2005-07-22Rev. 2.3 Page 1
SPB20N60S5
Cool MOS™ Power Transistor VDS 600 V
RDS(on) 0.19
ID20 A
Feature
New revolutionary high voltage technology
Ultra low gate charge
Periodic avalanche rated
Extreme dv/dtrated
Ultra low effective capacitances
Improved transconductance
PG-TO263
Type Package Ordering Code
SPB20N60S5 PG-TO263 Q67040-S4171
Marking
20N60S5
Maximum Ratings
Parameter Symbol Value Unit
Continuous drain current
TC = 25 °C
TC = 100 °C
ID
20
13
A
Pulsed drain current, t
p
limited by T
j
ma
x
ID
p
uls 40
Avalanche energy, single pulse
ID = 10 A, VDD = 50 V
EAS 690 mJ
Avalanche energy, repetitive tAR limited by Tjmax1
)
ID = 20 A, VDD = 50 V
EAR 1
Avalanche current, repetitive t
AR
limited by T
j
ma
x
I
AR
20 A
Gate source voltage VGS ±20 V
Gate source voltage AC (f >1Hz) VGS ±30
Power dissipation, TC = 25°C Ptot 208 W
Operating and storage temperature T
j
,Tst
g
-55... +150 °C
2005-07-22Rev. 2.3 Page 2
SPB20N60S5
Maximum Ratings
Parameter Symbol Value Unit
Drain Source voltage slope
VDS = 480 V, ID = 20 A, Tj = 125 °C
dv/dt20 V/ns
Thermal Characteristics
Parameter Symbol Values Unit
min. typ. max.
Thermal resistance, junction - case RthJC - - 0.6 K/W
SMD version, device on PCB:
@ min. footprint
@ 6 cm2 cooling area 2)
RthJA
-
-
-
35
62
-
Soldering temperature, reflow soldering, MSL1
1.6 mm (0.063 in.) from case for 10s
Tsold - - 260 °C
Electrical Characteristics, at Tj=25°C unless otherwise specified
Parameter Symbol Conditions Values Unit
min. typ. max.
Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA 600 - - V
Drain-Source avalanche
breakdown voltage
V(BR)DS VGS=0V, ID=20A - 700 -
Gate threshold voltage VGS
(
th
)
ID=1000µΑ,VGS=VD
S
3.5 4.5 5.5
Zero gate voltage drain current IDSS VDS=600V, VGS=0V,
Tj=25°C,
Tj=150°C
-
-
0.5
-
5
250
µA
Gate-source leakage current IGSS VGS=20V, VDS=0V - - 100 nA
Drain-source on-state resistance RDS(on) VGS=10V, ID=13A,
Tj=25°C
Tj=150°C
-
-
0.16
0.43
0.19
-
Gate input resistance RGf=1MHz, open Drain - 12 -
2005-07-22Rev. 2.3 Page 3
SPB20N60S5
Electrical Characteristics , at T
= 25 °C, unless otherwise specified
Parameter Symbol Conditions Values Unit
min. typ. max.
Characteristics
Transconductance gfs VDS2*ID*RDS(on)max,
ID=13A
- 12 - S
Input capacitance Ciss VGS=0V, VDS=25V,
f=1MHz
- 3000 - pF
Output capacitance Coss - 1170 -
Reverse transfer capacitance Crss - 28 -
Effective output capacitance,3)
energy related
Co(er) VGS=0V,
VDS=0V to 480V
- 83 - pF
Effective output capacitance,4)
time related
Co(tr) - 160 -
Turn-on delay time td(on) VDD=350V, VGS=0/10V,
ID=20A, RG=5.7
- 120 - ns
Rise time tr- 25 -
Turn-off delay time td(off) - 140 210
Fall time tf- 30 45
Gate Charge Characteristics
Gate to source charge Qgs VDD=350V, ID=20A - 21 - nC
Gate to drain charge Qgd - 47 -
Gate charge total QgVDD=350V, ID=20A,
VGS=0 to 10V
- 79 103
Gate plateau voltage V(plateau) VDD=350V, ID=20A - 8 - V
1Repetitve avalanche causes additional power losses that can be calculated as PAV=EAR*f.
2Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical without blown air.
3Co(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% VDSS.
4Co(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
2005-07-22Rev. 2.3 Page 4
SPB20N60S5
Electrical Characteristics, at Tj = 25 °C, unless otherwise specified
Parameter Symbol Conditions Values Unit
min. typ. max.
Inverse diode continuous
forward current
ISTC=25°C - - 20 A
Inverse diode direct current,
pulsed
ISM - - 40
Inverse diode forward voltage VSD VGS=0V, IF=IS- 1 1.2 V
Reverse recovery time trr VR=350V, IF=IS ,
diF/dt=100A/µs
- 610 - ns
Reverse recovery charge Qrr - 12 - µC
Typical Transient Thermal Characteristics
Symbol Value Unit Symbol Value Unit
typ. typ.
Thermal resistance
Rth1 0.00769 K/W
Rth2 0.015
Rth3 0.029
Rth4 0.114
Rth5 0.136
Rth6 0.059
Thermal capacitance
Cth1 0.0003763 Ws/K
Cth2 0.001411
Cth3 0.001931
Cth4 0.005297
Cth5 0.012
Cth6 0.091
External Heatsink
TjTcase
Tamb
Cth1 Cth2
Rth1 Rth,n
Cth,n
Ptot (t)
2005-07-22Rev. 2.3 Page 5
SPB20N60S5
1 Power dissipation
Ptot = f(TC)
0 20 40 60 80 100 120 °C 160
TC
0
20
40
60
80
100
120
140
160
180
200
W
240 SPP20N60S5
Ptot
2 Safe operating area
ID= f ( VDS )
parameter : D = 0 , TC=25°C
10 010 110 210 3
V
VDS
-2
10
-1
10
0
10
1
10
2
10
A
ID
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
DC
3 Transient thermal impedance
ZthJC = f(tp)
parameter: D=tp/T
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
-4
10
-3
10
-2
10
-1
10
0
10
K/W
ZthJC
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
4 Typ. output characteristic
ID = f (VDS); Tj=25°C
parameter: tp= 10 µs, VGS
0 5 10 15 20 V 30
VDS
0
5
10
15
20
25
30
35
40
45
50
55
60
A
75
ID
10V
9V
8V
7V
20V
15V
12V
11V
2005-07-22Rev. 2.3 Page 6
SPB20N60S5
5 Typ. output characteristic
ID = f (VDS); Tj=150°C
parameter: tp= 10 µs, VGS
0 5 10 15 V 25
VDS
0
5
10
15
20
25
A
35
ID
6V
6.5V
7V
7.5V
8V
8.5V
9V
20V
12V
10V
6 Typ. drain-source on resistance
RDS(on)=f(ID)
parameter: Tj=150°C, VGS
0 5 10 15 20 25 30 A40
ID
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
m
1.5
RDS(on)
6V
6.5V
7V
7.5V
8V
8.5V
9V
10V
12V
20V
7 Drain-source on-state resistance
RDS(on) = f(Tj)
parameter : ID = 13 A, VGS = 10 V
-60 -20 20 60 100 °C 180
Tj
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.1 SPP20N60S5
RDS(on)
typ
98%
8 Typ. transfer characteristics
ID= f ( VGS ); VDS 2 x ID x RDS(on)max
parameter: tp = 10 µs
0 5 10 V 20
VGS
0
5
10
15
20
25
30
35
40
45
50
55
60
A
70
ID
25°C
150°C
2005-07-22Rev. 2.3 Page 7
SPB20N60S5
9 Typ. gate charge
VGS =f (QGate)
parameter: ID = 20 A pulsed
0 20 40 60 80 nC 120
QGate
0
2
4
6
8
10
12
V
16 SPP20N60S5
VGS
0.2 VDS max
0.8 VDS max
10 Forward characteristics of body diode
IF = f (VSD)
parameter: T
j
, tp= 10 µs
0 0.4 0.8 1.2 1.6 2 2.4 V3
VSD
-1
10
0
10
1
10
2
10
A
SPP20N60S5
IF
Tj = 25 °C typ
Tj = 25 °C (98%)
Tj = 150 °C typ
Tj = 150 °C (98%)
11 Avalanche SOA
IAR = f (tAR)
par.: Tj 150 °C
10 -3 10 -2 10 -1 10 010 110 210 4
µs
tAR
0
5
10
A
20
IAR
Tj(START)=25°C
Tj(START)=125°C
12 Avalanche energy
EAS = f(Tj)
par.: ID = 10 A, VDD = 50 V
20 40 60 80 100 120 °C 160
Tj
0
50
100
150
200
250
300
350
400
450
500
550
600
mJ
750
EAS
2005-07-22Rev. 2.3 Page 8
SPB20N60S5
13 Drain-source breakdown voltage
V(BR)DSS = f(Tj)
-60 -20 20 60 100 °C 180
Tj
540
560
580
600
620
640
660
680
V
720
SPP20N60S5
V(BR)DSS
14 Avalanche power losses
PAR = f (f )
parameter: EAR=1mJ
10 410 510 6
Hz
f
0
100
200
300
W
500
PAR
15 Typ. capacitances
C = f(VDS)
parameter: VGS=0V, f=1 MHz
0 100 200 300 400 V 600
VDS
0
10
1
10
2
10
3
10
4
10
5
10
pF
C
Ciss
Coss
Crss
16 Typ. Coss stored energy
Eoss=f(VDS)
0 100 200 300 400 V 600
VDS
0
1
2
3
4
5
6
7
8
9
10
11
12
µJ
14
Eoss
2005-07-22Rev. 2.3 Page 9
SPB20N60S5
Definition of diodes switching characteristics
2005-07-22Rev. 2.3 Page 10
SPB20N60S5
PG-TO263-3-2, PG-TO263-3-5, PG-TO263-3-22
2005-07-22Rev. 2.3 Page 11
SPB20N60S5
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.