Philips Semiconductors Preliminary specification Three quadrant triacs high commutation GENERAL DESCRIPTION Glass passivated high commutation triacs in a plastic envelope intended for use in circuits where high static and dynamic dV/dt and high dI/dt can occur. These devices will commutate the full rated rms current at the maximum rated junction temperature, without the aid of a snubber. PINNING - TO220AB PIN DESCRIPTION 1 main terminal 1 2 main terminal 2 3 gate BTA208 series C QUICK REFERENCE DATA SYMBOL VDRM IT(RMS) ITSM PARAMETER MAX. MAX. MAX. UNIT BTA208- 500C Repetitive peak 500 off-state voltages RMS on-state current 8 Non-repetitive peak 65 on-state current 600C 600 800C 800 V 8 65 8 65 A A PIN CONFIGURATION SYMBOL tab T2 tab T1 G 1 23 main terminal 2 LIMITING VALUES Limiting values in accordance with the Absolute Maximum System (IEC 134). SYMBOL PARAMETER VDRM Repetitive peak off-state voltages IT(RMS) RMS on-state current ITSM Non-repetitive peak on-state current I2t dIT/dt IGM VGM PGM PG(AV) Tstg Tj I2t for fusing Repetitive rate of rise of on-state current after triggering Peak gate current Peak gate voltage Peak gate power Average gate power CONDITIONS MIN. - full sine wave; Tmb 102 C full sine wave; Tj = 25 C prior to surge t = 20 ms t = 16.7 ms t = 10 ms ITM = 12 A; IG = 0.2 A; dIG/dt = 0.2 A/s over any 20 ms period Storage temperature Operating junction temperature MAX. -500 5001 -600 6001 UNIT -800 800 V - 8 A - 65 71 21 100 A A A2s A/s - 2 5 5 0.5 A V W W -40 - 150 125 C C 1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 6 A/s. October 1997 1 Rev 1.000 Philips Semiconductors Preliminary specification Three quadrant triacs high commutation BTA208 series C THERMAL RESISTANCES SYMBOL PARAMETER Rth j-mb Thermal resistance full cycle junction to mounting base half cycle Thermal resistance in free air junction to ambient Rth j-a CONDITIONS MIN. TYP. MAX. UNIT - 60 2.0 2.4 - K/W K/W K/W MIN. TYP. MAX. UNIT T2+ G+ T2+ GT2- G- 2 2 2 - 35 35 35 mA mA mA T2+ G+ T2+ GT2- G- 0.25 - 1.3 0.7 0.4 0.1 20 30 20 15 1.65 1.5 0.5 mA mA mA mA V V V mA STATIC CHARACTERISTICS Tj = 25 C unless otherwise stated SYMBOL PARAMETER CONDITIONS 2 IGT Gate trigger current IL Latching current IH VT VGT Holding current On-state voltage Gate trigger voltage ID Off-state leakage current VD = 12 V; IT = 0.1 A VD = 12 V; IGT = 0.1 A VD = 12 V; IGT = 0.1 A IT = 10 A VD = 12 V; IT = 0.1 A VD = 400 V; IT = 0.1 A; Tj = 125 C VD = VDRM(max); Tj = 125 C DYNAMIC CHARACTERISTICS Tj = 25 C unless otherwise stated SYMBOL PARAMETER CONDITIONS MIN. TYP. UNIT dVD/dt Critical rate of rise of off-state voltage Critical rate of change of commutating current Gate controlled turn-on time VDM = 67% VDRM(max); Tj = 125 C; exponential waveform; gate open circuit VDM = 400 V; Tj = 125 C; IT(RMS) = 8 A; without snubber; gate open circuit ITM = 12 A; VD = VDRM(max); IG = 0.1 A; dIG/dt = 5 A/s 1000 - V/s 3 14 A/ms - 2 s dIcom/dt tgt 2 Device does not trigger in the T2-, G+ quadrant. October 1997 2 Rev 1.000 Philips Semiconductors Preliminary specification Three quadrant triacs high commutation BTA208 series C MECHANICAL DATA Dimensions in mm 4,5 max Net Mass: 2 g 10,3 max 1,3 3,7 2,8 5,9 min 15,8 max 3,0 max not tinned 3,0 13,5 min 1,3 max 1 2 3 (2x) 0,9 max (3x) 2,54 2,54 0,6 2,4 Fig.1. TO220AB; pin 2 connected to mounting base. Notes 1. Refer to mounting instructions for TO220 envelopes. 2. Epoxy meets UL94 V0 at 1/8". October 1997 3 Rev 1.000 Philips Semiconductors Preliminary specification Three quadrant triacs high commutation BTA208 series C DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. Philips Electronics N.V. 1997 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. October 1997 4 Rev 1.000