© Freescale Semiconductor, Inc., 2007–2011. All rights reserved.
Freescale Semiconductor
Datasheet: Technical Data
This document provides an overview of the MPC8313E
PowerQUICC™ II Pro processor features, including a block
diagram showing the major functional components. The
MPC8313E is a cost-effective, low-power , highly integrated
host processor that addresses the requirements of several
printing and imaging, consumer , and industrial applications,
including main CPUs and I/O processors in printing systems,
networking switches and line cards, wireless LANs
(WLANs), network access servers (NAS), VPN routers,
intelligent NIC, and industrial controllers. The MPC8313E
extends the PowerQUICC™ family, adding higher CPU
performance, additional functionality, and faster interfaces
while addressing the requirements related to time-to-market,
price, power consumption, and package size.
NOTE
The information in this document is accurate for
revisions 1.0, 2.x, and later. See Section 23.1, “Part
Numbers Fully Addressed by this Document.”
Document Number: MPC8313EEC
Rev. 4, 11/2011
Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 6
3. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 1 1
4. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 13
6. DDR and DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . 14
7. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8. Ethernet: Three-Speed Ethern et, MII Management . 21
9. High-Speed Serial Interfaces (HSSI) . . . . . . . . . . . . 36
10. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1 1. Enhanced Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . 47
12. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
14. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
15. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
16. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
17. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
18. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
19. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 63
20. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
21. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
22. System Design Information . . . . . . . . . . . . . . . . . . . 87
23. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 93
24. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
MPC8313E
PowerQUICC II Pro Processor
Hardware Specifications
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
2Freescale Semiconductor
1 Overview
The MPC8313E incorporates the e300c3 core, which includes 16 Kbytes of L1 instruction and data caches
and on-chip memory management units (MMUs). The MPC8313E has interfaces to dual enhanced
three-speed 10/100/1000 Mbps Ethernet controllers, a DDR1/DDR2 SDRAM memory controller, an
enhanced local bus controller, a 32-bit PCI controller, a dedicated security engine, a USB 2.0 dual-role
controller and an on-chip high-speed PHY, a programmable interrupt controller, dual I2C controllers, a
4-channel DMA controller, and a general-purpose I/O port. This figure shows a block diagram of the
MPC8313E.
Figure 1. MPC8313E Block Diagram
The MPC8313E security engine (SEC 2.2) allows CPU-intensive cryptographic operations to be offloaded
from the main CPU core. The security-processing accelerator provides hardware acceleration for the DES,
3DES, AES, SHA-1, and MD-5 algorithms.
1.1 MPC8313E Features
The following features are supported in the MPC8313E:
Embedded PowerPC™ e300 processor core built on Power Architecture™ technology; operates at
up to 333 MHz.
High-performance, low-power, and cost-effective host processor
DDR1/DDR2 memory controller—one 16-/32-bit interface at up to 333 MHz supporting both
DDR1 and DDR2
16-Kbyte instruction cache and 16-Kbyte data cache, a floating point unit, and two integer units
Peripheral interfaces such as 32-bit PCI interface with up to 66-MHz operation, 16-bit enhanced
local bus interface with up to 66-MHz operation, and USB 2.0 (high speed) with an on-chip PHY.
Security engine provides acceleration for control and data plane security protocols
Power management controller for low-power consumption
High degree of software compatibility with previous-generation PowerQUICC processor-based
designs for backward compatibility and easier software migration
16-KB
D-Cache
16-KB
I-Cache
e300c3 Core w/FPU and
DUART
Interrupt
Dual I2C
Timers
GPIO Local Bus, DDR1/DDR2
Controller
Controller
DMAPCI
I/O Sequencer
(IOS)
Security Engine 2.2
Note: The MPC8313 does not include a security engine.
Pow er Management
SPI
USB 2.0
Host/Device/OTG
ULPI
Gb Ethernet
MAC
On-Chip
FS PHY
Gb Ether net
MAC
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 3
1.2 Serial Interfaces
The following interfaces are supported in the MPC8313E: dual UART, dual I2C, and an SPI interface.
1.3 Security Engine
The security engine is optimized to handle all the algorithms associated with IPSec, IEEE Std 802.11i®,
and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto execution
units (EUs). The execution units are as follows:
Data encryption standard execution unit (DEU), supporting DES and 3DES
Advanced encryption standard unit (AESU), supporting AES
Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-224, SHA-256, and
HMAC with any algorithm
One crypto-channel supporting multi-command descriptor chains
1.4 DDR Memory Controller
The MPC8313E DDR1/DDR2 memory controller includes the following features:
Single 16- or 32-bit interface supporting both DDR1 and DDR2 SDRAM
Support for up to 333 MHz
Support for two physical banks (chip selects), each bank independently addressable
64-Mbit to 2-Gbit (for DDR1) and to 4-Gbit (for DDR2) devices with x8/x16/x32 data ports (no
direct x4 support)
Support for one 16-bit device or two 8-bit devices on a 16-bit bus, or one 32-bit device or two
16-bit devices on a 32-bit bus
Support for up to 16 simultaneous open pages
Supports auto refresh
On-the-fly power management using CKE
1.8-/2.5-V SSTL2 compatible I/O
1.5 PCI Controller
The MPC8313E PCI controller includes the following features:
PCI specification revision 2.3 compatible
Single 32-bit data PCI interface operates at up to 66 MHz
PCI 3.3-V compatible (not 5-V compatible)
Support for host and agent modes
On-chip arbitration, supporting three external masters on PCI
Selectable hardware-enforced coherency
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
4Freescale Semiconductor
1.6 USB Dual-Role Controller
The MPC8313E USB controller includes the following features:
Supports USB on-the-go mode, which includes both device and host functionality, when using an
external ULPI (UTMI + low-pin interface) PHY
Compatible with Universal Serial Bus Specification, Rev. 2.0
Supports operation as a stand-alone USB device
Supports one upstream facing port
Supports three programmable USB endpoints
Supports operation as a stand-alone USB host controller
Supports USB root hub with one downstream-facing port
Enhanced host controller interface (EHCI) compatible
Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation.
Low-speed operation is supported only in host mode.
Supports UTMI + low pin interface (ULPI) or on-chip USB 2.0 full-speed/high-speed PHY
1.7 Dual Enhanced Three-Speed Ethernet Controllers (eTSECs)
The MPC8313E eTSECs include the following features:
Two RGMII/SGMII/MII/RMII/RTBI interfaces
Two controllers designed to comply with IEEE Std 802.3®, 802.3u®, 802.3x®, 802.3z®,
802.3au®, and 802.3ab®
Support for Wake-on-Magic Packet™, a method to bring the device from standby to full operating
mode
MII management interface for external PHY control and status
Three-speed support (10/100/1000 Mbps)
On-chip high-speed serial interface to external SGMII PHY interface
Support for IEEE Std 1588™
Support for two full-duplex FIFO interface modes
Multiple PHY interface configuration
TCP/IP acceleration and QoS features available
IP v4 and IP v6 header recognition on receive
IP v4 header checksum verification and generation
TCP and UDP checksum verification and generation
Per-packet configurable acceleration
Recognition of VLAN, stacked (queue in queue) VLAN, IEEE Std 802.2®, PPPoE session, MPLS
stacks, and ESP/AH IP-security headers
Transmission from up to eight physical queues.
Reception to up to eight physical queues
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 5
Full and half-duplex Ethernet support (1000 Mbps supports only full-duplex):
IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or
software-programmed PAUSE frame generation and recognition)
Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and
IEEE 802.1 virtual local area network (VLAN) tags and priority
VLAN insertion and deletion
Per-frame VLAN control word or default VLAN for each eTSEC
Extracted VLAN control word passed to software separately
Retransmission following a collision
CRC generation and verification of inbound/outbound packets
Programmable Ethernet preamble insertion and extraction of up to 7 bytes
MAC address recognition:
Exact match on primary and virtual 48-bit unicast addresses
VRRP and HSRP support for seamless router fail-over
Up to 16 exact-match MAC addresses supported
Broadcast address (accept/reject)
Hash table match on up to 512 multicast addresses
Promiscuous mode
Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet
programming models
RMON statistics support
10-Kbyte internal transmit and 2-Kbyte receive FIFOs
MII management interface for control and status
1.8 Programmable Interrupt Controller (PIC)
The programmable interrupt controller (PIC) implements the necessary functions to provide a flexible
solution for general-purpose interrupt control. The PIC programming model supports 5 external and 34
internal discrete interrupt sources. Interrupts can also be redirected to an external interrupt controller.
1.9 Power Management Controller (PMC)
The MPC8313E power management controller includes the following features:
Provides power management when the device is used in both host and agent modes
Supports PCI power management 1.2 D0, D1, D2, D3hot, and D3cold states
On-chip split power supply controlled through external power switch for minimum standby power
Support for PME generation in PCI agent mode, PME detection in PCI host mode
Supports wake-up from Ethernet (Magic Packet), USB, GPIO, and PCI (PME input as host)
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
6Freescale Semiconductor
1.10 Serial Peripheral Interface (SPI)
The serial peripheral interface (SPI) allows the MPC8313E to exchange data between other PowerQUICC
family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time
clocks, A/D converters, and ISDN devices.
The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface
(receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an
independent baud-rate generator, and a control unit.
1.11 DMA Controller, Dual I2C, DUART, Local Bus Controller, and
Timers
The MPC8313E provides an integrated four-channel DMA controller with the following features:
Allows chaining (both extended and direct) through local memory-mapped chain descriptors
(accessible by local masters)
Supports misaligned transfers
There are two I2C controllers. These synchronous, multi-master buses can be connected to additional
devices for expansion and system development.
The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550
programming models. The 16-byte FIFOs are supported for both the transmitter and the receiver.
The MPC8313E local bus controller (LBC) port allows connections with a wide variety of external DSPs
and ASICs. Three separate state machines share the same external pins and can be programmed separately
to access different types of devices. The general-purpose chip select machine (GPCM) controls accesses
to asynchronous devices using a simple handshake protocol. The three user programmable machines
(UPMs) can be programmed to interface to synchronous devices or custom ASIC interfaces. Each chip
select can be configured so that the associated chip interface can be controlled by the GPCM or UPM
controller. The FCM provides a glueless interface to parallel-bus NAND Flash E2PROM devices. The
FCM contains three basic configuration register groups—BRn, ORn, and FMR. Both may exist in the
same system. The local bus can operate at up to 66 MHz.
The MPC8313E system timers include the following features: periodic interrupt timer, real time clock,
software watchdog timer, and two general-purpose timer blocks.
2 Electrical Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the
MPC8313E. The MPC8313E is currently targeted to these specifications. Some of these specifications are
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer
design specifications.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 7
2.1 Overall DC Electrical Characteristics
This section covers the ratings, conditions, and other characteristics.
2.1.1 Absolute Maximum Ratings
This table provides the absolute maximum ratings.
2.1.2 Power Supply Voltag e Specification
This table provides the recommended operating conditions for the MPC8313E. Note that the values in this
table are the recommended and tested operating conditions. If a particular block is given a voltage falling
within the range in the Recommended Value column, the MPC8313E is capable of delivering the amount
of current listed in the Current Requirement column; this is the maximum current possible. Proper device
operation outside of these conditions is not guaranteed.
Table 1. Absolute Maximum Ratings1
Characteristic Symbol Max Va lue Unit Note
Core supply voltage VDD –0.3 to 1.26 V
PLL supply voltage AVDD –0.3 to 1.26 V
Core power supply for SerDes transceivers XCOREVDD –0.3 to 1.26 V
Pad power supply for SerDes transceivers XPADVDD –0.3 to 1.26 V
DDR and DDR2 DRAM I/O voltage GVDD –0.3 to 2.75
–0.3 to 1.98 V—
PCI, local bus, DUART, system control and power management, I2C,
and JTAG I/O voltage NVDD/LVDD –0.3 to 3.6 V
eTSEC, USB LVDDA/LVDDB –0.3 to 3.6 V
Input voltage DDR DRAM signals MVIN –0.3 to (GVDD + 0.3) V 2, 5
DDR DRAM reference MVREF –0.3 to (GVDD + 0.3) V 2, 5
Enhanced th ree-speed Ethernet signals LVIN –0.3 to (LVDDA + 0.3)
or
–0.3 to (LVDDB + 0.3)
V4, 5
Local bus , DUAR T, SYS_CLK_IN, system control,
and power management, I2C, and JTAG signals NVIN –0.3 to (NVDD + 0.3) V 3, 5
PCI NVIN –0.3 to (NV DD + 0.3) V 6
Storage temperature range TSTG –55 to 150 C—
Notes:
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause
permanent damage to the device.
2. Caution: MVIN must not e xceed GV DD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during
power-on reset and power-down sequences.
3. Caution: NVIN must not exceed NVDD by more than 0.3 V. This limit may be e xceeded for a maximum of 20 ms during
power-on reset and power-down sequences.
4. Caution: LVIN must not exceed LVDDA/LVDDB by more than 0.3 V. This limit may be e xceeded fo r a maximum of 20 ms during
power-on reset and power-down sequences.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
8Freescale Semiconductor
Table 2. Recommended Operating Conditions
Characteristic Symbol Recommended Value1Unit Current
Requirement
Core supply voltage VDD 1.0 V ± 50 mV V 469 mA
Internal core logic constant power VDDC 1.0 V ± 50 mV V 377 mA
SerDes inte rnal digi ta l power XCOREVDD 1.0 V 170 mA
SerDes internal digital ground XCOREVSS 0.0 V
SerDes I/O digital pow e r XPADVDD 1.0 V 10 mA
SerDes I/O digital ground XPADVSS 0.0 V
SerDes analog power for PLL SDAVDD 1.0V±50mV V 10mA
SerDes analog ground for PLL SDAVSS 0.0 V
Dedicated 3.3 V analog power for USB PLL USB_PLL_PWR3 3.3 V ± 300 mV V 2–3 mA
Dedicated 1.0 V analog power for USB PLL USB_PLL_PWR1 1.0 V ± 50 mV V 2–3 mA
Dedicated analog ground for USB PLL USB_PLL_GND 0.0 V
Dedicated USB power for USB bias circuit USB_VDDA_BIAS 3.3 V ± 300 mV V 4–5 mA
Dedicated USB ground for USB bias circuit USB_VSSA_BIAS 0.0 V
Dedicated power for USB transceiver USB_VDDA 3.3 V ± 300 mV V 75 mA
Dedicated ground for USB transceiver USB_VSSA 0.0 V
Analog power f o r e300 core APLL AVDD1 61.0 V ± 50 mV V 2–3 mA
Analog power for system APLL AVDD2 61.0 V ± 50 mV V 2–3 mA
DDR1 DRAM I/O voltage (333 MHz, 32-bit ope ration) GVDD 2.5 V ± 125 mV V 131 mA
DDR2 DRAM I/O voltage (333 MHz, 32-bit ope ration) GVDD 1.8 V ± 80 mV V 140 mA
Differential reference voltage for DDR controller MVREF 1/2 DDR supply
(0.49 GVDD to
0.51 GVDD)
V—
Standard I/O voltage NVDD 3.3 V ± 300 mV2V74 mA
eTSEC2 I/O supply LVDDA 2.5 V ± 125 mV/
3.3 V ± 300 mV V22 mA
eTSEC1/USB DR I/O supply LVDDB 2.5 V ± 125 mV/
3.3 V ± 300 mV V44 mA
Supply for eLBC IOs LVDD 3.3 V ± 300 mV V 16 mA
Analog and digital ground VSS 0.0 V
Junction temperature range TA/TJ 30 to 105 C
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 9
This figure shows the undershoot and overshoot voltages at the interfaces of the MPC8313E.
Figure 2. Overshoot/Undershoot Voltage for GVDD/NVDD/LVDD
2.1.3 Output Driver Characteristics
This table provides information on the characteristics of the output driver strengths.
Note:
1. GVDD, NVDD, A VDD, and VDD must track each other and must v ary in the same direction—eith er in the positiv e or negative direction.
2. Some GPIO pins may operate from a 2.5-V supply when configured for other functions.
3. Min temperature is specified with TA; Max temperature is specified with TJ.
4. All Power rails must be connected and power applied to the MPC8313 even if the IP interfaces are not used.
5. All I/O pins should be interfaced with peripherals operating at same voltage level.
6. This v oltage is the input to the filter discussed in Section 22.2, “PLL P o wer Supply Filtering” and not necessarily the voltage at the
AVDD pin, which may be reduced from VDD by the filter.
Table 3. Output Drive Capability
Driver Type Output Impedance () Supply Voltage
Local bus interface utilities signals 42 NVDD = 3.3 V
PCI signals 25
DDR signal 18 GVDD = 2.5 V
Tabl e 2. Recommended Operating Conditions (continued)
Characteristic Symbol Recommended Value1Unit Current
Requirement
VSS
VSS – 0.3 V
VSS – 0.7 V Not to Exceed 10%
G/L/NVDD + 20%
G/L/NVDD
G/L/NVDD + 5%
of tinterface1
1. Note that tinterface refers to the clock period associated with the bus clock
VIH
VIL
Note:
interface.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
10 Freescale Semiconductor
2.2 Power Sequencing
The MPC8313E does not require the core supply voltage (VDD and VDDC) and I/O supply voltages
(GVDD, LVDD, and NVDD) to be applied in any particular order. Note that during power ramp-up, before
the power supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a
period of time that all input and output pins are actively driven and cause contention and excessive current.
In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core
voltage (VDD and VDDC) before the I/O voltage (GVDD, LVDD, and NVDD) and assert PORESET before
the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply
must rise to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the
power supplies (I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before
negating PORESET.
Note that there is no specific power down sequence requirement for the MPC8313E. I/O voltage supplies
(GVDD, LVDD, and NVDD) do not have any ordering requirements with respect to one another.
Figure 3. Power-Up Sequencing Example
DDR2 signal 18 GVDD = 1.8 V
DUART, system control, I2C, JTAG, SPI 42 NVDD = 3.3 V
GPIO signals 42 NVDD = 3.3 V
eTSEC signals 42 LVDDA, LVDDB = 2.5/3.3 V
USB signals 42 LVDDB = 2.5/3.3 V
Table 3. Output Drive Capability (continued)
Driver Type Output Impedance () Supply Voltage
t
90%
V
Core Voltage (VDD, VDDC)
I/O Voltage (GVDD, GVDD, and NVDD)
0
0.7 V
PORESET
tSYS_CLK_IN/tPCI_SYNC_IN >= 32 clocks
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 11
3 Power Characteristics
The estimated typical power dissipation, not including I/O supply power, for this family of MPC8313E
devices is shown in this table. Table 5 shows the estimated typical I/O power dissipation.
This table describes a typical scenario where blocks with the stated percentage of utilization and
impedances consume the amount of power described.
1
Table 4. MPC8313E Power Dissipatio n1
Core Frequency
(MHz) CSB Frequency
(MHz) Typical2Maximum for
Rev. 1.0 Silicon3Maximum for
Rev. 2.x or Later Silicon3Unit
333 167 820 1020 1200 mW
400 133 820 1020 1200 mW
Note:
1. The v alues do not include I/O supply po w er or AVDD, but do include core, USB PLL, and a portion of SerDes digital power
(not including XCOREVDD, XPADVDD, or SDAVDD, which all have dedicated power supplies f or the SerDes PHY).
2. Typical power is based on a voltage of VDD = 1.05 V and an artificial smoker test running at room temperature.
3. Maximum pow er is based on a voltage of VDD = 1.05 V, a junction temperature of TJ = 105C, and an artificial smoker test.
Table 5. MPC8313E Typical I/O Power Dissipation
Interface Parameter GVDD
(1.8 V) GVDD
(2.5 V) NVDD
(3.3 V)
LVDDA/
LVDDB
(3.3 V)
LVDDA/
LVDDB
(2.5 V)
LVDD
(3.3 V) Unit Comments
DDR 1, 60% utilization,
50% read/write
Rs = 22
Rt = 50
single pair of clock
capacitive load: data = 8 p F,
control address = 8 pF,
clock = 8 pF
333 MHz,
32 bits 0.355—— ——W
266 MHz,
32 bits 0.323—— ——W
DDR 2, 60% utilization,
50% read/write
Rs = 22
Rt = 75
single pair of clock
capacitive load: data = 8 p F,
control address = 8 pF,
clock = 8 pF
333 MHz,
32 bits 0.266—— ——W
266 MHz,
32 bits 0.246—— ——W
PCI I/O load = 50 pF 33 MHz 0.120 W
66 MHz 0.249 W
Local bus I/O load = 20 pF 66 MHz 0.056 W
50 MHz 0.040 W
TSEC I/O load = 20 pF MII,
25 MHz 0.008 W M ultiple by
number of
interface used
RGMII,
125 MHz 0.078 0.044 W
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
12 Freescale Semiconductor
This table shows the estimated core power dissipation of the MPC8313E while transitioning into the
D3 warm low-power state.
4 Clock Input Timing
This section provides the clock input DC and AC electrical characteristics for the MPC8313E.
4.1 DC Electrical Characteristics
This table provides the system clock input (SYS_CLK_IN/PCI_SYNC_IN) DC timing specifications for
the MPC8313E.
USBDR controller load = 20 pF 60 MHz 0.078 W
Other I/O 0.015 W
Table 6. MPC8313E Low-Power Modes Power Dissipation1
333-MHz Core, 167-MHz CSB2Rev. 1.03 Rev. 2.x or Later3Unit
D3 warm 400 425 mW
Note:
1. All interfaces are enabled. For further power savings, disable the clocks to unused blocks.
2. The interfaces are run at the following frequencies: DDR: 333 MHz, eLBC 83 MHz, PCI 33 MHz,
eTSEC1 and TSEC2: 167 MHz, SEC: 167 MHz, USB: 167 MHz. See the SCCR register for more
information.
3. This is maximum power in D3 W arm based on a voltage of 1.05 V and a junction temperature of 105C.
Table 7. SYS_CLK_IN DC Electrical Characteristics
Parameter Condition Symbol Min Max Unit
Input high voltage VIH 2.4 NVDD +0.3 V
Input low voltage VIL –0.3 0.4 V
SYS_CLK_IN input current 0 V VIN NVDD IIN —±10A
PCI_SYNC_IN input current 0 V VIN 0.5 V
or
NVDD 0.5 V VIN NVDD
IIN —±10A
PCI_SYNC_IN input current 0.5 V VIN NVDD –0.5V I
IN ±50 A
Table 5. MPC8313E Typical I/O Power Dissipation (continued)
Interface Parameter GVDD
(1.8 V) GVDD
(2.5 V) NVDD
(3.3 V)
LVDDA/
LVDDB
(3.3 V)
LVDDA/
LVDDB
(2.5 V)
LVDD
(3.3 V) Unit Comments
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 13
4.2 AC Electrical Characteristics
The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK,
depending on whether the device is configured in PCI host or PCI agent mode. This table provides the
system clock input (SYS_CLK_IN/PCI_CLK) AC timing specifications for the MPC8313E.
5 RESET Initialization
This section describes the DC and AC electrical specifications for the reset initialization timing and
electrical requirements of the MPC8313E.
5.1 RESET DC Electrical Characteristics
This table provides the DC electrical characteristics for the RESET pins.
Table 8. SYS_CLK_IN AC Timing Specifications
Parameter/Condition Symbol Min Typ Max Unit Note
SYS_CLK_IN/PCI_CLK frequency fSYS_CLK_IN 24 66.67 MHz 1
SYS_CLK_IN/PCI_CLK cycle time tSYS_CLK_IN 15 ns
SYS_CLK_IN rise and fall time tKH, tKL 0.6 0.8 4 ns 2
PCI_CLK rise and fall time tPCH, tPCL 0.6 0.8 1.2 ns 2
SYS_CLK_IN/PCI_CLK duty cycle tKHK/tSYS_CLK_IN 40 60 % 3
SYS_CLK_IN/PCI_CLK jitter ±150 ps 4, 5
Notes:
1. Caution: The system, core, security block must not exceed their respective maximum or minimum operating frequencies.
2. Rise and fall times for SYS_CLK_IN/PCI_CLK are measured at 0.4 and 2.4 V.
3. Timing is guaranteed by design and characterization.
4. This represents the total input jitter—short term and long term—and is guaranteed by design.
5. The SYS_CLK_IN/PCI_CLK driver’s closed loop jitter bandwidth should be <500 kHz at –20 dB. The bandwidth must be
set low to allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.
Table 9. RESET Pins DC Electrical Characteri stics
Characteristic Symbol Condition Min Max Unit
Input high voltage VIH —2.1NV
DD +0.3 V
Input low voltage VIL —–0.30.8V
Input current IIN 0 V VIN NVDD —±5A
Output high voltage VOH IOH = –8.0 mA 2.4 V
Output low voltage VOL IOL = 8.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
14 Freescale Semiconductor
5.2 RESET AC Electrical Characteristics
This table provides the reset initialization AC timing specifications.
This table provides the PLL lock times.
6 DDR and DDR2 SDRAM
This section describes the DC and AC electrical specifications for the DDR SDRAM interfa ce. Note that
DDR SDRAM is GVDD(typ) = 2.5 V and DDR2 SDRAM is GVDD(typ) = 1.8 V.
Table 10. RESET Initialization Timing Specifications
Parameter/Condition Min Max Unit Note
Required assertion time of HRESET or SRESET (input) to activate reset flow 32 tPCI_SYNC_IN 1
Required assertion time of PORESET with stable clock and power applied to
SYS_CLK_IN when the device is in PCI host mode 32 tSYS_CLK_IN 2
Required assertion time of PORESET with stable clock and power applied to
PCI_SYNC_IN when the device is in PCI agent mode 32 tPCI_SYNC_IN 1
HRESET assertion (output) 512 tPCI_SYNC_IN 1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3]
and CFG_CLK_IN_DIV) with respect to negation of PORESET when the
device is in PCI host mode
4—t
SYS_CLK_IN 2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2]
and CFG_CLKIN_DIV) with respect to negation of PORESET when the
device is in PCI agent mode
4—t
PCI_SYNC_IN 1
Input hold time for POR configuration signals with respect to negation of
HRESET 0— ns
Time for the de vice to turn off POR configuration signal drivers with respect
to the assertion of HRESET —4 ns 3
Time for the de vice to turn on POR configuration signal drivers with respect to
the negation of HRESET 1—t
PCI_SYNC_IN 1, 3
Notes:
1. tPCI_SYNC_IN is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the
primary clock is applied to the SYS_CLK_IN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV.
2. tSYS_CLK_IN is the clock period of the input clock applied to SYS_CLK_IN. It is only valid when the device is in PCI host mode.
3. POR configuration signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.
Table 11. PLL Lock Times
Parameter/Condition Min Max Unit Note
PLL lock times 100 s—
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 15
6.1 DDR and DDR2 SDRAM DC Electrical Characteristics
This table provides the recommended operating conditions for the DDR2 SDRAM component(s) when
GVDD(typ) = 1.8 V.
This table provides the DDR2 capacitance when GVDD(typ) = 1.8 V.
This table provides the recommended operating conditions for the DDR SDRAM component(s) when
GVDD(typ) = 2.5 V.
Table 12. DDR2 SDRAM DC Electrical Characteristics for GVDD(typ) = 1.8 V
Parameter/Condition Symbol Min Max Unit Note
I/O supply vo lt age GVDD 1.7 1.9 V 1
I/O reference voltage MVREF 0.49 GVDD 0.51 GVDD V2
I/O termination voltage VTT MVREF –0.04 MV
REF + 0.04 V 3
Input high voltage VIH MVREF +0.125 GV
DD +0.3 V
Input low voltage VIL –0.3 MVREF –0.125 V
Output leakage current IOZ –9.9 9.9 A4
Output high current (VOUT = 1.420 V) IOH –13.4 mA
Output low current (VOUT = 0.280 V) IOL 13.4 mA
Notes:
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.
2. MVREF is e xpected to be equal to 0.5 GVDD, and to track GVDD DC variations as measured at the receiver. P eak-to-peak
noise on MVREF may not exceed ±2% of the DC value.
3. VTT is not applied directly to th e device. It is the supply to which far end signal termination is made and is expected to be
equal to MVREF. This rail should track variations in the DC level of MVREF.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD.
Table 13. DDR2 SDRAM Capacitance for GVDD(typ) = 1.8 V
Parameter/Condition Symbol Min Max Unit Note
Input/output capacitance: DQ, DQS, DQS CIO 68pF1
Delta input/output capacitance: DQ, DQS, DQS CDIO —0.5pF1
Note:
1. This parameter is sampled. GVDD = 1.8 V ± 0.090 V, f = 1 MHz, TA =25°C, V
OUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.
Table 14. DDR SDRAM DC Ele ctrical Characteristics f or GVDD(typ) = 2.5 V
Parameter/Condition Symbol Min Max Unit Note
I/O supply vo lt age GVDD 2.3 2.7 V 1
I/O reference voltage MVREF 0.49 GVDD 0.51 GV DD V2
I/O termination voltage VTT MVREF – 0.04 MVREF + 0.04 V 3
Input high voltage VIH MVREF + 0.15 GVDD + 0.3 V
Input low voltage VIL –0.3 MVREF –0.15 V
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
16 Freescale Semiconductor
This table provides the DDR capacitance when GVDD(typ) = 2.5 V.
This table provides the current draw characteristics for MVREF.
6.2 DDR and DDR2 SDRAM AC Electrical Characteristics
This section provides the AC electrical characteristics for the DDR SDRAM interface.
6.2.1 DDR and DDR2 SDRAM Input AC Timing Specifications
This table provides the input AC timing specifications for the DDR2 SDRAM when GVDD(typ) = 1.8 V.
Output leakage current IOZ –9.9 –9.9 A4
Output high current (VOUT = 1.95 V) IOH –16.2 mA
Output low current (VOUT = 0.35 V) IOL 16.2 mA
Note:
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.
2. MVREF is e xpected to be equal to 0.5 GVDD, and to track GVDD DC variations as measured at the receiver. P eak-to-peak
noise on MVREF may not exceed ±2% of the DC value.
3. VTT is not applied directly to th e device. It is the supply to which far end signal termination is made and is expected to be
equal to MVREF. This rail should track variations in the DC level of MVREF.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD.
Table 15. DDR SDRAM Capacitance for GVDD(typ) = 2.5 V
Parameter/Condition Symbol Min Max Unit Note
Input/output capacitance: DQ, DQS CIO 68pF1
Delta input/output capacitance: DQ, DQS CDIO —0.5pF1
Note:
1. This parameter is sampled. GVDD = 2.5 V ± 0.125 V, f = 1 MHz, TA =25°C, V
OUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.
Tabl e 16. Current Draw Characteristics for MVREF
Parameter/Condition Symbol Min Max Unit Note
Current draw for MVREF IMVREF —500 A1
Note:
1. The voltage regulato r for MVREF must be able to supply up to 500 A current.
Table 17. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface
At recommended operating conditions with GVDD of 1.8 ± 5%.
Parameter Symbol Min Max Unit Note
A C input low voltage VIL —MV
REF – 0.25 V
A C input high voltage VIH MVREF + 0.25 V
Table 14. DDR SDRAM DC Electrical Characteristics for GVDD(typ) = 2.5 V (continued)
Parameter/Condition Symbol Min Max Unit Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 17
This table provides the input AC timing specifications for the DDR SDRAM when GVDD(typ) = 2.5 V.
This table provides the input AC timing specifications for the DDR2 SDRAM interface.
This figure illustrates the DDR input timing diagram showing the tDISKEW timing parameter.
Figure 4. DDR Input Timing Diagram
Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface
At recommended operating conditions with GVDD of 2.5 ± 5%.
Parameter Symbol Min Max Unit Note
A C input low voltage VIL —MV
REF – 0.31 V
A C input high voltage VIH MVREF + 0.31 V
Table 19. DDR and DDR2 SDRAM Input A C Timing Specifications
At recommended operating conditions. with GVDD of 2.5 ± 5%.
Parameter Symbol Min Max Unit Note
Controller skew for MDQS—MDQ tCISKEW ps 1, 2
333 MHz –750 750
266 MHz –750 750
Notes:
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that
is captured with MDQS[n]. This should be subtracted from the total timing budget.
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW. This can be
determined by the f ollowing equation: tDISKEW = ± (T/4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the
absolute value of tCISKEW.
MCK[n]
MCK[n]tMCK
MDQ[x]
MDQS[n]
D1D0
tDISKEW
tDISKEW
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
18 Freescale Semiconductor
6.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications for Rev. 1.0 Silicon
Parameter Symbol 1Min Max Unit Note
MCK[n] cycle time, MCK[n]/MCK[n] crossing tMCK 610ns2
ADDR/CMD output setup with respect to MCK tDDKHAS ns 3
333 MHz 2.1
266 MHz 2.5
ADDR/CMD output hold with respect to MCK tDDKHAX ns 3
333 MHz 2.4
266 MHz 3.15
MCS[n] output setup with respect to MCK tDDKHCS ns 3
333 MHz 2.4
266 MHz 3.15
MCS[n] output hold with respect to MCK tDDKHCX ns 3
333 MHz 2.4
266 MHz 3.15
MCK to MDQS Skew tDDKHMH –0.6 0.6 ns 4
MDQ//MDM output setup with respect to
MDQS tDDKHDS,
tDDKLDS
ps 5
333 MHz 800
266 MHz 900
MDQ//MDM output hold with respect to MDQS tDDKHDX,
tDDKLDX
ps 5
333 MHz 900
266 MHz 1100
MDQS preamble start tDDKHMP –0.5 tMCK – 0.6 –0.5 tMCK + 0.6 ns 6
MDQS epilogue end tDDKHME –0.6 0.6 ns 6
Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of funct ional bloc k)(signal)(state)(reference)(s tate) for
inputs an d t (first tw o l etters of fun ction al b lock)(ref ere nce )(state)(sign al)(sta te) for outputs. Output hold time can be read as DDR timing
(DD) from the rising or f alling edge of the reference clock (KH or KL) until the output went inv alid (AX or DX). F or e xample ,
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs
(A) are setup (S) or output valid time . Also , tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.
4. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH descri bes the DDR timing
(DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through
control of the DQSS ov erride bits in the TIMING_CFG_2 regist er. This is typically set to the same dela y as the cloc k adjust
in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the
same adjustment value. See the MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual, for a
descripti on and understanding of the timi ng modifications enabled by use of these bits.
5. Determined by maximum possib le skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor .
6. All outputs are referenced to th e rising edge of MCK[n] at the pins of the micropro cessor. Note that tDDKHMP follows the
symbol conventions described in note 1.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 19
Tabl e 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Silicon Rev 2.x or Later
Parameter Symbol1Min Max Unit Note
MCK[n] cycle time, MCK[n]/MCK[n] crossing tMCK 610ns2
ADDR/CMD output setup with respect to MCK tDDKHAS ns 3
333 MHz 2.1
266 MHz 2.5
ADDR/CMD output hold with respect to MCK tDDKHAX ns 3
333 MHz 2.0
266 MHz 2.7
MCS[n] output setup with respect to MCK tDDKHCS ns 3
333 MHz 2.1
266 MHz 3.15
MCS[n] output hold with respect to MCK tDDKHCX ns 3
333 MHz 2.0
266 MHz 2.7
MCK to MDQS Skew tDDKHMH –0.6 0.6 ns 4
MDQ//MDM output setup with respect to
MDQS tDDKHDS,
tDDKLDS
ps 5
333 MHz 800
266 MHz 900
MDQ//MDM output hold with respect to MDQS tDDKHDX,
tDDKLDX
ps 5
333 MHz 750
266 MHz 1000
MDQS preamble start tDDKHMP –0.5 tMCK – 0.6 –0.5 tMCK + 0.6 ns 6
MDQS epilogue end tDDKHME –0.6 0.6 ns 6
Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of funct ional bloc k)(signal)(state)(reference)(s tate) for
inputs an d t (first tw o l etters of fun ction al b lock)(ref ere nce )(state)(sign al)(sta te) for outputs. Output hold time can be read as DDR timing
(DD) from the rising or f alling edge of the reference clock (KH or KL) until the output went inv alid (AX or DX). F or e xample ,
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs
(A) are setup (S) or output valid time . Also , tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.
4. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH descri bes the DDR timing
(DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through
control of the DQSS ov erride bits in the TIMING_CFG_2 regist er. This is typically set to the same dela y as the cloc k adjust
in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the
same adjustment value. See the MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual, for a
descripti on and understanding of the timi ng modifications enabled by use of these bits.
5. Determined by maximum possib le skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor .
6. All outputs are referenced to th e rising edge of MCK[n] at the pins of the micropro cessor. Note that tDDKHMP follows the
symbol conventions described in note 1.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
20 Freescale Semiconductor
NOTE
For the ADDR/CMD setup and hold specifications in Table 21, it is
assumed that the clock control register is set to adjust the memory clocks by
1/2 applied cycle.
This figure shows the DDR SDRAM output timing for the MCK to MDQS skew measurement
(tDDKHMH).
Figure 5. Timing Diagram for tDDKHMH
This figure shows the DDR and DDR2 SDRAM output timing diagram.
Figure 6. DDR and DDR2 SDRAM Output Timing Diagram
MDQS
MCK[n]
MCK[n]tMCK
MDQS
tDDKHMH(min) = –0.6 ns
tDDKHMH(max) = 0.6 ns
ADDR/CMD
tDDKHAS,tDDKHCS
tDDKHMH
tDDKLDS
tDDKHDS
MDQ[x]
MDQS[n]
MCK[n]
MCK[n]tMCK
tDDKLDX
tDDKHDX
D1D0
tDDKHAX, tDDKHCX
Write A0 NOOP
tDDKHME
tDDKHMP
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 21
This figure provides the AC test load for the DDR bus.
Figure 7. DDR AC Test Load
7DUART
This section describes the DC and AC electrical specifications for the DUART interface.
7.1 DUART DC Electrical Characteristics
This table provides the DC electrical characteristics for the DUART interface.
7.2 DUART AC Electrical Specifications
This table provides the AC timing parameters for the DUART interface.
8 Ethernet: Three-Speed Ethernet, MII Management
This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII
management.
Table 22. DUART DC Electrical Characteristics
Parameter Symbol Min Max Unit
High-level input voltage VIH 2.0 NVDD + 0.3 V
Low-level input voltage NVDD VIL –0.3 0.8 V
High-level output voltage, IOH = –100 AV
OH NVDD – 0.2 V
Low-level output voltage, IOL = 100 AV
OL —0.2V
Input current (0 V VIN NVDD)I
IN —±5A
Table 23. DUART AC Timing Specifications
Parameter Value Unit Note
Minimum baud rate 256 baud
Maximum baud rate > 1,000,000 baud 1
Oversample rate 16 2
Notes:
1. Actual attainable baud rate is limited by the latency of interrupt processing.
2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are
sampled each 16th sample.
Output Z0 = 50 GVDD/2
RL = 50
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
22 Freescale Semiconductor
8.1 Enhanced Three-Speed Ethernet Controller (eTSEC)
(10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/R TBI Electrical
Characteristics
The electrical characteristics specified here apply to all the media independent interface (MII), reduced
gigabit media independent interface (RGMII), serial gigabit media independent interface (SGMII), and
reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management
data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the MII interface can be
operated at 3.3 V. The RMII and SGMII interfaces can be operated at either 3.3 or 2.5 V. The RGMII and
RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical
Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC
are specified in Section 8.5, “Ethernet Management Interface Electrical Characteristics.”
8.1.1 TSEC DC Electrical Characteristics
All RGMII, RMII, and RTBI drivers and receivers comply with the DC pa rametric attributes s pecified in
Table 24 and Table 25. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as
defined by JEDEC EIA/JESD8-5.
NOTE
eTSEC should be interfaced with peripheral operating at same voltage level.
Table 24. MII DC Electrical Chara cteristics
Parameter Symbol Conditions Min Max Unit
Supply voltage 3.3 V LVDDA/LVDDB 2.97 3.63 V
Output high voltage VOH IOH = –4.0 mA LVDDA or LVDDB = Min 2.40 LVDDA + 0.3
or
LVDDB + 0.3
V
Output low voltage VOL IOL = 4.0 mA LVDDA or LVDDB = Min VSS 0.50 V
Input high voltage VIH ——2.0LV
DDA + 0.3
or
LVDDB + 0.3
V
Input low voltage VIL –0.3 0.90 V
Input high current IIH VIN1 = LVDDA or LVDDB —40A
Input low current IIL VIN1 = VSS –600 A
Note:
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.
Table 25. RGMII/RTBI DC Electrical Characteristics
Parameters Symbol Conditions Min Max Unit
Supply voltage 2.5 V LVDDA/LVDDB 2.37 2.63 V
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 23
8.2 MII, RGMII, and RTBI AC Timing Specifications
The AC timing specifications for MII, RMII, RGMII, and RTBI are presented in this section.
8.2.1 MII AC Timing Specifications
This section describes the MII transmit and receive AC timing specifications.
8.2.1.1 MII Transmit AC T iming Specifications
This table provides the MII transmit AC timing specifications.
Output high voltage VOH IOH = –1.0 mA LVDDA or LVDDB = Min 2.00 LVDDA + 0.3
or
LVDDB + 0.3
V
Output low voltage VOL IOL = 1.0 mA LVDDA or LVDDB = Min VSS– 0.3 0.40 V
Input high voltage VIH —LV
DDA or LVDDB = Min 1.7 LVDDA + 0.3
or
LVDDB + 0.3
V
Input low voltage VIL —LV
DDA or LVDDB = Min –0.3 0.70 V
Input high current IIH VIN1 = LVDDA or LVDDB —10A
Input low current IIL VIN1 = VSS –15 A
Note:
1. Note that the symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.
Table 26. MII Transmit AC Timing Specifications
At recommended operating conditions with LVDDA/LVDDB/NVDD of 3.3 V ± 0.3 V.
Parameter/Condition Symbol1Min Typ Max Unit
TX_CLK clock period 10 Mbps tMTX —400—ns
TX_CLK clock period 100 Mbps tMTX —40—ns
TX_CLK duty cycle tMTXH/tMTX 35 65 %
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay tMTKHDX 1 5 15 ns
TX_CLK data clock rise VIL(min) to VIH(max) tMTXR 1.0 4.0 ns
TX_CLK data clock fall VIH(max) to VIL(min) tMTXF 1.0 4.0 ns
Note:
1. The symbols used for timing specifications follow the pattern of t(first two letters of funct ional bloc k)(signal)(state)(reference)(s tate) for
inputs and t(first two lette rs of functional b lock)(ref erence)(state)(signal)(state) f or outputs. For e xample, tMTKHDX symbolizes MII transmit
timing (MT) f or the tim e tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general,
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional.
F or e xample, the subscript of tMTX represents the MII(M) transmit (TX) clock. F or rise and fall times , the latter conv ention is
used with the appropriate letter: R (rise) or F (fall).
Table 25. RGMII/RTBI DC Electrical Characteristics (continued)
Parameters Symbol Conditions Min Max Unit
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
24 Freescale Semiconductor
This figure shows the MII transmit AC timing diagram.
Figure 8. MII Transmit AC Timing Diagram
8.2.1.2 MII Receive AC Timing Specifications
This table provides the MII receive AC timing specifications.
This figure provides the AC test load for TSEC.
Figure 9. TSEC AC Test Load
Table 27. MII Receive AC Timing Specifications
At recommended operating conditions with LVDDA/LVDDB/NVDD of 3.3 V ± 0.3 V.
Parameter/Condition Symbol1Min Typ Max Unit
RX_CLK clock period 10 Mbps tMRX —400—ns
RX_CLK clock period 100 Mbps tMRX —40—ns
RX_CLK duty cycle tMRXH/tMRX 35 65 %
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK tMRDVKH 10.0 ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK tMRDXKH 10.0 ns
RX_CLK clock rise VIL(min) to VIH(max) tMRXR 1.0 4.0 ns
RX_CLK clock fall time VIH(max) to VIL(min) tMRXF 1.0 4.0 ns
Note:
1. The symbols used for timing specifications follow the pattern of t(first two letters of funct ional bloc k)(signal)(state)(reference)(s tate) for
inputs and t(first two letters of functio nal bloc k)(refe rence)(state)(signal)(state) f or outputs. F or example , tMRDVKH symbolizes MII receiv e
timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the tMRX clock reference (K)
going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with respect to the time data
input signals (D) went inv alid (X) relative to the tMRX clock ref erence (K) going to the low (L) state or hold time. Note that, in
general, the clock reference symbol representation is based on three letters representing the clock of a particular functional.
For example, the subscript of tMRX represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention
is used with the appropriate letter: R (rise) or F (fall).
2. The frequency of RX_CLK should not exceed the TX_CLK by more than 300 ppm
TX_CLK
TXD[3:0]
tMTKHDX
tMTX
tMTXH
tMTXR
tMTXF
TX_EN
TX_ER
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 25
This figure shows the MII receive AC timing diagram.
Figure 10. MII Receive AC Timing Diagram RMII AC Timing Specifications
8.2.1.3 RMII Transmit AC Timing Specifications
This table provides the RMII transmit AC timing specifications.
This figure shows the RMII transmit AC timing diagram.
Figure 11. RMII Transmit AC Timing Diagram
Table 28. RMII Transmit A C Timing Specifications
At recommended operating conditions with NVDD of 3.3 V ± 0.3 V.
Parameter/Condition Symbol1Min Typ Max Unit
REF_CLK clock tRMX —20—ns
REF_CLK duty cycle tRMXH/tRMX 35 65 %
REF_CLK to RMII data TXD[1:0], TX_EN delay tRMTKHDX 2 10 ns
REF_CLK data clock rise VIL(min) to VIH(max) tRMXR 1.0 4.0 ns
REF_CLK data clock fall VIH(max) to VIL(min) tRMXF 1.0 4.0 ns
Note:
1. The symbols used for timing specifications f ollo w the pattern of t(first three letters of functional bloc k)(signa l)(state)(ref erence) (state) for
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tRMTKHDX symbolizes RMII
transmit timing (RMT) for the time tRMX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that,
in general, the clock ref erence symbol representation is based on two to three letters representing the clock of a particular
functional. For e xample, the subscript of tRMX represents the RMII(RM) reference (X) clock. F or rise and f all times, the latter
convention is used with the appropriate letter: R (rise) or F (fall).
RX_CLK
RXD[3:0]
tMRDXKH
tMRX
tMRXH
tMRXR
tMRXF
RX_DV
RX_ER tMRDVKH
Valid Data
REF_CLK
TXD[1:0]
tRMTKHDX
tRMX
tRMXH
tRMXR
tRMXF
TX_EN
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
26 Freescale Semiconductor
8.2.1.4 RMII Receive AC Timing Specifications
This table provides the RMII receive AC timing specifications.
This table provides the AC test load.
Figure 12. AC Test Load
This table shows the RMII receive AC timing diagram.
Figure 13. RMII Receive AC Timing Diagram
Table 29. RMII Receive AC Timing Specifications
At recommended operating conditions with NVDD of 3.3 V ± 0.3 V.
Parameter/Condition Symbol1Min Typ Max Unit
REF_CLK clock period tRMX —20—ns
REF_CLK duty cycle tRMXH/tRMX 35 65 %
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK tRMRDVKH 4.0 ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK tRMRDXKH 2.0 ns
REF_CLK clock rise VIL(min) to VIH(max) tRMXR 1.0 4.0 ns
REF_CLK clock fall time VIH(max) to VIL(min) tRMXF 1.0 4.0 ns
Note:
1. The symbols used for timing specifications f ollo w the pattern of t(first three letters of functional b lock)(signal)(state)(reference)(sta te) for
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tRMRDVKH symbolizes RMII
receive timing (RMR) with respect to the time data input signa ls (D) reach the valid state (V) relative to the tRMX clock
ref erence (K) going to the high (H) state or setup time. Also, tRMRDXKL symbolizes RMII receive timing (RMR) with respect
to the time data input signals (D) went invalid (X) relative to the tRMX clock reference (K) going to the low (L) state or hold
time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a
particular functional. For example, the subscript of tRMX represents the RMII (RM) reference (X) clock. For rise and fall times,
the latter convention is used with the appropr iate letter: R (rise) or F (fall).
Output Z0 = 50 NVDD/2
RL = 50
REF_CLK
RXD[1:0]
tRMRDXKH
tRMX
tRMXH
tRMXR
tRMXF
CRS_DV
RX_ER tRMRDVKH
Valid Data
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 27
8.2.2 RGMII and RTBI AC Timing Specifications
This table presents the RGMII and RTBI AC timing specifications.
Table 30. RGMII and RTBI AC Timing Specifications
At recommended operating conditions with LVDDA/LVDDB of 2.5 V ± 5%.
Parameter/Condition Symbol1Min Typ Max Unit
Data to clock output skew (at transmitter) tSKRGT –0.5 0.5 ns
Data to clock input skew (at receiver) 2tSKRGT 1.0 2.6 ns
Clock cycle duration 3tRGT 7.2 8.0 8.8 ns
Duty cycle for 1000Base-T 4, 5 tRGTH/tRGT 45 50 55 %
Duty cycle for 10BASE-T and 100BASE-TX 3, 5 tRGTH/tRGT 40 50 60 %
Rise time (20%–80%) tRGTR 0.75 ns
Fall time (20%–80%) tRGTF 0.75 ns
GTX_CLK125 reference clock per iod tG12 6—8.0—ns
GTX_CLK125 reference clock duty cycle tG125H/tG125 47 53 %
Note:
1. Note that, in general, the clock ref erence symbol representation f or this section is based on the symbols RGT to represent
RGMII and RTBI timing. F or example, the subscript of tRGT represents the RTBI (T) receive (RX) clock. Note also that the
notation f o r rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews,
the subscript is skew (SK) followed by the clock that is being skewed (RGT).
2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is
added to the associated clock signal.
3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as
long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed
transitioned between.
5. Duty cycle reference is LVDDA/2 or LVDDB/2.
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.
7. The frequency of RX_CLK should not exceed the GTX_CLK1 25 by more than 300 ppm
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
28 Freescale Semiconductor
This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.
Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams
8.3 SGMII Interface Electrical Characteristics
Each SGMII port features a 4-wire AC-coupled serial link from the dedicated SerDes interface of
MPC8313E as shown in Figure 15, where CTX is the external (on board) AC-coupled capacitor. Each
output pin of the SerDes transmitter dif ferential pair features a 50-output impedance. Each input of the
SerDes receiver differential pair features 50- on-die termination to XCOREVSS. The reference circuit
of the SerDes transmitter and receiver is shown in Figure 33.
When an eTSEC port is configured to operate in SGMII mode, the parallel interface’s output signals of
this eTSEC port can be left floating. The input signals should be terminated based on the guidelines
described in Section 22.5, “Connection Recommendations,” as long as such termination does not violate
the desired POR configuration requirement on these pins, if applicable.
When operating in SGMII mode, the TSEC_GTX_CLK125 clock is not required for this port. Instead, the
SerDes reference clock is required on SD_REF_CLK and SD_REF_CLK pins.
8.3.1 DC Requirements for SGMII SD_REF_CLK and SD_REF_CLK
The characteristics and DC requirements of the separate SerDes reference clock are described in Section 9,
“High-Speed Serial Interfaces (HSSI).”
GTX_CLK
tRGT
tRGTH
tSKRGT
TX_CTL
TXD[8:5]
TXD[7:4]
TXD[9]
TXERR
TXD[4]
TXEN
TXD[3:0]
(At Transmitter)
TXD[8:5][3:0]
TXD[7:4][3:0]
TX_CLK
(At PHY)
RX_CTL
RXD[8:5]
RXD[7:4]
RXD[9]
RXERR
RXD[4]
RXDV
RXD[3:0]
RXD[8:5][3:0]
RXD[7:4][3:0]
RX_CLK
(At PHY)
tSKRGT
tSKRGT
tSKRGT
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 29
8.3.2 AC Requirem ents for SGMII SD_REF_CLK and SD_REF_CLK
This table lists the SGMII SerDes reference clock AC requirements. Note that SD_REF_CLK and
SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock
source.
8.3.3 SGMII Transmitter and Receiver DC Electrical Characteristics
Table 32 and Table 33 describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical
characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD_TX[n] and
SD_TX[n]) as depicted in Figure 16.
Table 31. SD_REF_CLK and SD_REF_CLK AC Requirements
Symbol Parameter Des cription Min Typ Max Unit
tREF REFCLK cycle time 8 ns
tREFCJ REFCLK cycle-to-cycle jitter. Difference in the period of any two
adjacent REFCLK cycles ——100ps
tREFPJ Phase jitter. Deviation in edge location with respect to mean
edge location –50 50 ps
Table 32. SGMII DC Transmitter Electrical Characteri stics
Parameter Symbol Min Typ Max Unit Note
Supply voltage XCOREVDD 0.95 1.0 1.05 V
Output high voltage VOH XCOREVDD-Typ/2
+|V
OD|-max/2 mV 1
Output low voltage VOL XCOREVDD-Typ/2
– |VOD|-max/2 ——mV1
Output ringing VRING ——10%
Output differential voltage2, 3 |VOD| 323 500 725 mV Equalization
setting: 1.0x
Output offset voltage VOS 425 500 575 mV 1, 4
Output impedan ce
(single-ended) RO40 60
Mismatch in a pair RO——10%
Change in VOD between 0 and 1 |VOD|— 25mV
Change in VOS between 0 and 1 VOS ——25mV
Output current on short to GND ISA, ISB ——40mA
Notes:
1. This will not align to DC-coupled SGMII. XCOREVDD-Typ = 1.0 V.
2. |VOD| = |VTXn – VTXn|. |V OD| is also ref erred as output differential peak voltage. VTX-DIFFp-p = 2*|VOD|.
3. The |VOD| value shown in the Typ column is based on the condition of XCOREVDD-Typ = 1.0 V, no common mode offset
variation (VOS = 500 mV), SerDes transmitter is terminated with 100- differential load between TX[n] and TX[n].
4. V OS is also refe rred to as output common mode voltage.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
30 Freescale Semiconductor
Figure 15. 4-Wire AC-Coupled SGMII Serial Link Connection Example
Figure 16. SGMII Transmitter DC Measurement Circuit
Table 33. SGMII DC Receiver Electrical Characteristics
Parameter Symbol Min Typ Max Unit Note
Supply voltage XCOREVDD 0.95 1.0 1.05 V
DC Input voltage range N/A 1
Input differential voltage VRX_DIFFp-p 100 1200 mV 2
Loss of signal threshold VLOS 30 — 100 mV
Input AC common mode voltage VCM_ACp-p ——100mV3
Receiver differential input impedance ZRX_DIFF 80 100 120
Receiver common mode input impedance ZRX_CM 20 35
MPC8313E SGMII
SerDes Interface
Transmitter
TXnRXm
TXnRXm
Receiver
CTX
CTX
RXn
RXn
Receiver Transmitter
TXm
TXm
CTX
CTX
50
50
50
50
50
50
50
50
50
TXn
TXn50
Vos VOD
MPC8313E SGMII
SerDes Interface
50
50
Transmitter
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 31
8.3.4 SGMII AC Timing Specifications
This section describes the SGMII transmit and receive AC timing specifications. T ransmitter and receiver
characteristics are measured at the transmitter outputs (TX[ n] and TX[n]) or at the receiver inputs (RX[n]
and RX[n]) as depicted in Figure 18, respectively.
8.3.4.1 SGMII Transmit AC Timing Specifications
This table provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.
8.3.4.2 SGMII R eceive AC Timing Specifications
This table provides the SGMII receive AC timing specifications. Source synchronous clocking is not
supported. Clock is recovered from the data. Figure 17 shows the SGMII receiver input compliance mask
eye diagram.
Common mode input voltage VCM —V
xcorevss —V4
Notes:
1. Input must be external ly AC-coupled.
2. VRX_DIFFp-p is al so referred to as peak to peak input differential voltage
3. VCM_ACp-p is also referred to as peak to peak AC common mode voltage.
4. On-chip termination to XCOREVSS.
Table 34. SGMII Transmit AC Timing Specifications
At recommended operating conditions with XCOREVDD = 1.0 V ± 5%.
Parameter Symbol Min Typ Max Unit Note
Deter m inistic jitter JD 0.17 UI p-p
Total jitter JT 0.35 UI p-p
Unit interval UI 799.92 800 800.08 ps 1
VOD fall time (80%–20%) tf all 50 120 ps
VOD rise time (20%–80%) trise 50 120 ps
Note:
1. Each UI is 800 ps ± 100 ppm.
Table 35. SGMII Receive AC Timing Specifications
At recommended operating conditions with XCOREVDD = 1.0 V ± 5%.
Parameter Symbol Min Typ Max Unit Note
Deter ministic jitter tolerance JD 0.37 UI p-p 1
Combined deterministic and random jitter tolerance JDR 0.55 UI p-p 1
Sinusoidal jitter tolerance JSIN 0.1 UI p-p 1
Table 33. SGM II DC Receiver Electri cal Characteristics ( continued)
Parameter Symbol Min Typ Max Unit Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
32 Freescale Semiconductor
Figure 17. SGMII Receiver Input Compliance Mask
Total jitter tolerance JT 0.65 UI p-p 1
Bit error ratio BER 10–12
Unit interval UI 799.92 800 800.08 ps 2
AC coupling capacitor CTX 5—200nF3
Notes:
1. Measured at receiver.
2. Each UI is 800 ps ± 100 ppm.
3. The external AC coupling capacitor is required. It is recommended to be placed near th e device transmitter outputs.
Table 35. SGMII Receive AC Timing Specifications (continued)
At recommended operating conditions with XCOREVDD = 1.0 V ± 5%.
Parameter Symbol Min Typ Max Unit Note
Time (UI)
Receiver Differential Input Voltage
0
0.275 0.4 0.6 0.725
VRX_DIFFp-p-min/2
VRX_DIFFp-p-min/2
VRX_DIFFp-p-max/2
01
VRX_DIFFp-p-max/2
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 33
Figure 18. SGMII AC Test/Measurement Load
8.4 eTSEC IEEE 1588 AC Specifications
This figure provides the data and command output timing diagram.
Figure 19. eTSEC IEEE 1588 Output AC Timing
This figure provides the data and command input timing diagram.
Figure 20. eTSEC IEEE 1588 Input AC Timing
This table lists the IEEE 1588 AC timing specifications.
Table 36. eTSEC IEEE 1588 AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5%.
Parameter/Condition Symbol Min Typ Max Unit Note
TSEC_1588_CLK clock period tT1588CLK 3.8 TRX_CLK 9ns 1, 3
TSEC_1588_CLK duty cycle tT1588CLKH/tT1588CLK 40 50 60 %
TX
Silicon
+ Package
C = TX
C = TX
R = 50 R = 50
D+ Package
Pin
D– Package
Pin
D+ Package
Pin
TSEC_1588_CLK_OUT
TSEC_1588_PULSE_OUT
TSEC_1588_TRIG_OUT
tT1588OV
tT1588CLKOUT
tT1588CLKOUTH
Note: The output delay is count star ting rising edge if tT1588CLKOUT is non-inverting. Otherwise, it is
count starting falling edge.
TSEC_1588_CLK
TSEC_1588_TRIG_IN tT1588TRIGH
tT1588CLK
tT1588CLKH
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
34 Freescale Semiconductor
8.5 Ethernet Management Interface Electrical Characteristics
The electrical characteristics specified here apply to MII management interface signals MDIO
(management data input/output) and MDC (management data clock). The electrical characteristics for
MII, RMII, RGMII, SGMII, and RTBI are specified in Section 8.1, “Enhanced Three-Speed Ethernet
Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical Characteristics.”
8.5.1 MII Management DC Electrical Characteristics
The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. Table 37 provide the DC
electrical characteristics for MDIO and MDC.
TSEC_1588_CLK peak-to-peak jitter tT1588CLKINJ ——250ps
Rise time eTSEC_1588_CLK
(20%–80%) tT1588CLKINR 1.0 2.0 ns
Fall time eTSEC_1588_CLK
(80%–20%) tT1588CLKINF 1.0 2.0 ns
TSEC_1588_CLK_OUT clock period tT1588CLKOUT 2tT1588CLK ——ns
TSEC_1588_CLK_OUT duty cycle tT1588CLKOTH
/tT1588CLKOUT
30 50 70 %
TSEC_1588_PULSE_OUT tT1588OV 0.5 3.0 ns
TSEC_1588_TRIG_IN pulse width tT1588TRIGH 2tT1588CLK_MAX ——ns2
Notes:
1. TRX_CLK is the max clock period of eTSEC receiving clock selected by TMR_CTRL[CKSEL]. See the MPC8313E
PowerQUICC II Pro Integrated Processor Family Reference Manual, for a description of TMR_CTRL registers.
2. It need to be at least two times of clock period of clock selected b y TMR_CTRL[CKSEL]. See the MPC8313E P o werQ UICC II
Pro Integrated Processor Family Reference Manual, for a description of TMR_CTRL registers.
3. The maximum value of tT1588CLK is not only defined by the value of TRX_CLK, but also defined by the recovered clock. For
e x ample , for 10/100/1000 Mbps modes, the maximum value of tT1588CLK is 3600, 280, and 56 ns, respectively.
Table 37. MII Management DC Electrical Characteristics When Powered at 3.3 V
Parameter Symbol Conditions Min Max Unit
Supply voltage (3.3 V) NVDD 2.97 3.63 V
Output high voltage VOH IOH = –1.0 mA NVDD = Min 2.10 NVDD +0.3 V
Output low voltage VOL IOL = 1.0 mA NVDD = Min VSS 0.50 V
Input high voltage VIH —2.0V
Input low voltage VIL 0.80 V
Input high current IIH NVDD = Max VIN1 = 2.1 V 40 A
Input low current IIL NVDD = Max VIN = 0.5 V 600 A
Table 36. eTSEC IEEE 1588 AC Timing Specifications (continued)
At recommended operating conditions with L/TVDD of 3.3 V ± 5%.
Parameter/Condition Symbol Min Typ Max Unit Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 35
8.5.2 MII Management AC Electrical Specifications
This table provides the MII management AC timing specifications.
This figure shows the MII management AC timing diagram.
Figure 21. MII Management Interface Timing Diagram
Note:
1. Note that the symbol VIN, in this case, represents the NVIN symbol referenced in Table 1 and Table 2.
Table 38. MII Management AC Timing Specifications
At recommended operating conditions with NVDD is 3.3 V ± 0.3V
Pa rameter/Condition Symbol 1Min Typ Max Unit Note
MDC frequency fMDC —2.5—MHz2
MDC period tMDC —400—ns
MDC clock pulse width high tMDCH 32 ns
MDC to MDIO delay tMDKHDX 10 170 ns
MDIO to MDC setup time tMDDVKH 5—ns
MDIO to MDC hold time tMDDXKH 0—ns
MDC rise time tMDCR ——10ns
MDC fall time tMDHF ——10ns
Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal) (state)(reference )(state) for
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example , tMDKHDX symbolizes
management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or
data hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D)
reach the valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
2. This parameter is dependent on the csb_clk speed. (The MIIMCFG[Mgmt Clock Select] field determines the clock frequency
of the Mgmt Clock EC_MDC.)
Table 37. MII Management DC Electrical Characteristics When Pow ered at 3.3 V (continued)
MDC
tMDDXKH
tMDC
tMDCH
tMDCR
tMDCF
tMDDVKH
tMDKHDX
MDIO
MDIO
(Input)
(Output)
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
36 Freescale Semiconductor
9 High-Speed Serial Interfaces (HSSI)
This section describes the common portion of SerDes DC electrical specifications, which is the DC
requirement for SerDes reference clocks. The SerDes data lane’ s transmitter and receiver reference circuits
are also shown.
9.1 Signal Terms Definition
The SerDes utilizes differential sign aling to transfer data across the serial link. This section defines terms
used in the description and specification of differential signals.
Figure 22 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for
description. The figure shows waveform for either a transmitter output (TXn and TXn) or a receiver input
(RXn and RXn). Each signal swings between A volts and B volts where A > B.
Using this waveform, the definitions are as follows. To simplify illustration, the following definitions
assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling
environment.
1. Single-ended swing
The transmitter output signals and the receiver input signals TXn, TXn, RXn, and RXn each have
a peak-to-peak swing of A – B volts. This is also referred as each signal wire’s single-ended swing.
2. Differential output voltage, VOD (or differential output swing):
The differential output voltage (or swing) of the transmitter, VOD, is defined as the difference of
the two complimentary output voltages: VTXn – VTXn. The VOD value can be either positive or
negative.
3. Differential input voltage, VID (or differential input swing):
The differential input voltage (or swing) of the receiver , VID, is defined as the difference of the two
complimentary input voltages: VRXn – VRXn. The VID value can be either positive or negative.
4. Differential peak voltage, VDIFFp
The peak value of the differential transmitter output signal or the dif ferential receiver input signal
is defined as differential peak voltage, VDIFFp = |A – B| volts.
5. Differential peak-to-peak, VDIFFp-p
Since the differential output signal of the transmitter and the differential input signal of the receiver
each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter
output signal or the differential receiver input signal is defined as differential peak-to-peak voltage,
VDIFFp-p = 2 VDIFFp = 2 |(A – B)| volts, which is twice of differential swing in amplitude, or
twice of the differential peak. For example, the output differential peak-peak voltage can also be
calculated as VTX-DIFFp-p = 2 |VOD|.
6. Differential waveform
The differential waveform is constructed by subtracting the inverting signal (TXn, for example)
from the non-inverting signal (TXn, for example) within a differential pair . There is only one signal
trace curve in a diff erential waveform. The voltage represented in the dif ferential waveform is not
referenced to ground. Refer to Figure 22 as an example for differential waveform.
7. Common mode voltage, Vcm
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 37
The common mode voltage is equal to one half of the sum of the voltages between each conductor
of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out =
(VTXn+V
TXn)/2 = (A + B)/2, which is the arithmetic mean of the two complimentary output
voltages within a differential pair. In a system, the common mode voltage may often differ from
one component’s output to the others input. Sometimes, it may be even different between the
receiver input and driver output circuits within the same component. It’s also referred as the DC
offset in some occasion.
Figure 22. Differential Voltage Definitions for Transmitter or Receiver
To illustrate these definitions using real values, consider the case of a CML (current mode logic)
transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing
that goes between 2.5 and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or
TD) is 500 mV p-p, which is referred as the single-ended swing for each sig nal. In this example, since the
differential signaling environment is fully symme trical, the transmitter output’s dif ferential swing (VOD)
has the same amplitude as each signal’s single-ended swing. The dif ferential output signal ranges between
500 and –500 mV, in other words, VOD is 500 mV in one phase and –500 mV in the other phase. The peak
differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential voltage (V DIFFp-p) is 1000 mV p-p.
9.2 SerDes Reference Clocks
The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by
the corresponding SerDes lanes. The SerDes reference clocks input is SD_REF_CLK and SD_REF_CLK
for SGMII interface.
The following sections describe the SerDes reference clock requirements and some application
information.
9.2.1 SerDes Reference Clock Receiver Characteristics
Figure 23 shows a receiver reference diagram of the SerDes reference clocks.
The supply voltage requirements for XCOREVDD are specified in Table 1 and Table 2.
SerDes reference clock receiver reference circuit structure:
A Volts
B Volts TXn or RXn
TXn or RXn
Vcm = (A + B)/2
Differential Swing, VID or VOD = A – B
Differential Peak Voltage, VDIFFp = |A – B|
Differential Peak-Peak Voltage, V
DIFFpp
= 2*V
DIFFp
(not shown)
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
38 Freescale Semiconductor
The SD_REF_CLK and SD_REF_CLK are internally AC-coupled differential inputs as shown
in Figure 23. Each differential clock input (SD_REF_CLK or SD_REF_CLK) has a 50-
termination to XCOREVSS followed by on-chip AC coupling.
The external reference clock driver must be able to drive this termination.
The SerDes reference clock input can be either differential or single-ended. Refer to the
differential mode and single-ended mode description below for further detailed requirements.
The maximum average current requirement that also determines the common mode voltage range:
When the SerDes reference clock differential inputs are DC coupled externally with the clock
driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the
exact common mode input voltage is not critical as long as it is within the range allowed by the
maximum average current of 8 mA (refer to the following bullet for more detail), since the
input is AC-coupled on-chip.
This current limitation sets the maximum common mode input voltage to be less than 0.4 V
(0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above XCOREVSS.
For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output
driven by its current source from 0 to 16 mA (0–0.8 V), such that each phase of the dif ferential
input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
If the device driving the SD_REF_CLK and SD_REF_CLK inputs cannot drive 50 to
XCOREVSS DC, or it exceeds the maximum input current limitations, then it must be
AC-coupled off-chip.
The input amplitude requirement. This requirement is described in detail in the following sections.
Figure 23. Receiver of Ser De s Referen c e Clo cks
9.2.2 DC Level Requirement for SerDes Reference Clocks
The DC level requirement for the MPC8313E SerDes reference clock inputs is different depending on the
signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described
below.
Differential mode
The input amplitude of the differential clock must be between 400 and 1600 mV differential
peak-to-peak (or between 200 and 800 mV differential peak). In other word s, each signal wire
Input
Amp
50
50
SDn_REF_CLK
SDn_REF_CLK
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 39
of the differential pair must have a single-ended swing less than 800 mV and greater than
200 mV. This requirement is the same for both external DC-coupled or AC-coupled
connection.
For external DC-coupled connection, as described in Section 9.2.1, “SerDes Reference Clock
Receiver Characteristics,” the maximum average current requirements sets the requirement for
average voltage (common mode voltage) to be between 100 and 400 mV. Figure 24 shows the
SerDes reference clock input requirement for the DC-coupled connection scheme.
For external AC-coupled connection, there is no common mode voltage requirement for the
clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver
and the SerDes reference clock receiver operate in different command mode voltages. The
SerDes reference clock receiver in this connection scheme has its common mode voltage set to
XCOREVSS. Each signal wire of the differential inputs is allowed to swing below and above
the command mode voltage (XCOREVSS). Figure 25 shows the SerDes reference clock input
requirement for AC-coupled connection scheme.
Single-ended mode
The reference clock can also be single-ended. The SD_REF_CLK input amplitude
(single-ended swing) must be between 400 and 800 mV peak-to-peak (from Vmin to Vmax) with
SD_REF_CLK either left unconnected or tied to ground.
The SD_REF_CLK input average voltage must be between 200 and 400 mV. Figure 26 shows
the SerDes reference clock input requirement for the single-ended signaling mode.
To meet the input amplitude requirement, the reference clock inputs might need to be DC or
AC coupled externally. For the best noise performance, the reference of the clock could be DC
or AC coupled into the unused phase (SD_REF_CLK) through the same source impedance as
the clock input (SD_REF_CLK) in use.
Figure 24. Differential Reference Clock Input DC Requirements (External DC-Coupled)
SD_REF_CLK
SD_REF_CLK
Vmax < 800 mV
Vmin > 0 V
100 mV < Vcm < 400 mV
200 mV < Input Amplitude or Differential Peak < 800 mV
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
40 Freescale Semiconductor
Figure 25. Differential Reference Clock Input DC Requirements (External AC-Coupled)
Figure 26. Single-Ended Reference Clock Input DC Requirements
9.2.3 Interfacing With Other Differential Signaling Levels
With on-chip termination to XCOREVSS, the differential reference clocks inputs are HCSL
(high-speed current steering logic) compatible DC coupled.
Many other low voltage differential type outputs like LVDS (low voltage differential signaling) can
be used but may need to be AC coupled due to the limited common mode input range allowed (100
to 400 mV) for DC-coupled connection.
LVPECL outputs can produce a signal with too large of an amplitude and may need to be
DC-biased at the clock driver output first, then followed with series attenuation resistor to reduce
the amplitude, in addition to AC coupling.
NOTE
Figure 27 through Figure 30 are for conceptual reference only. Due to the
fact that the clock driver chip's internal structure, output impedance, and
termination requirements are different between various clock driver chip
manufacturers, it is possible that the clock circuit reference designs
provided by clock driver chip vendors are different from what is shown in
the figures. They might also vary from one vendor to the other. Therefore,
Freescale can neither provide the optimal clock driver reference circuits, nor
guarantee the correctness of the following clock driver connection reference
circuits. It is recommended that the system designer contact the selected
clock driver chip vendor for the optimal reference circuits for the
MPC8313E SerDes reference clock receiver requirement provided in this
document.
SD_REF_CLK
SD_REF_CLK
Vcm
200 mV < Input Amplitude or Differential Peak < 800 mV
Vmax < Vcm + 400 mV
Vmin > Vcm – 400 mV
SD_REF_CLK
SD_REF_CLK
400 mV < SD_REF_CLK Input Amplitud e < 800 mV
0V
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 41
This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It
assumes that the DC levels of the clock driver chip is compatible with MPC8313E SerDes reference clock
input’s DC requirement.
Figure 27. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)
This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver.
Since LVDS clock drivers common mode voltage is higher than the MPC8313E SerDes reference clock
input’s allowed range (100 to 400 mV), the AC-coupled connection scheme must be used. It assumes the
LVDS output driver features a 50-termination resistor. It also assumes that the LVDS transmitter
establishes its own common mode level without relying on the receiver or other external component.
Figure 28. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)
This figure shows the SerDes reference clock connection reference circuits for LVPECL type clock driver .
Since LVPECL driver s DC levels (both common mode voltages and output swing) are incompatible with
the MPC8313E SerDes reference clock input’s DC requirement, AC coupling has to be used. Figure 29
50
50
SDn_REF_CLKSDn_REF_CLK
Clock Driver 100 Differential PWB Trace
Clock driver vendor dependent
source termination resistor
CLK_Out
CLK_Out
HCSL CLK Driver Chip
33
33
Total 50 Assume clock driver’s
output impedance is about 16 
MPC8313E
SerDes Refer.
CLK Receiver
Clock Driver
SDn_REF_CLK
SDn_REF_CLK
SDn_REF_CLK
Clock Driver 100 Differential PWB Trace
CLK_Out
CLK_Out
LVDS CLK Driver Chip
10 nF
10 nF
MPC8313E
SerDes Refer.
CLK Receiver
50
50
Clock Driver
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
42 Freescale Semiconductor
assumes that the LVPECL clock drivers output impedance is 50 R1 is used to DC-bias the LVPECL
outputs prior to AC coupling. Its value could be ranged from 140to 240 depending on the clock driver
vendors requirement. R2 is used together with the SerDes reference clock receiver’s 50- termination
resistor to attenuate the LVPECL output’s differential peak level such that it meets the MPC8313E
SerDes3 reference clock’ s dif ferential input amplitude requirement (between 200 and 800 mV differential
peak). For example, if the LVPECL output’s differential peak is 900 mV and the desired SerDes reference
clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 
Consult with the clock driver chip manufacturer to verify whether this connection scheme is compatible
with a particular clock driver chip.
Figure 29. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)
This figure shows the SerDes reference clock connection reference circuits for a single-ended clock driver .
It assumes the DC levels of the clock driver are compatible with the MPC8313E SerDes reference clock
input’s DC requirement.
Figure 30. Single-Ended Connection (Reference Only)
SDn_REF_CLK
SDn_REF_CLK
Clock Driver 100 Differential PWB Trace SerDes Refer.
CLK Receiver
Clock Driver
CLK_Out
CLK_Out
LVPECL CLK Driver Chip
R2
R2
MPC8313E
10 nF
10 nF
CLK_Out
CLK_Out
R2
R2
R1
Clock Driver
50
R1 50
SDn_REF_CLK
SDn_REF_CLK
100 Differential PWB Trace
Clock Driver CLK_Out
Single-Ended CLK
Driver Chip MPC8313E
33
Total 50 Assume clock driver’s
output impedance is about 16 
50
SerDes Refer.
CLK Receiver
50
50
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 43
9.2.4 AC Requirements for SerDes Reference Clocks
The clock driver selected should provide a high quality reference clock with low-phase noise and
cycle-to-cycle jitter . Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and
is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise
occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 to match the
transmission line and reduce reflections which are a source of noise to the system.
This table describes some AC parameters for SGMII protocol.
Figure 31. Differential Measurement Points for Rise and Fall Time
Table 39. SerDes Reference Clock Common AC Parameters
At recommended operating conditions with XVDD_SRDS1 or XVDD_SRDS2 = 1.0 V ± 5%.
Parameter Symbol Min Max Unit Note
Rising edge rate Rise edge rate 1.0 4.0 V/ns 2, 3
Falling edge rate Fall edge rate 1.0 4.0 V/n s 2, 3
Differential input high voltage VIH +200 mV 2
Differential input low voltage VIL —–200mV2
Rising edge rate (SDn_REF_CLK) to falling edge rate
(SDn_REF_CLK) matchi ng Rise-fall matching 20 % 1, 4
Notes:
1. Measurement taken from single-ended waveform .
2. Measurement taken from differential waveform.
3. Measured from –200 to +200 mV on the differential waveform (derived from SDn_REF_CLK minus SDn_REF_CLK). The
signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is
centered on the differential zero crossing. See Figure 31.
4. Matching applies to rising edge rate f or SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a
200 mV window centered on the median cross point, where SDn_REF_CLK rising meets SDn_REF_CLK f alling. The median
cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge
rate of SDn_REF_CLK should be compared to the fall edge rate of SDn_REF_CLK, the maximum allowed difference should
not exceed 20% of the slowest edge rate. See Figure 32.
VIH = +200 mV
VIL = –200 mV
0.0 V
SDn_REF_CLK
Minus
SDn_REF_CLK
Fall Edge RateRise Edge Rage
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
44 Freescale Semiconductor
Figure 32. Single-Ended Measurement Points for Rise and Fall Time Matching
The other detailed AC requirements of the SerDes reference clocks is defined by each interface protocol
based on application usage. Refer to the following section for detailed information:
Section 8.3.2, “AC Requirements for SGMII SD_REF_CLK and SD_REF_CLK”
9.2.4.1 Spread Spectrum Clock
SD_REF_CLK/SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread
spectrum clock source.
9.3 SerDes Transmitter and Receiver Reference Circuits
This figure shows the reference circuits for the SerDes data lane’s transmitter and receiver.
Figure 33. SerDes Transmitter and Receiver Reference Circuits
The SerDes data lane’ s DC and AC specifications are defined in the interface protocol section listed below
(SGMII) based on the application usage:
Section 8.3, “SGMII Interface Electrical Characteristics”
Please note that a external AC-coupling capacitor is required for the above serial transmission protocol
with the capacitor value defined in the specifications of the protocol section.
SDn_REF_CLK SDn_REF_CLKSDn_REF_CLK
SDn_REF_CLKSDn_REF_CLK
VCROSS MEDIAN VCROSS MEDIAN
VCROSS MEDIAN + 100 mV
VCROSS MEDIAN – 100 mV
TFALL TRISE
50 Receiver
Transmitter
TXn
TXnRXn
RXn
50
50
50
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 45
10 USB
10.1 USB Dual-Role Controllers
This section provides the AC and DC electrical specifications for the USB interface.
10.1.1 USB DC Electrical Characteristics
This table provides the DC electrical characteristics for the USB interface.
10.1.2 USB AC Electrical Specifications
This table describes the general timing parameters of the USB interface.
The following two figures provide the AC test load and signals for the USB, respectively.
Figure 34. USB AC Test Load
Table 40. USB DC Electrical Characteristics
Parameter Symbol Min Max Unit
High-level input voltage VIH 2.0 LVDDB +0.3 V
Low-level input voltage VIL –0.3 0.8 V
Input current IIN —±5 A
High-level output voltage, IOH = –100 AV
OH LVDDB – 0.2 V
Low-level output voltage, IOL = 100 AV
OL —0.2V
Table 41. USB General Timing Parameters (ULPI Mode Only)
Parameter Symbol1Min Max Unit Note
USB clock cycle time tUSCK 15 ns
Input setup to USB clock—all inputs tUSIVKH 4—ns
input hold to USB clock—all inputs tUSIXKH 1—ns
USB clock to output valid—all outputs tUSKHOV —7ns
Output hold from USB clock—all outputs tUSKHOX 2—ns
Note:
1. The symbols used for timing specifications follow the pattern of t(first two letters of funct ional block)(signal)(state)(reference)( s tate) for
inputs an d t(first tw o l etters of fun ctional block) (ref eren ce)(sta te)(signa l)(state) for outputs. F or e xample, tUSIXKH symboliz es USB timing
(USB) f or the input (I) to go invalid (X) with respec t to the time the USB clock reference (K) goes high (H). Also, tUSKHOX
symbolizes us timing (USB) for the USB clock reference (K) to go high (H), with respect to the output (O) going invalid (X)
or output hold time.
Output Z0 = 50 NVDD/2
RL = 50
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
46 Freescale Semiconductor
Figure 35. USB Signals
10.2 On-Chip USB PHY
This section describes the DC and AC electrical specifications for the on-chip USB PHY of the
MPC8313E. See Chapter 7 in the USB Specifications Rev. 2, for more information.
This table provides the USB clock input (USB_CLK_IN) DC timing specifications.
This table provides the USB clock input (USB_CLK_IN) AC timing specifications.
Table 42. USB_CLK_IN DC Electrical Characteristics
Parameter Symbol Min Max Unit
Input high voltage VIH 2.7 NVDD +0.3 V
Input low voltage VIL –0.3 0.4 V
Table 43. USB_CLK_IN AC Timing Specifications
Parameter/Condition Conditions Symbol Min Typ Max Unit
Frequency range fUSB_CLK_IN —2448MHz
Clock frequency tolerance tCLK_TOL –0.005 0 0.005 %
Reference clock duty cycle Measured at 1.6 V tCLK_DUTY 40 50 60 %
Total input jitter/time interval
error Peak-to-peak value measured with a second
order high-pass filter of 500 kHz bandwidth tCLK_PJ ——200ps
Output Signals
tUSKHOV
USBDR_CLK
Input Signa ls
tUSIXKH
tUSIVKH
tUSKHOX
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 47
11 Enhanced Local Bus
This section describes the DC and AC electrical specifications for the local bus interface.
11.1 Local Bus DC Electrical Characteristics
This table provides the DC electrical characteristics for the local bus interface.
11.2 Local Bus AC Electrical Specifications
This table describes the general timing parameters of the local bus interface.
Table 44. Local Bus DC Electrical Characteristics at 3.3 V
Parameter Symbol Min Max Unit
High-level input voltage for Rev 1.0 VIH 2.0 LVDD + 0.3 V
High-level input voltage for Rev 2.x or later VIH 2.1 LVDD + 0.3 V
Low-level input voltage VIL –0.3 0.8 V
Input current, (VIN1 = 0 V or VIN = LVDD)I
IN — ±5A
High-level output voltage, (LVDD = min, IOH = –2 mA) VOH LVDD – 0.2 V
Low-level output voltage, (LVDD = min, IOH = 2 mA) VOL —0.2V
Note: The parameters stated in above table are valid for all revisions unless explicitly mentioned.
Table 45. Local Bus General Timing Parameters
Parameter Symbol1Min Max Unit Note
Local bus cycle time tLBK 15 ns 2
Input setup to local bus clock tLBIVKH 7 ns 3, 4
Input hold from local bus clock tLBIXKH 1.0 ns 3, 4
LALE output fall to LAD output transition (LATCH hold time) tLBOTOT1 1.5 ns 5
LALE output fall to LAD output transition (LATCH hold time) tLBOTOT2 3—ns6
LALE output fall to LAD output transition (LATCH hold time) tLBOTOT3 2.5 ns 7
LALE output rise to LCLK negative edge tLALEHOV —3.0ns
LALE output fall to LCLK negative edge tLALETOT1 –1.5 ns 5
LALE output fall to LCLK negative edge tLALETOT2 –5.0 ns 6
LALE output fall to LCLK negative edge tLALETOT3 –4.5 ns 7
Local bus clock to output va lid tLBKHOV —3ns3
Local bus clock to output high impedance for LAD tLBKHOZ —4ns8
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
48 Freescale Semiconductor
This figure provides the AC test load for the local bus.
Figure 36. Local Bus AC Test Load
Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functiona l b l ock)(signal)(state)(reference)(state) for inputs
and t(first two letters of functional block)(ref erence)(state)(signal)(state) for outputs. F o r example, tLBIXKH1 symbolizes local bus timing (LB)
f or the input (I) to go in v alid (X) with respect to the time the tLBK clock ref e rence (K) goes high (H), in this case fo r clock one (1).
2. All timings are in reference to f alling edge of LCLK0 (for all outputs and for LGTA and LUPW AIT inputs) or rising edge of LCLK0
(for all other inputs).
3. All signals are measured from NVDD/2 of the rising/falling edge of LCLK0 to 0.4 NVDD of the signal in question for 3.3-V
signaling levels.
4. Input timings are measured at the pin.
5. tLBOTOT1 and tLALETOT1 should be used when RCWH[LALE] is not set and the load on LALE output pin is at least 10 pF less than
the load on LAD output pins.
6. tLBOTOT2 and tLALETOT2 should be used when RCWH[LALE] is set and the load o n LALE output pin is at least 10 pF less than
the load on LAD output pins.
7. tLBOTOT3 and tLALETOT3 shoul d be used when RCWH[LALE] is set and the load on LALE output pin equals to the load on LAD
output pins.
8. F or purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through
the component pin is less than or equal to the leakage current specification.
Table 45. Local Bus General Timing Parameters (continued)
Parameter Symbol1Min Max Unit Note
Output Z0 = 50 NVDD/2
RL = 50
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 49
Figure 37 through Figure 40 show the local bus signals.
Figure 37. Local Bus Signals, Non-Special Signals Only
Figure 38. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2
Output Signals:
LBCTL/LBCKE/LOE
tLBKHOV
tLBKHOV
LCLK[n]
Input Signals:
LAD[0:15]
Output Signals:
LAD[0:15]
tLBIXKH
tLBIVKH
tLBKHOZ
tLBOTOT
LALE
Input Signal:
LGTA
tLBIXKH
tLBIVKH
tLBIXKH
LCLK
UPM Mode Input Signal:
LUPWAIT
tLBIXKH
tLBIVKH
tLBIVKH tLBIXKH
tLBKHOZ
T1
T3
Input Signals:
LAD[0:15]
UPM Mode Output Signals:
LCS[0:3]/LBS[0:1]/LGPL[0:5]
GPCM Mode Output Signals:
LCS[0:3]/LWE
tLBKHOV
tLBKHOV tLBKHOZ
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
50 Freescale Semiconductor
Figure 39. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4
Figure 40. Local Bus Signals, LALE with Respect to LCLK
LCLK
UPM Mode Input Signal:
LUPWAIT
tLBIXKH
tLBIVKH
tLBIVKH tLBIXKH
tLBKHOZ
T1
T3
UPM Mode Output Signals:
LCS[0:3]/LBS[0:1]/LGPL[0:5]
GPCM Mode Output Signals:
LCS[0:3]/LWE
tLBKHOV
tLBKHOV tLBKHOZ
T2
T4
Input Signals:
LAD[0:15]
tLBIXKH
tLBIVKH
tLBIXKH
tLBIVKH
tLBKHOV
tLBIXKH
tLBKHOV
tLBKHOZ
tLALEHOV
tLBOTOT tLALETOT
LCLK[n]
Input Signals:
Input Signal:
Output Signals:
Output Signals:
LALE
LAD[0:15]
LGTA
LBCTL/LBCKE/LOE
LAD[0:15]
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 51
12 JTAG
This section describes the DC and AC electrical specifications for the IEEE Std 1149.1™ (JTAG)
interface.
12.1 JTAG DC Electrical Characteristics
This table provides the DC electrical characteristics for the IEEE Std 1149.1 (JTAG) interface.
12.2 JTAG AC Timing Specifications
This section describes the AC electrical specifications for the IEEE Std 1149.1 (JT AG) interface. This table
provides the JTAG AC timing specifications as defined in Figure 41 through Figure 45.
Table 46. JTAG Interface DC Electrical Characteristics
Characteristic Symbol Condition Min Max Unit
Input high voltage VIH —2.1NV
DD +0.3 V
Input low voltage VIL —–0.30.8V
Input current IIN ——±5A
Output high voltage VOH IOH = –8.0 mA 2.4 V
Output low voltage VOL IOL = 8.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
Table 47. JTAG AC Timing Specifications (Independent of SYS_ CLK_IN)1
At recommended operating conditions (see Table 2).
Parameter Symbol2Min Max Unit Note
JTAG external clock frequency of operation fJTG 033.3MHz
JTAG external clock cycle time t JTG 30 ns
JTAG external clock pulse width measured at 1.4 V tJTKHKL 15 ns
JTAG external clock rise and fall times tJTGR & tJTGF 02ns
TRST assert time tTRST 25 ns 3
Input setup times: Boundary-scan data
TMS, TDI tJTDVKH
tJTIVKH
4
4
ns 4
Input hold times: Boundary-scan data
TMS, TDI tJTDXKH
tJTIXKH
10
10
ns 4
Valid times: Boundary-scan data
TDO tJTKLDV
tJTKLOV
2
211
11
ns 5
Output hold times: Boundary-scan data
TDO tJTKLDX
tJTKLOX
2
2
ns 5
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
52 Freescale Semiconductor
This figure provides the AC test load for TDO and the boundary-scan outputs.
Figure 41. AC Test Load for the JTAG Interface
This figure provides the JTAG clock input timing diagram.
Figure 42. JTAG Clock Input Timing Diagram
This figure provides the TRST timing diagram.
Figure 43. TRST Timing Diagram
JTAG externa l clock to output high impedance:
Boundary-scan data
TDO tJTKLDZ
tJTKLOZ
2
219
9ns 5, 6
Notes:
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question.
The output timings are measured at the pins. All output timings assume a purely resistive 50-load (see Figure 34).
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
2. The symbols used for timing specifications follow the pattern of t(first two letters of funct ional block)(signal)(state)(reference)( s tate) for
inputs and t(first two letters of functional bloc k)(reference) (state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTA G device
timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock ref erence (K)
going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input
signals (D) went in valid (X) relativ e to the tJTG clock ref erence (K) going to the high (H) state. Note that, in general, the clock
ref erence symbol representation is based on three letters representing the clock of a particular functional. For rise and fall
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
4. Non-JTAG signal input timing with respect to tTCLK.
5. Non-JTA G signal output timing with respect to tTCLK.
6. Guaranteed by design and characterization.
Tabl e 47. JTAG AC Timing Specifications (Independent of SYS_CLK_IN)1 (continued)
At recommended operating conditions (see Table 2).
Parameter Symbol2Min Max Unit Note
Output Z0 = 50 NVDD/2
RL = 50
JTAG
tJTKHKL tJTGR
External Clock VMVMVM
tJTG tJTGF
VM = Midpoint Voltage (NVDD/2)
TRST
VM = Midpoint Voltage (NVDD/2)
VM VM
tTRST
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 53
This figure provides the boundary-scan timing diagram.
Figure 44. Boundary-Scan Timing Diagram
This figure provides the test access port timing diagram.
Figure 45. Test Access Port Timing Diagram
VM = Midpoint Voltage (NVDD/2)
VM VM
tJTDVKH tJTDXKH
Boundary
Data Outputs
Boundary
Data Outputs
JTAG
External Clock
Boundary
Data Inputs
Output Data Valid
tJTKLDX
tJTKLDZ
tJTKLDV
Input
Data Valid
Output Data Valid
VM = Midpoint Voltage (NVDD/2)
VM VM
tJTIVKH tJTIXKH
JTAG
External Clock
Output Data Valid
tJTKLOX
tJTKLOZ
tJTKLOV
Input
Data Valid
Output Data Valid
TDI, TMS
TDO
TDO
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
54 Freescale Semiconductor
13 I2C
This section describes the DC and AC electrical characteristics for the I2C interface.
13.1 I2C DC Electrical Characteristics
This table provides the DC electrical characteristics for the I2C interface.
13.2 I2C AC Electrical Specifications
This table provides the AC timing parameters for the I2C interface.
Table 48. I2C DC Electrical Characteristics
At recommended operating conditions with NVDD of 3.3 V ± 0.3 V.
Parameter Symbol Min Max Unit Note
Input high voltage level VIH 0.7 NVDD NVDD + 0.3 V
Input low voltage level VIL –0.3 0.3 NVDD V
Low level output voltage VOL 00.2 NVDD V1
Output fall time from VIH(min) to VIL(max) with a bus
capacitance from 10 to 400 pF tI2KLKV 20 + 0.1 CB250 ns 2
Pulse width of spikes which must be suppressed by the input
filter tI2KHKL 050ns3
Capacitance for each I/O pin CI—10pF
Input current, (0 V VIN NVDD)I
IN —± 5 A4
Notes:
1. Output voltage (open drain or open collector) conditio n = 3 mA sink current.
2. CB = capacitance of one bus line in pF.
3. Refer to the MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual, for information on the digital
filter u sed.
4. I/O pins obstruct the SDA and SCL lines if NVDD is switched off.
Table 49. I2C AC Electrical Speci fications
All values refer to VIH (min) and VIL (max) levels (see Table 48).
Parameter Symbol1Min Max Unit
SCL clock frequency fI2C 0 400 kHz
Low period of the SCL clock tI2CL 1.3 s
High period of the SCL clock tI2CH 0.6 s
Setup time for a repeated START condition tI2SVKH 0.6 s
Hold time (repeated) STAR T condition (after this period, the first clock
pulse is generated) tI2SXKL 0.6 s
Data setup time tI2DVKH 100 ns
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 55
This figure provides the AC test load for the I2C.
Figure 46. I2C AC Test Load
Data hold time: CBUS compatible masters
I2C bus devices
tI2DXKL
02
0.93
s
Fall time of both SDA and SCL signals5tI2CF —300ns
Setup time for STOP condition tI2PVKH 0.6 s
Bus free time between a STOP and START condition tI2KHDX 1.3 s
Noise margin at the LOW level for each connected device (including
hysteresis) VNL 0.1 NVDD —V
Noise margin at the HIGH level for each connected device (including
hysteresis) VNH 0.2 NVDD —V
Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of funct ional bloc k)(signal)(state)(reference)(state) for
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH symbolizes I2C timing
(I2) with respect to the time data input signals (D) reach the valid state (V) relative to the tI2C clock reference (K) going to
the high (H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with respect to the start
condition (S) went invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time. Also, tI2PVKH
symbolizes I2C timing (I2) f or the time that the data with respect to the stop condition (P) reac hing the vali d state (V) relativ e
to the tI2C clock ref erence (K) going to the high (H) state or setup time. F or rise and fall times , the latter convention is used
with the appropriate letter: R (rise) or F (fall).
2. The MPC8313E provides a hold time of at least 300 ns f or the SD A signal (referred to the VIHmin of the SCL signal) to bridge
the undefined region of the falling edge of SCL.
3. The maximum tI2DVKH has only to be me t if the device does not stretch the LOW period (tI2CL) of the SCL signal.
4. CB = capacitance of one bus line in pF.
5. The MPC8313E does not follow the I2C-BUS Specifications, Version 2.1, regarding the tI2CF AC parameter.
Table 49. I2C AC Electrical Specif ic at io n s (c on tinued)
All values refer to VIH (min) and VIL (max) levels (see Table 48).
Parameter Symbol1Min Max Unit
Output Z0 = 50 NVDD/2
RL = 50
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
56 Freescale Semiconductor
This figure shows the AC timing diagram for the I2C bus.
Figure 47. I2C Bus AC Timing Diagram
14 PCI
This section describes the DC and AC electrical specifications for the PCI bus.
14.1 PCI DC Electrical Characteristics
This table provides the DC electrical characteristics for the PCI interface.
14.2 PCI AC Electrical Specifications
This section describes the general AC timing parameters of the PCI bus. Note that the PCI_CLK or
PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8313E is configured
as a host or agent device.
This table shows the PCI AC timing specifications at 66 MHz.
.
Table 50. PCI DC Electrical Characteristics1
Parameter Symbol Test Condition Min Max Unit
High-level input voltage VIH VOUT VOH (min) or 0.5 NVDD NVDD + 0.3 V
Low-level input voltage VIL VOUT VOL (max) –0.5 0.3 NVDD V
High-level output voltage VOH NVDD = min, IOH = –10 0 A0.9 NVDD —V
Low-level output voltage VOL NVDD = min, IOL = 100 A 0.1 NVDD V
Input current IIN 0 V VIN NVDD — ±5 A
Note:
1. Note that the symbol VIN, in this case, represents the NVIN symbol referenced in Table 1 and Table 2.
Table 51. PCI AC Timing Specifications at 66 MHz
Parameter Symbol1Min Max Unit Note
Clock to output valid tPCKHOV —6.0ns2
Output hold from clock tPCKHOX 1—ns2
SrS
SDA
SCL
tI2CF
tI2SXKL
tI2CL
tI2CH
tI2DXKL
tI2DVKH tI2SXKL
tI2SVKH
tI2KHKL
tI2PVKH
tI2CR
tI2CF
PS
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 57
This table shows the PCI AC timing specifications at 33 MHz.
This figure provides the AC test load for PCI.
Figure 48. PCI AC Test Load
Clock to output high impedance tPCKHOZ —14ns2, 3
Input setup to clock tPCIVKH 3.0 ns 2, 4
Input hold from clock tPCIXKH 0 ns 2, 4
Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outpu ts. For example, tPCIVKH symbolizes PCI timing
(PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS, reference
(K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset
(R) went high (H) relative to the frame signal (F) going to the valid (V) state.
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered
through the component pin is less than or equal to the leakage current specification.
4. Input timings are measured at the pin.
Table 52. PCI AC Timing Specifications at 33 MHz
Parameter Symbol1Min Max Unit Note
Clock to output valid tPCKHOV —11ns2
Output hold from clock tPCKHOX 2—ns2
Clock to output high impedance tPCKHOZ —14ns2, 3
Input setup to clock tPCIVKH 3.0 ns 2, 4
Input hold from clock tPCIXKH 0—ns2, 4
Notes:
1. The symbols used f or timing specifications follo w the pattern of t(first two letters of functional b loc k)(signal)(state)(ref ere nce)(state) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) fo r ou tp uts. For example, t PCIVKH symbolizes PCI timing (PC) with
respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS, reference (K) going to
the high (H) state or setup time. Also , tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H)
relative to the frame signal (F) going to the valid (V) state.
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifi cations.
3. F or purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through
the component pin is less than or equal to the leakage current specification.
4. Input timings are measured at the pin.
Table 51. PCI AC Timing Specifications at 66 MHz (continued)
Parameter Symbol1Min Max Unit Note
Output Z0 = 50 NVDD/2
RL = 50
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
58 Freescale Semiconductor
This figure shows the PCI input AC timing conditions.
Figure 49. PCI Input AC Timing Measurement Conditions
This figure shows the PCI output AC timing conditions.
Figure 50. PCI Output AC Timing Measurement Co ndition
15 Timers
This section describes the DC and AC electrical specifications for the timers.
15.1 Timers DC Electrical Characteristics
This table provides the DC electrical characteristics for the MPC8313E timers pins, including TIN, TOUT,
TGATE, and RTC_CLK.
Table 53. Timers DC Elect rical Characteristics
Characteristic Symbol Condition Min Max Unit
Output high voltage VOH IOH = –8.0 mA 2.4 V
Output low voltage VOL IOL = 8.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
Input high voltage VIH —2.1NV
DD +0.3 V
Input low voltage VIL —–0.30.8V
Input current IIN 0 V VIN NVDD — ±5 A
tPCIVKH
CLK
Input
tPCIXKH
CLK
Output Delay
tPCKHOV
High-Impedance
tPCKHOZ
Output
tPCKHOX
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 59
15.2 Timers AC Timing Specifications
This table provides the Timers input and output AC timing specifications.
This figure provides the AC test load for the Timers.
Figure 51. Timers AC Test Load
16 GPIO
This section describes the DC and AC electrical specifications for the GPIO.
16.1 GPIO DC Electrical Characteristics
This table provides the DC electrical c haracteristics for the GPIO when the GPIO pins are operating from
a 3.3-V supply.
Table 54. Timers Input AC Timing Specifications1
Characteristic Symbol2Min Unit
Timers inputs—minimum pulse width tTIWID 20 ns
Notes:
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN.
Timings are measured at the pin.
2. T imers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any
external synchronous logic. Timers inputs are required to be valid for at least tTIWID ns to ensure proper operation
Table 55. GPIO (When Operating at 3.3 V) DC Electrical Characteristics
Characteristic Symbol Condition Min Max Unit
Output high voltage VOH IOH =–8.0mA 2.4 V
Output low voltage VOL IOL = 8.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
Input high voltage VIH —2.0NV
DD +0.3 V
Input low voltage VIL —–0.30.8V
Input current IIN 0VVIN NVDD — ±5 A
Note:
1. This specification only applies to GPIO pins that are operating from a 3.3-V supply. See Table 62 fo r the pow er supply liste d
for the individual GPIO signal.
Output Z0 = 50 NVDD/2
RL = 50
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
60 Freescale Semiconductor
This table provides the DC electrical c haracteristics for the GPIO when the GPIO pins are operating from
a 2.5-V supply.
16.2 GPIO AC Timing Specifications
This table provides the GPIO input and output AC timing specifications.
This figure provides the AC test load for the GPIO.
Figure 52. GPIO AC Test Load
Table 56. GPIO (When Operating at 2.5 V) DC Electrical Characteristics1
Parameters Symbol Conditions Min Max Unit
Supply voltage 2.5 V NVDD 2.37 2.63 V
Output high voltage VOH IOH = –1.0 mA NVDD = min 2.00 NVDD + 0.3 V
Output low voltage VOL IOL = 1.0 mA NVDD = min VSS– 0.3 0.40 V
Input high voltage VIH —NV
DD = min 1.7 NVDD + 0.3 V
Input low voltage VIL —NV
DD = min –0.3 0.70 V
Input high current IIH VIN = NVDD —10A
Input low current IIL VIN = VSS –15 A
Note:
1. This specification only applies to GPIO pins that are operating from a 2.5-V supply. See Table 62 fo r the pow er supply liste d
for the individual GPIO signal
Table 57. GPIO Input AC Timing Specifications1
Characteristic Symbol2Min Unit
GPIO inputs—minimum pulse width tPIWID 20 ns
Notes:
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLKIN. Timings
are measured at the pin.
2. GPIO inputs and outputs are asynchronou s to any visible clock. GPIO outputs should be synchronized before use by any
external synchrono us logic. GPIO inputs are required to be valid for at least tPIWID ns to ensure proper operation.
Output Z0 = 50 NVDD/2
RL = 50
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 61
17 IPIC
This section describes the DC and AC electrical specifications for the external interrupt pins.
17.1 IPIC DC Electrical Characteristics
This table provides the DC electrical characteristics for the external interrupt pins.
17.2 IPIC AC Timing Specifications
This table provides the IPIC input and output AC timing specifications.
18 SPI
This section describes the DC and AC electrical specifications for the SPI of the MPC8313E.
18.1 SPI DC Electrical Characteristics
This table provides the DC electrical characteristics for the MPC8313E SPI.
Table 58. IPI C DC Electrical Characteristics
Characteristic Symbol Condition Min Max Unit
Input high voltage VIH —2.1NV
DD +0.3 V
Input low voltage VIL —–0.30.8V
Input current IIN ——±5A
Output low voltage VOL IOL = 8.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
Table 59. IPIC Input AC Timing Specifications1
Characteristic Symbol2Min Unit
IPIC inputs—minimum pulse width tPIWID 20 ns
Note:
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN.
Timings are measured at the pin.
2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any
external synchronous logic. IPIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when
working in edge triggered mode.
Table 60. SPI DC Electrical Characteristics
Characteristic Symbol Condition Min Max Unit
Output high voltage VOH IOH = –6.0 mA 2.4 V
Output low voltage VOL IOL = 6.0 mA 0.5 V
Output low voltage VOL IOL = 3.2 mA 0.4 V
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
62 Freescale Semiconductor
18.2 SPI AC Timing Specifications
This table and provide the SPI input and output AC timing specifications.
This figure provides the AC test load for the SPI.
Figure 53. SPI AC Test Load
Figure 54 and Figure 55 represent the AC timing from Table 61. Note that although the specifications
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge
is the active edge.
Input high voltage VIH —2.1NV
DD +0.3 V
Input low voltage VIL —–0.30.8V
Input current IIN 0 V VIN NVDD — ±5 A
Table 61. SPI AC Timing Specifications1
Characteristic Symbol2Min Max Unit
SPI outputs—master mode (internal clock) delay tNIKHOV 0.5 6 ns
SPI outputs—slave mode (external clock) delay tNEKHOV 28ns
SPI inputs—master mode (internal clock) input setup time tNIIVKH 6—ns
SPI inputs—master mode (internal clock) input hold time tNIIXKH 0—ns
SPI inputs—slave mode (external clock) input setup time tNEIVKH 4—ns
SPI inputs—slave mode (external clock) input hold time tNEIXKH 2—ns
Note:
1. Output specifications are measured from the 50% lev el of the rising edge of SYS_CLK_IN to the 50% lev el of the signal. Timings
are measured at the pin.
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional b loc k)(sig nal)(state )(ref eren ce)(sta te) for inputs
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOV symbolizes the NMSI outputs
internal timing (NI) for the time tSPI memor y clock reference (K) goes from the high state (H) until outputs (O) are valid (V).
Table 60. SPI DC Electrical Characteristics (continued)
Characteristic Symbol Condition Min Max Unit
Output Z0 = 50 NVDD/2
RL = 50
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 63
This figure shows the SPI timing in slave mode (external clock).
Figure 54. SPI AC Timing in Slave Mode (External Clock) Diagram
This figure shows the SPI timing in master mode (internal clock).
Figure 55. SPI AC Timing in Master Mode (Internal Clock) Diagram
19 Package and Pin Listings
This section details package parameters, pin assignments, and dimensions. The MPC8313E is available in
a thermally enhanced plastic ball grid array (TEPBGAII), see Section 19.1, “Package Parameters for the
MPC8313E TEPBGAII,” and Section 19.2, “Mechanical Dimensions of the MPC8313E TEPBGAII,” for
information on the TEPBGAII.
19.1 Package Parameters for the MPC8313E TEPBGAII
The package parameters are as provided in the following list. The package type is 27 mm 27 mm,
516 TEPBGAII.
Package outline 27 mm 27 mm
Interconnects 516
Pitch 1.00 mm
Module height (typical) 2.25 mm
Solder Balls 96.5 Sn/3.5 Ag(VR package) ,
62 Sn/36 Pb/2 Ag (ZQ package) Ball diameter (typical)
0.6 mm
SPICLK (Input)
tNEIXKH
tNEIVKH
tNEKHOV
Input Signals:
SPIMOSI
(See Note)
Output Signals:
SPIMISO
(See Note)
Note: The clock edge is selectable on SPI.
SPICLK (Output)
tNIIXKH
tNIKHOV
Input Signals:
SPIMISO
(See Note)
Output Signals:
SPIMOSI
(See Note)
Note: The clock edge is selectable on SPI.
tNIIVKH
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
64 Freescale Semiconductor
19.2 Mechanical Dimensions of the MPC8313E TEPBGAII
This figure shows the mechanical dimensions and bottom surface nomenclature of the 516-TEPBGAII
package.
Figure 56. Mechanical Dimension and Bottom Surface Nomenclature of the MPC8313E TEPBGAII
Notes:
1. All dimensions are in millimeters.
2. Dimensions and tolerances per ASME Y14.5M-1994.
3. Maximum solder ball diameter measured parallel to datum A.
4. Datum A, the seating plane, is determined by the spher ical crowns of the solder balls.
5. Package code 5368 is to account for PGE and the built-in heat spreader.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 65
19.3 Pinout Listings
This table provides the pin-out listing for the MPC8313E, TEPBGAII package.
Table 62. MPC831 3E TEPBGAII Pinout Listing
Signal Package Pin Number Pin Type Power
Supply Note
DDR Memory Controller Interface
MEMC_MDQ0 A8 I/O GVDD
MEMC_MDQ1 A9 I/O GVDD
MEMC_MDQ2 C10 I/O GVDD
MEMC_MDQ3 C9 I/O GVDD
MEMC_MDQ4 E9 I/O GVDD
MEMC_MDQ5 E11 I/O GVDD
MEMC_MDQ6 E10 I/O GVDD
MEMC_MDQ7 C8 I/O GVDD
MEMC_MDQ8 E8 I/O GVDD
MEMC_MDQ9 A6 I/O GVDD
MEMC_MDQ10 B6 I/O GVDD
MEMC_MDQ11 C6 I/O GVDD
MEMC_MDQ12 C7 I/O GVDD
MEMC_MDQ13 D7 I/O GVDD
MEMC_MDQ14 D6 I/O GVDD
MEMC_MDQ15 A5 I/O GVDD
MEMC_MDQ16 A19 I/O GVDD
MEMC_MDQ17 D18 I/O GVDD
MEMC_MDQ18 A17 I/O GVDD
MEMC_MDQ19 E17 I/O GVDD
MEMC_MDQ20 E16 I/O GVDD
MEMC_MDQ21 C18 I/O GVDD
MEMC_MDQ22 D19 I/O GVDD
MEMC_MDQ23 C19 I/O GVDD
MEMC_MDQ24 E19 I/O GVDD
MEMC_MDQ25 A22 I/O GVDD
MEMC_MDQ26 C21 I/O GVDD
MEMC_MDQ27 C20 I/O GVDD
MEMC_MDQ28 A21 I/O GVDD
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
66 Freescale Semiconductor
MEMC_MDQ29 A20 I/O GVDD
MEMC_MDQ30 C22 I/O GVDD
MEMC_MDQ31 B22 I/O GVDD
MEMC_MDM0 B7 O GVDD
MEMC_MDM1 E6 O GVDD
MEMC_MDM2 E18 O GVDD
MEMC_MDM3 E20 O GVDD
MEMC_MDQS0 A7 I/O GVDD
MEMC_MDQS1 E7 I/O GVDD
MEMC_MDQS2 B19 I/O GVDD
MEMC_MDQS3 A23 I/O GVDD
MEMC_MBA0 D15 O GVDD
MEMC_MBA1 A18 O GVDD
MEMC_MBA2 A15 O GVDD
MEMC_MA0 E12 O GVDD
MEMC_MA1 D11 O GVDD
MEMC_MA2 B11 O GVDD
MEMC_MA3 A11 O GVDD
MEMC_MA4 A12 O GVDD
MEMC_MA5 E13 O GVDD
MEMC_MA6 C12 O GVDD
MEMC_MA7 E14 O GVDD
MEMC_MA8 B15 O GVDD
MEMC_MA9 C17 O GVDD
MEMC_MA10 C13 O GVDD
MEMC_MA11 A16 O GVDD
MEMC_MA12 C15 O GVDD
MEMC_MA13 C16 O GVDD
MEMC_MA14 E15 O GVDD
MEMC_MWE B18 O GVDD
MEMC_MRAS C11 O GVDD
MEMC_MCAS B10 O GVDD
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 67
MEMC_MCS0 D10 O GVDD
MEMC_MCS1 A10 O GVDD
MEMC_MCKE B14 O GVDD 3
MEMC_MCK A13 O GVDD
MEMC_MCK A14 O GVDD
MEMC_MODT0 B23 O GVDD
MEMC_MODT1 C23 O GVDD
Local Bus Controller Interface
LAD0 K25 I/O LVDD 11
LAD1 K24 I/O LVDD 11
LAD2 K23 I/O LVDD 11
LAD3 K22 I/O LVDD 11
LAD4 J25 I/O LVDD 11
LAD5 J24 I/O LVDD 11
LAD6 J23 I/O LVDD 11
LAD7 J22 I/O LVDD 11
LAD8 H24 I/O LVDD 11
LAD9 F26 I/O LVDD 11
LAD10 G24 I/O LVDD 11
LAD11 F25 I/O LVDD 11
LAD12 E25 I/O LVDD 11
LAD13 F24 I/O LVDD 11
LAD14 G22 I/O LVDD 11
LAD15 F23 I/O LVDD 11
LA16 AC25 O LVDD 11
LA17 AC26 O LVDD 11
LA18 AB22 O LVDD 11
LA19 AB23 O LVDD 11
LA20 AB24 O LVDD 11
LA21 AB25 O LVDD 11
LA22 AB26 O LVDD 11
LA23 E22 O LVDD 11
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
68 Freescale Semiconductor
LA24 E23 O LVDD 11
LA25 D22 O LVDD 11
LCS0 D23 O LVDD 10
LCS1 J26 O LVDD 10
LCS2 F22 O LVDD 10
LCS3 D26 O LVDD 10
LWE0/LFWE E24 O LVDD 10
LWE1 H26 O LVDD 10
LBCTL L22 O LVDD 10
LALE/M1LALE/M2LALE E26 O LVDD 11
LGPL0/LFCLE AA23 O LVDD
LGPL1/LFALE AA24 O LVDD
LGPL2/LOE/LFRE AA25 O LVDD 10
LGPL3/LFWP AA26 O LVDD
LGPL4/LGTA/LUPWAIT/LFRB Y22 I/O LVDD 2
LGPL5 E21 O LVDD 10
LCLK0 H22 O LVDD 11
LCLK1 G26 O LVDD 11
LA0/GPIO0/MSRCID0 AC24 I/O LVDD
LA1/GPIO1//MSRCID1 Y24 I/O LVDD
LA2/GPIO2//MSRCID2 Y26 I/O LVDD
LA3/GPIO3//MSRCID3 W22 I/O LVDD
LA4/GPIO4//MSRCID4 W24 I/O LVDD
LA5/GPIO5/MDVAL W26 I/O LVDD
LA6/GPIO6 V22 I/O LVDD
LA7/GPIO7/TSEC_1588_TRIG2 V23 I/O LVDD 8
LA8/GPIO13/TSEC_1588_ALARM1 V24 I/O LVDD 8
LA9/GPIO14/TSEC_1588_PP3 V25 I/O LVDD 8
LA10/TSEC_1588_CLK V26 O LVDD 8
LA11/TSEC_1588_GCLK U22 O LVDD 8
LA12/TSEC_1588_PP1 AD24 O LVDD 8
LA13/TSEC_1588_PP2 L25 O LVDD 8
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 69
LA14/TSEC_1588_TRIG1 L24 O LVDD 8
LA15/TSEC_1588_ALARM2 K26 O LVDD 8
DUART
UART_SOUT1/MSRCID0 N2 O NVDD
UART_SIN1/MSRCID1 M5 I/O NVDD
UART_CTS1/GPIO8/MSRCID2 M1 I/O NVDD
UART_RTS1/GPIO9/MSRCID3 K1 I/O NVDD
UART_SOUT2/MSRCID4/TSEC_1588_CLK M3 O NVDD 8
UART_SIN2/MDVAL/TSEC_1588_GCLK L1 I/O NVDD 8
UART_CTS2/TSEC_1588_PP1 L5 I/O NVDD 8
UART_RTS2/TSEC_1588_PP2 L3 I/O NVDD 8
I2C interface
IIC1_SDA/CKSTOP_OUT/TSEC_1588_TRIG1 J4 I/O NVDD 2, 8
IIC1_SCL/CKSTOP_IN/TSEC_1588_ALARM2 J2 I/O NVDD 2, 8
IIC2_SDA/PMC_PWR_OK/GPIO10 J3 I/O NVDD 2
IIC2_SCL/GPIO11 H5 I/O NVDD 2
Interrupts
MCP_OUT G5 O NVDD 2
IRQ0/MCP_IN K5 I NVDD
IRQ1 K4 I NVDD
IRQ2 K2 I NVDD
IRQ3/CKSTOP_OUT K3 I/O NVDD
IRQ4/CKSTOP_IN/GPIO12 J1 I/O NVDD
Configuration
CFG_CLKIN_DIV D5 I NVDD
EXT_PWR_CTRL J5 O NVDD
CFG_LBIU_MUX_EN R24 I NVDD
JTAG
TCK E1 I NVDD
TDI E2 I NVDD 4
TDO E3 O NVDD 3
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
70 Freescale Semiconductor
TMS E4 I NVDD 4
TRST E5 I NVDD 4
TEST
TEST_MODE F4 I NVDD 6
DEBUG
QUIESCE F5 O NVDD
System Control
HRESET F2 I/O NVDD 1
PORESET F3 I NVDD
SRESET F1 I NVDD
Clocks
SYS_CR_CLK_IN U26 I NVDD
SYS_CR_CLK_OUT U25 O NVDD
SYS_CLK_IN U23 I NVDD
USB_CR_CLK_IN T26 I NVDD
USB_CR_CLK_OUT R26 O NVDD
USB_CLK_IN T22 I NVDD
PCI_SYNC_OUT U24 O NVDD 3
RTC_PIT_CLOCK R22 I NVDD
PCI_SYNC_IN T24 I NVDD
MISC
THERM0 N1 I NVDD 7
THERM1 N3 I NVDD 7
PCI
PCI_INTA AF7 O NVDD
PCI_RESET_OUT AB11 O NVDD
PCI_AD0 AB20 I/O NVDD
PCI_AD1 AF23 I/O NVDD
PCI_AD2 AF22 I/O NVDD
PCI_AD3 AB19 I/O NVDD
PCI_AD4 AE22 I/O NVDD
PCI_AD5 AF21 I/O NVDD
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 71
PCI_AD6 AD19 I/O NVDD
PCI_AD7 AD20 I/O NVDD
PCI_AD8 AC18 I/O NVDD
PCI_AD9 AD18 I/O NVDD
PCI_AD10 AB18 I/O NVDD
PCI_AD11 AE19 I/O NVDD
PCI_AD12 AB17 I/O NVDD
PCI_AD13 AE18 I/O NVDD
PCI_AD14 AD17 I/O NVDD
PCI_AD15 AF19 I/O NVDD
PCI_AD16 AB14 I/O NVDD
PCI_AD17 AF15 I/O NVDD
PCI_AD18 AD14 I/O NVDD
PCI_AD19 AE14 I/O NVDD
PCI_AD20 AF12 I/O NVDD
PCI_AD21 AE11 I/O NVDD
PCI_AD22 AD12 I/O NVDD
PCI_AD23 AB13 I/O NVDD
PCI_AD24 AF9 I/O NVDD
PCI_AD25 AD11 I/O NVDD
PCI_AD26 AE10 I/O NVDD
PCI_AD27 AB12 I/O NVDD
PCI_AD28 AD10 I/O NVDD
PCI_AD29 AC10 I/O NVDD
PCI_AD30 AF10 I/O NVDD
PCI_AD31 AF8 I/O NVDD
PCI_C/BE0 AC19 I/O NVDD
PCI_C/BE1 AB15 I/O NVDD
PCI_C/BE2 AF14 I/O NVDD
PCI_C/BE3 AF11 I/O NVDD
PCI_PAR AD16 I/O NVDD
PCI_FRAME AF16 I/O NVDD 5
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
72 Freescale Semiconductor
PCI_TRDY AD13 I/O NVDD 5
PCI_IRDY AC15 I/O NVDD 5
PCI_STOP AF13 I/O NVDD 5
PCI_DEVSEL AC14 I/O NVDD 5
PCI_IDSEL AF20 I NVDD
PCI_SERR AE15 I/O NVDD 5
PCI_PERR AD15 I/O NVDD 5
PCI_REQ0 AB10 I/O NVDD
PCI_REQ1/CPCI_HS_ES AD9 I NVDD
PCI_REQ2 AD8 I NVDD
PCI_GNT0 AC11 I/O NVDD
PCI_GNT1/CPCI_HS_LED AE7 O NVDD
PCI_GNT2/CPCI_HS_ENUM AD7 O NVDD
M66EN AD21 I NVDD
PCI_CLK0 AF17 O NVDD
PCI_CLK1 AB16 O NVDD
PCI_CLK2 AF18 O NVDD
PCI_PME AD22 I/O NVDD 5
ETSEC1/_USBULPI
TSEC1_COL/USBDR_TXDRXD0 AD2 I/O LVDDB
TSEC1_CRS/USBDR_TXDRXD1 AC3 I/O LVDDB
TSEC1_GTX_CLK/USBDR_TXDRXD2 AF3 I/O LVDDB 3, 12
TSEC1_RX_CLK/USBDR_TXDRXD3 AE3 I/O LVDDB
TSEC1_RX_DV/USBDR_TXDRXD4 AD3 I/O LVDDB
TSEC1_RXD3/USBDR_TXDRXD5 AC6 I/O LVDDB
TSEC1_RXD2/USBDR_TXDRXD6 AF4 I/O LVDDB
TSEC1_RXD1/USBDR_TXDRXD7 AB6 I/O LVDDB
TSEC1_RXD0/USBDR_NXT/TSEC_1588_TRIG1 AB5 I LVDDB
TSEC1_RX_ER/USBDR_DIR/TSEC_1588_TRIG2 AD4 I LVDDB
TSEC1_TX_CLK/USBDR_CLK/TSEC_1588_CLK AF5 I LVDDB
TSEC1_TXD3/TSEC_1588_GCLK AE6 O LVDDB
TSEC1_TXD2/TSEC_1588_PP1 AC7 O LVDDB
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 73
TSEC1_TXD1/TSEC_1588_PP2 AD6 O LVDDB
TSEC1_TXD0/USBDR_STP/TSEC_1588_PP3 AD5 O LVDDB
TSEC1_TX_EN/TSEC_1588_ALARM1 AB7 O LVDDB
TSEC1_TX_ER/TSEC_1588_ALARM2 AB8 O LVDDB
TSEC1_GTX_CLK125 AE1 I LVDDB
TSEC1_MDC/LB_POR_CFG_BOOT_ECC_DIS AF6 O NVDD 9, 11
TSEC1_MDIO AB9 I/O NVDD
ETSEC2
TSEC2_COL/GTM1_TIN4/GTM2_TIN3/GPIO15 AB4 I/O LVDDA
TSEC2_CRS/GTM1_TGATE4/GTM2_TGATE3/GPIO16 AB3 I/O LVDDA
TSEC2_GTX_CLK/GTM1_TOUT4/GTM2_TOUT3/GPIO17 AC1 I/O LVDDA 12
TSEC2_RX_CLK/GTM1_TIN2/GTM2_TIN1/GPIO18 AC2 I/O LVDDA
TSCE2_RX_DV/GTM1_TGATE2/GTM2_TGATE1/GPIO19 AA3 I/O LVDDA
TSEC2_RXD3/GPIO20 Y5 I/O LVDDA
TSEC2_RXD2/GPIO21 AA4 I/O LVDDA
TSEC2_RXD1/GPIO22 AB2 I/O LVDDA
TSEC2_RXD0/GPIO23 AA5 I/O LVDDA
TSEC2_RX_ER/GTM1_TOUT2/GTM2_TOUT1/GPIO24 AA2 I/O LVDDA
TSEC2_TX_CLK/GPIO25 AB1 I/O LVDDA
TSEC2_TXD3/CFG_RESET_SOURCE0 W3 I/O LVDDA
TSEC2_TXD2/CFG_RESET_SOURCE1 Y1 I/O LVDDA
TSEC2_TXD1/CFG_RESET_SOURCE2 W5 I/O LVDDA
TSEC2_TXD0/CFG_RESET_SOURCE3 Y3 I/O LVDDA
TSEC2_TX_EN/GPIO26 AA1 I/O LVDDA
TSEC2_TX_ER/GPIO27 W1 I/O LVDDA
SGMII PHY
TXA U3 O
TXA V3 O
RXA U1 I
RXA V1 I
TXB P4 O
TXB N4 O
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
74 Freescale Semiconductor
RXB R1 I
RXB P1 I
SD_IMP_CAL_RX V5 I 200  ±
10% to
GND
SD_REF_CLK T5 I
SD_REF_CLK T4 I
SD_PLL_TPD T2 O
SD_IMP_CAL_TX N5 I 100  ±
10% to
GND
SDAVDD R5 I/O
SD_PLL_TPA_ANA R4 O
SDAVSS R3 I/O
USB PHY
USB_DP P26 I/O
USB_DM N26 I/O
USB_VBUS P24 I/O
USB_TPA L26 I/O
USB_RBIAS M24 I/O
USB_PLL_PWR3 M26 I/O
USB_PLL_GND N24 I/O
USB_PLL_PWR1 N25 I/O
USB_VSSA_BIAS M25 I/O
USB_VDDA_BIAS M22 I/O
USB_VSSA N22 I/O
USB_VDDA P22 I/O
GTM/USB
USBDR_DRIVE_VBUS/GTM1_TIN1/GTM2_TIN2/LSRCID0 AD23 I/O NVDD
USBDR_PWRFAULT/GTM1_TGATE1/GTM2_TGATE2/
LSRCID1 AE23 I/O NVDD
USBDR_PCTL0/GTM1_TOUT1/LSRCID2 AC22 O NVDD
USBDR_PCTL1/LBC_PM_REF_10/LSRCID3 AB21 O NVDD
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 75
SPI
SPIMOSI/GTM1_TIN3/GTM2_TIN4/GPIO28/LSRCID4 H1 I/O NVDD
SPIMISO/GTM1_TGATE3/GTM2_TGATE4/GPIO29/
LDVAL H3 I/O NVDD
SPICLK/GTM1_TOUT3/GPIO30 G1 I/O NVDD
SPISEL/GPIO31 G3 I/O NVDD
Power and Ground Supplies
AVDD1 F14 Power for e300 core
APLL
(1.0 V)
——
AVDD2 P21 Power for system
APLL (1.0 V) ——
GVDD A2,A3,A4,A24,A25,B3,
B4,B5,B12,B13,B20,B21,
B24,B25,B26,D1,D2,D8,
D9,D16,D17
Power for DDR1
and DDR2 DRAM
I/O voltage
(1.8/2.5 V)
——
LVDD D24,D25,G23,H23,R23,
T23,W25,Y25,AA22,AC23 Power f or local bu s
(3.3 V) ——
LVDDA W2,Y2 Power f o r eTSEC2
(2.5 V, 3.3 V) ——
LVDDB AC8,AC9,AE4,AE5 Power for eTSEC1/
USB DR
(2.5 V, 3.3 V)
——
MVREF C14,D14 Reference voltage
signal for DDR ——
NVDD G4,H4,L2,M2,AC16,AC17,
AD25,AD26,AE12,AE13,
AE20,AE21,AE24,AE25,
AE26,AF24,AF25
Standard I/O
voltage (3.3 V) ——
VDD K11,K12,K13,K14,K15,
K16,L10,L17,M10,M17,
N10,N17,U12,U13,
P o wer f or core (1.0
V) ——
VDDC F6,F10,F19,K6,K10,K17,
K21,P6,P10,P17,R10,R17,
T10,T17,U10,U11,U14,
U15,U16,U17,W6,W21,
AA6,AA10,AA14,AA19
Internal core logic
constant power (1.0
V)
——
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
76 Freescale Semiconductor
VSS B1,B2,B8,B9,B16,B17,C1,
C2,C3,C4,C5,C24,C25,
C26,D3,D4,D12,D13,D20,
D21,F8,F11,F13,F16,F17,
F21,G2,G25,H2,H6,H21,
H25,L4,L6,L11,L12,L13,
L14,L15,L16,L21,L23,M4,
M11,M12,M13,M14,M15,
M16,M23,N6,N11,N12,
N13,N14,N15,N16,
N21,N23,P11,P12,P13,
P14,P15,P16,P23,P25,
R11,R12,R13,R14,R15,
R16,R25,T6,T11,T12,T13,
T14,T15,T16,T21,T25,U5,
U6,U21,W4,W23,Y4,Y23,
AA8,AA11,AA13,AA16,
AA17,AA21,AC4,AC5,
AC12,AC13,AC20,AC21,
AD1,AE2,AE8,AE9,AE16,
AE17,AF2
——
XCOREVDD T1,U2,V2 Core power for
SerDes
transceivers (1.0 V)
——
XCOREVSS P2,R2,T3
XPADVDD P5,U4 Pad power for
SerDes
transceivers (1.0 V)
——
XPADVSS P3,V4
Notes:
1. This pin is an open drain signal. A weak pull-up resistor (1 k) should be placed on this pin to NVDD.
2. This pin is an open drain signal. A weak pull-up resistor (2–10 k) should be placed on this pin to NVDD.
3. This output is actively driven dur ing reset rather than being three-stated during reset.
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.
6. This pin must always be tied to VSS.
7. Internal thermally sensitive resistor, resistor value v aries linearly with temperature. Useful for determining the junction temperature.
8. 1588 signals are available on these pins only in MPC8313 Rev 2.x or later.
9. LB_POR_CFG_BOOT_ECC_DIS is available only in MPC8313 Rev 2.x or later.
10.This pin has an internal pull-up.
11.This pin has an internal pull-down.
12.In MII mode, GTX_CLK should be pulled down by 300 to VSS.
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)
Signal Package Pin Number Pin Type Power
Supply Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 77
20 Clocking
This figure shows the internal distribution of clocks within the MPC8313E.
1Multiplication factor M = 1, 1.5, 2, 2.5, and 3. Value is decided by RCWLR[COREPLL].
2Multiplication factor L = 2, 3, 4, 5, and 6. Value is decided by RCWLR[SPMF].
Figure 57. MPC8313E Clock Subsystem
System
LBC LCLK[0:1]
e300c3 Core
csb_clk to Rest
csb_clk
MPC8313E
Local Bus
PCI_CLK_OUT[0:2]
PCI_SYNC_OUT
PCI_CLK/
Clock
Unit
of the Device
lbc_clk
PCI Clock
PCI_SYNC_IN
Memory
Device
/n
To Local Bus
Clock
Divider (2) 3
MEMC_MCK
MEMC_MCK
DDR
ddr_clk
DDR
Memory
Device
PLL
To DDR
Memory
Controller
Clock
CFG_CLKIN_DIV
/2
Divider
Divider
1
0
USB Mac
USB PHY
PLL
eTSEC
Protocol
Converter
GTX_CLK125
125-MHz Source
SYS_CR_CLK_IN
SYS_CR_CLK_OUT
mux
Crystal
SYS_CLK_IN
USB_CR_CLK_IN
USB_CR_CLK_OUT
Crystal
USB_CLK_IN
/1,/2
RTC_CLK (32 kHz)
RTC
Sys Ref
Core PLL core_clk
x L2
x M1
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
78 Freescale Semiconductor
The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK,
depending on whether the device is configured in PCI host or PCI agent mode. When the device is
configured as a PCI host device, SYS_CLK_IN is its primary input clock. SYS_CLK_IN feeds the PCI
clock divider (2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The
CFG_CLKIN_DIV configuration input selects whether SYS_CLK_IN or SYS_CLK_IN/2 is driven out
on the PCI_SYNC_OUT signal. The OCCR[PCICOE n] parameters select whether the PCI_SYNC_OUT
is driven out on the PCI_CLK_OUTn signals.
PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN,
with equal delay to all PCI agent devices in the system, to allow the device to function. When the device
is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured
as a PCI agent device the SYS_CLK_IN signal should be tied to VSS.
As shown in Figure 57, the primary clock input (frequency) is multiplied up by the system phase-locked
loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the
DDR controller (ddr_clk), and the internal clock for the local bus interface unit (lbc_clk).
The csb_clk frequency is derived from a complex set of factors that can be simplified into the following
equation:
csb_clk = {PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV)} × SPMF
In PCI host mode, PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV) is the SYS_CLK_IN frequency.
The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up
the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL)
which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, “Reset,
Clocking, and Initialization,” in the MPC8313E PowerQUICC II Pro Integrated Processor Family
Reference Manual, for more information on the clock subsystem.
The internal ddr_clk frequency is determined by the following equation:
ddr_clk = csb_clk × (1 + RCWL[DDRCM])
Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider
(2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate
is the same frequency as ddr_clk.
The internal lbc_clk frequency is determined by the following equation:
lbc_clk = csb_clk × (1 + RCWL[LBCM])
Note that lbc_clk is not the external local bus frequency; lbc_clk passes through the a LBC clock divider
to create the external local bus clock outputs (LCLK[0:1]). The LBC clock divider ratio is controlled by
LCRR[CLKDIV].
In addition, some of the internal units may be required to be shut off or operate at lower frequency than
the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory mapped
register after the device comes out of reset. Table 63 specifies which units have a configurable clock
frequency.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 79
This table provides the operating frequencies for the MPC8313E TEPBGAII under recommended
operating conditions (see Table 2).
20.1 System PLL Configuration
The system PLL is controlled by the RCWL[SPMF] para meter . This table shows the multiplication factor
encodings for the system PLL.
Table 63. Configurable Clock Units
Unit Default
Frequency Options
TSEC1 csb_clk Off, csb_clk, csb_clk/2, csb_clk/3
TSEC2 csb_clk Off, csb_clk, csb_clk/2, csb_clk/3
Security Core, I2C, SA P, TPR csb_clk Off, csb_clk, csb_clk/2, csb_clk/3
USB DR csb_clk Off, csb_clk, csb_clk/2, csb_clk/3
PCI and DMA complex csb_clk Off, csb_clk
Table 64. Operating Frequencies for TEPBGAII
Characteristic1Maximum Operating
Frequency Unit
e300 core frequency (core_clk)333MHz
Coherent system bus frequency (csb_clk)167MHz
DDR1/2 memory bus frequency (MCK)2167 MHz
Local bus frequency (LCLKn)366 MHz
PCI input frequency (SYS_CLK_IN or PCI_CLK) 66 MHz
Note:
1. The SYS_CLK_IN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen
such that the resulting csb_clk, MCK, LCLK[0:1], and core_clk frequen cies do not exceed their
respective maximum or minimum operating frequencies. The value of SCCR[ENCCM] and
SCCR[USBDRCM] must be programmed such that the maximum internal operating frequency of
the security core and USB modules do not exceed their respective value listed in this table.
2. The DDR data rate is 2x the DDR memory bus frequency.
3. The local bus frequency is 1/2, 1/4, or 1/8 of the lbc_clk frequency (depending on
LCRR[CLKDIV]), which is in tur n, 1x or 2x the csb_clk frequency (depending on RCWL[LBCM]).
Table 65. System PLL Multiplication Factor s
RCWL[SPMF] System PLL
Multiplication Factor
0000 Reserved
0001 Reserved
0010 2
0011 3
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
80 Freescale Semiconductor
As described in Section 20, “Clocking,” the LBCM, DDRCM, and SPMF parameters in the reset
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the
primary clock input (SYS_CLK_IN or PCI_SYNC_IN) and the internal coherent system bus clock
(csb_clk). This table shows the expected frequency values for the CSB frequency for select csb_clk to
SYS_CLK_IN/PCI_SYNC_IN ratios.
0100 4
0101 5
0110 6
0111–1111 Reserved
Note:
1. If RCWL[DDRCM] and RCWL[LBCM] are both cleared, the system
PLL VCO frequency = (CSB frequency) × (System PLL VCO Divider).
2. If either RCWL[DDRCM] or RCWL[LBCM] are set, the system PLL
VCO frequency = 2 × (CSB frequency) × (System PLL VCO Divider).
3. The VCO divider needs to be set properly so that the System PLL
VCO frequency is in the range of 450–750 MHz
Tabl e 66. CSB Frequency Options
CFG_CLKIN_DIV
at Reset1
1CFG_CLKIN_DIV select the ratio between SYS_CLK_IN and PCI_SYNC_OUT.
SPMF csb_clk :Input
Clock Ratio2
2SYS_CLK_IN is the input clock in host mode; PCI_CLK is the input clock in agent mode.
Input Clock Frequency (MHz)2
24 25 33.33 66.67
csb_clk Frequency (MHz)
High 0010 2:1 133
High 0011 3:1 100
High 0100 4:1 100 133
High 0101 5:1 120 125 167
High 0110 6:1 144 150
Low 0010 2:1 133
Low 0011 3:1 100
Low 0100 4:11 100 133
Low 0101 5:1 120 125 167
Low 0110 6:1 144 150
Table 65. System PLL Multiplication Factors (continued)
RCWL[SPMF] System PLL
Multiplication Factor
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 81
20.2 Core PLL Configuration
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300
core clock (core_clk). This table shows the encodings for RCWL[COREPLL]. COREPLL values that are
not listed in this table should be considered as reserved.
NOTE
Core VCO frequency = core frequency VCO divider. The VCO divider,
which is determined by RCWLR[COREPLL], must be set properly so that
the core VCO frequency is in the range of 400–800 MHz.
Table 67. e300 Core PLL Configuration
RCWL[COREPLL] core_clk :csb_clk Ratio1VCO Divider (VCOD)3
0–1 2–5 6
nn 0000 0 PLL bypassed
(PLL off, csb_clk clocks core directly) PLL b ypassed
(PLL off, csb_clk clocks core directly)
11 nnnn nn/a n/a
00 0001 01:1 2
01 0001 01:1 4
10 0001 01:1 8
00 0001 1 1.5:1 2
01 0001 1 1.5:1 4
10 0001 1 1.5:1 8
00 0010 02:1 2
01 0010 02:1 4
10 0010 02:1 8
00 0010 1 2.5:1 2
01 0010 1 2.5:1 4
10 0010 1 2.5:1 8
00 0011 03:1 2
01 0011 03:1 4
10 0011 03:1 8
Note:
1. For core_clk:csb_clk ratios of 2.5:1 and 3:1, the core_clk must not e xceed its maximum operating frequency of 333 MHz.
2. Core VCO frequency = core frequency VCO divider. Note that VCO divider has to be set properly so that the core VCO
frequency is in the range of 400–800 MHz.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
82 Freescale Semiconductor
20.3 Example Clock Frequency Combinations
This table shows several possible frequency combinations that can be selected based on the indicated input
reference frequencies, with RCWLR[LBCM] = 0 and RCWLR[DD RCM] =1, such that the LBC operates
with a frequency equal to the frequency of csb_clk and the DDR controller operates at twice the frequency
of csb_clk.
21 Thermal
This section describes the thermal specifications of the MPC8313E.
21.1 Thermal Characteristics
This table provides the package thermal characteristics for the 516, 27 27 mm TEPBGAII.
Table 68. System Clock Frequencies
LBC(lbc_clk) e300 Core(core_clk)
SYS_
CLK_IN/
PCI_CLK SPMF1VCOD2VCO3CSB
(csb_clk)4DDR
(ddr_clk) /2 /4 /8 USB
ref511.5 22.5 3
25.0 6 2 600.0 150.0 300.0 37.5 18.8 Note6150.0 225 300 375
25.0 5 2 500.0 125.0 250.0 62.5 31.25 15.6 Note 6 125.0 188 250 313 375
33.3 5 2 666.0 166.5 333.0 41.63 20.8 Note 6 166.5 250 333
33.3 4 2 532.8 133.2 266.4 66.6 33.3 16.7 Note 6 133.2 200 266 333 400
48.0 3 2 576.0 144.0 288.0 36 18.0 48.0 144.0 216 288 360
66.7 2 2 533.4 133.3 266.7 66.7 33.34 16.7 Note 6 133.3 200 267 333 400
Note:
1. System PLL multiplication factor.
2. System PLL VCO divider.
3. When considering operating frequencies, the valid core VCO operating range of 400–800 MHz must not be violated.
4. Due to erratum eTSEC40, csb_clk frequencies of less than 133 MHz do not support gigabit Ethernet data rates. The core
frequency must be 333 MHz f or gigabit Ethernet operation. This erratum will be fixed in revision 2 silicon.
5. Frequency of USB PLL input reference.
6. USB reference clock must be supplied from a separate source as it must be 24 or 48 MHz, the USB reference must be
supplied from a separate external source using USB_CLK_IN.
Table 69. Package Thermal Characteristics for TEPBGAII
Characteristic Board Type Symbol TEPBGA II Unit Note
Junction-to-ambient natural convection Single layer board (1s) RJA 25 °C/W 1, 2
Junction-to-ambient natural convection Four layer board (2s2p) RJA 18 °C/W 1, 2, 3
Junction-to-ambient (@200 ft/min) Single layer board (1s) RJMA 20 °C/W 1, 3
Junction-to-ambient (@200 ft/min) Four layer board (2s2p) RJMA 15 °C/W 1, 3
Junction-to-board RJB 10 °C/W 4
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 83
21.2 Thermal Management Information
For the following sections, PD = (VDD IDD) + PI/O, where PI/O is the power dissipation of the I/O drivers.
21.2.1 Estimation of Junction Temperature with Junction-to-Ambient
Thermal Resistance
An estimation of the chip junction temperature, TJ, can be obtained from the equation:
TJ = TA + (R
JA PD)
where: TJ = junction temperature (C)
TA = ambient temperature for the package (C)
R
JA = junction-to-ambient thermal resistance (C/W)
PD = power dissipation in the package (W)
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy
estimation of thermal performance. As a general statement, the value obtained on a single layer board is
appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal
planes is usually appropriate if the board has low power dissipation and the components are well separated.
Test cases have demonstrated that errors of a factor of two (in the quantity TJ – TA) are possible.
21.2.2 Estimation of Junction Temperature with Junction-to-Board
Thermal Resistance
The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal
resistance. The thermal performance of any component is strongly dependent on the power dissipation of
surrounding components. In addition, the ambient temperature varies widely within the application. For
many natural convection and especially closed box applications, the board temperature at the perimeter
Junction-to-case — RJC C/W5
Ju nc tion-to-package top Natural convection JT C/W6
Note:
1. J unction temperature is a function of die size, on-chip pow er dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature , airflow , pow er dissipation of other components on the board, and board thermal resistance.
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
3. Per JEDEC JESD51-6 with the board horizontal.
4. Thermal resistance between the die and the pri nted-circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
Table 69. Package Thermal Characteristics for TEPBGAII (continued)
Characteristic Board Type Symbol TEPBGA II Unit Note
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
84 Freescale Semiconductor
(edge) of the package is approximately the same as the local air temperature near the device. Specifying
the local ambient conditions explicitly as the board temperature provides a more precise description of the
local ambient conditions that determine the temperature of the device.
At a known board temperature, the junction temperature is estimated using the following equation:
TJ = TB + (R
JB PD)
where: TJ = junction temperature (C)
TB = board temperature at the package perimeter (C)
R
JB = junction-to-board thermal resistance (C/W) per JESD51–8
PD = power dissipation in the package (W)
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction
temperature can be made. The application board should be similar to the thermal test condition: the
component is soldered to a board with internal planes.
21.2.3 Experimental Determination of Junction Temperature
To determine the junction temperature of the device in the application after prototypes are available, the
thermal characterization parameter (
JT) can be used to determine the junction temperature with a
measurement of the temperature at the top center of the package case using the following equation:
TJ = TT + (
JT PD)
where: TJ = junction temperature (C)
TT = thermocouple temperature on top of package (C)
JT = thermal characterization parameter (C/W)
PD = power dissipation in the package (W)
The thermal characterization parameter is measured per JESD51-2 specificatio n using a 40 gauge type T
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire
is placed flat against the package case to avoid measurement errors caused by cooling effects of the
thermocouple wire.
21.2.4 Heat Sinks and Junction-to-Case Thermal Resistance
In some application environments, a heat sink is required to provide the necessary thermal management of
the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case
thermal resistance and a case to ambient thermal resistance:
R
JA = R
JC + R
CA
where: R
JA = junction-to-ambient thermal resistance (C/W)
R
JC = junction-to-case thermal resistance (C/W)
R
CA = case-to- ambient thermal resistance (C/W)
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 85
R
JC is device related and cannot be influenced by the user. The user controls the thermal environment to
change the case-to-ambient thermal resistance, R
CA. For instance, the user can change the size of the heat
sink, the airflow around the device, the interface material, the mounting arrangement on the printed-circuit
board, or change the thermal dissipation on the printed-circuit board surrounding the device.
To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been
simulated with a few commercially available heat sinks. The heat sink choice is determined by the
application environment (temperature, airflow, adjacent component power dissipation) and the physical
space available. Because there is not a standard application environment, a standard heat sink is not
required.
Accurate thermal design requires thermal modeling of the application environment using computational
fluid dynamics software which can model both the conduction cooling and the convection cooling of the
air moving through the application. Simplified thermal models of the packages can be assembled using the
junction-to-case and junction-to-board thermal resistances listed in Table 70. More detailed thermal
models can be made available on request.
Table 70. Thermal Resistance for TEPBGAII with Heat Sink in Open Flow
Heat Sink Assuming Thermal Grease Airflow Thermal Resistance
(C/W)
Wakefield 53 53 2.5 mm pin fin Natural convection 13.0
0.5 m/s 10.6
1 m/s 9.7
2 m/s 9.2
4 m/s 8.9
Aavid 35 31 23 mm pin fin Natural convection 14.4
0.5 m/s 11.3
1 m/s 10.5
2 m/s 9.9
4 m/s 9.4
Aavid 30 30 9.4 mm pin fin Natural convection 16.5
0.5 m/s 13.5
1 m/s 12.1
2 m/s 10.9
4 m/s 10.0
Aavid 43 41 16.5 mm pin fin Natural convection 14.5
0.5 m/s 11.7
1 m/s 10.5
2 m/s 9.7
4 m/s 9.2
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
86 Freescale Semiconductor
Heat sink Vendors include the following list:
Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com
Alpha Novatech 408-749-7601
473 Sapena Ct. #12
Santa Clara, CA 95054
Internet: www.alphanovatech.com
International Electronic Research Corporation (IERC) 818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com
Millennium Electronics (MEI) 408-436-8770
Loroco Sites
671 East Brokaw Road
San Jose, CA 95112
Internet: www.mei-thermal.com
Tyco Electronics 800-522-6752
Chip Coolers™
P.O. Box 3668
Harrisburg, PA 17105
Internet: www.chipcoolers.com
Wakefield Engineering 603-635-2800
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com
Interface material vendors include the following:
Chomerics, Inc. 781-935-4850
77 Dragon Ct.
Woburn, MA 01801
Internet: www.chomerics.com
Dow-Corning Corporation 800-248-2481
Corporate Center
PO BOX 994
Midland, MI 48686-0994
Internet: www.dowcorning.com
Shin-Etsu MicroSi, Inc. 888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.com
The Bergquist Company 800-347-4572
18930 West 78th St.
Chanhassen, MN 55317
Internet: www.bergquistcompany.com
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 87
21.3 Heat Sink Attachment
When attaching heat sinks to these devices, an interface material is required. The best method is to use
thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the
board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would
lift the edge of the package or peel the package from the board. Such peeling forces reduce the s older joint
lifetime of the package. Recommended maximum force on the top of the package is 10 lb (4.5 kg) force.
If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic
surfaces and its performance verified under the application requirements.
21.3.1 Experimental Determination of the Junction Temperature with a
Heat Sink
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the
interface between the case of the package and the interface material. A clearance slot or hole is normally
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the
experimental difficulties with this technique, many engineers measure the heat sink temperature and then
back calculate the case temperature using a separate measurement of the thermal resistance of the
interface. From this case temperature, the junction temperature is determined from the junction to case
thermal resistance.
TJ = TC + (R
JC x PD)
where: TJ = junction temperature (C)
TC = case temperature of the package
R
JC = junction-to-case thermal resistance
PD = power dissipation
22 System Design Information
This section provides electrical and thermal design recommendations for successful application of the
MPC8313E SYS_CLK_IN
22.1 System Clocking
The MPC8313E includes three PLLs.
1. The platform PLL (AVDD2) generates the platform clock from the externally supplied
SYS_CLK_IN input in PCI host mode or SYS_CLK_IN/PCI_SYNC_IN in PCI agent mode. The
frequency ratio between the platform and SYS_CLK_IN is selected using the platform PLL ratio
configuration bits as described in Section 20.1, “System PLL Configuration.”
2. The e300 core PLL (AVDD1) generates the core clock as a slave to the platform clock. The
frequency ratio between the e300 core clock and the platform clock is selected using the e300
PLL ratio configuration bits as described in Section 20.2, “Core PLL Configuration.”
3. There is a PLL for the SerDes block.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
88 Freescale Semiconductor
22.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins (AVDD1,
AVDD2, and SDAVDD, respectively). The AVDD level should always be equivalent to VDD, and preferably
these voltages are derived directly from VDD through a low frequency filter scheme such as the following.
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to
provide independent filter circuits as illustrated in Figure 58, one to each of the five AVDD pins. By
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the
other is reduced.
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz
range. It should be built with surface mount capacitors with minimum effective series inductance (ESL).
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a
single large value capacitor.
Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD
pin, which is on the periphery of package, without the inductance of vias.
This figure shows the PLL power supply filter circuits.
Figure 58. PLL Power Supply Filter Circuit
The SDAVDD signal provides power for the analog portions of the SerDes PLL. To ensure stability of the
internal clock, the power supplied to the PLL is filtered using a circuit like the one shown in Figure 59.
For maximum effectiveness, the filter circuit should be placed as closely as possible to the SDAVDD ball
to ensure it filters out as much noise as possible. The ground connection should be near the SDAVDD ball.
The 0.003-µF capacitor is closest to the ball, followed by the two 2.2-µF capacitors, and finally the 1-
resistor to the board supply plane. The capacitors are connected from traces from SDAVDD to the ground
plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be
kept short, wide, and direct.
Figure 59. SerDes PLL Power Supply Filter Circuit
Note the following:
•SDAV
DD should be a filtered version of XCOREVDD.
V
DD
AV
DD1
and AV
DD2
10
2.2 µF 2.2 µF
Low ESL Surface Mount Capacitors
Note:
1. An 0805 sized capacitor is recommended for system initial bring-up.
XCOREVDD SDAVDD
SDAVSS
2.2 µF10.003 µF
1.0
2.2 µF1
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 89
Output signals on the SerDes interface are fed from the XPADVDD power plane. Input signals and
sensitive transceiver analog circuits are on the XCOREVDD supply.
Power: XPADVDD consumes less than 300 mW; XCOREVDD +SDAV
DD consumes less than
750 mW.
22.3 Decoupling Recommendations
Due to large address and data buses, and high operating frequencies, the device can generate transient
power surges and high frequency noise in its power supply , especially while driving lar ge capacitive loads.
This noise must be prevented from reaching other components in the MPC8313E system, and the
MPC8313E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that
the system designer place at least one decoupling capacitor at each VDD, NVDD, GVDD, LVDD, LVDDA,
and LVDDB pin of the device. These decoupling capacitors should receive their power from separate VDD,
NVDD, GVDD, LVDD, LVDDA, LVDDB, and VSS power planes in the PCB, utilizing short traces to
minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern.
Others may surround the part.
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,
feeding the VDD, NVDD, GVDD, LVDD, LVDDA, and LVDDB planes, to enable quick recharging of the
smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating
to ensure the quick response time necessary. They should also be connected to the power and ground
planes through two vias to minimize inductance. Suggested bulk capacitors—100 to 330 µF (AVX TPS
tantalum or Sanyo OSCON). However , customers should work directly with their power regulator vendor
for best values and types of bulk capacitors.
22.4 SerDes Block Power Supply Decoupling Recommendations
The SerDes block requires a clean, tightly regulated source of power (XCOREVDD and XPADVDD) to
ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling
scheme is outlined below.
Only SMT capacitors should be used to minimize inductance. Connections from all capacitors to power
and ground should be done with multiple vias to further reduce inductance.
First, the board should have at least 10 10-nF SMT ceramic chip capacitors as close as possible
to the supply balls of the device. Where the board has blind vias, these capacitors should be placed
directly below the chip supply and ground connections. Where the board does not have blind vias,
these capacitors should be placed in a ring around the device as close to the supply and ground
connections as possible.
Second, there should be a 1-µF ceramic chip capacitor from each SerDes supply (XCOREVDD and
XPADVDD) to the board ground plane on each side of the device. This should be done for all
SerDes supplies.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
90 Freescale Semiconductor
Third, between the device and any SerDes voltage regulator there should be a 10-µF, low
equivalent series resistance (ESR) SMT tantalum chip capacitor and a 100-µF, low ESR SMT
tantalum chip capacitor. This should be done for all SerDes supplies.
22.5 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal
level. Unused active low inputs should be tied to NVDD, GVDD, LVDD, LVDDA, or LVDDB as required.
Unused active high inputs should be connected to VSS. All NC (no-connect) signals must remain
unconnected.
Power and ground connections must be made to all external VDD, NVDD, GVDD, LVDD, LVDDA, LVDDB,
and VSS pins of the device.
22.6 Output Buffer DC Impedance
The MPC8313E drivers are characterized over process, voltage, and temperature. For all buses, the driver
is a push-pull single-ended driver type (open drain for I2C).
To measure Z0 for the single-ended drivers, an external resistor is connected from the chip pad to NVDD
or VSS. Then, the value of each resistor is varied until the pad voltage is NVDD/2 (see Figure 60). The
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.
When data is held high, SW1 is closed (SW2 is open), and RP is trimmed until the voltage at the pad equals
NVDD/2. RP then becomes the resistance of the pull-up devices. RP and RN are designed to be close to each
other in value. Then, Z0 = (RP + RN)/2.
Figure 60. Driver Impedance Measurement
The value of this resistance and the strength of the drivers current source can be found by making two
measurements. First, the output voltage is measured while driving logic 1 without an exte rnal dif ferential
termination resistor . The measured voltage is V1 = Rsource Isource. Second, the output voltage is measured
while driving logic 1 with an external precision differential termination resistor of value Rterm. The
measured voltage is V2=(1/(1/R
1+1/R
2)) Isource. Solving for the output impedance gives Rsource =
Rterm (V1/V2 1). The drive current is then Isource =V
1/Rsource.
NVDD
VSS
Pad
Data
SW1
SW2
RN
RP
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 91
This table summarizes the signal impedance tar gets. The driver impedance are tar geted at minimum VDD,
nominal NVDD, 105C.
22.7 Configuration Pin Muxing
The MPC8313E provides the user with power-on configuration options which can be set through the use
of external pull-up or pull-down resistors of 4.7 k on certain output pins (see customer visible
configuration pins). These pins are generally used as output only pins in normal operation.
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins
while HRESET is asserted, is latched when PORESET deasserts, at which time the input receiver is
disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections
to these pull-up/pull-down resistors coupled with the lar ge value of the pull-up/pull-down resistor should
minimize the disruption of signal quality or speed for output pins thus configured.
22.8 Pull-Up Resistor Requirements
The MPC8313E requires high resistance pull-up resistors (10 k is recommended) on open drain type pins
including I2C, and IPIC (integrated programmable interrupt controller).
Correct operation of the JTAG interface requires configuration of a group of system control pins as
demonstrated in Figure 61. Care must be taken to ensure that these pins are maintained at a valid deasserted
state under normal operating conditions because most have asynchronous behavior and spurious assertion,
which give unpredictable results.
Refer to the PCI 2.2 Specification, for all pull-ups required for PCI.
22.9 JTAG Configuration Signals
Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in
IEEE 1149.1, but is provided on any Freescale devices that are built on Power Architecture technology.
The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does
not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state
using only the TCK and TMS signals, systems generally assert TRST during power -on reset. Because the
JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying
TRST to PORESET is not practical.
Table 71. Impedance Characteristics
Impedance
Local Bus, Ethernet,
DUART, Control,
Configuration, Power
Management
PCI Signals
(Not Incl udi ng PCI
Output Clocks)
PCI Output Clocks
(Including
PCI_SYNC_OUT) DDR DRAM Symbol Unit
RN42 Target 25 Target 42 Target 20 Target Z0
RP42 Target 25 Target 42 Target 20 Target Z0
Differential NA NA NA NA ZDIFF
Note: Nominal supply voltages. See Table 1, TJ = 105 C.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
92 Freescale Semiconductor
The COP function of these processors allows a remote computer system (typically, a PC with dedicated
hardware and debugging software) to access and control the internal operations of the processor . The COP
interface connects primarily through the JTAG port of the processor, with some additional status
monitoring signals. The COP port requires the ability to independently assert TRST without causing
PORESET. If the target system has independent reset sources, such as voltage monitors, watchdog timers,
power supply failures, or push-button switches, then the COP reset signals must be merged into these
signals with logic.
The arrangement shown in Figure 61 allows the COP to independently assert HRESET or TRST, while
ensuring that the target can drive HRESET as well. If the JTAG interface and COP header are not used,
TRST should be tied to PORESET so that it is asserted when the system reset signal (PORESET) is
asserted.
The COP header shown in Figure 61 adds many benefits—breakpoints, watchpoints, register and memory
examination/modification, and other standard debugger features are possible through this interface—and
can be as inexpensive as an unpopulated footprint for a header to be added when needed.
The COP interface has a standard header for connection to the target system, based on the 0.025"
square-post, 0.100" centered header assembly (often called a Berg header).
There is no standardized way to number the COP header shown in Figure 61; consequently , many different
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in
Figure 61 is common to all known emulators.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 93
Figure 61. JTAG Interface Connection
23 Ordering Information
Ordering information for the parts fully covered by this specification document is provided in
Section 23.1, “Part Numbers Fully Addressed by this Document.”
HRESET HRESET
From Target
Board Sources
HRESET
13 SRESET
SRESET SRESET
NC
NC
11
VDD_SENSE
6 1
5
15
2 k
10 k
10 k
NVDD
NVDD
NVDD
CHKSTP_IN CHKSTP_IN
8TMS
TDO
TDI
TCK
TMS
TDO
TDI
TCK
9
1
3
4TRST
7
16
2
10
12
(if any)
COP Header
14 2
Notes:
2. Key location; pin 14 is not physically present on the COP header.
NVDD
NVDD
10 k
NVDD
TRST
10 k
NVDD
10 k
10 k
CHKSTP_OUT
CHKSTP_OUT
3
13
9
5
1
6
10
15
11
7
16
12
8
4
KEY
No pin
COP Connector
Physical Pin Out
1
2
NC
PORESET
PORESET
1. Some systems require power to be fed from the applica tion board into the debugger repeater card
via the COP header. In this case the resistor value for VDD_SENSE should be around 20 .
NC
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
94 Freescale Semiconductor
23.1 Part Numbers Fully Addressed by this Document
This table provides the Freescale part numbering nomenclature for the MPC8313E. Note that the
individual part numbers correspond to a maximum processor core frequency. For available frequencies,
contact your local Freescale sales office. In addition to the processor frequency , the part numbering scheme
also includes an application modifier which may specify special application conditions. Each part number
also contains a revision code which refers to the die mask revision number.
23.2 Part Marking
Parts are marked as shown in this figure.
Figure 62. Part Marking for TEPBGAII Device
Table 72. Part Numbering Nomenclature
MPC nnnn et
pp aa a x
Product
Code Part
Identifier Encryption
Acceleration Temperature
Range 3Package 1, 4 e300 core
Frequency 2DDR
Frequency Revision
Level
MPC 8313 Blan k = Not
included
E = included
Blank = 0 to 105C
C= –40 to 105CZQ = PB
TEPBGAII
VR = PB free
TEPBGAII
AD = 266 MHz
AF = 333 MHz
AG = 400 MHz
D = 266 MHz
F = 333 MHz Blank = 1.0
A = 2.0
B = 2.1
C = 2.2
Note:
1. See Section 19, “Package and Pin Listings, for more information on available package types.
2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications ma y support other
maximum core frequencies.
3. Contact local Freescale office on availability of part s with C temperature range.
4. ZQ package was available for Rev 1.0. For Rev 2.x, only VR package is available.
MMMMM YWWLAZ
Notes:
MMMMM is the mask number.
ATWLYYWW is the standard assembly, test, year, and work week codes.
TePBGA
MPCnnnnetppaar is the orderable part number.
CCCCC is the country code.
MPCnnnnetppaaar
CCCCC
ATWLYYWW
core/ddr MHz
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 95
24 Revision History
This table summarizes a revision history for this document.
Table 73. Document Revision History
Rev.
Number Date Substantive Change(s)
4 11/2011 In Table 2, added following notes:
Note 3: Min temperature is specified with TA; Max temperature is specified with TJ
Note 4: All Power rails must be connected and power applied to the MPC8313 even if the IP
interfaces are not used.
Note 5: All I/O pins should be interfaced with peripherals operating at same voltage level.
Note 6: This voltage is the input to the filter discussed in Section 22.2, “PLL Power Supply Filtering.
and not necessarily the voltage at the AVDD pin, which may be reduced from VDD by the filte r
Decoupled PCI_CLK and SYS_CLK_IN rise and fall times in Table 8. Relaxed maximum rise/fall time
of SYS_CLK_IN to 4ns.
Added a note in Table 27 stating “The frequency of RX_CLK should not exceed the TX_CLK by more
than 300 ppm."
•In Table 30:
Changed max value of tskrgt in “Data to clock input skew (at receiver)” row from 2.8 to 2.6.
Added Note 7, stating that, “The frequency of RX_CLK should not exceed the GTX_CLK125 by
more than 300 ppm.
Added a note stating “eTSEC should be interfaced with peripheral operating at same voltage level” in
Section 8.1.1, “TSEC DC Electrical Characteristics.
TSEC1_MDC and TSEC_MDIO are powered at 3.3V by NVDD. Replaced LVDDA/LVDDB with NVDD
and removed instances of 2.5V at several places in Section 8.5, “Ethernet Management Interface
Electrical Characteristics.
•In Table 43, changed min/max values of tCLK_TOL from 0.05 to 0.005.
•In Table 62:
Added Note 2 for LGPL4 in showing LGPL4 as open-drain.
Removed Note 2 from TSEC1_MDIO.
Added Note 10: This pin has an internal pull-up.
Added Note 11: This pin has an internal pull-down.
Added Note 12: “In MII mode, GTX_CLK should be pulled down by 300 to VSS” to
TSEC1_GTX_CLK and TSEC2_GTX_CLK.
•In Section 19.1, “Package Parameters for the MPC8313E TEPBGAII, replaced "5.5 Sn/0.5 Cu/4 Ag"
with "Sn/3.5 Ag."
Added foot note 3 in Table 65 stating “The VCO divider needs to be set properly so that the System
PLL VCO frequency is in the range of 450–750 MHz.
•In Table 72:
Added AD = 266 and D = 266.
Added “C = 2.2” in “Revision level” column.
Added Note 4.
Changed resitor from 1.0 to 10 in Figure 58.
Replaced LCCR with LCRR throughout.
Added high-speed to USB Phy description.
3 01/2009 Table 72, in column aa, changed to AG = 400 MHz.
2.2 12/2008 Made cross-references active for sections, figures, and tables.
2.1 12/2008 Added Fi gure 2, after Table 2 and renumbered the following figures.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
96 Freescale Semiconductor
2 10/2008 Added Note “The information in this document is accurate for revision 1.0, and 2.x and later. See
Section 24.1, “Part Numbers Fully Addressed by this Document,” before Section 1, “Overview.
Added part numbering details for all the silicon revisions in Table 74.
Changed VIH from 2.7 V to 2.4 V in Table 7.
Added a row for VIH level for Rev 2.x or later in Table 45.
Added a column for maximum power dissipation in low power mode for Rev 2.x or later silicon in
Table 6.
Added a column for Power Nos for Rev 2.x or later silicon and added a row for 400 MHz in Table 4.
Removed footnote, “These are preliminary estimates.” from Table 4.
Added Table 21 for DDR AC Specs on Rev 2.x or later silicon.
Added Section 9, “High-Speed Serial Interfaces (HSSI).
Added LFWE, LFCLE, LFALE, LOE, LFRE, LFWP, LGTA, LUPWAIT, and LFRB in Table 63.
In Table 39, added note 2: “This parameter is dependent on the csb_clk speed. (The MIIMCFG[Mgmt
Clock Select] field determines the clock frequency of the Mgmt Clock EC_MDC .)”
Remov ed mentions of SGMII (SGMII has separate specs) from Section 8.1, “Enhanced Three-Speed
Ether net Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical
Characteristics.
Corrected Section 8.1, “Enhanced Three-Speed Ethernet Controller (eTSEC)
(10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical Characteristics,” to state that
RGMII/RTBI interfaces only operate at 2.5 V, not 3.3 V.
Added ZQ package to ordering information In Table 74 and Section 19.1, “Pac kage Parameters f or the
MPC8313E TEPBGAII” (applicable to both silicon rev. 1.0 and 2.1)
Removed footnotes 5 and 6 from Table 1 (left over when the PCI undershoot/overshoot voltages and
maximum AC waveforms were removed from Section 2.1.2, “Power Supply Voltage Sp ecification”).
Removed SD_PLL_TPD (T2) and SD_PLL_TPA_ ANA (R4) from Table 63.
Added Section 8.3, “SGMII Interface Electrical Characteristics.” Removed Section 8.5.3 SGMII DC
Electrical Characteristics.
Removed “HRESET negation to SRESET negation (output)” spec and changed “HRESET/SRESET
assertion (output)” spec to “HRESET assertion (output)” in Table 10.
Clarified POR configuration signal specs to “Time for the device to turn off POR configuration signal
drivers with respect to the assertion of HRESET” and “Time for the de vice to turn on POR configuration
signal drivers with respect to the negation of HRESET” in Table 10.
Added Section 24.2, “Part Marking,” and Figure 62.
Table 73. Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
Freescale Semiconductor 97
1 3/2008 Repl a ced OVDD with NVDD everywhere
Added XCOREVDD and XPADVDD to Table 1
Moved VDD and VDDC to the top of the table before SerDes supplies in Table 2
In Table 2 split DDR row into two from total current requirement of 425 mA. One for DDR1 (131 mA)
and other for DDR2 (140 mA).
In Tab le 2 corrected current requirement numbers f or NVDD from 27 mA to 74 mA, LVDD from 60 mA to
16 mA, LVDDA from 85 mA to 22 mA and LVDDB from 85 mA to 44 mA.
In Table 2 corrected Vdd and Vddc current requirements from 560 mA and 454 mA to 469 and 377 mA,
respectively. Corrected Avdd1 and Avdd2 current requirements from 10 mA to 2–3 mA, and
XCOREVDD from 100 mA to 170 mA.
In Table 2, added row stating junction temperature range of 0 to 105°C. Added f ootnote 2 stating GPIO
pins may operate from 2.5-V supply as well when configured for different functionality.
In Section 2.1.2, “Po wer Supply V oltage Specification,” added a note describing the purpose of Table 2.
In Section 3, “Power Character istics,” added a note describing the purpose of Ta ble 5.
Rewrote Section 2.2, “Power Sequencing,” and added Figure 3.
In Table 4, added “but do include core, USB PLL, and a portio n of SerDes digital power...” to Note 1.
In Table 4 corrected “Typical power” to “Maximum power” in note 2 and added a note f or Typical P ower.
In Table 4 removed 266-MHz row as 266-MHz core parts are not offered.
In Table 5, moved Local bus typical power dissipation under LVdd.
Added Table 6 to show the low power mode power dissipation for D3warm mode.
In Table 8 corrected SYS_CLK_IN frequency range from 25–66 MHz to 24–66.67 MHz.
Added Section 8.4, “eTSEC IEEE 1588 AC Specifications”
In Table 42 changed minimum value of USB input hold tUSIXKH from 0 to 1ns
Added Table 43 and Table 44 showing USB clock in specifications
In Table 46, added rows for tLALEHOV, tLALETOT1, tLALET OT2, and tLALETOT3 parameters. Added
Figure 40.
In Table 50, removed row for rise time (tI2CR). Removed minimum value of tI2CF. Added note 5 stating
that the device does not follow the I2C-BUS Specifications version 2.1 regarding the tI2CF AC
parameter.
In Table 56, added a note stating: “This specification only applies to GPIO pins that are operating from
a 3.3-V supply. See Table 63 for the power supply listed for the individual GPIO signal.” [
Added Table 57 to show DC char acteristics fo r GPIO pins supplie d by a 2.5-V supply. Same as eTSEC
DC characteristics when operating at 2.5 V.
In Section 20, “Clocking,” corrected the sentence “When the device is configured as a PCI agent
device, PCI_SYNC_IN is the primary input clock.” to state “When the device is configured as a PCI
agent device, PCI_CLK is the primary input clock.
Added “Value is decided by RCWLR[COREPLL]” to note 1 of Figure 57
Added paragraph and Figure 59 to Section 22.2, “PLL Power Supply Filtering.
Added Section 22.4, “SerDes Block Power Supply Decoupling Recommendations
Removed the two figures on PCI undershoot/overshoot voltages and maximum AC waveforms from
Section 2.1.2, “Power Supply Voltage Specification,
Table 73. Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
MPC8313E PowerQUICC II Pro Processor Hardware Specifications , Rev. 4
98 Freescale Semiconductor
1 3/2008 In Table 63, added LBC_PM_REF_10 & LSRCID3 as muxed with USBDR_PCTL1
In Table 63, added LSRCID2 as muxed with USBDR_PCTL0
In Table 63, added LSRCID1 as muxed with USBDR_PWRFAULT
In Table 63, added LSRCID0 as muxed with USBDR_DRIVE_VBUS
In Table 63, moved T1, U2,& V2 from VDD to XCOREVDD.
In Table 63, moved P2, R2, & T3 from VSS to XCOREVSS.
In Table 63, moved P5, & U4 from VDD to XPADVDD.
In Table 63, moved P3, & V4 from VSS to XPADVSS.
In Table 63, removed “Doub le with pad” for AVDD1 and AVDD2 and moved AVDD1 and AVDD2 to Power
and Ground Supplies section
In Table 63, added impe dance control requirements for SD_IMP_CAL_TX (100 ohms to GND) and
SD_IMP_CAL_RX (200 ohms to GND).
In Table 63, updated muxing in pinout to show new options f or selecting IEEE 1588 functionality . Added
footnote 8
In Table 63, updated muxing in pinout to show new LBC ECC boot enable control muxed with
eTSEC1_MDC
Added pin type information for power supplies.
Removed N1 and N3 from Vss section of Table 63. Added Therm0 and Therm1 (N1 and N3,
respectively). Added note 7 to state: “Internal thermally sensitive resistor, resistor value v aries linearly
with temperature. Useful for determining the junction temperature.
In Table 65 corrected maximum frequency of Local Bus Frequency from “33–66” to 66 MHz
In Table 65 corrected maximum frequency of PCI from “24–66” to 66 MHz
Added “which is determined by RCWLR[COREPLL],” to the note in Section 20.2, “Core PLL
Configuration” about the VCO divider.
Added “(VCOD)” next to VCO divider column in Table 68. Added footnote stating that core_clk
frequency must not exceed its maximum, so 2.5:1 and 3:1 core_clk:csb_clk ratios are invalid f or certain
csb_clk values.
In Table 69, notes were confusing. Added note 3 for VCO column, note 4 for CSB (csb_clk) column,
note 5 for USB ref column, and note 6 to replace “Note 1”. Clarified note 4 to e xplain erratum eTSEC40.
In Table 69, updated note 6 to specify USB reference clock frequencies limited to 24 and 48 for rev. 2
silicon.
Replaced Table 71 “Thermal Resistance for TEPBGAII with Heat Sink in Open Flow”.
Removed last row of Ta ble 19.
Removed 200 MHz rows from Table 21 and Table 5.
Changed VIH minimum spec from 2.0 to 2.1 for clock, PIC, JTAG, SPI, and reset pins in Table 9,
Table 47, Tab le 54, Table 59, and Table 61.
Added Figure 4 showing the DDR input timing diagram.
In Table 19, removed “MDM” from the “MDQS-MDQ/MEC C/MDM” text under the Parameter
column for the tCISKEW parameter. MDM is an output signal and should be removed from
the input AC timing spec table (tCISKEW).
Added “and power” to rows 2 and 3 in Table 10
Added the sentence “Once both the power supplies...” and PORESET to Section 2.2, “Power
Sequencing,” and Figure 3.
In Figure 35, corrected “USB0_CLK/USB1_CLK/DR_CLK” with “USBDR_CLK”
In Table 42, clarified that AC specs are for ULPI only.
0 6/2007 Initial release.
Table 73. Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
Document Number: MPC8313EEC
Rev. 4
11/2011
Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorIQ is a trademark of
Freescale Semiconductor, Inc. All other product or service names are the
property of their respective owners. The Power Architecture and Pow er.org
word marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org. RapidIO is a
registered trademark of the RapidIO Trade Association. IEEE 1588 and
1149.1 are registered trademarks of the Institute of Electrical and
Electronics Engineers, Inc. (IEEE). This product is not endorsed or
approved by the IEEE.
© 2007–2011 Freescale Semiconductor, Inc.
Info rmation in this document is provided solely to enable system and software
implementers to use Freesca le Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
F reescale Semiconductor reserv es the right to make ch anges without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee re gardi ng the suit abi lity of it s produ cts for any p articular purpose, nor does
Freescale Semiconductor assume any liability arising out of the applicat ion or use of
any product or circuit, and specifically disclaims any and all liability, including wi thout
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in diff erent applications and a ctual perf ormance ma y v ary ove r time . All oper ating
paramete rs, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not conv ey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, int ended, or authorized f or use as components in systems intended for
surgical implant into the body, or other appli cations intended to suppo rt or sustain life ,
or f or any other a pplication in which the f ailure of the F reescal e Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized appl ication, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employ ees, subsidiaries, affiliates, and distributors harmless against all
claims, costs , damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauth orized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@hibbertgroup.com