2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178 1 March 23, 2000-17
FEATURES
Four Dot Matrix Characters
Character Height
ISD201X—0.150"
ISD231X/235X—0.200"
ISD201X/231X, Four Colors: Red, Yellow,
High Efficiency Red, High Efficiency Green
ISD235X, Three Colors: Yellow, High
Efficiency Red, High Efficiency Green
Wide Viewing Angle
Built-in CMOS Shift Registers with Constant Current
LED Row Drivers
Shift Registers Allow Custom Fonts
Easily Cascaded for Multiple Displays
TTL Compatible
End Stackable
Operating Temperature Range:
–55
°
C to +100
°
C
Categorized for Luminous Intensity
Ceramic Package, Hermetically Sealed Flat Glass
Window
ISD201X ISD231X ISD235X
RED
ISD2010/2310
YELLOW
ISD2011/2311/2351
HIGH EFFICIENCY RED
ISD2012/2312/2352
HIGH EFFICIENCY GREEN
ISD2013/2313/2353
4-Character 5 x 7 Dot Matrix
Serial Input Alphanumeric Industrial Display
Sunlight Viewable: ISD235X
DESCRIPTION
The ISD201X/231X/235X are four digit 5 x 7 dot matrix serial
input alphanumeric displays. The displays are available in red,
yellow, high efficiency red, or high efficiency green. The pack-
age is a standard twelve-pin hermetic DIP with glass lens. The
display can be stacked horizontally or vertically to form mes-
sages of any length.
These displays have two fourteen-bit CMOS shift registers
with built-in row drivers. These shift registers drive twenty-
eight rows and enable the design of customized fonts. Cascad-
ing multiple displays is possible because of the Data In and
Data Out pins. Data In and Out are easily input with the clock
signal and displayed in parallel on the row drivers. Data Out
represents the output of the 7th bit of digit number four shift
register. The shift register is level triggered. The like columns
of each character in a display cluster are tied to a single pin
(see Block Diagram). High true data in the shift register enables
the output current mirror driver stage associated with each row
of LEDs in the 5 x 7 diode array.
The TTL compatible V
B
input may either be tied to
V
CC
for max-
imum display intensity or pulse width modulated to achieve
intensity control and reduce power consumption.
2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA ISD201X/231X/235X
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178 2 March 23, 2000-17
.200
(5.08) .100
(2.54)
.270
(6.85)
.050 (1.27)
±.005 (.13)
.100 (2.54) typ.
±.005 (.13)
10 pl., non-cum.
.020 (.54)
±.003 (.08)
.050 (1.27)
12 pl.
Seating
Plane
ISD201X
Z H
YYWW
Pin 1
Indicator
Year
Work
Week
Hue Code
Luminous
Intensity Code
OSRAM
Part Number
.010 (.25)
±.002 (.05)
typ.
.300
(7.62)
.699 (17.7)
max.
.083
(2.11)
.310
(7.87)
.290
(7.25)
.175 (4.44)
±.005 (.13)
Pin 1
marked by
dot on back
of package
.146
(3.7)
Pin Function Pin Function
1 Column 1 7 Data Out
2 Column 2 8 VB
3 Column 3 9 VCC
4 Column 4 10 Clock
5 Column 5 11 Ground
6 No connection 12 Data In
.200
(5.08)
Pin 1 indicators
dot and notch on
package underside
.100
(2.54)
.270
(6.86)
.100 (2.54)
±.005 (.13)
non-cum. 10 pl.
.020 (.51)
±.003 (.08)
.050
(1.27)
12 pl.
ISD231X
Z H
YYWW
Year
Work Week
Hue Code
Luminous
Intensity Code
OSRAM
Part No.
.010 (.25)
±.002 (.05)
.250 (6.35)
±.010 (.25)
C
L
.790 (20.07)
max. .112
(2.84)
.332
(8.43)
.197 (5.00)
±.005 (.13)
.192
(4.88)
12 11 10 9 8 7
123456
.099 (2.51)
±.005 (.13)
Dimensions in Inches (mm)
ISD231X/235X
ISD201X
DESCRIPTION
(continued)
In the normal mode of operation, input data for digit four, col-
umn one is loaded into the seven on-board shift register
locations one through seven. Column one data for digits 3, 2,
and 1 is shifted into the display shift register locations. Then
column one input is enabled for an appropriate period of
time, T. A similar process is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time into the shift
register is t, then with five columns, each column of the dis-
play is operating at a duty factor of:
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the mini-
mum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the display
should be refreshed (turned on) at a minimum rate of 100
times per second.
With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1⁄ [5 x (100)]=2.0 msec. If the
device is operated at 5.0 MHz clock rate maximum, it is possi-
ble to maintain t<T. For short display strings, the duty factor
will then approach 20%.
See Appnote 44 for application information and Appnotes 18,
19, 22, 23 at www.infineon.com/opto.
Maximum Ratings
Supply Voltage
V
CC
to GND...............................–0.5 V to +7.0 V
Inputs, Data Out and V
B
.............................–0.5 V to
V
CC
+0.5 V
Column Input Voltage,
V
COL
.............................–0.5 V to +6.0 V
Operating Temperature Range ....................... –55
°
C to +100
°
C
Storage Temperature Range ........................... –65
°
C to +125
°
C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5.0 s........................................ 260
°
C
Maximum Allowable Power Dissipation,
T
A
=25
°
C
(2)
ISD2010 .......................................................................0.91 W
ISD2011/2/3 .................................................................0.86 W
ISD231X.........................................................................1.1 W
ISD235X.......................................................................1.35 W
Notes:
1)
Operation above +100
°
C ambient is possible if the following
conditions are met. The junction should not exceed
T
J
=125
°
C
and the case temperature (as measured at pin 1 or the back of
the display) should not exceed TC=100
°
C.
2)
Maximum allowable dissipation is derived from
V
CC
=5.25 V,
V
B
=2.4 V,
V
COL
=3.5 V 20 LEDs on per character, 20% DF.
DF T
5T 1+()
---------------------=
2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA ISD201X/231X/235X
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178 3 March 23, 2000-17
Figure 1. Timing Characteristics
AC Electrical Characteristics
(
V
CC
=4.75 to 5.25 V,
T
A
=–55
°
C to 100
°
C)
Notes:
1)
All typical values specified at
V
CC
=5.0 V and
T
A
=25
°
C unless
otherwise noted.
2)
V
B
Pulse Width Frequency—50 kHz (max.)
Symbol Description Min. Typ. Max.
(1)
Units Fig.
T
SETUP
Setup Time 50 10 ns 1
T
HOLD
Hold Time 25 20 ns 1
T
WL
Clock Width Low 75 45 ns 1
T
WH
Clock Width High 75 45 ns 1
F
(CLK)
Clock Frequency 5 MHz 1
T
THL
T
TLH
Clock Transition
Time
75 200 ns 1
T
PHL
T
PLH
Propagation Delay
Clock to Data Out
50 125 ns 1
TWL
l/fCLOCK
TPLH, TPHL
TTHL
CLOCK
DATA IN
DATA OUT
THOLD
TSETUP
TWH
TON
TOFF
2.4 V
0.4 V
2.0 V
0.8 V
2.0 V
0.8 V
2.0 V
0.8 V
VIH
VIL
VIH
VIL
VIH
VIL
VB
VOH
VOL
DISPLAY
ON (illuminated)
OFF (not illuminated)
90%
10%
Figure 2. Maximum Allowable Power Dissipation
vs. Temperature, ISD201X
Figure 3. Maximum Allowable Power Dissipation
vs. Temperature, ISD231X
Figure 4. Maximum Allowable Power Dissipation
vs. Temperature, ISD235X
120100806040200-20-40-60
0.0
0.2
0.4
0.6
0.8
1.0
Ta - Ambient Temperature - °C
PD - Maximum Allowable
Power Dissipation - W
Tj(MAX) = 125°C
Rth(JA) = 55°C/W
Rth(JA) = 35°C/W
120100806040200-20-40-60
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Ta - Ambient Temperature - °C
PD - Maximum Allowable
Power Dissipation - W
Rth(JA) = 35°C/W
Rth(JA) = 55°C/W
Tj(MAX) = 125°C
120100806040200-20-40-60
0.0
0.5
1.0
1.5
Ta - Ambient Temperature - °C
PD - Maximum Allowable
Power Dissipation - W
Rth(JA) = 35°C/W
Rth(JA) = 55°C/W
Tj(MAX) = 125°C
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA ISD201X/231X/235X
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178 4 March 23, 2000-17
Optical Characteristics
Red ISD2010, ISD2310
Yellow ISD2011, IDS2311, ISD2351
High Efficiency Red IDS2012, ISD2312, IDS2352
High Efficiency Green IDS2013, ISD2313, IDS2353
Notes:
1)
The displays are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
2)
Dominant wavelength (
λ
dom
) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color
of the device.
3)
The luminous sterance of the LED may be calculated using the following relationships:
L
V
(cd/m
2
)=
l
V
(Candela)/A (Meter)
2
L
V
(Footlamberts) =
π
l
v
(Candela)/A (Foot)
2
A=5.3 x 10
–8
m
2
= 5.8 x10
–7
(Foot)
2
4)
All typical values specified at
V
CC
=5.0 V and
T
A
=25
°
C unless otherwise noted.
5)
The luminous intensity is measured at
T
A
=
T
J
=25
°
C. No time is allowed for the device to warm up prior to measurement.
Description Symbol Min. Typ.
(4)
Units Test Conditions
Peak Luminous Intensity per LED
(1,3)
(Character Average)
ISD2010
I
V
peak
105 200
µ
cd
V
CC
=5.0 V,
V
COL
=3.5 V
T
J
=25
°
C
(5)
, V
B
=2.4 V
ISD2310 220 370
Peak Wavelength
λ
V
peak
660 nm
Dominant Wavelength
(2)
λ
dom
639 nm
Description Symbol Min. Typ.
(4)
Units Test Conditions
Peak Luminous Intensity per LED
(1,3)
(Character Average)
ISD2011
I
V
peak
400 750
µ
cd
V
CC
=5.0 V,
V
COL
=3.5 V
T
J
=25
°
C
(5)
, V
B
=2.4 V
ISD2311 650 1140
ISD2351 2400 3400
Peak Wavelength
λ
V
peak
583 nm
Dominant Wavelength
(2)
λ
dom
585 nm
Description Symbol Min. Typ.
(4)
Units Test Conditions
Peak Luminous Intensity per LED
(1,3)
(Character Average)
ISD2012
I
V
peak
400 1430
µ
cd
V
CC
=5.0 V,
V
COL
=3.5 V
T
J
=25
°
C
(5)
, V
B
=2.4 V
ISD2312 650 1430
ISD2352 853 2500
Peak Wavelength
λ
V
peak
630 nm
Dominant Wavelength
(2)
λ
dom
626 nm
Description Symbol Min. Typ.
(4)
Units Test Conditions
Peak Luminous Intensity per LED
(1,3)
(Character Average)
ISD2013
I
V
peak
850 1550
µ
cd
V
CC
=5.0 V,
V
COL
=3.5 V
T
J
=25
°
C
(5)
, V
B
=2.4 V
ISD2313 1280 2410
ISD2353 2400 3000
Peak Wavelength
λ
V
peak
568 nm
Dominant Wavelength
(2)
λ
dom
574 nm
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA ISD201X/231X/235X
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178 5 March 23, 2000-17
Recommended Operating Conditions
(Guaranteed over operating temperature range)
Note:
1) See Figures 5, 6 and 7: Peak column current versus column voltage
Figure 5. Peak Column Current vs. Column
Voltage, ISD201X
Figure 6. Peak Column Current vs. Column
Voltage, ISD231X
Parameter Symbol Min. Nom. Max. Units
Supply Voltage VCC 4.75 5.0 5.25 V
Data Out Current, Low State IOL ———mA
Data Out Current, High State IOH ———mA
Column Input Voltage, Column On (1) VCOL 2.75 3.5 V
Setup Time TSETUP 70 45 ns
Hold Time THOLD 30 ns
Width of Clock TW(CLK) 75 ns
Clock Frequency TCLK 5.0 MHz
Clock Transition Time TTHL 200 ns
Free Air Operating Temperature Range TA–55 +100 °C
600
500
400
300
200
100
00.0 1.0 2.0 3.0 4.0 5.0 6.0
Vcol Column Voltage Volts
Icol Peak Column Current mA
2010
2011/2012/2013
600
500
400
300
200
100
0
ISD2311/2/3
ISD2310
0.0 1.0 2.0 3.0 4.0 5.0 6.0
Vcol Column Voltage Volts
Icol Column Current mA
Figure 7. Peak Column Current vs. Column
Voltage, ISD235X
600
500
400
300
200
100
0
0.0 1.0 2.0 3.0 4.0 5.0 6.0
Vcol Column Voltage Volts
Icol Peak Column Current mA
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA ISD201X/231X/235X
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178 6 March 23, 2000-17
Electrical Characteristics (–55°C to +100°C, unless otherwise specified)
Notes:
1) All typical values specied at VCC=5.0 V and TA=25°C unless otherwise noted.
2) See Figures 5, 6 and 7: Peak column current versus column voltage
Description Symbol Min. Typ.(1) Max. Units Test Conditions
Supply Current (quiescent) ICC —— 5.0 mA VB=0.4 V VCC=5.25 V
VCLK=VDATA=2.4 V
All SR Stages=Logical 1
—— 5.0 VB=2.4 V
Supply Current (operating) ICC —— 10 mA FCLK=5.0 MHz
Column Current at Any Column Input (2) ICOL —— 10 µAV
B=0.4 V VCC=5.25 V
VCOL=3.5 V
All SR Stages=Logical 1
Column Current at Any Column Input (2)
ISD2010 red
ISD2011/2/3: yellow, HER, green
ISD231X: red, yellow, HER, green
ISD235X: yellow, HER, green
ICOL
350
335
380
550
435
410
520
650
mA
VB, Clock or Data Input Threshold Low VIL —— 0.8 V VCC=4.75 V5.25 V
VB, Clock or Data Input Threshold High VIH 2.0 ——V
Data Out Voltage VOH 2.4 3.6 VIOH=0.5 mA VCC=5.25 V
ICOL=0 mA
VOL —— IOL=1.6 mA
Input Current Logical 0, VB only IIL 30 110 300 µAVCC=4.75 V5.25 V, VIL=0.8 V
Input Current Logical 0, Data, Clock IIL ——
Power Dissipation per Package
ISD201X
ISD231X
ISD235X
PD
0.44
0.52
0.74
——WVCC=5.0 V, VCOL=3.5 V, 17.5% DF
15 LEDs on per character, VB=2.4 V
Thermal Resistance IC, Junction-to-Pin
ISD201X
ISD231X
ISD235X
RθJ-PIN
30
20
25
°C/W/
Device
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA ISD201X/231X/235X
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178 7 March 23, 2000-17
Figure 8. Block Diagram
Contrast Enhancement Filters for Sunlight Readability
* Marks Polarized Corp.
25-B Jefryn Blvd. W.
Deer Park, NY 11729
516/242-1300
FAX 516/242-1347
Marks Polarized Corp. manufactures
to MIL-1-45208 inspection system.
Display Color Filter Color Marks Polarized Corp.* Optical Characteristics of Filter
Red, HER Red MPC 20-15C 25% at 635 nm, Circular Polarizer
Yellow Amber MPC 30-25C 25% at 583 nm, Circular Polarizer
Green Yellow/Green MPC 50-122C 22% at 568 nm, Circular Polarizer
Multiple Colors
High Ambient Light
Neutral Gray MPC 80-10C 10% Neutral, Circular Polarizer
Multiple Colors Neutral Gray MPC 80-37C 37% Neutral, Circular Polarizer
1 2 3 4 5 6 7 Rows 8-14 Rows 15-21 Rows 22-28
28-Bit SIPO Shift Register
1 2 3 4 5 6 7 Rows 1-7 Rows 1-7 Rows 1-7
Constant Current Sinking LED Drivers
Blanking
Control, VB
Column Drive Inputs
Column
1 2 3 4 5
LED
Matrix
2
LED
Matrix
3
LED
Matrix
4
Serial
Data
Input
Clock
Serial
Data
Output
Rows
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA ISD201X/231X/235X
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178 8 March 23, 2000-17
The small alphanumeric displays are hybrid LED and CMOS
assemblies that are designed for reliable operation in commer-
cial and industrial environments. Optimum reliability and optical
performance will result when the junction temperature of the
LEDs and CMOS ICs are kept as low as possible.
Thermal Modeling
ISD displays consist of two driver ICs and four 5 x 7 LED
matrixes. A thermal model of the display is shown in Figure 9.
It illustrates that the junction temperature of the semiconductor
= junction self heating + the case temperature rise + the ambi-
ent temperature. Equation 1 shows this relationship.
Figure 9. Thermal Model
See Equation 1 below.
The junction rise within the LED is the product of the thermal
impedance of an individual LED (37°C/W, DF=20%, F=200 Hz),
times the forward voltage, VF(LED), and forward current IF(LED),
of 13 14.5 mA. This rise averages TJ(LED)=1°C. The Table
below shows the VF(LED) for the respective displays.
The junction rise within the LED driver IC is the combination
of the power dissipated by the IC quiescent current and the
28 row driver current sinks. The IC junction rise is given in
Equation 2.
A thermal resistance of 28°C/W results in a typical junction
rise of 6°C.
Model Number VF
Min. Typ. Max.
ISD2010
ISD2310
1.6 1.7 2.0
ISD2011/2/3
ISD2311/2/3
ISD2351/2/3
1.9 2.2 3.0
LED
T1
IC
T2
LED
T1
LED
T1
IC
T2
LED
T1
LED Power IC Power LED Power
LED Power
IC Power
LED Power
R
θCA
R
θ1
R
θ1
R
θ1
R
θ1
R
θ2
R
θ2
See Equation 2 below.
Equation 1.
Equation 2.
TJ LED()
PLED ZθJC PCASE RθJC RθCA
+()TA
++=
T
J LED() ICOL 28()VF LED()
ZθJC
[]n35()ICOL DF 5VCOL
()VCC ICC
+[]RθJC RθCA
+[]T
A
++=
TJIC() PCOL RθJC RθCA
+()TA
+=
T
JIC() 5V
COL VF LED()
()ICOL 2()n35()DF⋅⋅ VCC ICC
+[]RθJC RθCA
+[]T
A
+=
For ease of calculations the maximum allowable electrical oper-
ating condition is dependent upon the aggregate thermal resis-
tance of the LED matrixes and the two driver ICs. All of the
thermal management calculations are based upon the parallel
combination of these two networks which is 15°C/W. Maxi-
mum allowable power dissipation is given in Equation 3.
Equation 3.
For further reference see Figures 2, 3, 4 and 11 23.
Key to equation symbols
DF Duty factor
ICC Quiescent IC current
ICOL Column current
n Number of LEDs on in a 5 x 7 array
PCASE Package power dissipation excluding LED
under consideration
PCOL Power dissipation of a column
PDISPLAY Power dissipation of the display
PLED Power dissipation of a LED
RθCA Thermal resistance case to ambient
RθJC Thermal resistance junction to case
TAAmbient temperature
TJ(IC) Junction temperature of an IC
TJ(LED) Junction temperature of a LED
TJ(MAX) Maximum junction temperature
VCC IC voltage
VCOL Column voltage
VF(LED) Forward voltage of LED
ZθJC Thermal impedance junction to case
Optical Considerations
The light output of the LEDs is inversely related to the LED
diodes junction temperature as shown in Figure 10. For opti-
mum light output, keep the thermal resistance of the socket or
PC board as low as possible.
PDISPLAY
TJ MAX()
TA
RθJC RθCA
+
---------------------------------=
PDISPLAY 5VCOL ICOL n35()DF VCC ICC
+=
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA ISD201X/231X/235X
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178 9 March 23, 2000-17
Figure 10. Normalized Luminous Intensity vs. Junction
Temperature
When mounted in a 10°C/W socket and operated at Absolute
Maximum Electrical conditions, the display will show an LED
junction rise of 17°C. If TA=40°C, then the LEDs TJ will be
57°C. Under these conditions Figure 11 shows that the lV will
be 75% of its 25°C value.
Figure 11. Max. LED Junction Temperature vs. Socket
Thermal Resistance
Figure 12. Max. Package Power Dissipation, ISD201X
140120100806040200-20-40-60
.1
1
10
Tj - LED Junction Temperature - °C
Normalized
Normalized to:
Ta = 25°C
Luminous Intensity
50454035302520151050
0
5
10
15
20
25
30
35
40
45
50
Socket Thermal Resistance - °C/W
Tj - Delta LED Junction
Vcol = 3.5V, Icol = 410mA
Vcc =5.25V, Icc = 10mA
n = 20 LEDs, DF= 20%
P = 0.87W
Temperature - °C
4035302520151050
0.0
0.5
1.0
1.5
LEDs on per Character
Max. Package Power Dissipation - W
Vcc = 5.25V, Icc = 10mA
Vcol = 3.5, Icol = 410mA
DF = 20%, Ta = 25 °C
Figure 13. Max. Package Power Dissipation, ISD231X
Figure 14. Max. Package Power Dissipation, ISD235X
Figure 15. Package Power Dissipation, ISD201X
4035302520151050
0.0
0.5
1.0
1.5
2.0
LEDs on per Character
Max. Package Power Dissipation
Vcc = 5.25V, Icc =10mA
Vcol = 3.5, Icol = 520mA
DF = 20%, Ta = 25°C
4035302520151050
0.0
0.5
1.0
1.5
2.0
2.5
3.0
LEDs on per Character
Max. Package Power Dissipation
Vcc =5.25V, Icc = 10mA
Vcol = 3.5V, Icol = 600mA
DF = 20%, Ta =25°C
4035302520151050
0.0
0.5
1.0
1.5
LEDs on per Character
Package Power Dissipation - W
Vcc =5V, Icc = 5mA
Vcol = 3.5V, Icol = 335mA
DF = 20%, Ta = 25°C
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA ISD201X/231X/235X
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178 10 March 23, 2000-17
Figure 16. Max. Package Power Dissipation, ISD231X
Figure 17. Max. Package Power Dissipation, ISD235X
Figure 18. Max. Character Power Dissipation, ISD201X
Figure 19. Max. Character Power Dissipation, ISD231X
4035302520151050
0.0
0.5
1.0
1.5
LEDs on
p
er Character
Package Power Dissipation - W
Vcc = 5V, Icc = 5mA
Vcol = 3.5, Icol = 380mA
DF = 20%, Ta = 25°C
4035302520151050
0.0
0.5
1.0
1.5
2.0
LEDs on per Character
Power Dissipation - W
Vcc = 5V, Icc = 5mA
Icol = 450mA, Vcol = 3.5V
DF = 20%
4035302520151050
0.00
0.10
0.20
0.30
0.40
0.50
20%.
17%.
10%.
5%.
LEDs on per Character
Max Character Power Dissipation - W
Duty Factor
Vcc = 5.25V, Icc = 10mA
Vcol = 3.5V, Icol = 410mA
4035302520151050
0.00
0.10
0.20
0.30
0.40
0.50
LEDs on per Character
Max. Character Power Dissipation - W
Vcc =5.25V, Icc = 10mA
Vcol = 3.5V, Icol = 380mA
20%
17%
10%
5%
Figure 20. Max. Character Power Dissipation, ISD235X
Figure 21. Character Power Dissipation, ISD201X
Figure 22. Character Power Dissipation, ISD231X
Figure 23. Character Power Dissipation, ISD235X
4035302520151050
0.0
0.5
1.0
1.5
2.0
LEDs on per Character
Power Dissipation - W
Vcc = 5V, Icc = 5mA
Icol = 450mA, Vcol = 3.5V
DF = 20%
4035302520151050
0.0
0.1
0.2
0.3
0.4
20%
17%
10%
5%
LEDs on per Character
Character Power Dissipation - W
Duty Factor
Vcc = 5V, Icc = 5mA
Vcol = 3.5, Icol = 335mA
4035302520151050
0.0
0.1
0.2
0.3
0.4
0.5
LEDs on per Character
Character Power Dissipation - W
Vcc =5V, Icc = 5mA
Vcol = 3.5V, Icol = 380mA
20%
17%
10%
5%
4035302520151050
0.0
0.1
0.2
0.3
0.4
0.5
LEDs on per Character
Character Power Dissipation - W
Vcc = 5V, Icc = 5mA
Vcol = 3.5V, Icol = 450mA 20%
17%
10%
5%