Revised February 1999 MM74HC00 Quad 2-Input NAND Gate General Description The MM74HC00 NAND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs. All devices have high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to VCC and ground. Features Typical propagation delay: 8 ns Wide power supply range: 2-6V Low quiescent current: 20 A maximum (74HC Series) Low input current: 1 A maximum Fanout of 10 LS-TTL loads Ordering Code: Order Number MM74HC00M MM74HC00SJ MM74HC00MTC MM74HC00N Package Number Package Description M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide MTC14 N14A 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Connection Diagram Logic Diagram Pin Assignments for DIP, SOIC, SOP and TSSOP Top View (c) 1999 Fairchild Semiconductor Corporation DS005292.prf www.fairchildsemi.com MM74HC00 Quad 2-Input NAND Gate September 1983 MM74HC00 Absolute Maximum Ratings(Note 1) Recommended Operating Conditions (Note 2) -0.5 to +7.0V Supply Voltage (VCC) DC Input Voltage (VIN) -1.5 to VCC+1.5V DC Output Voltage (VOUT) -0.5 to VCC+0.5V Clamp Diode Current (IIK, IOK) 20 mA DC Output Current, per pin (IOUT) 25 mA DC VCC or GND Current, per pin (ICC) 50 mA Max 2 6 V DC Input or Output Voltage 0 VCC V -40 +85 C Input Rise or Fall Times (tr, tf) VCC = 2V Power Dissipation (PD) (Note 3) 600 mW S.O. Package only 500 mW Symbol VIH VIL VOH Parameter Conditions ns 500 ns VCC = 6.0V 400 ns Note 2: Unless otherwise specified all voltages are referenced to ground. 260C DC Electrical Characteristics 1000 VCC = 4.5V Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Lead Temperature (TL) (Soldering 10 seconds) Units (VIN, VOUT) Operating Temperature Range (TA) -65C to +150C Storage Temperature Range (TSTG) Min Supply Voltage (VCC) Note 3: Power Dissipation temperature derating -- plastic "N" package: - 12 mW/C from 65C to 85C. (Note 4) VCC TA = 25C Typ TA = -40 to 85C TA = -55 to 125C Guaranteed Limits Units Minimum HIGH Level 2.0V 1.5 1.5 1.5 V Input Voltage 4.5V 3.15 3.15 3.15 V V 6.0V 4.2 4.2 4.2 Maximum LOW Level 2.0V 0.5 0.5 0.5 V Input Voltage 4.5V 1.35 1.35 1.35 V 6.0V 1.8 1.8 1.8 V Minimum HIGH Level VIN = VIH or VIL Output Voltage |IOUT| 20 A 2.0V 2.0 1.9 1.9 1.9 V 4.5V 4.5 4.4 4.4 4.4 V 6.0V 6.0 5.9 5.9 5.9 V |IOUT| 4.0 mA 4.5V 4.2 3.98 3.84 3.7 V |IOUT| 5.2 mA 6.0V 5.7 5.48 5.34 5.2 V VIN = VIH or VIL VOL Maximum LOW Level VIN = VIH Output Voltage |IOUT| 20 A 2.0V 0 0.1 0.1 0.1 V 4.5V 0 0.1 0.1 0.1 V 6.0V 0 0.1 0.1 0.1 V |IOUT| 4.0 mA 4.5V 0.2 0.26 0.33 0.4 V |IOUT| 5.2 mA 6.0V 0.2 0.26 0.33 0.4 V VIN = VCC or GND 6.0V 0.1 1.0 1.0 A Maximum Quiescent VIN = VCC or GND 6.0V 2.0 20 40 A Supply Current IOUT = 0 A VIN = VIH IIN Maximum Input Current ICC Note 4: For a power supply of 5V 10% the worst case output voltages (VOH, and VOL) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case VIH and VIL occur at VCC = 5.5V and 4.5V respectively. (The VIH value at 5.5V is 3.85V.) The worst case leakage current (IIN, ICC, and IOZ) occur for CMOS at the higher voltage and so the 6.0V values should be used. www.fairchildsemi.com 2 VCC = 5V, TA = 25C, CL = 15 pF, tr = tf = 6 ns Symbol tPHL, tPLH Parameter Conditions Typ Maximum Propagation 8 Guaranteed Limit Units 15 ns Delay AC Electrical Characteristics VCC = 2.0V to 6.0V, CL = 50 pF, tr = tf = 6 ns (unless otherwise specified) Symbol Parameter Conditions tPHL, tPLH Maximum Propagation Delay tTLH, tTHL Maximum Output Rise and Fall Time VCC Power Dissipation TA = -40 to 85C TA = -55 to 125C Guaranteed Limits Units 2.0V 45 90 113 134 4.5V 9 18 23 27 ns 6.0V 8 15 19 23 ns 2.0V 30 75 95 110 ns 4.5V 8 15 19 22 ns 7 13 16 19 6.0V CPD TA = 25C Typ (per gate) 20 ns ns pF Capacitance (Note 5) CIN Maximum Input 5 10 10 10 pF Capacitance Note 5: CPD determines the no load dynamic power consumption, PD = CPD VCC2 f + ICC VCC, and the no load dynamic current consumption, IS = CPD VCC f + ICC. 3 www.fairchildsemi.com MM74HC00 AC Electrical Characteristics MM74HC00 Physical Dimensions inches (millimeters) unless otherwise noted 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Package Number M14A 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M14D www.fairchildsemi.com 4 MM74HC00 Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14 5 www.fairchildsemi.com MM74HC00 Quad 2-Input NAND Gate Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 14-Lead Plastic Dual-In Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component in any component of a life support 1. Life support devices or systems are devices or systems device or system whose failure to perform can be reawhich, (a) are intended for surgical implant into the sonably expected to cause the failure of the life support body, or (b) support or sustain life, and (c) whose failure device or system, or to affect its safety or effectiveness. to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the www.fairchildsemi.com user. Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.