International Rectifier HEXFET Power MOSFET PD-9.476C IRF634 Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of Paraileling Simple Drive Requirements Vogs = 250V Rosvon) = 0.450 5 Ip = 8.1A Description Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. Absolute Maximum Ratings TO-220AB Parameter Max. Units Ip @ To = 25C Continuous Drain Current, Vas @ 10 V 8.1 lp @ Tc = 100C | Continuous Drain Current, Ves @ 10 V 5.1 A lom Pulsed Drain Current 32 Pp @ Tc = 25C | Power Dissipation 74 Ww Linear Derating Factor 0.59 WPC Vas Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche Energy @ 300 mJ lan Avalanche Current 8.4 A Ear Repetitive Avalanche Energy 74 mJ dv/dt Peak Diode Recovery dv/dt 4.8 Vins Ts Operating Junction and -55 to +150 Tste Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting Torque, 6-32 or M3 screw 10 Ibfsin (1.1 Nem) Thermal Resistance Parameter Min. Typ. Max. Units Rasc Junction-to-Case _ _ 1.7 Recs Case-to-Sink, Flat, Greased Surface _ 0.50 _ CW Resa Junction-to-Ambient = _ 62 209IRF634 | Electrical Characteristics @ Ty = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. | Units Test Conditions Vigrypss Drain-to-Source Breakdown Voltage 250 | _ V__ | Vas=0V, In= 250nA AVierypss/ATy| Breakdown Voltage Temp. Coefficient | 0.37 | | WC | Reference to 25C, Ib= 1mA Rosvon) Static Drain-to-Source On-Resistance _ | 045 | @ | Ves=10V, Ip=5.1A @ Vasith) Gate Threshold Voltage 2.0 _ 4.0 V__ | Vps=Vas, lp= 250A Gis Forward Transconductance 1.6 _ _ S| Vps=50V, Ip=5.1A @ loss Drain-to-Source Leakage Current 25 BA Vos=250V, Vass OV _ _ 250 Vps=200V, Vas=0V, Ty=125C less Gate-to-Source Forward Leakage _ _ 100 nA Vas=20V Gate-to-Source Reverse Leakage _ | -100 Ves=-20V Qg Total Gate Charge _ = 41 Ip=5.6A Qgs Gate-to-Source Charge = | 65 |; nC | Vps=200V Qoa Gate-to-Drain ("Miller") Charge _ _ 22 Vas=10V See Fig. 6 and 13 @ taton) Turn-On Delay Time _ 9.6 _ Vpp=125V tr Rise Time = 21 _ ns Ip=5.6A tarot Turn-Off Delay Time 42 Re=122 tr Fail Time _- 19 _ Rp=220, See Figure 10 @ Lo Internal Drain Inductance _ 45 _ amo gead ) nH | from package ils: Ls Internal Source Inductance | 75} and center of Bp die contact 8 Ciss Input Capacitance _ 770 _ Ves=0V Coss Output Capacitance | 199} PF | Vos=25V Ciss Reverse Transfer Capacitance _ 52 _ f=1.0MHz See Figure 5 Source-Drain Ratings and Characteristics Parameter Min. | Typ. | Max. | Units Test Conditions Is Continuous Source Current _ _ 84 MOSFET symbol o (Body Diode) , A showing the Ism Pulsed Source Current ~ | | ge integral reverse = @ (Body Diode) - | p-n junction diode. s Vsp Diode Forward Voltage _ | 2.0 V__ | T=25C, Is=8.1A, Vas=0V_@ tr Reverse Recovery Time _ 220 | 440 ns | Ty=25C, Ip=5.6A Qr Reverse Recovery Charge _ 1.2 | 24 | pC |di/dt=100A/is @ ton Forward Turn-On Time Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+Lp) Notes: . @ Repetitive rating; pulse width limited by tsps8.1A, di/dts120A/us, VopsV(eR)Dss, max. junction temperature (See Figure 11) Tys150C Vpp=50V, starting Ti=25C, L=7.3mH Pulse width < 300 ps; duty cycle <2%. Re=25Q, las=8.1A (See Figure 12) 210Ip, Drain Current (Amps) Ip, Drain Current (Amps) 20us WIDTH To = 280C 107 Vos, Drain-to-Source Voltage (volts) Fig 1. Typical Output Characteristics, To=25C Ss. Vps + 50V 20us PULSE WIDTH soot Vas, Gate-to-Source Voltage (volts) Fig 3. Typical Transfer Characteristics IRF634 Ip, Drain Current (Amps) 20us WIDTH Tc = 150C Vps, Drain-to-Source Voltage (volts) Fig 2. Typical Output Characteristics, To=150C (Normalized) in Veg = 10V 0 140 160 Roson) Drain-to-Source On Resistance Ty, Junction Temperature (C) Fig 4. Normalized On-Resistance Vs. Temperature 2iIRF634 fo 3 1750 Cgs + Coa Cas ge c 2 ae + E16 3 c 8 < 1050 $ t2 a a 2 5 @ 700 O. g s 2 3 2 oS 350 O 4 8 > FOR TEST CIRCUIT 0 FIGURE 13 Vps, Drain-to-Source Voltage (volts) Qe, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 103 _ 6 OPERATION IN THIS AREA LIMITED g Fs (ON) g * 2 = z - 2 102 e ~ > aS e e i a 5 10 BO 10 oO 5 & 2 c 2 a a a 1 o > 2 Te ab08e 4 Ves = OV SINGLE oa : 4, :2 Od 4. 2 5 4 2 5 402 2 5 403 Vsp, Source-to-Drain Voltage (volts Vos, Drain-to-Source Voltage (volts 9g Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 212Ip, Drain Current (Amps) IRF634 Vos WN D.U.T. K ="Vop \T40V Pulse Width < tus Duty Factor < 0.1% aa Fig 10a. Switching Time Test Circuit wos [TN 90% | 10% A! 25 50 75 400 125 150 Ves !| KY Tc, Case Temperature (C) tefon) tr taor te Fig 9. Maximum Drain Current Vs. Fig 10b. Switching Time Waveforms Case Temperature Thermal Response (Zajc) Fig 11. 10 me 0.4 t Pom . SINGLE PULSE (THERMAL RESPONSE) keel NOTES: 4. DUTY FACTOR, D=t4/t2 2. PEAK Ty=Ppy x Ztnjc + Te 40 10-8 1074 1079 1072 0.1 1 10 t;, Rectangular Pulse Duration (seconds) Maximum Effective Transient Thermal Impedance, Junction-to-Case 213IRF634 | Vary tp to obtain Vos> required las 700 600 500 400 300 200 Eas, Single Pulse Energy (mu) 100 DD = Vps 0 2s 50 75 100 125 150 Starting Tj, Junction Temperature(C) as TT Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Current Regulator 10V Vas Va oma FPL. \ Oharge Current Sampling Resistors Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1505 Appendix B: Package Outline Mechanical Drawing See page 1509 Appendix C: Part Marking Information - See page 1516 Intemational Appendix E: Optional Leadforms See page 1525 R ectifi er 214 DALES bem FOR Pht 1 tween