1/22
XC6108 Series
Voltage Detector with Separated Sense Pin & Delay Capacitor Pin
GENERAL DESCRIPTION
The XC6108 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming
technologies.
Since the sense pin is separated from power supply, it allows the IC to monitor added power supply.
Using the IC with the sense pin separated from power supply enables output to maintain the state of detection even when
voltage of the monitored power supply drops to 0V.
Moreover, with the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an
arbitrary release delay time.
Both CMOS and N-channel open drain output configurations are available.
A
PPLICATIONS
Microprocessor reset circuitry
Charge voltage monitors
Memory battery back-up switch circuits
Power failure detection circuits
FEATURES
Highly A ccurate : +2% (Detect Voltage1.5V)
+30mV (Detect Voltage1.5V)
Low Power Consumption
: 0.6 μA TYP. (detect, VIN= 1.0V )
0.8 μA TYP. (release, VIN= 1.0V )
Detect Voltage Range : 0.8V ~ 5.0V in 0.1V increments
Operating Voltage Range : 1.0V ~ 6.0V
Temperature Stability : ±100ppm/ TYP.
Output Configuration : CMOS or N-channel open drain
Operating Temperature : -40 ~ +85
Separated Sense Pin : VSEN Pin Available
Built-In Delay Circuit : Delay Time Adjustable
Packages : USP-4, SOT-25
Environmentally Friendly : EU RoHS Compliant, Pb Free
TYPICAL APPLICATION CIRCUIT TYPICAL PERFORMANCE
CHARACTERISTICS
Output Voltage vs. Sense Voltage
XC6108C25AGR
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
0123456
Sense Voltage: VSEN (V)
Output Voltage: VOUT (V)
Ta=25
4.0V
1.0V
VIN=6.0V
ETR0205_010a
Output Voltage: VOUT (V)
Sense Voltage: VSEN (V)
(No Pull-Up resistor needed fo
r
CMOS output product)
Monitering
Power
supply
2/22
XC6108 Series
*When delay function isn’t used, open the delay capacitance pin before use.
PIN NUMBER
USP- 4 SOT-25 PIN NAME FUNCTION
1 1 VOUT Output (Detect ”L”)
2 5 Cd Delay Capacitance
(*1)
2 - NC No Connection
3 4 VSEN Sense
4 3 VIN Input
5 2 VSS Ground
(*2)
DESIGNATOR DESCRIPTION SYMBOL DESCRIPTION
C CMOS output
Output Configuration
N N-ch open drain output
②③ Detect Voltage 08 ~ 50 e.g. 181.8V
A Built-in delay capacitance pin, hysteresis 5% (TYP.)(Standard*)
B Built-in delay capacitance pin, hysteresis less than 1%(Standard*)
C No built-in delay capacitance pin, hysteresis 5% (TYP.)
(Semi-custom)
Output Delay & Hysteresis
(Options)
D No built-in delay capacitance pin, hysteresis less than 1%
(Semi-custom)
GR USP-4
GR-G USP-4
MR SOT-25
⑤⑥-⑦ Packages
Taping Type (*2)
MR-G SOT-25
PIN CONFIGURATION
PIN ASSIGNMENT
PRODUCT CLASSIFICATION
XC6108 ①②③④⑤⑥-⑦(*1)
NOTE:
*1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5.
*2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will be
used as the N.C.
123
4
5
Cd
VOUT VIN
VSEN
VSS
USP-4
(BOTTOM VIEW)
SOT-25
(TOP VIEW)
* In the XC6108xxxA/B series, the dissipation pad should
not be short-circuited with other pins.
* In the XC6108xxxC/D series, when the dissipation pad
is short-circuited with other pins, connect it to the NC
pin (No.2) pin before use.
Ordering Information
(*1) The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.
(*2) The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office o
r
representative. (Standard orientation: R-, Reverse orientation: L-)
3/22
XC6108
Series
BLOCK DIAGRAMS
(1) XC6108CxxA
(2) XC6108CxxB
(3) XC6108NxxA
(4) XC6108NxxB
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram
of XC6108CxxC (semi-custom).
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108CxxD (semi-custom).
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108NxxC (semi-custom).
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108NxxD (semi-custom).
4/22
XC6108 Series
PARAMETER SYMBOL RATINGS UNITS
Input Voltage VIN VSS0.3 ~ 7.0 V
Output Current IOUT 10 mA
XC6108C (*1) VSS0.3 ~ VIN0.3
Output Voltage XC6108N (*2) VOUT VSS0.3 ~ 7.0 V
Sense Pin Voltage VSEN VSS0.3 ~ 7.0 V
Delay Capacitance Pin Voltage VCD VSS0.3 ~ VIN0.3 V
Delay Capacitance Pin Current ICD 5.0 mA
USP-4 120
Power Dissipation SOT-25 Pd 250 mW
Operating Temperature Range Ta 40 ~85
Storage Temperature Range Tstg 55 ~125
PARAMETER SYMBOL RATINGS UNITS
Input Voltage VIN VSS0.3 ~ 7.0 V
Output Current IOUT 10 mA
XC6108C (*1) VSS0.3 ~ VIN0.3
Output Voltage XC6108N (*2) VOUT VSS0.3 ~ 7.0 V
Sense Pin Voltage VSEN VSS0.3 ~ 7.0 V
USP-4 120
Power Dissipation SOT-25 Pd 250 mW
Operating Temperature Range Ta 40 ~85
Storage Temperature Range Tstg 55 ~125
A
BSOLUTE MAXIMUM RATINGS
XC6108xxxA/B Ta = 2 5OC
XC6108xxxC/D
NOTE:
*1: CMOS output
*2: N-ch open drain output
Ta = 2 5OC
5/22
XC6108
Series
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX.
UNITS
CIRCUITS
Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V -
Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V
Hysteresis Width VHYS VIN = 1.0 ~ 6.0V E-2 V
Detect Voltage
Line Regulation
Δ
V
DF
/
(
Δ
V
IN
V
DF
)
VIN = 1.0 ~ 6.0V - ±0.1 - %/V
VIN = 1.0V - 0.6 1.5
Supply Current 1 (*2) ISS1 VSEN =
V
DF x 0.9 VIN = 6.0V - 0.7 1.6 μA
VIN = 1.0V - 0.8 1.7
Supply Current 2 (*2) ISS2 VSEN =
VDF x 1.1 VIN = 6.0V - 0.9 1.8 μA
VIN = 1.0V 0.1 0.7
VIN = 2.0V 0.8 1.6
VIN = 3.0V 1.2 2.0
VIN = 4.0V 1.6 2.3
VIN = 5.0V 1.8 2.4
IOUT1
VSEN =0V
VDS = 0.5V
(N-ch)
VIN = 6.0V 1.9 2.5
- mA
VIN = 1.0V - -0.30 -0.08
Output Current (*3)
IOUT2
VSEN = 6.0V
VDS = 0.5V
(P-ch) VIN = 6.0V - -2.00 -0.70
mA
CMOS
Output 0.20 -
Leakage
Current Nch Open
Drain Output
ILEAK VIN=6.0V, VSEN=6.0V,
VOUT=6.0V, Cd: Open -
0.20 0.40
μA
Temperature Characteristics
Δ
VDF /
(
Δ
Topr
V
DF
)
-40 Ta 85 - ±100 - ppm/
Sense Resistance (*4) RSEN VSEN = 5.0V, VIN = 0V E-4 MΩ
Delay Resistance (*5) Rdelay VSEN = 6.0V, VIN = 5.0V,
Cd = 0V 1.6 2.0 2.4 MΩ
Delay capacitance pin
Sink Current
ICD VDS = 0.5V, VIN = 1.0V - 200 - μA
VSEN = 6.0V, VIN = 1.0V 0.4 0.5 0.6
Delay Capacitance Pin
Threshold Voltage
VTCD VSEN = 6.0V, VIN = 6.0V 2.9 3.0 3.1 V
Unspecified Operating
Voltage (*6) VUNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V
Detect Delay Time (*7) tDF0 VIN = 6.0V, VSEN = 6.0V 0.0V
Cd: Open 30 230
μs
Release Delay Time (*8) tDR0 VIN = 6.0V, VSEN = 0.0V 6.0V
Cd: Open 30 200
μs
NOTE:
*1: VDF(T): Nominal detect voltage
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: Calculated from the voltage value of the VIN and the current value of the Cd.
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
This value is applied only to the XC6108C series (CMOS output).
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
ELECTRICAL CHARACTERISTICS
XC6108xxxA Ta= 25
6/22
XC6108 Series
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX.
UNITS
CIRCUITS
Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V -
Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V
Hysteresis Width VHYS VIN = 1.0 ~ 6.0V E-3 V
Detect Voltage
Line Regulation
Δ
V
DF
/
(
Δ
V
IN
V
DF
)
VIN = 1.0 ~ 6.0V - ±0.1 - %/V
VIN = 1.0V - 0.6 1.5
Supply Current 1 (*2) ISS1 VSEN =
V
DF x 0.9 VIN = 6.0V - 0.7 1.6 μA
VIN = 1.0V - 0.8 1.7
Supply Current 2 (*2) ISS2 VSEN =
VDF x 1.1 VIN = 6.0V - 0.9 1.8 μA
VIN = 1.0V 0.1 0.7 -
VIN = 2.0V 0.8 1.6
VIN = 3.0V 1.2 2.0
VIN = 4.0V 1.6 2.3
VIN = 5.0V 1.8 2.4
IOUT1
VSEN =0V
VDS = 0.5V
(N-ch)
VIN = 6.0V 1.9 2.5
- mA
VIN = 1.0V - -0.30 -0.08
Output Current (*3)
IOUT2
VSEN = 6.0V
VDS = 0.5V
(P-ch) VIN = 6.0V - -2.00 -0.70
mA
CMOS
Output 0.20 -
Leakage
Current Nch Open
Drain Output
ILEAK VIN=6.0V, VSEN=6.0V,
VOUT=6.0V, Cd: Open -
0.20 0.40
μA
Temperature Characteristics
Δ
VDF /
(
Δ
Topr
V
DF
)
-40 Ta 85 - ±100 - ppm/
Sense Resistance (*4) RSEN VSEN = 5.0V, VIN = 0V E-4 MΩ
Delay Resistance (*5) Rdelay VSEN = 6.0V, VIN = 5.0V,
Cd = 0V 1.6 2.0 2.4 MΩ
Delay capacitance pin
Sink Current
ICD VDS = 0.5V, VIN = 1.0V - 200 - μA
VSEN = 6.0V, VIN = 1.0V 0.4 0.5 0.6
Delay Capacitance Pin
Threshold Voltage
VTCD VSEN = 6.0V, VIN = 6.0V 2.9 3.0 3.1 V
Unspecified Operating
Voltage (*6) VUNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V
Detect Delay Time (*7) tDF0 VIN = 6.0V, VSEN = 6.0V 0.0V
Cd: Open 30 230
μs
Release Delay Time (*8) tDR0 VIN = 6.0V, VSEN = 0.0V 6.0V
Cd: Open 30 200
μs
ELECTRICAL CHARACTERISTICS (Continued)
XC6108xxxB Ta= 25
NOTE:
*1: VDF(T): Nominal detect voltage
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: Calculated from the voltage value of the VIN and the current value of the Cd.
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
This value is applied only to the XC6108C series (CMOS output).
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
7/22
XC6108
Series
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX.
UNITS
CIRCUITS
Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V -
Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V
Hysteresis Width VHYS VIN = 1.0 ~ 6.0V E-2 V
Detect Voltage
Line Regulation
Δ
V
DF
/
(
Δ
V
IN
V
DF
)
VIN = 1.0 ~ 6.0V - ±0.1 - %/V
VIN = 1.0V - 0.6 1.5
Supply Current 1 (*2) ISS1 VSEN =
V
DF x 0.9 VIN = 6.0V - 0.7 1.6 μA
VIN = 1.0V - 0.8 1.7
Supply Current 2 (*2) ISS2 VSEN =
VDF x 1.1 VIN = 6.0V - 0.9 1.8 μA
VIN = 1.0V 0.1 0.7
VIN = 2.0V 0.8 1.6
VIN = 3.0V 1.2 2.0
VIN = 4.0V 1.6 2.3
VIN = 5.0V 1.8 2.4
IOUT1
VSEN =0V
VDS = 0.5V
(N-ch)
VIN = 6.0V 1.9 2.5
- mA
VIN = 1.0V - -0.30 -0.08
Output Current (*3)
IOUT2
VSEN = 6.0V
VDS = 0.5V
(P-ch) VIN = 6.0V - -2.00 -0.70
mA
CMOS
Output 0.20 -
Leakage
Current Nch Open
Drain Output
ILEAK VIN=6.0V, VSEN=6.0V,
VOUT=6.0V, Cd: Open -
0.20 0.40
μA
Temperature Characteristics
Δ
VDF/
(
Δ
Topr
V
DF
)
-40 Ta 85 - ±100 - ppm/
Sense Resistance (*4) RSEN VSEN = 5.0V, VIN = 0V E-4 MΩ
Unspecified Operating
Voltage (*5) VUNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V
Detect Delay Time (*6) tDF0 VIN = 6.0V, VSEN = 6.0V 0.0V 30 230
μs
Release Delay Time (*7) tDR0 VIN = 6.0V, VSEN = 0.0V 6.0V 30 200
μs
ELECTRICAL CHARACTERISTICS (Continued)
XC6108xxxC Ta= 25
NOTE:
*1: VDF(T): Nominal detect voltage
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
This value is applied only to the XC6108C series (CMOS output).
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
8/22
XC6108 Series
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX.
UNITS
CIRCUITS
Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V -
Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1
Hysteresis Width VHYS1 VIN = 1.0 ~ 6.0V E-3 V 1
Detect Voltage
Line Regulation
Δ
V
DF
/
(
Δ
V
IN
V
DF
)
VIN = 1.0 ~ 6.0V - ±0.1 - %/V 1
VIN = 1.0V - 0.6 1.5
Supply Current 1 (*2) ISS1 VSEN =
V
DF x 0.9 VIN = 6.0V - 0.7 1.6 μA 2
VIN = 1.0V - 0.8 1.7
Supply Current 2 (*2) ISS2 VSEN =
VDF x 1.1 VIN = 6.0V - 0.9 1.8 μA 2
VIN = 1.0V 0.1 0.7
VIN = 2.0V 0.8 1.6
VIN = 3.0V 1.2 2.0
VIN = 4.0V 1.6 2.3
VIN = 5.0V 1.8 2.4
IOUT1
VSEN =0V
VDS = 0.5V
(N-ch)
VIN = 6.0V 1.9 2.5
- mA 3
VIN = 1.0V - -0.30 -0.08
Output Current (*3)
IOUT2
VSEN = 6.0V
VDS = 0.5V
(P-ch)
VIN = 6.0V - -2.00 -0.70
mA 4
CMOS
Output 0.20 -
Leakage
Current Nch Open
Drain Output
ILEAK VIN=6.0V, VSEN=6.0V,
VOUT=6.0V, Cd: Open -
0.20 0.40
μA 3
Temperature Characteristics
Δ
V
DF /
(
Δ
Topr
V
DF
)
-40 Ta 85 - ±100 - ppm/
1
Sense Resistance (*4) RSEN VSEN = 5.0V, VIN = 0V E-4 MΩ 5
Unspecified Operating
Voltage (*5) VUNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V 7
Detect Delay Time (*6) tDF0 VIN = 6.0V, VSEN = 6.0V 0.0V 30 230
μs 9
Release Delay Time (*7) tDR0 VIN = 6.0V, VSEN = 0.0V 6.0V 30 200
μs 9
ELECTRICAL CHARACTERISTICS (Continued)
XC6108xxxD Ta= 25
NOTE:
*1: VDF(T): Nominal detect voltage
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
This value is applied only to the XC6108C series (CMOS output).
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
9/22
XC6108
Series
SYMBOL E-1 E-2 E-3 E-4
NOMINAL DETECT
VOLTAGE
DETECT VOLTAGE
(*1)
(V)
HYSTERESIS
RANGE
(V)
HYSTERESIS
RANGE
(V)
SENSE
RESISTANCE
(M)
VDF VHYS VHYS RSEN
VDF(T)
(V) MIN. MAX. MIN. MAX. MIN. MAX. MIN. TYP.
0.8 0.770 0.830 0.015 0.066 0.008
0.9 0.870 0.930 0.017 0.074 0.009
1.0 0.970 1.030 0.019 0.082 0.010
1.1 1.070 1.130 0.021 0.090 0.011
1.2 1.170 1.230 0.023 0.098 0.012
1.3 1.270 1.330 0.025 0.106 0.013
1.4 1.370 1.430 0.027 0.114 0.014
1.5 1.470 1.530 0.029 0.122 0.015
1.6 1.568 1.632 0.031 0.131 0.016
1.7 1.666 1.734 0.033 0.085 0.017
1.8 1.764 1.836 0.035 0.147 0.018
1.9 1.862 1.938 0.037 0.155 0.019
10 20
2.0 1.960 2.040 0.039 0.163 0.020
2.1 2.058 2.142 0.041 0.171 0.021
2.2 2.156 2.244 0.043 0.180 0.022
2.3 2.254 2.346 0.045 0.188 0.023
2.4 2.352 2.448 0.047 0.196 0.024
2.5 2.450 2.550 0.049 0.204 0.026
2.6 2.548 2.652 0.051 0.212 0.027
2.7 2.646 2.754 0.053 0.220 0.028
2.8 2.744 2.856 0.055 0.228 0.029
2.9 2.842 2.958 0.057 0.237 0.030
3.0 2.940 3.060 0.059 0.245 0.031
3.1 3.038 3.162 0.061 0.253 0.032
3.2 3.136 3.264 0.063 0.261 0.033
3.3 3.234 3.366 0.065 0.269 0.034
3.4 3.332 3.468 0.067 0.277 0.035
3.5 3.430 3.570 0.069 0.286 0.036
3.6 3.528 3.672 0.071 0.294 0.037
3.7 3.626 3.774 0.073 0.302 0.038
3.8 3.724 3.876 0.074 0.310 0.039
3.9 3.822 3.978 0.076 0.318 0.040
13 24
4.0 3.920 4.080 0.078 0.326 0.041
4.1 4.018 4.182 0.080 0.335 0.042
4.2 4.116 4.284 0.082 0.343 0.043
4.3 4.214 4.386 0.084 0.351 0.044
4.4 4.312 4.488 0.086 0.359 0.045
4.5 4.410 4.590 0.088 0.367 0.046
4.6 4.508 4.692 0.090 0.375 0.047
4.7 4.606 4.794 0.092 0.384 0.048
4.8 4.704 4.896 0.094 0.392 0.049
4.9 4.802 4.998 0.096 0.400 0.050
5.0 4.900 5.100 0.098 0.408
0
0.051
15 28
VOLTAGE CHART
NOTE:
*1: When VDF(T)1.4V, the detection accuracy is ±30mV.
When VDF(T)1.5V, the detection accuracy is ±2%.
10/22
XC6108 Series
TEST CIRCUITS
Circuit 1
Circuit 3
Circuit 4
R=100kΩ
(No resistor needed for CMOS output products)
Circuit 5
Circuit 2
XC6108 Series
XC6108 Series
XC6108 Series
XC6108 Series
XC6108 Series
11/22
XC6108
Series
Circuit 9
TEST CIRCUITS (Continued)
Circuit 6
Circuit 7
Circuit 8
Waveform Measurement Point
*No delay capacitance pin available in the XC6108xxxC/D series.
(No resistor needed for CMOS output products)
(No resistor needed for CMOS output products)
XC6108 Series
XC6108 Series
XC6108 Series
XC6108 Series
12/22
XC6108 Series
OPERATIONAL EXPLANATION
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on page 14.
As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged
to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to
reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN).
* If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input
voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected.
When the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF), an N-ch transistor
(M1) for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An
inverter (Inv.1) operates as a comparator of the reference voltage VIN, and the output voltage changes into the “Low” level
(=VSS). The detect delay time [tDF] is defined as time which ranges from VSEN=VDF to the VOUT of “Low” level
(especially, when the Cd pin is not connected: tDF0).
While the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground
voltage (=VSS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to
reach the release voltage (VSEN< VDF +VHYS).
When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M1) for
the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay
resistor (Rdelay). The inverter (Inv.1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic
Threshold: VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF).
While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the
sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC
series circuit. Assuming the time to the release delay time (tDR), it can be given by the formula (1).
tDR =
Rdelay
×
Cd
×
In (1
VTCD / VIN) (1)
* In = a natural logarithm
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and
the delay capacitance pin voltage is VIN /2 (TYP.)
tDR = Rdelay
×
Cd
×
0.69(2)
*:Rdelay is 2.0MΩ(TYP.
As an example, presuming that the delay capacitance is 0.68μF, tDR is :
2.0
×
106
×
0.68
×
10-6
×
0.69=938(ms)
* Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the
ground (=VSS) level because time described in is short.
When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), the inverter
(Inv.1) will be inverted. As a result, the output voltage changes into the “High” (=VIN) level. tDR0 is defined as time
which ranges from VSEN=VDF+VHYS to the VOUT of “High” level without connecting to the Cd.
While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the
delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=VIN)
level.
13/22
XC6108
Series
TRANSITION OF VOUT CONDITION *1
VSEN Cd
L
H L
L
L
H H
L
L L
H L
L
H
H H H
DELAY CAPACITANCE [Cd]
(μF)
RELEASE DELAY TIME [tDR]
(TYP.)
(ms)
RELEASE DELAY TIME [tDR] *2
(MIN. ~ MAX.)
(ms)
0.010 13.8 11.0 ~ 16.6
0.022 30.4 24.3 ~ 36.4
0.047 64.9 51.9 ~ 77.8
0.100 138 110 ~ 166
0.220 304 243~ 364
0.470 649 519 ~ 778
1.000 1380 1100 ~ 1660
Release Delay Time Chart
*1: VOUT transits from condition to because of the combination of VSEN and Cd.
Example
ex. 1) VOUT ranges from ‘L’ to ‘H’ in case of VSEN = ‘H’ (VDRVSEN), Cd=’H’ (VTCDCd) while VOUT is ‘L’.
ex. 2) VOUT maintains ‘H’ when Cd ranges from ‘H’ to ‘L’, VSEN=’H’ and Cd=’L’ when VOUT becomes ‘H’ in ex.1.
OPERATIONAL EXPLANATION (Continued)
Function Chart
* The release delay time values above are calculated by using the formula (2).
*2: The release delay time (tDR) is influenced by the delay capacitance Cd.
14/22
XC6108 Series
OPERATIONAL EXPLANATION (Continued)
Figure 1: Typical application circuit example
Figure 2: The timing chart of Figure 1
*The XC6108N series (N-ch open
drain output) requires a pull-up
resistor for pulling up output.
Vref
Comparator Inverter
R1
R2
R3
M5
SEN=R1+R2+R3
M2
M1
M3
VOUT
VSS
Rdelay
Cd
VSEN
VIN
VIN VSEN
Cd
M4
VSEN (MIN.:0V, MAX.:6.0V)
VTCD
VDF+VHYS
VOUT (MIN.:VSS, MAX:VIN)
VCD(MIN.:VSS, MAX.:VIN)
VDF
15/22
XC6108
Series
VSEN
Cd
VSS
VIN
VOUT
VSENVIN
Cd
R=100kΩ
VOUT
(No resistor needed fo
r
CMOS output products)
1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage
to the device.
2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through current
at operation of the IC. At this time, the operation may be wrong if the power supply input pin voltage falls below the
minimum operating voltage range. In CMOS output, for output current, drops in the power supply input pin voltage
similarly occur. Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used, oscillation of
the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis
voltage. Note it especially when you use the IC with the VIN pin connected to a resistor.
3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage over
1.0V to the VIN pin.
4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation.
5. Power supply noise may cause operational function errors, Care must be taken to put the capacitor between VIN-GND and
test on the board carefully.
6. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation
with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the VIN pin
and the Cd pin as the Figure 3 shown below.
6. In N channel open drain output, VOUT voltage at detect and release is determined by resistance of a pull up resistor
connected at the VOUT pin. Please choose proper resistance values with reffering to Figure 4;
During detection : VOUT = Vpull / (1+Rpull / RON)
Vpull: Pull up voltage
RON(1)On resistance of N channel driver M3 can be calculated as VDS / IOUT1 from electrical characteristics,
For example, when (2) RON = 0.5 / 0.8×10-3 = 625Ω(MIN.at VIN=2.0V, Vpull = 3.0V and VOUT 0.1V at detect,
Rpull= (Vpull /VOUT-1)×RON= (3 / 0.1-1)×62518kΩ
In this case, Rpull should be selected higher or equal to 18kΩ in order to keep the output voltage less than 0.1V during
detection.
(1) RON is bigger when VIN is smaller, be noted.
(2) For calculation, Minimum VIN should be chosen among the input voltage range.
During releasingVOUT = Vpull / (1 + Rpull / Roff)
VpullPull up voltage
RoffOn resistance of N channel driver M3 is 15MΩ(MIN. when the driver is off (as to VOUT / ILEAK)
For examplewhen Vpull = 6.0V and VOUT 5.99V,
Rpull = (Vpull / VOUT-1)×Roff = (6/5.99-1)×15×106 25kΩ
In this case, Rpull should be selected smaller or equal to 25kΩ in order to obtain output voltage higher than 5.99V
during releasing.
Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode
Figure 4: Circuit example of XC6108N Series
NOTES ON USE
Figure 3
Figure 4
NOTE Roff=VOUT/ILEAK
R1
Vref
R2
R3
M5
SEN=R1+R2+R3
Rdelay
M2
M1
M3
Comparator Inverter
Cd
VSEN
VIN
VIN VSEN VOUT
VSS
Vpull
Rpull
ILEA
K
16/22
XC6108 Series
TYPICAL PERFORMANCE CHARACTERISTICS
(1) Supply Current vs. Sense Voltage
(2) Supply Current vs. Input Voltage
(3) Detect Voltage vs. Ambient Temperature (4) Detect Voltage vs. Input Voltage
XC6108C25AGR
0.0
0.5
1.0
1.5
2.0
0123456
Sense Voltage: VSEN (V)
Supply Current: ISS (μA)
25
-40
Ta=85
VIN =3.0V
XC6108C25AGR
2.45
2.50
2.55
-50 -25 0 25 50 75 100
Ambient Temperature: Ta ()
Detect Voltage: VDF (V)
VIN=4.0V
XC6108C25AGR
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0123456
Input Voltage: VIN (V)
Supply Current: ISS (μA)
VSEN=2.25V
25
-40
Ta= 85
XC6108C25AGR
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0123456
Input Voltage: VIN (V)
Supply Current: ISS (μA)
VSEN=2.75V
25
-40
Ta= 85
XC6108C25AGR
2.45
2.50
2.55
1.0 2.0 3.0 4.0 5.0 6.0
Input Voltage: VIN (V)
Detect Voltage: VDF (V)
85
-40
Ta= 25
Supply Current : ISS (μA)
Supply Current : ISS (μA)
Supply Current : ISS (μA)
Detect Voltage : VDF (V)
Detect Voltage : VDF (V)
Sense Voltage : VSEN (V)
Input Voltage : VIN (V) Input Voltage : VIN (V)
Input Voltage : VIN (V)
Ambient Temperature : Ta ()
17/22
XC6108
Series
XC6108N25AGR
-1.0
0.0
1.0
2.0
3.0
4.0
0 0.5 1 1.5 2 2.5 3
Supply Voltage: VIN (V)
Output Voltage: VOUT (V)
VSEN=VIN Pull-up=VIN R=100kΩ
25
-40
Ta=85
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5) Hysteresis Voltage vs. Ambient Temperature (6) CD Pin Sink Current vs. Input Voltage
(7) Output Voltage vs. Sense Voltage (8) Output Voltage vs. Input Voltage
(9) Output Current vs. Input Voltage
XC6108C25AGR
0.05
0.10
0.15
0.20
-50 -25 0 25 50 75 100
Ambient Temperature: Ta ()
Hysteresis Voltage:
VHYS (V)
VIN = 4.0V
XC6108C25AGR
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
0123456
Sense V olta
g
e: VSEN
(
V
)
Output Voltage: VOUT (V)
Ta=25
4.0V
1.0V
VIN=6.0V
XC6108C25AGR
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0123456
Input Voltage: VIN (V)
Cd PIN Sink Current: ICD (mA)
25
85
Ta= -40
VSEN=0V, VDS=0.5V
XC6108C25AGR
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0123456
Input Voltage: VIN (V)
Output Current: IOUT (mA)
VDS(Nch)=0.5V
Ta=-40
25
85
XC6108C25AGR
-2.0
-1.5
-1.0
-0.5
0.0
0123456
Input Voltage: VIN (V)
Output Current: IOUT (mA)
VDS(Pch)=0.5V
-40
25
Ta= 85
Sense Voltage : VSEN (V)
Hysteresis Voltage : VHYS (V)
Cd PIN Sink Current : ICD (mA)
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
Out
p
ut Current : IOUT
(
mA
)
Out
p
ut Current : IOUT
(
mA
)
Input Voltage : VIN (V)
Input Voltage : VIN (V)
Input Voltage : VIN (V) Input Voltage : VIN (V)
Ambient Temperature : Ta ()
18/22
XC6108 Series
XC6108C25AGR
1
1.5
2
2.5
3
3.5
4
-50 -25 0 25 50 75 100
Ambient Temperature: Ta ()
Delay Resistance: Rdelay
(MΩ)
VSEN=6.0V VCD=0.0V VIN=5.0V
XC6108N25AGR
0.10
0.15
0.20
0.25
-50 -25 0 25 50 75 100
Ambient Temperature: Ta ()
Leak Carrent: ILEAK ( μA)
VIN=VSEN=6.0V VOUT=6.0V
XC6108C25AGR
0.1
1
10
100
1000
10000
0.0001 0.001 0.01 0.1 1
Delay Capacitor: Cd (μF)
Release Delay time: TDR (ms)
Ta=25
TDR=Cd×2.0×10
6
×0.69
VIN=1.0V
3.0V
6.0V
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Delay Resistance vs. Ambient Temperature (11) Release Delay Time vs. Delay Capacitance
(12) Detect Delay Time vs. Delay Capacitance
XC6108C25AGR
1
10
100
1000
0.0001 0.001 0.01 0.1 1
Delay Capacitance: Cd (μF)
Detect Delay Time: TDF (μs)
Ta=25
VIN=6.0V
4.0V
3.0V
2.0V
1.0V
Ambient Temperature : Ta ()
Detect Delay Time : TDF (μs) Delay Resistance : Rdelay (MΩ)
Release Delay Time : TDR (ms)
Delay Capacitance : Cd (μF)
Delay Capacitance : Cd (μF)
(13) Leakage Current vs. Ambient Temperature
(14) Leakage Current vs. Supply Voltage
XC6108N25AGR
0.10
0.15
0.20
0.25
0123456
Output Voltage: VOUT (V)
Leak Current: ILEAK (
μA)
VIN=VSEN=6.0V
19/22
XC6108
Series
PACKAGING INFORMATION
USP-4
SOT-25
13
2.9±0.2
0.4
+0.1
-0.05
1.9±0.2
0.15 +0.1
-0.05
0~0.1
2
5 4
(0.95)
o
er
ng
et su
f
ace
i
s not
formed because the sides of the
pins are plated.
20/22
XC6108 Series
USP-4 Reference Pattern Layout USP-4 Reference Metal Mask Design
PACKAGING INFORMATION (Continued)
21/22
XC6108
Series
123
5
4
1
2
4
3
(ex.)
MARK VOLTAGE (V) PRODUCT SERIES
3 x.3 XC6108xx3xxx
0 x.0 XC6108xx0xxx
MARK OPTIONS PRODUCT SERIES
A Built-in delay capacitance pin with hysteresis 5% (TYP.)
(Standard) XC6108xxxAxx
B Built-in delay capacitance pin with hysteresis less than 1%
(Standard) XC6108xxxBxx
C No built-in delay capacitance pin with hysteresis 5% (TYP.)
(Semi-custom) XC6108xxxCxx
D No built-in delay capacitance pin with hysteresis less than 1%
(Semi-custom) XC6108xxxDxx
(ex.)
MARK VOLTAGE (V) PRODUCT SERIES
3 x.3 XC6108xx3xxx
0 x.0 XC6108xx0xxx
MARK OPTIONS PRODUCT
SERIES
A Built-in delay capacitance pin with hysteresis 5% (TYP.)
(Standard) XC6108xxxAxx
B Built-in delay capacitance pin with hysteresis less than 1%
(Standard) XC6108xxxBxx
C No built-in delay capacitance pin with hysteresis 5% (TYP.)
(Semi-custom) XC6108xxxCxx
D No built-in delay capacitance pin with hysteresis less than 1%
(Semi-custom) XC6108xxxDxx
MARK VOLTAGE (V) MARK VOLTAGE (V)
A 0.x K 0.x
B 1.x L 1.x
C 2.x M 2.x
D 3.x N 3.x
E 4.x P 4.x
F 5.x R 5.x
MARK VOLTAGE (V) MARK VOLTAGE (V)
A 0.x K 0.x
B 1.x L 1.x
C 2.x M 2.x
D 3.x N 3.x
E 4.x P 4.x
F 5.x R 5.x
MARKING RULE
represents output configuration and integer number of detect voltage
CMOS Output (XC6108C Series) N-ch Open Drain Output (XC6108N Series)
represents decimal number of detect voltage
represents options
r
epresents production lot numbe
r
0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated.
(G, I, J, O, Q, W excluded)
SOT-25
represents output configuration and integer number of detect voltage
CMOS Output (XC6108C Series) N-ch Open Drain Output (XC6108N Series)
r
epresents decimal number of detect voltage
represents options
r
epresents production lot numbe
r
0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)
*No character inversion used.
USP-4
SOT-25
(
TOP VIEW
)
USP-4
(
TOP VIEW
)
22/22
XC6108 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics. Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.