frequency of the converter during the enable state.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: kHz
FN9349 Rev.1.00 Page 45 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
ASCR_CONFIG (DFh)
Definition: Allows user configuration of ASCR settings. ASCR gain is analogous to bandwidth and ASCR residual is
analogous to damping. To improve load transient response performance, increase ASCR gain. To lower transient
response overshoot, increase ASCR residual. Increasing ASCR gain can result in increased PWM jitter and should be
evaluated in the application circuit. Excessive ASCR gain can lead to excessive output voltage ripple. Increasing
ASCR residual to improve transient response damping can result in slower recovery times, but does not affect the peak
output voltage deviation.
Data Length in Bytes: 4
Data Format: CUS
Type: R/W
Default Value: Pin-strap setting
DEVICE_ID (E4h)
Definition: Returns the 16-byte (character) device identifier string.
Data Length in Bytes: 16
Data Format: ASCII
Type: Block Read
Default Value: Part number/Die revision/Firmware revision
MFR_IOUT_OC_FAULT_RESPONSE (E5h)
Definition: Configures the IOUT overcurrent fault response as defined by the following table. The command format is
the same as the PMBus standard fault responses except that it sets the overcurrent status bit in STATUS_IOUT.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: B9h (Disable and Continuous Retry with 70ms delay)
Units: N/A
BIT Purpose Data Format Value Description
31:25 Not used 0000000h Not used
24 Reserved Reserved
23:16 ASCR Residual Setting Integer
15:0 ASCR Gain Setting Integer
Settings Actions
80h Disable with no retry.
B9h Disable and continuous retry with 70ms delay.
FN9349 Rev.1.00 Page 46 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
MFR_IOUT_UC_FAULT_RESPONSE (E6h)
Definition: Configures the IOUT undercurrent fault response as defined by the following table. The command format is
the same as the PMBus standard fault responses except that it sets the undercurrent status bit in STATUS_IOUT.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: B9h (Disable and Continuous Retry with 70ms delay)
Units: N/A
SNAPSHOT (EAh)
Definition: A 32-byte read-back of parametric and status values. It allows monitoring and status data to be stored to
flash following a fault condition. In case of a fault, the most recently updated values are stored to the flash memory.
When the SNAPSHOT STATUS bit is stored, the device no longer automatically captures parametric and status values
following a fault until stored data are erased. Use the SNAPSHOT_CONTROL command to erase stored data and
clear the status bit before the next ramp up. Data erased is not allowed when the module is enabled.
Data Length in Bytes: 32
Data Format: Bit field
Type: Block Read
Settings Actions
80h Disable with no retry.
B9h Disable and continuous retry with 70ms delay.
Byte Number Value PMBus Command FORMAT
31:23 Reserved Reserved 00h
22 Flash Memory Status Byte
FF - Not Stored
00 - Stored
NVM Status Byte BIT
21 Manufacturer Specific Status Byte STATUS_MFR_SPECIFIC (80h) Byte
20 CML Status Byte STATUS_CML (7Eh) Byte
19 Temperature Status Byte STATUS_TEMPERATURE (7Dh) Byte
18 Input Status Byte STATUS_INPUT (7Ch) Byte
17 IOUT Status Byte STATUS_IOUT (7Bh) Byte
16 VOUT Status Byte STATUS_VOUT (7Ah) Byte
15:14 Switching Frequency READ_FREQUENCY (95h) L11
13:12 Reserved Reserved
11:10 Internal Temperature READ_INTERNAL_TEMP (8Dh) L11
9:8 Duty Cycle READ_DUTY_CYCLE (94h) L11
7:6 Reserved Reserved L11
5:4 Output Current READ_IOUT (8Ch) L11
3:2 Output Voltage READ_VOUT (8Bh) L16u
1:0 Input Voltage READ_VIN (88h) L11
FN9349 Rev.1.00 Page 47 of 56
Feb 8, 2019
RAA210825 7. PMBus Command Descriptions
SNAPSHOT_CONTROL (F3h)
Definition: Writing a 01h causes the device to copy the current Snapshot values from NVRAM to the 32-byte
Snapshot command parameter. Writing a 02h causes the device to write the current Snapshot values to NVRAM.
Writing a 03h erases all Snapshot values from NVRAM. Write (02h) and Erase (03h) can only be used when the device
is disabled. All other values are ignored.
Data Length in Bytes: 1
Data Format: Bit Field
Type: R/W Byte
MFR_VMON_OV_FAULT_LIMIT (F5h)
Definition: Reads the VMON OV fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: CB00h (6V)
Units: V
Range: 4V to 6V
MFR_VMON_UV_FAULT_LIMIT (F6h)
Definition: Reads the VMON UV fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: CA00h (4V)
Units: V
Range: 4V to 6V
MFR_READ_VMON (F7h)
Definition: Reads the VMON voltage. VMON is used to monitor VDRVOUT (Pin 8) voltage through an internal 16:1
resistor divider.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Default Value: N/A
Units: V
Range: 4V to 6V
Value Description
01h Read Snapshot values from NVRAM.
02h Write Snapshot values to NVRAM.
03h Erase Snapshot values stored in NVRAM.
FN9349 Rev.1.00 Page 48 of 56
Feb 8, 2019
RAA210825 8. Revision History
8. Revision History
8.1 Firmware
8.2 Datasheet
Table 13. RAA210825 Nomenclature Guide
Firmware
Revision Code Change Description Note
RAA210825--G0100 Initial Release
Rev. Date Description
1.00 Feb 8, 2019 Updated the PG pin description on page 10.
Updated 80h action under OPERATION (01h) command on page 35.
0.00 Sep 12, 2018 Initial release
FN9349 Rev.1.00 Page 49 of 56
Feb 8, 2019
RAA210825 9. Package Outline Drawing
9. Package Outline Drawing
Y41.17x19
41 I/O 17.0mm x 19.0mmx3.6mm HDA Module
Rev 1, 5/16
2X0.10 C
3.6 ±0.1
0.025 MAX
// 0.10 C
C
SIDE VIEW
0.08 CSEATING
DETAIL A
TERMINAL #A1
INDEX AREA
B
TOP VIEW
0.20 REF
21 x 0.60 ±0.05
3
3
0.05 C
TERMINAL TIP
BOTTOM VIEW
PIN 1 INDICATOR
DATUM B
DATUM A
0.30 REF
SEE
0.30 REF
21 x 0.60 ±0.05
0.20 REF
1.00 BSC
1.00 BSC
2
2
DETAIL A
PLANE
2X
0.10 C
17.00 BSC
19.00 BSC
A
18.50 ±0.15
16.50 ±0.15
M0.10 C A B
M0.10 C A B
12.00
M0.10 C A B
M
NOTES:
1. All dimensions are in millimeters.
2. Represents the basic land grid pitch.
3. The total number of I/O (excluding dummy pads).
4. Unless otherwise specified, tolerance: decimal ±0.10.
5. Dimensioning and tolerancing per ASME Y14.M-2009.
6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated.
The pin #1 identifier may be either a mold or mark feature.
2.975
1.350
0.20 REF
0.475
1.300
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
12345678910111213141516
17
9.00
For the most recent package outline drawing, see Y41.17x19.
FN9349 Rev.1.00 Page 50 of 56
Feb 8, 2019
RAA210825 9. Package Outline Drawing
SIZE DETAILS FOR THE 16 EXPOSED DAPS
BOTTOM VIEW
2.50
0.60
1.50
4X
0.60
0.80
2.00
0.70
0.70
1.30
0.60
1.00
0.60
1.00 0.60
0.60
1.60
2X 1.60
2X 0.60
1.50
0.60
0.80
5.10
7.60
4.90
2.00
8.20
8.20
5.10
1.50
1.80
3.00 1.50
1.40
2.00
2.70
3.05
4.805.80
10.00
3.00
3.50
4X 1.60
FN9349 Rev.1.00 Page 51 of 56
Feb 8, 2019
RAA210825 9. Package Outline Drawing
SIZE DETAILS FOR THE 16 EXPOSED DAPS
TOP VIEW
2.50
0.60
1.50
4X
0.60
0.80
2.00
0.70
0.70
1.30
0.60
1.00
0.60
1.00
0.60
0.60
1.60
2X 1.60
2X 0.60
1.50
0.60
0.80
5.10
7.60
4.90
2.00
8.20 8.20
5.10
1.50
1.80
3.00
1.50
1.40
2.00
2.70
3.05
4.80 5.80
10.00
3.00 3.50
4X 1.60
FN9349 Rev.1.00 Page 52 of 56
Feb 8, 2019
RAA210825 9. Package Outline Drawing
RECOMMENDED SOLDER MASK DEFINED PCB LAND PATTERN (1)
TOP VIEW
0.00
0.000 0.000
0.000
8.500
8.200
7.050
6.850
6.700
5.700
5.300
4.700
4.300
3.700
3.300
2.700
2.300
1.700
1.300
0.700
0.300
0.300
0.700
1.300
1.700
2.300
2.700
3.300
3.700
4.300
4.700
5.300
5.700
6.700
8.300
8.500
0.775
0.175
6.300
7.700
9.500
9.300
8.700
8.300
7.700
7.300
6.700
6.300
5.700
5.300
4.700
4.300
3.700
3.300
2.700
0.044
0.556
0.400
1.400
2.000
6.150
7.575
7.775
5.900
7.900
8.500
9.200
9.500
1.000
2.675
3.275
4.625
8.500
8.300
7.600
7.400
5.550
5.350
5.100
4.900
3.500
3.000
2.800
1.600
0.200
1.400
1.600
3.000
4.700
6.350
6.550
8.200
6.300
1.000
2.700
1.400
8.500
9.500
9.200
7.300
7.100
5.200
5.000
3.100
2.900
1.000
0.300
1.450
1.650
3.400
3.600
5.350
5.550
7.300
8.700
9.300
9.500
8.300
7.700
5.900
7.450
7.650
4.400
5.400
4.025
0.600
FN9349 Rev.1.00 Page 53 of 56
Feb 8, 2019
RAA210825 9. Package Outline Drawing
RECOMMENDED SOLDER MASK DEFINED PCB LAND PATTERN (2)
TOP VIEW
0.000
0.000
0.000
0.000
6.000
5.200
2.200
0.633
0.433
1.133
1.333
2.550
2.900
7.300
6.800
7.100
6.750
5.533
5.333
3.767
3.567
2.000
2.300
1.700
1.100
0.900
0.300
0.900
2.500
3.500
3.700
5.200
5.300
4.700
2.900
1.300
1.700
3.300
3.700
5.300
5.700
6.900
6.700
0.300
7.300
6.300
FN9349 Rev.1.00 Page 54 of 56
Feb 8, 2019
RAA210825 9. Package Outline Drawing
RECOMMENDED STENCIL PATTERN (90% PASTE TO PAD) (1)
TOP VIEW
0.000
0.000 0.000
0.000
8.500
8.180
7.070
6.830
5.720
5.280
4.720
4.285
3.715
3.285
2.715
2.285
1.715
1.285
0.715
0.285
0.285
0.715
1.285
1.715
2.285
2.715
3.285
3.715
4.285
4.715
5.285
5.715
6.285
6.720
8.280
8.500
6.740
7.715
0.760
0.190
9.500
9.280
8.720
8.280
7.720
7.285
6.715
6.285
5.715
5.285
4.715
4.285
3.715
3.285
2.715
1.420
5.940
6.180
7.545
7.805
7.860
8.530
9.170
9.500
0.980
0.420
0.536
0.024
8.500
8.270
7.630
7.370
6.960
5.580
5.320
5.140
4.860
3.530
3.040
0.040
1.360
1.640
2.960
4.740
6.310
6.590
8.160
8.500
5.380
4.420
2.680
1.420
9.500
8.720
7.720
7.260
5.590
3.640
3.360
1.690
1.410
0.260
1.040
2.860
3.140
4.960
5.240
7.060
7.340
9.160
8.285
6.320
5.310
0.585
1.980
8.280
0.015
FN9349 Rev.1.00 Page 55 of 56
Feb 8, 2019
RAA210825 9. Package Outline Drawing
RECOMMENDED STENCIL PATTERN (90% PASTE TO PAD) (2)
TOP VIEW
0.000
5.970
5.230
2.160
0.673
0.393
1.093
1.373
2.533
2.860
6.330
8.270
7.270
7.730
2.270
1.730
0.930
1.070
0.270
0.870
3.740
5.160
4.610
4.040
3.260
2.690
2.770
1.630
1.370
0.230
1.015
1.585
5.730
7.270
5.270
3.730
3.270
1.730
1.270
0.270
6.733
5.573
5.293
3.807
3.527
2.040
2.940
4.660
6.660
6.940
5.340
8.260
6.330
6.830
7.060
2.530
3.470
5.930
7.420
7.680
9.170
5HQHVDV(OHFWURQLFV&RUSRUDWLRQ$OOULJKWVUHVHUYHG
1RWLFH
 'HVFULSWLRQVRIFLUFXLWVVRIWZDUHDQGRWKHUUHODWHGLQIRUPDWLRQLQWKLVGRFXPHQWDUHSURYLGHGRQO\WRLOOXVWUDWHWKHRSHUDWLRQRIVHPLFRQGXFWRUSURGXFWV
DQGDSSOLFDWLRQH[DPSOHV<RXDUHIXOO\UHVSRQVLEOHIRUWKHLQFRUSRUDWLRQRUDQ\RWKHUXVHRIWKHFLUFXLWVVRIWZDUHDQGLQIRUPDWLRQLQWKHGHVLJQRI\RXU
SURGXFWRUV\VWHP5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\ORVVHVDQGGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPWKHXVHRI
WKHVHFLUFXLWVVRIWZDUHRULQIRUPDWLRQ
 5HQHVDV(OHFWURQLFVKHUHE\H[SUHVVO\GLVFODLPVDQ\ZDUUDQWLHVDJDLQVWDQGOLDELOLW\IRULQIULQJHPHQWRUDQ\RWKHUFODLPVLQYROYLQJSDWHQWVFRS\ULJKWVRU
RWKHULQWHOOHFWXDOSURSHUW\ULJKWVRIWKLUGSDUWLHVE\RUDULVLQJIURPWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRUWHFKQLFDOLQIRUPDWLRQGHVFULEHGLQWKLV
GRFXPHQWLQFOXGLQJEXWQRWOLPLWHGWRWKHSURGXFWGDWDGUDZLQJVFKDUWVSURJUDPVDOJRULWKPVDQGDSSOLFDWLRQH[DPSOHV
 1ROLFHQVHH[SUHVVLPSOLHGRURWKHUZLVHLVJUDQWHGKHUHE\XQGHUDQ\SDWHQWVFRS\ULJKWVRURWKHULQWHOOHFWXDOSURSHUW\ULJKWVRI5HQHVDV(OHFWURQLFVRU
RWKHUV
 <RXVKDOOQRWDOWHUPRGLI\FRS\RUUHYHUVHHQJLQHHUDQ\5HQHVDV(OHFWURQLFVSURGXFWZKHWKHULQZKROHRULQSDUW5HQHVDV(OHFWURQLFVGLVFODLPVDQ\
DQGDOOOLDELOLW\IRUDQ\ORVVHVRUGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPVXFKDOWHUDWLRQPRGLILFDWLRQFRS\LQJRUUHYHUVHHQJLQHHULQJ
 5HQHVDV(OHFWURQLFVSURGXFWVDUHFODVVLILHGDFFRUGLQJWRWKHIROORZLQJWZRTXDOLW\JUDGHV6WDQGDUGDQG+LJK4XDOLW\7KHLQWHQGHGDSSOLFDWLRQVIRU
HDFK5HQHVDV(OHFWURQLFVSURGXFWGHSHQGVRQWKHSURGXFWVTXDOLW\JUDGHDVLQGLFDWHGEHORZ
6WDQGDUG &RPSXWHUVRIILFHHTXLSPHQWFRPPXQLFDWLRQVHTXLSPHQWWHVWDQGPHDVXUHPHQWHTXLSPHQWDXGLRDQGYLVXDOHTXLSPHQWKRPH
HOHFWURQLFDSSOLDQFHVPDFKLQHWRROVSHUVRQDOHOHFWURQLFHTXLSPHQWLQGXVWULDOURERWVHWF
+LJK4XDOLW\ 7UDQVSRUWDWLRQHTXLSPHQWDXWRPRELOHVWUDLQVVKLSVHWFWUDIILFFRQWUROWUDIILFOLJKWVODUJHVFDOHFRPPXQLFDWLRQHTXLSPHQWNH\
ILQDQFLDOWHUPLQDOV\VWHPVVDIHW\FRQWUROHTXLSPHQWHWF
8QOHVVH[SUHVVO\GHVLJQDWHGDVDKLJKUHOLDELOLW\SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV
(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWVDUHQRWLQWHQGHGRUDXWKRUL]HGIRUXVHLQSURGXFWVRUV\VWHPVWKDWPD\SRVHDGLUHFWWKUHDWWR
KXPDQOLIHRUERGLO\LQMXU\DUWLILFLDOOLIHVXSSRUWGHYLFHVRUV\VWHPVVXUJLFDOLPSODQWDWLRQVHWFRUPD\FDXVHVHULRXVSURSHUW\GDPDJHVSDFHV\VWHP
XQGHUVHDUHSHDWHUVQXFOHDUSRZHUFRQWUROV\VWHPVDLUFUDIWFRQWUROV\VWHPVNH\SODQWV\VWHPVPLOLWDU\HTXLSPHQWHWF5HQHVDV(OHFWURQLFVGLVFODLPV
DQ\DQGDOOOLDELOLW\IRUDQ\GDPDJHVRUORVVHVLQFXUUHGE\\RXRUDQ\WKLUGSDUWLHVDULVLQJIURPWKHXVHRIDQ\5HQHVDV(OHFWURQLFVSURGXFWWKDWLV
LQFRQVLVWHQWZLWKDQ\5HQHVDV(OHFWURQLFVGDWDVKHHWXVHUVPDQXDORURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW
 :KHQXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVUHIHUWRWKHODWHVWSURGXFWLQIRUPDWLRQGDWDVKHHWVXVHUVPDQXDOVDSSOLFDWLRQQRWHV*HQHUDO1RWHVIRU
+DQGOLQJDQG8VLQJ6HPLFRQGXFWRU'HYLFHVLQWKHUHOLDELOLW\KDQGERRNHWFDQGHQVXUHWKDWXVDJHFRQGLWLRQVDUHZLWKLQWKHUDQJHVVSHFLILHGE\
5HQHVDV(OHFWURQLFVZLWKUHVSHFWWRPD[LPXPUDWLQJVRSHUDWLQJSRZHUVXSSO\YROWDJHUDQJHKHDWGLVVLSDWLRQFKDUDFWHULVWLFVLQVWDOODWLRQHWF5HQHVDV
(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\PDOIXQFWLRQVIDLOXUHRUDFFLGHQWDULVLQJRXWRIWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRXWVLGHRIVXFK
VSHFLILHGUDQJHV
 $OWKRXJK5HQHVDV(OHFWURQLFVHQGHDYRUVWRLPSURYHWKHTXDOLW\DQGUHOLDELOLW\RI5HQHVDV(OHFWURQLFVSURGXFWVVHPLFRQGXFWRUSURGXFWVKDYHVSHFLILF
FKDUDFWHULVWLFVVXFKDVWKHRFFXUUHQFHRIIDLOXUHDWDFHUWDLQUDWHDQGPDOIXQFWLRQVXQGHUFHUWDLQXVHFRQGLWLRQV8QOHVVGHVLJQDWHGDVDKLJKUHOLDELOLW\
SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWV
DUHQRWVXEMHFWWRUDGLDWLRQUHVLVWDQFHGHVLJQ<RXDUHUHVSRQVLEOHIRULPSOHPHQWLQJVDIHW\PHDVXUHVWRJXDUGDJDLQVWWKHSRVVLELOLW\RIERGLO\LQMXU\
LQMXU\RUGDPDJHFDXVHGE\ILUHDQGRUGDQJHUWRWKHSXEOLFLQWKHHYHQWRIDIDLOXUHRUPDOIXQFWLRQRI5HQHVDV(OHFWURQLFVSURGXFWVVXFKDVVDIHW\
GHVLJQIRUKDUGZDUHDQGVRIWZDUHLQFOXGLQJEXWQRWOLPLWHGWRUHGXQGDQF\ILUHFRQWURODQGPDOIXQFWLRQSUHYHQWLRQDSSURSULDWHWUHDWPHQWIRUDJLQJ
GHJUDGDWLRQRUDQ\RWKHUDSSURSULDWHPHDVXUHV%HFDXVHWKHHYDOXDWLRQRIPLFURFRPSXWHUVRIWZDUHDORQHLVYHU\GLIILFXOWDQGLPSUDFWLFDO\RXDUH
UHVSRQVLEOHIRUHYDOXDWLQJWKHVDIHW\RIWKHILQDOSURGXFWVRUV\VWHPVPDQXIDFWXUHGE\\RX
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHIRUGHWDLOVDVWRHQYLURQPHQWDOPDWWHUVVXFKDVWKHHQYLURQPHQWDOFRPSDWLELOLW\RIHDFK5HQHVDV
(OHFWURQLFVSURGXFW<RXDUHUHVSRQVLEOHIRUFDUHIXOO\DQGVXIILFLHQWO\LQYHVWLJDWLQJDSSOLFDEOHODZVDQGUHJXODWLRQVWKDWUHJXODWHWKHLQFOXVLRQRUXVHRI
FRQWUROOHGVXEVWDQFHVLQFOXGLQJZLWKRXWOLPLWDWLRQWKH(85R+6'LUHFWLYHDQGXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVLQFRPSOLDQFHZLWKDOOWKHVH
DSSOLFDEOHODZVDQGUHJXODWLRQV5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUGDPDJHVRUORVVHVRFFXUULQJDVDUHVXOWRI\RXUQRQFRPSOLDQFH
ZLWKDSSOLFDEOHODZVDQGUHJXODWLRQV
 5HQHVDV(OHFWURQLFVSURGXFWVDQGWHFKQRORJLHVVKDOOQRWEHXVHGIRURULQFRUSRUDWHGLQWRDQ\SURGXFWVRUV\VWHPVZKRVHPDQXIDFWXUHXVHRUVDOHLV
SURKLELWHGXQGHUDQ\DSSOLFDEOHGRPHVWLFRUIRUHLJQODZVRUUHJXODWLRQV<RXVKDOOFRPSO\ZLWKDQ\DSSOLFDEOHH[SRUWFRQWUROODZVDQGUHJXODWLRQV
SURPXOJDWHGDQGDGPLQLVWHUHGE\WKHJRYHUQPHQWVRIDQ\FRXQWULHVDVVHUWLQJMXULVGLFWLRQRYHUWKHSDUWLHVRUWUDQVDFWLRQV
 ,WLVWKHUHVSRQVLELOLW\RIWKHEX\HURUGLVWULEXWRURI5HQHVDV(OHFWURQLFVSURGXFWVRUDQ\RWKHUSDUW\ZKRGLVWULEXWHVGLVSRVHVRIRURWKHUZLVHVHOOVRU
WUDQVIHUVWKHSURGXFWWRDWKLUGSDUW\WRQRWLI\VXFKWKLUGSDUW\LQDGYDQFHRIWKHFRQWHQWVDQGFRQGLWLRQVVHWIRUWKLQWKLVGRFXPHQW
 7KLVGRFXPHQWVKDOOQRWEHUHSULQWHGUHSURGXFHGRUGXSOLFDWHGLQDQ\IRUPLQZKROHRULQSDUWZLWKRXWSULRUZULWWHQFRQVHQWRI5HQHVDV(OHFWURQLFV
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHLI\RXKDYHDQ\TXHVWLRQVUHJDUGLQJWKHLQIRUPDWLRQFRQWDLQHGLQWKLVGRFXPHQWRU5HQHVDV
(OHFWURQLFVSURGXFWV
1RWH 5HQHVDV(OHFWURQLFVDVXVHGLQWKLVGRFXPHQWPHDQV5HQHVDV(OHFWURQLFV&RUSRUDWLRQDQGDOVRLQFOXGHVLWVGLUHFWO\RULQGLUHFWO\FRQWUROOHG
VXEVLGLDULHV
1RWH 5HQHVDV(OHFWURQLFVSURGXFWVPHDQVDQ\SURGXFWGHYHORSHGRUPDQXIDFWXUHGE\RUIRU5HQHVDV(OHFWURQLFV
5HY1RYHPEHU
&RUSRUDWH+HDGTXDUWHUV &RQWDFW,QIRUPDWLRQ
72<268)25(6,$7R\RVX
.RWRNX7RN\R-DSDQ
ZZZUHQHVDVFRP
)RUIXUWKHULQIRUPDWLRQRQDSURGXFWWHFKQRORJ\WKHPRVWXSWRGDWH
YHUVLRQRIDGRFXPHQWRU\RXUQHDUHVWVDOHVRIILFHSOHDVHYLVLW
ZZZUHQHVDVFRPFRQWDFW
7UDGHPDUNV
5HQHVDVDQGWKH5HQHVDVORJRDUHWUDGHPDUNVRI5HQHVDV(OHFWURQLFV
&RUSRUDWLRQ$OOWUDGHPDUNVDQGUHJLVWHUHGWUDGHPDUNVDUHWKHSURSHUW\
RIWKHLUUHVSHFWLYHRZQHUV
Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
Contact Information
For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.