Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 170V
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 120VA
IDM Pulsed Drain Current Q850
PD @TC = 25°C Power Dissipation 200 W
Linear Derating Factor 1.3 W/°C
VGS Gate-to-Source Voltage ± 20 V
EAS Single Pulse Avalanche EnergyR460 mJ
IAR Avalanche CurrentQSee Fig.12a, 12b, 15, 16 A
EAR Repetitive Avalanche EnergyWmJ
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case ) °C
Mounting Torque, 6-32 or M3 screw 10 lbf•in (1.1N•m)
HEXFET® Power MOSFET
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the lastest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features to this design are a 175°C junction operating temperature,
fast switching speed and improved repetitive avalanche rating.
These features combine to make this design an extremely
efficient and reliable device for use in Automotive applications
and a wide variety of other applications.
S
D
G
Absolute Maximum Ratings
VDSS = 40V
RDS(on) = 3.6m
ID = 170AV
Description
07/01/02
www.irf.com 1
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Features
Typical Applications
Electric Power Steering
14 Volts Automotive Electrical Systems
AUTOMOTIVE MOSFET
Thermal Resistance Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.75
RθJA Junction-to-Ambient ––– 40
PD - 94502
IRF2204S
IRF2204L
D2Pak
IRF2204S TO-262
IRF2204L
°C/W
http://store.iiic.cc/
IRF2204S/IRF2204L
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.041 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– 3.0 3.6 mVGS = 10V, ID = 130A T
VGS(th) Gate Threshold Voltage 2.0 ––– 4 .0 V VDS = 10V, ID = 250µA
gfs Forward Transconductance 120 ––– ––– S VDS = 10V, ID = 130A
––– ––– 20 µA VDS = 40V, VGS = 0V
––– ––– 250 VDS = 32V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -200 nA VGS = -20V
QgTotal Gate Charge –– 130 200 ID = 130A
Qgs Gate-to-Source Charge ––– 35 52 nC VDS = 32V
Qgd Gate-to-Drain ("Miller") Charge ––– 39 59 VGS = 10VT
td(on) Turn-On Delay Time ––– 15 ––– VDD = 20V
trRise Time ––– 140 ––– ID = 130A
td(off) Turn-Off Delay Time ––– 62 ––– RG = 2.5
tfFall Time ––– 110 ––– VGS = 10V T
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 5890 ––– VGS = 0V
Coss Output Capacitance ––– 1570 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance –– 130 ––– ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 8000 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 1370 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance U––– 2380 ––– VGS = 0V, VDS = 0V to 32V
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) Q––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– –– 1 . 3 V TJ = 25°C, IS = 130A, VGS = 0VT
trr Reverse Recovery Time ––– 68 100 ns T J = 25°C, IF = 130A
Qrr Reverse RecoveryCharge ––– 1 20 180 nC di/dt = 100A/µsT
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
170V
850 A
http://store.iiic.cc/
IRF2204S/IRF2204L
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
210A
1
10
100
1000
10000
0.1 1 10 100
20µs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Volta
g
e
(
V
)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
10000
0.1 1 10 100
20µs PULSE WIDTH
T = 175 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Volta
g
e
(
V
)
I , Drain-to-Source Current (A)
DS
D
4.5V
4.0 5.0 6.0 7.0 8.0 9.0 10.0
VGS, Gate-to-Source Voltage (V)
10.00
100.00
1000.00
ID, Drain-to-Source Current )
TJ = 25°C
TJ = 175°C
VDS = 25V
20µs PULSE WIDTH
http://store.iiic.cc/
IRF2204S/IRF2204L
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
030 60 90 120 150
0
2
4
6
8
10
12
Q , Total Gate Char
g
e
(
nC
)
V , Gate-to-Source Voltage (V)
G
GS
I=
D130A
V = 20V
DS
V = 32V
DS
0.1
1
10
100
1000
0.0 0.5 1.0 1.5 2.0 2.5
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 175 C
J°
T = 25 C
J°
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = C
gs + Cgd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds + C
gd
1 10 100
VDS , Drain-toSource Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
http://store.iiic.cc/
IRF2204S/IRF2204L
www.irf.com 5
Fig 9. Maximum Drain Current Vs.
Case Temperature
VDS
90%
10%
VGS t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RGD.U.T.
10V
+
-
VDD
25 50 75 100 125 150 175
0
25
50
75
100
125
150
175
T , Case Tem
p
erature
(
C
)
I , Drain Current (A)
°
C
D
LIMITED BY PACKAGE
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
http://store.iiic.cc/
IRF2204S/IRF2204L
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150 175
0
150
300
450
600
750
900
Starting Tj, Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
AS
°
ID
TOP
BOTTOM
52A
91A
130A
Fig 14. Threshold Voltage Vs. Temperature
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
VGS(th) Gate threshold Voltage (V)
ID = 250µA
http://store.iiic.cc/
IRF2204S/IRF2204L
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = t av ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) =
T/ ZthJC
Iav = 2
T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 210A
http://store.iiic.cc/
IRF2204S/IRF2204L
8www.irf.com
Peak Diode Recovery dv/dt Test Circuit
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P.W.
Period
+
-
+
+
+
-
-
-
S
T
R
RGVDD
dv/dt controlled by RG
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T*Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
Q
* Reverse Polarity of D.U.T for P-Channel
VGS
[ ]
[ ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
[ ] ***
Fig 17. For N-channel HEXFET® power MOSFETs
http://store.iiic.cc/
IRF2204S/IRF2204L
www.irf.com 9
D2Pak Package Outline
D2Pak Part Marking Information
http://store.iiic.cc/
IRF2204S/IRF2204L
10 www.irf.com
TO-262 Par t Mar king Infor mation
TO-262 Package Outline
EXAMPLE: THIS IS AN IRL3103L
LOT CO DE 1789
ASSEMBLY
PART NUMBE
R
DATE CODE
WEEK 1 9
LINE C
LOT CODE
YEAR 7 = 1997
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C" LOGO
RECTIFIER
INTERNATIONAL
http://store.iiic.cc/
IRF2204S/IRF2204L
www.irf.com 11
Q Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
R Starting TJ = 25°C, L = 0.06mH
RG = 25 , IAS = 130A. (See Figure 12).
SISD 130A, di/dt 170A/µs, VDD V(BR)DSS,
TJ 175°C.
T Pulse width 400µs; duty cycle 2%.
Notes:
U Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
VCalculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
WLimited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/02
D2Pak Tape & Reel Information
3
4
4
TRR
FEED D IRE CTION
1 .85 (.0 73)
1 .65 (.0 65)
1 .60 (.063)
1 .50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421) 16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532 )
12.80 (.504 )
330.00
(14.173)
MAX.
2 7.4 0 (1.079)
2 3.9 0 (.9 41)
60.00 (2.362)
MIN.
30.40 (1.197)
MA X.
26 .40 (1.03 9)
24 .40 (.9 61 )
NO TES :
1. CO MFORMS TO EIA-418.
2. CO NTROLLING DIMENSIO N: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ O UTER EDGE.
http://store.iiic.cc/
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
http://store.iiic.cc/