Product Folder Order Now Technical Documents Support & Community Tools & Software LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 LM5575-Q1 75-V, 1.5-A Step-Down Switching Regulator 1 Features 3 Description * The LM5575-Q1 is an easy-to-use buck regulator that allows design engineers to design and optimize a robust power supply using a minimum set of components. Operating with an input voltage range of 6 V to 75 V, the LM5575-Q1 delivers 1.5 A of continuous output current with an integrated 330-m N-Channel MOSFET. The regulator utilizes an emulated current mode architecture which provides inherent line regulation, tight load-transient response, and ease-of-loop compensation without the usual limitation of low-duty cycles associated with current mode regulators. The operating frequency is adjustable from 50 kHz to 500 kHz to allow optimization of size and efficiency. To reduce EMI, a frequency synchronization pin allows multiple ICs from the LM(2)557x devices to self-synchronize or to synchronize to an external clock. The LM5575-Q1 ensures robustness with cycle-by-cycle current limit, short-circuit protection, thermal shutdown, and remote shutdown. The device is available in a power enhanced 16-pin HTSSOP package featuring an exposed die attach pad for thermal dissipation. The LM5575-Q1 is supported by the full suite of WEBENCH(R) On-Line design tools. 1 * * * * * * * * * * * * AEC-Q100 Qualified for Automotive Applications: - Device Temperature Grade 1: -40C to +125C Ambient Operating Temperature - Device HBM ESD Classification Level 2 -40C to 150C Operating Junction Temperature Integrated 75-V, 330-m N-Channel MOSFET Ultra-Wide Input-Voltage From 6 V to 75 V Adjustable Output Voltage as Low as 1.225 V 1.65% Feedback Reference Accuracy Operating Frequency Adjustable Between 50 kHz and 500 kHz With Single Resistor Master or Slave Frequency Synchronization Adjustable Soft Start Emulated Current-Mode-Control Architecture Wide Bandwidth Error Amplifier Built-In Protection Create a Custom Design Using the LM5575-Q1 With the WEBENCH(R) Power Designer 2 Applications * * Device Information(1) Automotive Industrial PART NUMBER LM5575-Q1 PACKAGE BODY SIZE (NOM) HTSSOP (16) 5.00 mm x 4.40 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Simplified Schematic VIN VIN BST SYNC SW VOUT LM5575 SD IS RT VCC SS RAMP OUT FB COMP GND 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 5 5 7 Absolute Maximum Ratings ...................................... ESD Ratings ............................................................ Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description .............................................. 9 7.1 7.2 7.3 7.4 Overview ................................................................... 9 Functional Block Diagram ......................................... 9 Feature Description................................................... 9 Device Functional Modes........................................ 10 8 Application and Implementation ........................ 16 8.1 Application Information............................................ 16 8.2 Typical Application ................................................. 17 9 Power Supply Recommendations...................... 23 10 Layout................................................................... 23 10.1 Layout Guidelines ................................................. 23 10.2 Layout Examples................................................... 24 10.3 Thermal Considerations ........................................ 25 11 Device and Documentation Support ................. 25 11.1 11.2 11.3 11.4 11.5 11.6 Device Support .................................................... Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 25 25 25 25 26 26 12 Mechanical, Packaging, and Orderable Information ........................................................... 26 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision C (December 2014) to Revision D Page * Added links for WEBENCH; minor editorial updates for SEO improvement .......................................................................... 1 * Changed RJA from "50C/W" to "38.4C/W" ......................................................................................................................... 5 * Changed RJC(top) from "14C/W" to "21.8C/W"; add additional thermal values ................................................................... 5 * Corrected unit for RL to "k" .................................................................................................................................................. 8 Changes from Revision B (April 2013) to Revision C * Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ................................................................................................................................................................................... 1 Changes from Revision A (April 2013) to Revision B * 2 Page Page Changed layout of National Data Sheet to TI format ........................................................................................................... 25 Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 5 Pin Configuration and Functions PWP Package 16-Pin HTSSOP With Exposed Thermal Pad Top View 1 VCC BST SD PRE VIN SW 2 3 4 5 6 7 8 SYNC IS COMP PGND FB OUT RT SS RAMP AGND 16 15 14 13 12 11 10 9 Pin Functions PIN NO. 1 NAME VCC I/O O DESCRIPTION APPLICATION INFORMATION Output of the bias regulator VCC tracks VIN up to 9 V. Beyond 9 V, VCC is regulated to 7 V. A 0.1-F to 1-F ceramic decoupling capacitor is required. An external voltage (7.5 V - 14 V) can be applied to this pin to reduce internal power dissipation. 2 SD I Shutdown or UVLO input If the SD pin voltage is below 0.7 V the regulator is in a low power state. If the SD pin voltage is between 0.7 V and 1.225 V the regulator is in standby mode. If the SD pin voltage is above 1.225 V the regulator is operational. An external voltage divider can be used to set a line undervoltage shutdown threshold. If the SD pin is left open circuit, a 5-A pull-up current source configures the regulator fully operational. 3 VIN I Input supply voltage Nominal operating range: 6 V to 75 V. 4 SYNC I Oscillator synchronization input or output The internal oscillator can be synchronized to an external clock with an external pull-down device. Multiple LM5575-Q1 devices can be synchronized together by connection of their SYNC pins. 5 COMP O Output of the internal error amplifier The loop compensation network must be connected between this pin and the FB pin. 6 FB I Feedback signal from the regulated output This pin is connected to the inverting input of the internal error amplifier. The regulation threshold is 1.225 V. 7 RT I Internal oscillator frequency set input The internal oscillator is set with a single resistor, connected between this pin and the AGND pin. 8 RAMP O Ramp control signal An external capacitor connected between this pin and the AGND pin sets the ramp slope used for current mode control. Recommended capacitor range 50 pF to 2000 pF. 9 AGND GND Analog ground Internal reference for the regulator control functions 10 SS O Soft start An external capacitor and an internal 10-A current source set the time constant for the rise of the error amp reference. The SS pin is held low during standby, VCC UVLO, and thermal shutdown. Output voltage connection Connect directly to the regulated output voltage. Power ground Low-side reference for the PRE switch and the IS sense resistor. 11 OUT O 12 PGND GND 13 IS I Current sense Current measurement connection for the re-circulating diode. An internal sense resistor and a sample/hold circuit sense the diode current near the conclusion of the off-time. This current measurement provides the DC level of the emulated current ramp. 14 SW O Switching node The source terminal of the internal buck switch. Connect the SW pin to the external Schottky diode and to the buck inductor. Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 3 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com Pin Functions (continued) PIN NO. NAME I/O DESCRIPTION APPLICATION INFORMATION This open-drain output can be connected to SW pin to aid charging the bootstrap capacitor during very light load conditions or in applications where the output may be pre-charged before the LM5575-Q1 is enabled. An internal pre-charge MOSFET is turned on for 250 ns each cycle just prior to the on-time interval of the buck switch. 15 PRE O Pre-charge assist for the bootstrap capacitor 16 BST I Boost input for bootstrap capacitor An external capacitor is required between the BST and the SW pins. TI recommends a 0.022-F ceramic capacitor. The capacitor is charged from VCC through an internal diode during the off-time of the buck switch. NA EP -- Exposed Pad Exposed metal pad on the underside of the device. It is recommended to connect this pad to the PWB ground plane, in order to aid in heat dissipation. 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) (2). MAX UNIT VIN to GND MIN 76 V BST to GND 90 V PRE to GND 76 V -1.5 V BST to VCC 76 V SD, VCC to GND 14 V BST to SW 14 V SW to GND (steady state) OUT to GND Limited to VIN SYNC, SS, FB, RAMP to GND Storage temperature, Tstg (1) (2) -65 7 V 150 C Absolute Maximum Ratings are limits beyond which damage to the device may occur. Recommended Operating Conditions are conditions under which operation of the device is intended to be functional. For ensured specifications and test conditions, see the Electrical Characteristics. If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and specifications. 6.2 ESD Ratings V(ESD) (1) Electrostatic discharge Human-body model (HBM), per AEC Q100-002 (1) VALUE UNIT 2000 V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) (1) MIN VIN Operation junction temperature (1) 4 MAX UNIT 6 75 V -40 150 C Absolute Maximum Ratings are limits beyond which damage to the device may occur. Recommended Operating Conditions are conditions under which operation of the device is intended to be functional. For ensured specifications and test conditions, see the Electrical Characteristics. Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 6.4 Thermal Information LM5575-Q1 THERMAL METRIC (1) PWP (HTSSOP) UNIT 16 PINS RJA Junction-to-ambient thermal resistance 38.4 C/W RJC(top) Junction-to-case (top) thermal resistance 21.8 C/W RJB Junction-to-board thermal resistance 15.6 C/W JT Junction-to-top characterization parameter 0.5 C/W JB Junction-to-board characterization parameter 16.4 C/W RJC(bot) Junction-to-case (bottom) thermal resistance 1.5 C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.5 Electrical Characteristics Specifications are for TJ = 25C. VIN = 48 V, RT = 32.4 k unless otherwise stated. PARAMETER TEST CONDITIONS (1) MIN TYP MAX UNIT START-UP REGULATOR 7.15 VccReg VCC regulator output Over full operating junction temperature range 6.85 VCC LDO mode turnoff VCC current limit VCC = 0 V V 7.5 9 V 25 mA VCC SUPPLY (VCC increasing) VCC UVLO threshold Over full operating junction temperature range 5.35 5.01 VCC undervoltage hysteresis V 3.7 Over full operating junction temperature range mA 4.5 SD = 0 V Shutdown current (Iin) 5.69 0.35 FB = 1.3 V Bias current (Iin) V 57 Over full operating junction temperature range A 85 SHUTDOWN THRESHOLDS (SD Increasing) Shutdown threshold Over full operating junction temperature range 0.7 0.43 Shutdown hysteresis 0.1 (Standby Increasing) Standby threshold Over full operating junction temperature range Standby hysteresis SD pullup current source (1) V 0.9 V 1.225 1.15 V 1.30 0.1 V 5 A Minimum and Maximum limits are 100% production tested at 25C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL). Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 5 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com Electrical Characteristics (continued) Specifications are for TJ = 25C. VIN = 48 V, RT = 32.4 k unless otherwise stated. (1) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SWITCH CHARACTERISTICS 330 Buck switch Rds(on) Over full operating junction temperature range m 760 BOOST UVLO 4 BOOST UVLO hysteresis V 0.56 V Pre-charge switch Rds(on) 70 Pre-charge switch on-time 250 ns 2.1 A CURRENT LIMIT RAMP = 0 V Cycle by cycle current limit Over full operating junction temperature range Cycle by cycle current limit delay RAMP = 2.5 V 1.8 2.7 85 ns SOFT START 10 SS current source Over full operating junction temperature range 7 Over full operating junction temperature range 180 A 14 OSCILLATOR 200 Frequency1 RT = 11 k Frequency2 Over full operating junction temperature range kHz 220 485 425 SYNC source impedance kHz 545 11 k SYNC sink impedance 110 SYNC threshold (falling) 1.3 V RT = 11 k SYNC frequency SYNC pulse width minimum kHz Over full operating junction temperature range 550 Over full operating junction temperature range 15 ns RAMP GENERATOR VIN = 60 V, VOUT=10 V Ramp current 1 Over full operating junction temperature range 550 467 VIN = 10 V, VOUT= 10 V Ramp current 2 A 633 50 Over full operating junction temperature range 36 Over full operating junction temperature range 390 A 64 PWM COMPARATOR 500 Forced off-time 6 ns 590 Minimum on-time 80 ns COMP to PWM Comparator Offset 0.7 V Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 Electrical Characteristics (continued) Specifications are for TJ = 25C. VIN = 48 V, RT = 32.4 k unless otherwise stated. (1) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ERROR AMPLIFIER VFB = COMP Feedback voltage 1.225 Over full operating junction temperature range 1.205 FB bias current 17 DC gain 70 Over full operating junction temperature range COMP sink / source current Unity gain bandwidth V 1.245 2.5 nA dB mA 3 MHz 83 m Thermal shutdown threshold 180 C Thermal shutdown hysteresis 25 C DIODE SENSE RESISTANCE DSENSE THERMAL SHUTDOWN TSD 6.6 Typical Characteristics OSCILLATOR FREQUENCY (kHz) 1000 100 10 1 10 100 1000 RT (k:) Figure 1. Oscillator Frequency vs RT Figure 2. Oscillator Frequency vs Temperature FOSC = 200 kHz Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 7 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com Typical Characteristics (continued) 8 VCC (V) 6 4 2 0 12 8 4 0 16 20 24 ICC (mA) Figure 4. VCC vs ICC VIN = 12 V Figure 3. Soft-Start Current vs Temperature 10 50 225 40 180 30 135 4 Ramp Down 20 PHASE 10 45 0 0 GAIN -10 2 90 PHASE () 6 GAIN (dB) VCC (V) 8 -45 Ramp Up -20 0 0 2 4 6 8 -90 -30 10k 10 100k VIN (V) 1M 10M -135 100M FREQUENCY (Hz) Figure 5. VCC vs VIN RL = 7 k Figure 6. Error Amplifier Gain / Phase AVCL = 101 100 90 EFFICIENCY (%) 80 70 60 VIN = 24V 50 VIN = 7V VIN = 48V 40 30 VIN = 75V 20 10 0 0.25 0.5 0.75 1 1.25 1.5 IOUT (A) Figure 7. Demoboard Efficiency vs IOUT and VIN 8 Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 7 Detailed Description 7.1 Overview The LM5575-Q1 switching regulator features all of the functions necessary to implement an efficient high-voltage buck regulator using a minimum of external components. This easy-to-use regulator integrates a 75-V N-Channel buck switch with an output current capability of 1.5 amps. The regulator control method is based on current mode control utilizing an emulated current ramp. Peak current mode control provides inherent line voltage feed-forward, cycle-by-cycle current limiting, and ease-of-loop compensation. The use of an emulated control ramp reduces noise sensitivity of the pulse-width modulation circuit, allowing reliable processing of very small duty cycles necessary in high-input voltage applications. The operating frequency is user programmable from 50 kHz to 500 kHz. An oscillator synchronization pin allows multiple LM5575-Q1 regulators to self-synchronize or be synchronized to an external clock. The output voltage can be set as low as 1.225 V. Fault protection features include, current limiting, thermal shutdown and remote shutdown capability. The device is available in the TSSOP-16 package featuring an exposed pad to aid thermal dissipation. 7.2 Functional Block Diagram The LM5575-Q1 device can be applied in numerous applications to efficiently step down a high, unregulated input voltage. The device is designed for telecom, industrial, and automotive power bus voltage ranges. VIN 7V 75V C1 1.0 VIN 3 C2 1.0 5 PA R1 OPEN LM5575 7V REGULATOR 1.225V 2 SD STANDBY VCC SHUTDOWN 0.7V SD C12 OPEN R2 OPEN 10 SS BST UVLO C7 0.022 DRIVER S Q 1.225V 16 VIN DIS CLK 10 PA C4 0.01 C8 0.47 THERMAL SHUTDOWN UVLO 1 R Q LEVEL SHIFT PWM 0.7V PRE 15 C_LIMIT 6 FB C6 open C5 0.01 R4 49.9k ERROR AMP 1V/A + 5 COMP CLK Ir OSCILLATOR SYNC 4 RAMP 8 RT 7 SYNC R3 21k D1 CMSH3-100 CLK 2.1V VIN L1 47 PH SW 14 TRACK SAMPLE and HOLD RAMP GENERATOR Ir = (10 PA x (VIN VOUT)) + 50 PA IS C11 330p R7 10 C10 120 5V C9 10 13 PGND 12 AGND 9 CLK OUT 11 R5 5.11k R6 1.65k C3 470p 7.3 Feature Description 7.3.1 Shutdown and Standby The LM5575-Q1 contains a dual-level shutdown (SD) circuit. When the SD pin voltage is below 0.7 V, the regulator is in a low-current shutdown mode. When the SD pin voltage is greater than 0.7 V but less than 1.225 V, the regulator is in standby mode. In standby mode, the VCC regulator is active but the output switch is disabled. When the SD pin voltage exceeds 1.225 V, the output switch is enabled and normal operation begins. An internal 5-A pullup current source configures the regulator to be fully operational if the SD pin is left open. Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 9 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com Feature Description (continued) An external setpoint voltage divider from VIN to GND can be used to set the operational input range of the regulator. The divider must be designed such that the voltage at the SD pin is greater than 1.225 V when VIN is in the desired operating range. The internal 5-A pullup current source must be included in calculations of the external set-point divider. Hysteresis of 0.1 V is included for both the shutdown and standby thresholds. The SD pin is internally clamped with a 1-k resistor and an 8-V Zener clamp. The voltage at the SD pin should never exceed 14 V. If the voltage at the SD pin exceeds 8 V, the bias current increase at a rate of 1 mA/V. The SD pin can also be used to implement various remote enable and disable functions. Pulling the SD pin below the 0.7-V threshold totally disables the controller. If the SD pin voltage is above 1.225 V, the regulator is operational. 7.3.2 Current Limit The LM5575-Q1 contains a unique current monitoring scheme for control and overcurrent protection. When set correctly, the emulated current sense signal provides a signal which is proportional to the buck switch current with a scale factor of 1 V/A. The emulated ramp signal is applied to the current limit comparator. If the emulated ramp signal exceeds 2.1 V (2.1 A) the present current cycle is terminated (cycle-by-cycle current limiting). In applications with small output inductance and high-input voltage, the switch current may overshoot due to the propagation delay of the current limit comparator. If an overshoot should occur, the diode current sampling circuit will detect the excess inductor current during the off-time of the buck switch. If the sample and hold DC level exceeds the 2.1-V current limit threshold, the buck switch will be disabled and skip pulses until the diode current sampling circuit detects the inductor current has decayed below the current limit threshold. This approach prevents current runaway conditions due to propagation delays or inductor saturation because the inductor current is forced to decay following any current overshoot. 7.3.3 Soft-Start The soft-start feature allows the regulator to gradually reach the initial steady-state operating point, thus reducing start-up stresses and surges. The internal soft-start current source, set to 10 A, gradually increases the voltage of an external soft-start capacitor connected to the SS pin. The soft-start capacitor voltage is connected to the reference input of the error amplifier. Various sequencing and tracking schemes can be implemented using external circuits that limit or clamp the voltage level of the SS pin. In the event a fault is detected (overtemperature, Vcc UVLO, SD) the soft-start capacitor will be discharged. When the fault condition is no longer present, a new soft-start sequence will commence. 7.3.4 Thermal Protection Internal Thermal Shutdown circuitry is provided to protect the integrated circuit in the event the maximum junction temperature is exceeded. When activated, typically at 180C, the controller is forced into a low-power reset state, disabling the output driver and the bias regulator. This feature is provided to prevent catastrophic failures from accidental device overheating. 7.4 Device Functional Modes 7.4.1 High-Voltage Start-Up Regulator The LM5575-Q1 contains a dual-mode internal high-voltage start-up regulator that provides the VCC bias supply for the PWM controller and bootstrap MOSFET gate driver. The input pin (VIN) can be connected directly to the input voltage, as high as 75 volts. For input voltages below 9 V, a low dropout switch connects VCC directly to VIN. In this supply range, VCC is approximately equal to VIN. For VIN voltage greater than 9 V, the low-dropout switch is disabled and the VCC regulator is enabled to maintain VCC at approximately 7 V. The wide operating range of 6 V to 75 V is achieved through the use of this dual-mode regulator. The output of the VCC regulator is current limited to 25 mA. Upon power up, the regulator sources current into the capacitor connected to the VCC pin. When the voltage at the VCC pin exceeds the VCC UVLO threshold of 5.35 V and the SD pin is greater than 1.225 V, the output switch is enabled and a soft-start sequence begins. The output switch remains enabled until VCC falls below 5 V or the SD pin falls below 1.125 V. 10 Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 Device Functional Modes (continued) An auxiliary supply voltage can be applied to the VCC pin to reduce the IC power dissipation. If the auxiliary voltage is greater than 7.3 V, the internal regulator essentially shuts off, reducing the IC power dissipation. The VCC regulator series pass transistor includes a diode between VCC and VIN that should not be forward biased in normal operation. Therefore the auxiliary VCC voltage should never exceed the VIN voltage. In high-voltage applications, take care to ensure the VIN pin does not exceed the absolute maximum voltage rating of 76 V. During line or load transients, voltage ringing on the VIN line that exceeds the Absolute Maximum Ratings can damage the IC. Both careful PC board layout and the use of quality bypass capacitors located close to the VIN and GND pins are essential. VIN 9V VCC 7V 5.25V Internal Enable Signal Figure 8. VIN and VCC Sequencing 7.4.2 Oscillator and Sync Capability The LM5575-Q1 oscillator frequency is set by a single external resistor connected between the RT pin and the AGND pin. Place the RT resistor very close to the device and connected directly to the pins of the IC (RT and AGND).To set a desired oscillator frequency (F), the necessary value for the RT resistor can be calculated from the following equation: RT = 1 - 580 x 10-9 F 135 x 10-12 (1) The SYNC pin can be used to synchronize the internal oscillator to an external clock. The external clock must be of higher frequency than the free-running frequency set by the RT resistor. A clock circuit with an open-drain output is the recommended interface from the external clock to the SYNC pin. The clock pulse duration must be greater than 15 ns. Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 11 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com Device Functional Modes (continued) LM5575 LM5575 SYNC SYNC SW SYNC AGND CLK LM5575 SW SYNC 500 ns UP TO 5 TOTAL DEVICES Figure 9. Sync From External Clock Figure 10. Sync From Multiple Devices Multiple LM5575-Q1 devices can be synchronized together simply by connecting the SYNC pins together. In this configuration, all of the devices will be synchronized to the highest frequency device. The diagram in Figure 11 illustrates the SYNC input and output features of the LM5575-Q1. The internal oscillator circuit drives the SYNC pin with a strong pulldown and weak pullup inverter. When the SYNC pin is pulled low either by the internal oscillator or an external clock, the ramp cycle of the oscillator is terminated and a new oscillator cycle begins. Thus, if the SYNC pins of several LM5575-Q1 IC's are connected together, the IC with the highest internal clock frequency pulls the connected SYNC pins low first and terminate the oscillator ramp cycles of the other IC's. The LM5575-Q1 with the highest programmed clock frequency will serve as the master and control the switching frequency of the all the devices with lower oscillator frequency. 5V SYNC 10k I = f(RT) 2.5V Q S Q R DEADTIME ONE-SHOT Figure 11. Simplified Oscillator Block Diagram and Sync I/O Circuit 7.4.3 Error Amplifier and PWM Comparator The internal high-gain error amplifier generates an error signal proportional to the difference between the regulated output voltage and an internal precision reference (1.225 V). The output of the error amplifier is connected to the COMP pin, allowing the user to provide loop compensation components, generally a type II network, as illustrated in Functional Block Diagram. This network creates a pole at DC, a zero and a noisereducing, high-frequency pole. The PWM comparator compares the emulated current sense signal from the RAMP generator to the error amplifier output voltage at the COMP pin. 12 Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 Device Functional Modes (continued) 7.4.4 Ramp Generator The ramp signal used in the pulse-width modulator for current-mode control is typically derived directly from the buck switch current. This switch current corresponds to the positive slope portion of the output inductor current. Using this signal for the PWM ramp simplifies the control-loop-transfer function to a single pole response and provides inherent input voltage feed-forward compensation. The disadvantage of using the buck switch current signal for PWM control is the large leading edge spike due to circuit parasitics that must be filtered or blanked. Also, the current measurement may introduce significant propagation delays. The filtering, blanking time, and propagation delay limit the minimum achievable pulse width. In applications where the input voltage may be relatively large in comparison to the output voltage, controlling small pulse widths and duty cycles is necessary for regulation. The LM5575-Q1 utilizes a unique ramp generator, which does not actually measure the buck switch current but rather reconstructs the signal. Reconstructing or emulating the inductor current provides a ramp signal to the PWM comparator that is free of leading edge spikes and measurement or filtering delays. The current reconstruction is comprised of two elements; a sample and hold DC level and an emulated current ramp. RAMP (10 P x (VIN VOUT) + 50 P) x tON CRAMP Sample and Hold DC Level 1V/A TON Figure 12. Composition of Current Sense Signal The sample and hold DC level illustrated in Figure 12 is derived from a measurement of the re-circulating Schottky diode anode current. The re-circulating diode anode should be connected to the IS pin. The diode current flows through an internal current sense resistor between the IS and PGND pins. The voltage level across the sense resistor is sampled and held just prior to the onset of the next conduction interval of the buck switch. The diode current sensing and sample & hold provide the DC level of the reconstructed current signal. The positive slope inductor current ramp is emulated by an external capacitor connected from the RAMP pin to AGND and an internal voltage controlled current source. The ramp current source that emulates the inductor current is a function of the VIN and VOUT voltages per Equation 2: IRAMP = (10 A x (VIN - VOUT)) + 50 A (2) Proper selection of the RAMP capacitor depends upon the selected value of the output inductor. The value of CRAMP can be selected from: CRAMP = L x 10-5 where * L is the value of the output inductor in Henrys (3) Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 13 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com Device Functional Modes (continued) With this value, the scale factor of the emulated current ramp is approximately equal to the scale factor of the DC level sample and hold (1 V/A). Locate the CRAMP capacitor very close to the device and connect directly to the pins of the IC (RAMP and AGND). For duty cycles greater than 50%, peak-current-mode control circuits are subject to sub-harmonic oscillation. Sub-harmonic oscillation is normally characterized by observing alternating wide and narrow pulses at the switch node. Adding a fixed slope voltage ramp (slope compensation) to the current sense signal prevents this oscillation. The 50 A of offset current provided from the emulated current source adds some fixed slope to the ramp signal. In some high-output voltage, high duty cycle applications, additional slope may be required. In these applications, a pullup resistor may be added between the VCC and RAMP pins to increase the ramp slope compensation. For VOUT > 7.5 V: Calculate optimal slope current, IOS = VOUT x 10 A/V. For example, at VOUT = 10 V, IOS = 100 A. Install a resistor from the RAMP pin to VCC: RRAMP = VCC / (IOS - 50 A) (4) VCC RRAMP RAMP CRAMP Figure 13. RRAMP to VCC for VOUT > 7.5 V 7.4.5 BOOST Pin The LM5575-Q1 integrates an N-Channel buck switch and associated floating high-voltage level shift and gate driver. This gate-driver circuit works in conjunction with an internal diode and an external bootstrap capacitor. TI recommends a 0.022-F ceramic capacitor, connected with short traces between the BST pin and SW pin. During the off-time of the buck switch, the SW pin voltage is approximately -0.5 V, and the bootstrap capacitor is charged from VCC through the internal bootstrap diode. When operating with a high PWM duty cycle, the buck switch is forced off each cycle for 500 ns to ensure that the bootstrap capacitor is recharged. Under very light-load conditions or when the output voltage is pre-charged, the SW voltage does not remain low during the off-time of the buck switch. If the inductor current falls to zero and the SW pin rises, the bootstrap capacitor does not receive sufficient voltage to operate the buck switch gate driver. For these applications, the PRE pin can be connected to the SW pin to pre-charge the bootstrap capacitor. The internal pre-charge MOSFET and diode connected between the PRE pin and PGND turns on each cycle for 250 ns just prior to the onset of a new switching cycle. If the SW pin is at a normal negative voltage level (continuous conduction mode (CCM)), then no current flows through the pre-charge MOSFET/diode. 14 Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 Device Functional Modes (continued) 7.4.6 Maximum Duty Cycle and Input Dropout Voltage There is a forced off-time of 500 ns implemented each cycle to ensure sufficient time for the diode current to be sampled. This forced off-time limits the maximum duty cycle of the buck switch. The maximum duty cycle varies with the operating frequency. DMAX = 1 - Fs x 500 ns where * Fs is the oscillator frequency. (5) Limiting the maximum duty cycle will raise the input dropout voltage. The input dropout voltage is the lowest input voltage required to maintain regulation of the output voltage. An approximation of the input dropout voltage is: VinMIN = Vout + VD 1 - Fs x 500 ns where * VD is the voltage drop across the re-circulatory diode. (6) Operating at high switching frequency raises the minimum input voltage necessary to maintain regulation. Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 15 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information 8.1.1 Bias Power Dissipation Reduction Buck regulators operating with high input voltage can dissipate an appreciable amount of power for the bias of the IC. The VCC regulator must step down the input voltage VIN to a nominal VCC level of 7 V. The large voltage drop across the VCC regulator translates into a large power dissipation within the VCC regulator. There are several techniques that can significantly reduce this bias regulator power dissipation. Figure 14 and Figure 15 depict two methods to bias the IC from the output voltage. In each case, the internal VCC regulator is used to initially bias the VCC pin. After the output voltage is established, the VCC pin potential is raised above the nominal 7-V regulation level, which effectively disables the internal VCC regulator. The voltage applied to the VCC pin should never exceed 14 V. The VCC voltage should never be larger than the VIN voltage. LM5575 BST VOUT SW L1 COUT D1 IS GND VCC D2 Figure 14. VCC Bias from VOUT for 8 V < VOUT < 14 V LM5575 BST VOUT L1 SW D1 COUT IS GND D2 VCC Figure 15. VCC Bias With Additional Winding on the Output Inductor 16 Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 8.2 Typical Application VIN 7V 75V C1 1.0 VIN 3 C2 1.0 5 PA R1 OPEN LM5575 7V REGULATOR 1.225V 2 SD STANDBY VCC SHUTDOWN 0.7V SD C12 OPEN R2 OPEN BST UVLO C7 0.022 DRIVER S Q 1.225V C4 0.01 16 VIN DIS CLK 10 PA 10 SS C8 0.47 THERMAL SHUTDOWN UVLO 1 R Q LEVEL SHIFT L1 47 PH SW 14 PWM 0.7V C11 330p PRE 15 C_LIMIT 6 FB C6 open C5 0.01 R4 49.9k ERROR AMP CLK 2.1V 1V/A VIN + 5 COMP CLK Ir OSCILLATOR SYNC 4 SYNC R3 21k TRACK SAMPLE and HOLD RAMP GENERATOR Ir = (10 PA x (VIN VOUT)) + 50 PA RAMP 8 RT 7 D1 CMSH3-100 IS R7 10 C10 120 5V C9 10 13 PGND 12 R5 5.11k AGND 9 CLK OUT 11 R6 1.65k C3 470p Figure 16. Typical Application Circuit 8.2.1 Design Requirements The circuit shown in Functional Block Diagram is configured for the following specifications: * VOUT = 5 V * VIN = 7 V to 75 V * Fs = 300 kHz * Minimum load current (for CCM) = 200 mA * Maximum load current = 1.5 A 8.2.2 Detailed Design Procedure 8.2.2.1 Custom Design With WEBENCH(R) Tools Click here to create a custom design using the LM5575-Q1 device with the WEBENCH(R) Power Designer. 1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements. 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial. 3. Compare the generated design with other possible solutions from Texas Instruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability. In most cases, these actions are available: * Run electrical simulations to see important waveforms and circuit performance * Run thermal simulations to understand board thermal performance * Export customized schematic and layout into popular CAD formats * Print PDF reports for the design, and share the design with colleagues Get more information about WEBENCH tools at www.ti.com/WEBENCH. Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 17 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com Typical Application (continued) 8.2.2.2 External Components The procedure for calculating the external components is illustrated with the following design example. 8.2.2.3 R3 (RT) RT sets the oscillator switching frequency. Generally, higher-frequency applications are smaller but have higher losses. Operation at 300 kHz was selected for this example as a reasonable compromise for both small size and high efficiency. The value of RT for 300-kHz switching frequency can be calculated as follows: RT = [(1 / 300 x 103) 580 x 10-9] 135 x 10-12 (7) The nearest standard value of 21 k was chosen for RT. 8.2.2.4 L1 The inductor value is determined based on the operating frequency, load current, ripple current, and the minimum and maximum input voltage (VIN(min), VIN(max)). L1 Current IPK+ IRIPPLE IO IPK- 1/Fs 0 mA Figure 17. Inductor Current Waveform To keep the circuit in CCM, the maximum ripple current IRIPPLE must be less than twice the minimum load current, or 0.4 Ap-p. Using this value of ripple current, the value of inductor (L1) is calculated using Equation 8 and Equation 9: L1 = VOUT x (VIN(max) VOUT) IRIPPLE x FS x VIN(max) (8) 5V x (75V 5V) L1 = = 39 PH 0.4A x 300 kHz x 75V (9) This procedure provides a guide to select the value of L1. The nearest standard value (47 H) is used. L1 must be rated for the peak current (IPK+) to prevent saturation. During normal loading conditions, the peak current occurs at maximum load current plus maximum ripple. During an overload condition, the peak current is limited to 2.1 A nominal (2.5 A maximum). The selected inductor has a conservative 3.25-Amp saturation current rating. The saturation rating is defined by inductor manufacturers as the current necessary for the inductance to reduce by 30%, at 20C. 8.2.2.5 C3 (CRAMP) With the inductor value selected, the value of C3 (CRAMP) necessary for the emulation ramp circuit is: CRAMP = L x 10-5 where * L is in Henrys. (10) With L1 selected for 47 H, the recommended value for C3 is 470 pF. 18 Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 Typical Application (continued) 8.2.2.6 C9, C10 The output capacitors, C9 and C10, smooth the inductor ripple current and provide a source of charge for transient loading conditions. For this design a 10-F ceramic capacitor and a 120-F AL organic capacitor were selected. The ceramic capacitor provides ultra low ESR to reduce the output ripple voltage and noise spikes, while the AL capacitor provides a large bulk capacitance in a small volume for transient loading conditions. An approximation for the output ripple voltage is: (c) 1 'VOUT = 'IL x ESR + 8 x F x COUT S (c) (11) 8.2.2.7 D1 A Schottky type re-circulating diode is required for all LM5575-Q1 applications. Ultra-fast diodes are not recommended and may result in damage to the IC due to reverse recovery current transients. The near ideal reverse recovery characteristics and low forward-voltage drop are particularly important diode characteristics for high-input voltage and low-output voltage applications common to the LM5575-Q1. The reverse recovery characteristic determines how long the current surge lasts each cycle when the buck switch is turned on. The reverse recovery characteristics of Schottky diodes minimize the peak instantaneous power in the buck switch occurring during turn-on each cycle. The resulting switching losses of the buck switch are significantly reduced when using a Schottky diode. Select the reverse breakdown rating for the maximum VIN, plus some safety margin. The forward voltage drop has a significant impact on the conversion efficiency, especially for applications with a low output voltage. Rated current for diodes vary widely from various manufacturers. The worst case is to assume a short-circuit load condition. In this case the diode carries the output current almost continuously. For the LM5575-Q1 this current can be as high as 2.1 A. Assuming a worst case 1-V drop across the diode, the maximum diode power dissipation can be as high as 2.1 W. For the reference design a 100-V Schottky in a SMC package was selected. 8.2.2.8 C1, C2 The regulator supply voltage has a large source impedance at the switching frequency. Good-quality input capacitors are necessary to limit the ripple voltage at the VIN pin while supplying most of the switch current during the on-time. When the buck switch turns on, the current into the VIN pin steps to the lower peak of the inductor current waveform, ramps up to the peak value, then drops to zero at turnoff. The average current into VIN during the on-time is the load current. Select the input capacitance for RMS current rating and minimum ripple voltage. A good approximation for the required ripple current rating necessary is IRMS > IOUT / 2. Select quality ceramic capacitors with a low ESR for the input filter. To allow for capacitor tolerances and voltage effects, two 1-F, 100-V ceramic capacitors are used. If step input voltage transients are expected near the maximum rating of the LM5575-Q1, a careful evaluation of ringing and possible spikes at the device VIN pin must be completed. An additional damping network or input voltage clamp may be required in these cases. 8.2.2.9 C8 The capacitor at the VCC pin provides noise filtering and stability for the VCC regulator. The recommended value of C8 is no smaller than 0.1 F and should be a good-quality, low-ESR, ceramic capacitor. A value of 0.47 F was selected for this design. 8.2.2.10 C7 The bootstrap capacitor between the BST and the SW pins supplies the gate current to charge the buck switch gate at turnon. The recommended value of C7 is 0.022 F and should be a good-quality, low-ESR, ceramic capacitor. Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 19 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com Typical Application (continued) 8.2.2.11 C4 The capacitor at the SS pin determines the soft-start time; that is, the time for the reference voltage and the output voltage, to reach the final regulated value. The time is determined from Equation 12: tss = C4 x 1.225V 10 PA (12) For this application, a C4 value of 0.01 F was chosen which corresponds to a soft-start time of 1 ms. 8.2.2.12 R5, R6 R5 and R6 set the output voltage level; the ratio of these resistors is calculated from Equation 13: R5/R6 = (VOUT / 1.225V) - 1 (13) For a 5-V output, the R5/R6 ratio calculates to 3.082. Choose the resistors from standard value resistors -- a good starting point is selection in the range of 1 k to 10 k. Values of 5.11 k for R5,and 1.65 k for R6, were selected. 8.2.2.13 R1, R2, C12 A voltage divider can be connected to the SD pin to set a minimum operating voltage VIN(min) for the regulator. If this feature is required, the easiest approach to select the divider resistor values is to select a value for R1 (between 10 k and 100 k recommended) then calculate R2 from Equation 14: (c) R1 R2 = 1.225 x -6 (c) VIN(min) + (5 x 10 x R1) 1.225 (14) Capacitor C12 provides filtering for the divider. The voltage at the SD pin should never exceed 8 V; when using an external setpoint divider it may be necessary to clamp the SD pin at high input-voltage conditions. The reference design utilizes the full range of the LM5575-Q1 (6 V to 75 V); therefore, these components can be omitted. With the SD pin open circuit the LM5575-Q1 responds once the VCC UVLO threshold is satisfied. 8.2.2.14 R7, C11 A snubber network across the power diode reduces ringing and spikes at the switching node. Excessive ringing and spikes can cause erratic operation and couple spikes and noise to the output. Voltage spikes beyond the rating of the LM5575-Q1 or the re-circulating diode can damage these devices. Selecting the values for the snubber is best accomplished through empirical methods. First, make sure the lead lengths for the snubber connections are very short. For the current levels typical for the LM5575-Q1 a resistor value between 5 and 20 Ohms is adequate. Increasing the value of the snubber capacitor results in more damping but higher losses. Select a minimum value of C11 that provides adequate damping of the SW pin waveform at high load. 8.2.2.15 R4, C5, C6 These components configure the error amplifier gain characteristics to accomplish a stable overall loop gain. One advantage of current mode control is the ability to close the loop with only two feedback components, R4 and C5. The overall loop gain is the product of the modulator gain and the error amplifier gain. The DC modulator gain of the LM5575-Q1 is as follows: DC Gain(MOD) = Gm(MOD) x RLOAD = 1 x RLOAD (15) The dominant low frequency pole of the modulator is determined by the load resistance (RLOAD,) and output capacitance (COUT). The corner frequency of this pole is: fp(MOD) = 1 / (2 RLOAD COUT) (16) For RLOAD = 5 and COUT = 130 F then fp(MOD) = 245 Hz DC Gain(MOD) = 1 x 5 = 14 dB For the design example of Functional Block Diagram the following modulator gain vs. frequency characteristic was measured as shown in Figure 18. 20 Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 Typical Application (continued) REF LEVEL 0.000 dB 0.0 deg /DIV 10.000 dB 45.000 deg GAIN 0 PHASE 100 1k START 100.000 Hz 10k 100k STOP 100 000.000 Hz RLOAD = 5 COUT = 130 F Figure 18. Gain and Phase of Modulator Components R4 and C5 configure the error amplifier as a type II configuration which has a pole at DC and a zero at fZ = 1 / (2R4C5). The error amplifier zero cancels the modulator pole leaving a single pole response at the crossover frequency of the loop gain. A single pole response at the crossover frequency yields a very stable loop with 90 degrees of phase margin. For the design example, a target loop bandwidth (crossover frequency) of 15 kHz was selected. Select the compensation network zero (fZ) at least an order of magnitude less than the target crossover frequency. This constrains the product of R4 and C5 for a desired compensation network zero 1 / (2 R4 C5) to be less than 2 kHz. Increasing R4, while proportionally decreasing C5, increases the error amp gain. Conversely, decreasing R4 while proportionally increasing C5, decreases the error amp gain. For the design example C5 was selected for 0.01 F and R4 was selected for 49.9 k. These values configure the compensation network zero at 320 Hz. The error amp gain at frequencies greater than fZ is: R4 / R5, which is approximately 10 (20 dB). REF LEVEL 0.000 dB 0.0 deg /DIV 10.000 dB 45.000 deg PHASE GAIN 0 100 1k START 50.000 Hz 10k STOP 50 000.000 Hz Figure 19. Error Amplifier Gain and Phase The overall loop can be predicted as the sum (in dB) of the modulator gain and the error amp gain. Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 21 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com Typical Application (continued) REF LEVEL 0.000 dB 0.0 deg /DIV 10.000 dB 45.000 deg GAIN PHASE 0 100 1k START 100.000 Hz 10k 100k STOP 100 000.000 Hz Figure 20. Overall Loop Gain and Phase If a network analyzer is available, the modulator gain can be measured, and the error amplifier gain can be configured for the desired loop transfer function. If a network analyzer is not available, the error amplifier compensation components can be designed with the guidelines given. Step-load transient tests can be performed to verify acceptable performance. The step-load goal is minimum overshoot with a damped response. C6 can be added to the compensation network to decrease noise susceptibility of the error amplifier. The value of C6 must be sufficiently small because the addition of this capacitor adds a pole in the error amplifier transfer function. This pole must be well beyond the loop crossover frequency. A good approximation of the location of the pole added by C6 is: fp2 = fz x C5 / C6. 8.2.3 Application Curves 100 90 80 EFFICIENCY (%) OSCILLATOR FREQUENCY (kHz) 1000 100 70 60 VIN = 7V VIN = 48V 40 30 VIN = 75V 20 10 10 1 10 100 0 0.25 1000 RT (k:) 0.5 0.75 1 1.25 1.5 IOUT (A) Figure 21. Oscillator Frequency vs RT 22 VIN = 24V 50 Figure 22. Demoboard Efficiency vs IOUT and VIN Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 9 Power Supply Recommendations The LM5575-Q1 is designed to operate from an input voltage supply range between 6 V and 75 V. This input supply must be able to withstand the maximum input current and maintain a voltage above 6 V. The resistance of the input supply rail must be low enough that an input current transient does not cause a high enough drop at the LM5575-Q1 supply voltage that can cause a false UVLO fault triggering and system reset. If the input supply is located more than a few inches from the LM5575-Q1 additional bulk capacitance may be required in addition to the ceramic bypass capacitors. The amount of bulk capacitance is not critical, but a 47-F or 100-F electrolytic capacitor is a typical choice. 10 Layout 10.1 Layout Guidelines The circuit in Functional Block Diagram serves as both a block diagram of the LM5575-Q1 and a typical application board schematic for the LM5575-Q1. In a buck regulator, there are two loops where currents are switched very fast. The first loop starts from the input capacitors, to the regulator VIN pin, to the regulator SW pin, to the inductor then out to the load. The second loop starts from the output capacitor ground, to the regulator PGND pins, to the regulator IS pins, to the diode anode, to the inductor and then out to the load. Minimizing the loop area of these two loops reduces the stray inductance and minimizes noise and possible erratic operation. A ground plane in the PC board is recommended as a means to connect the input filter capacitors to the output filter capacitors and the PGND pins of the regulator. Connect all of the low-power ground connections (CSS, RT, CRAMP) directly to the regulator AGND pin. Connect the AGND and PGND pins together through the top-side copper area covering the entire underside of the device. Place several vias in this underside copper area to the ground plane. The two highest power-dissipating components are the re-circulating diode and the LM5575-Q1 regulator IC. The easiest method to determine the power dissipated within the LM5575-Q1 is to measure the total conversion losses (Pin - Pout) then subtract the power losses in the Schottky diode, output inductor and snubber resistor. An approximation for the Schottky diode loss is: P = (1 - D) x IOUT x Vfwd (17) An approximation for the output inductor power is: P = IOUT2 x R x 1.1 where * R is the DC resistance of the inductor and the 1.1 factor is an approximation for the AC losses (18) If a snubber is used, an approximation for the damping resistor power dissipation is: P = VIN2 x Fsw x Csnub where * Fsw is the switching frequency and Csnub is the snubber capacitor (19) The regulator has an exposed thermal pad to aid power dissipation. Adding several vias under the device to the ground plane will greatly reduce the regulator junction temperature. Selecting a diode with an exposed pad will aid the power dissipation of the diode. The most significant variables that affect the power dissipated by the LM5575-Q1 are the output current, input voltage and operating frequency. The power dissipated while operating near the maximum output current and maximum input voltage can be appreciable. The operating frequency of the LM5575-Q1 evaluation board has been designed for 300 kHz. When operating at 1.5-A output current with a 70-V input the power dissipation of the LM5575-Q1 regulator is approximately 1.25 W. Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 23 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com 10.2 Layout Examples Figure 23. Silkscreen Figure 24. Component Side Figure 25. Solder Side 24 Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 LM5575-Q1 www.ti.com SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 10.3 Thermal Considerations The junction-to-ambient thermal resistance of the LM5575-Q1 varies with the application. The most significant variables are the area of copper in the PC board, the number of vias under the IC exposed pad and the amount of forced air cooling provided. Referring to the evaluation board artwork, the area under the LM5575-Q1 (component side) is covered with copper and there are 5 connection vias to the solder-side ground plane. Additional vias under the IC have diminishing value as more vias are added. The integrity of the solder connection from the IC exposed pad to the PC board is critical. Excessive voids will greatly diminish the thermal dissipation capacity. The junction-to-ambient thermal resistance of the LM5575-Q1 mounted in the evaluation board varies from 50C/W with no airflow to 28C/W with 900 LFM (Linear Feet per Minute). With a 25C ambient temperature and no airflow, the predicted junction temperature for the LM5575-Q1 is 25 + (50 x 1.25) = 88C. If the evaluation board is operated at 1.5-A output current, 70-V input voltage, and high-ambient temperature for a prolonged period of time the thermal shutdown protection within the IC may activate. The IC turns off allowing the junction to cool, followed by restart with the soft-start capacitor reset to zero. 11 Device and Documentation Support 11.1 Device Support 11.1.1 Custom Design With WEBENCH(R) Tools Click here to create a custom design using the LM5575-Q1 device with the WEBENCH(R) Power Designer. 1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements. 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial. 3. Compare the generated design with other possible solutions from Texas Instruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability. In most cases, these actions are available: * Run electrical simulations to see important waveforms and circuit performance * Run thermal simulations to understand board thermal performance * Export customized schematic and layout into popular CAD formats * Print PDF reports for the design, and share the design with colleagues Get more information about WEBENCH tools at www.ti.com/WEBENCH. 11.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 11.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2ETM Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 11.4 Trademarks E2E is a trademark of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners. Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 25 LM5575-Q1 SNOSB23D - OCTOBER 2008 - REVISED MARCH 2018 www.ti.com 11.5 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 11.6 Glossary SLYZ022 -- TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 26 Submit Documentation Feedback Copyright (c) 2008-2018, Texas Instruments Incorporated Product Folder Links: LM5575-Q1 PACKAGE OPTION ADDENDUM www.ti.com 22-Mar-2018 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (C) Device Marking (4/5) LM5575Q0MH/NOPB ACTIVE HTSSOP PWP 16 92 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LM5575 Q0MH LM5575Q0MHX/NOPB ACTIVE HTSSOP PWP 16 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LM5575 Q0MH LM5575QMH/NOPB ACTIVE HTSSOP PWP 16 92 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LM5575 QMH LM5575QMHX/NOPB ACTIVE HTSSOP PWP 16 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LM5575 QMH (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 22-Mar-2018 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LM5575-Q1 : * Catalog: LM5575 NOTE: Qualified Version Definitions: * Catalog - TI's standard catalog product Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 27-Feb-2018 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) LM5575Q0MHX/NOPB HTSSOP PWP 16 2500 330.0 12.4 LM5575QMHX/NOPB HTSSOP PWP 16 2500 330.0 12.4 Pack Materials-Page 1 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 6.95 5.6 1.6 8.0 12.0 Q1 6.95 5.6 1.6 8.0 12.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 27-Feb-2018 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM5575Q0MHX/NOPB HTSSOP PWP 16 2500 367.0 367.0 35.0 LM5575QMHX/NOPB HTSSOP PWP 16 2500 367.0 367.0 35.0 Pack Materials-Page 2 PACKAGE OUTLINE PWP0016A PowerPAD TM HTSSOP - 1.2 mm max height SCALE 2.400 PLASTIC SMALL OUTLINE C 6.6 TYP 6.2 SEATING PLANE PIN 1 ID AREA A 0.1 C 14X 0.65 16 1 2X 4.55 5.1 4.9 NOTE 3 8 9 B 4.5 4.3 16X 0.30 0.19 0.1 C A B (0.15) TYP SEE DETAIL A 4X 0.166 MAX NOTE 5 2X 1.34 MAX NOTE 5 THERMAL PAD 3.3 2.7 17 0.25 GAGE PLANE 1.2 MAX 0.15 0.05 0 -8 0.75 0.50 (1) 3.3 2.7 DETAIL A TYPICAL 4214868/A 02/2017 PowerPAD is a trademark of Texas Instruments. NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153. 5. Features may not be present. www.ti.com EXAMPLE BOARD LAYOUT PWP0016A PowerPAD TM HTSSOP - 1.2 mm max height PLASTIC SMALL OUTLINE (3.4) NOTE 9 SOLDER MASK DEFINED PAD (3.3) 16X (1.5) SYMM SEE DETAILS 1 16 16X (0.45) (1.1) TYP 17 SYMM (3.3) (5) NOTE 9 14X (0.65) 8 9 ( 0.2) TYP VIA (1.1) TYP METAL COVERED BY SOLDER MASK (5.8) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:10X SOLDER MASK OPENING METAL UNDER SOLDER MASK METAL SOLDER MASK OPENING EXPOSED METAL 0.05 MAX ALL AROUND EXPOSED METAL 0.05 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS PADS 1-16 4214868/A 02/2017 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004). 9. Size of metal pad may vary due to creepage requirement. www.ti.com EXAMPLE STENCIL DESIGN PWP0016A PowerPAD TM HTSSOP - 1.2 mm max height PLASTIC SMALL OUTLINE (3.3) BASED ON 0.125 THICK STENCIL 16X (1.5) (R0.05) TYP 1 16 16X (0.45) (3.3) BASED ON 0.125 THICK STENCIL 17 SYMM 14X (0.65) 9 8 SYMM METAL COVERED BY SOLDER MASK (5.8) SEE TABLE FOR DIFFERENT OPENINGS FOR OTHER STENCIL THICKNESSES SOLDER PASTE EXAMPLE EXPOSED PAD 100% PRINTED SOLDER COVERAGE BY AREA SCALE:10X STENCIL THICKNESS SOLDER STENCIL OPENING 0.1 0.125 0.15 0.175 3.69 X 3.69 3.3 X 3.3 (SHOWN) 3.01 X 3.01 2.79 X 2.79 4214868/A 02/2017 NOTES: (continued) 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 11. Board assembly site may have different recommendations for stencil design. www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2018, Texas Instruments Incorporated Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Texas Instruments: LM5575Q0MH/NOPB LM5575Q0MHX/NOPB LM5575QMH/NOPB LM5575QMHX/NOPB