Table 1: DL6000 Family
Device Gates Logic
Blocks
Max User
RAM Bits Flip Flops Clock Trees I/O Blocks
DL6009
9,000 256 8,192 768 10 128
DL6020
20,000 576 18,432 1,536 10 192
DL6035
35,000 1,024 32,768 2,560 10 254
DL6055
55,000 1,600 51,200 3,840 10 320
DL6080
80,000 2,304 73,728 5,376 10 384
DL6105
105,000 3,136 100,352 7,168 10 448
Features
System Clock Rates Up To 200 MHz
9,000 to 105,000 Usable Gates
Synchronous Dual-port RAM with 8 ns
Access Time
2 Analog PLLs For Clock Multiplication,
Division and Locking
LV-TTL and GTL Interface Levels
Up to 10 LVDS Compatible Inputs
Up to 10 Differential or Single-Ended
LV-PECL Inputs
1.3 ns Input Register Setup Time
33/66 MHz PCI Compatible
Partial Reconfiguration
10 Clock Trees with 150 ps Skew
3.3 Volt Operation
5 Volt Tolerant I/O
Patented Active Repeater Architecture
In-System Reprogrammability (ISP)
JTAG Support
Output Slew Rate Control
Fully Automatic Implementation With
DynaTool™
Applications Examples
Telecommunication
Datacommunication
High Speed Graphics
DSP
ASIC Emulation
Introduction
The DL6000 is DynaChip’s second generation Fast
Field Programmable Gate Array family. Built on a
deep sub-micron CMOS process, this family supports
applications with system clock rates up to 200 MHz.
The DL6000 family features DynaChip’s patented
Active Repeater Architecture. This results in ex-
tremely short routing delays allowing these de-
vices to run at system frequencies well above
conventional FPGAs.
To support the fast data rates of high-speed ap-
plications, every I/O pin can be programmed to
LV-TTL or GTL interface levels.
DL6000 family devices contain synchronous
RAM with 8 ns access time. These flexible RAM
structures operate in true dual and single port
modes and are ideal for applications that require
fast access to memory.
High operating frequencies, on-chip RAM, fast I/O
and PCI compatibility make these devices ideal for
high-speed telecommunications, datacommunica-
tions, graphics and emulation applications.
The DL6000 features SRAM-based programming al-
lowing the devices to be configured in-circuit and re-
programmed on-the-fly. They support dynamic
single-block reconfiguration enabling a portion of the
device to be reprogrammed without affecting opera-
tion of the remaining logic
.
DL6000
Family
Fast Field Programmable Gate Array
Datasheet September 1998
DL6000 - Fast Field Programmable Gate Array
Page 2 DynaChip
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Performance Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
High Performance Active Repeater Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Top-Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Routing Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Input/Output Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
LVDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Logic Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clock Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Phase Lock Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Configuration Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Serial Configuration Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Microprocessor Configuration Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Dynamic Reconfiguration Using Full Chip Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Partial Reprogramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Readback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Configuration Clock Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Mode Pin Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Flip Flop Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Configuration Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Serial PROM Configuration Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Microprocessor Configuration Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Programming Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Bitstream Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Configuration Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Product Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DC Characteristics Over Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Clock and Set/Reset Buffer Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Input and Output Block Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Three-state Buffer Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Logic Block Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
RAM Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Programmable Interconnect Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
352-pin SBGA - DL6035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
208-pin QFP - DL6035. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
352-pin SBGA - DL6020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
352-pin SBGA - DL6009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Package Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
352-pin SBGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
208-pin Thermal Enhanced PQFP (PQ208) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 3
Performance Examples
The DL6000 family with DynaChip’s patented Active Repeater Architecture sup-
ports high-speed applications with clock rates up to 200 MHz.
The following table shows the performance of various size functions implemented
in the DL6035
*
.
High Performance Active Repeater Technology
The enabling technology behind DynaChip’s Fast Field Programmable Gate Arrays
is the Active Repeater. Conventional FPGA devices use pass gates to create pro-
grammable interconnections. These pass gates act like a series of resistors with dis-
tributed capacitance to ground. Nets formed out of these pass gates slow down
dramatically as the number of programmable connections increases.
This results in long, unpredictable delays, especially for nets that have to travel a
long distance or drive a large number of loads.
In contrast, DynaChip uses Active Repeaters to create programmable interconnec-
tions. As shown in figure 1, these repeaters buffer the signal at every interconnection
point and isolate the capacitance of the rest of the net.
The result is fast, predictable performance even for long, high fanout nets.
Figure 1: DynaChip’s Active Interconnect
Circuit DL6035 - G Logic Block Count
8-bit Fully Synchronous, Loadable Up Counter
145 MHz 9
16-bit Fully Synchronous, Loadable Up Counter
140 MHz 20
32-bit Fully Synchronous, Loadable Up Counter
125 MHz 42
64-bit Fully Synchronous, Loadable Up Counter
100 MHz 86
32x32 RAM-based FIFO
100 MHz 49
128x32 RAM-based FIFO
80 MHz 145
64-bit Shift Register
160 MHz 64
Maximum chip-to-chip performance**
250 MHz -
Table 2: Performance of Various Applications
* Based on -G speed grade over commercial voltage and temperature range.
** With 10 pF load and fast slew rate.
CC C
Logic
Block
DL6000 - Fast Field Programmable Gate Array
Page 4 DynaChip
In FPGA devices that use pass-gate based interconnect, net delays increase quadrat-
ically with the number of programmable interconnect points, as shown in figure 2.
This results in a performance bottleneck that is especially troublesome for nets that
have to travel a long distance or drive a large number of loads.
In devices that use Active Repeaters for interconnect, net delays are linear and are
not affected by fanout. The result is much higher performance and greater predict-
ability.
Figure 2: Active Repeater
vs. Pass Gate Delays
Pass-gate Interconnect Active Repeater
# of Connections
Interconnect Delay
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 5
Top-Level Architecture
At the very top level, DynaChip devices look a lot like conventional FPGA devices.
As shown in figure 3, input/output blocks surround the edges of the device, an ar-
ray of logic blocks fill the interior and routing tracks are distributed between the
rows and columns of logic blocks.
The difference in DynaChip’s architecture lies in the routing resources.
Figure 3: High Level View of Architecture
Routing Architecture
DynaChip’s architecture is optimized for Active Repeater technology.
As shown in figure 4, interconnect resources consist of a series of vertical and hori-
zontal wires that make up a routing region. Buffers that drive these wires can be
turned on and off to create the required connections. Since every buffer drives a
fixed load, it has been carefully optimized to provide maximum performance. The
fixed load nature of the interconnect results in completely predictable performance
since the delay through the buffer is fixed.
Routing regions are connected with Active Repeaters. After passing through an Ac-
tive Repeater, signals are available throughout the next routing region.
In the DL6000 family, each routing region is 3 columns wide by 3 rows tall. The lo-
cation of the Active Repeaters are staggered so that each logic block has its own 3 x
3 region.
Input and Output
Blocks
Logic Blocks
Routing Tracks
DL6000 - Fast Field Programmable Gate Array
Page 6 DynaChip
Figure 4: Routing Architecture
This architecture results in completely deterministic performance within a routing
region. The logic block delays specified in this datasheet include the delay of the
connection buffers and all the routing within a region (refer to table 24 for logic block
delays).
As shown in figure 5, this architecture allows a logic block to drive all 9 blocks in the
3 column by 3 row routing region with no additional routing delays. This allows
even high fanout nets to have extremely high performance.
Figure 5: Routing Region With No Interconnect Delay
For signals that drive blocks in the next region, the fixed delay through an Active Re-
peater is added to the logic block delay. These Active Repeater delays are the only
routing delays in the device and their performance is completely specified in this
datasheet (refer to table 27 for Active Repeater delays).
Logic
Block
Logic
Block
Logic
Block
Logic
Block
Logic
Block
Logic
Block
Logic
Block
Logic
Block
Logic
Block
Active Repeater Connection Buffer
Each vertical line shown represents 9 actual vertical lines
Each horizontal line shown represents 15 actual horizontal lines
Input Connection
Logic
Block Logic
Block Logic
Block
Logic
Block Logic
Block Logic
Block
Logic
Block Logic
Block Logic
Block
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 7
As shown in figure 6, a logic block output can drive 33 logic blocks with just 1 Active
Repeater delay. This allows structures with up to 660 gates of logic or 1,056 bits of
RAM to be implemented with just 800 ps routing delay. With 2 Active Repeater de-
lays, a logic block output can drive 73 logic blocks. This allows up to 1,460 gates of
logic or 2,336 bits of RAM with just 1.6 ns routing delay. All routing delays in the de-
vice are fixed and are not affected by the fanout on the net.
Figure 6: Logic Block Reached With 2 Repeaters
Source block
Access with no repeaters
Access with 1 repeater
Access with 2 repeaters
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
LOGIC
BLOCK
DL6000 - Fast Field Programmable Gate Array
Page 8 DynaChip
Input/Output Blocks
Every input/output block in the DL6000 can be independently set to TTL and GTL
interface levels. The 10 clock inputs can also be set to single-ended or differential LV-
PECL levels. When set to differential LV-PECL, the inputs are compatible with
LVDS. If any of these 10 inputs are not used for clock signals, they can be used as
general purpose inputs.
When set to TTL mode, input/output blocks are 100% compliant with 33Mhz and
66 MHz PCI busses.
Each input/output block can be configured for input, output or bi-directional sig-
nals. Each block has 2 flip flops that can be used to register input and output signals.
Each flip flop has a clock enable input. Clock signals for flip flops in the input/out-
put blocks are sourced from either of the 2 global clock pins and either of the 2 quad-
rant clock pins for that region.
Each output has individual slew rate control and 3-state capability. The 3-state en-
able for each output can be controlled individually.
Each input/output block contains dedicated JTAG Boundary Scan logic compatible
with IEEE specifications.
Figure 7: Input/Output Block
To Verti cal or
Horizontal
Routing
Channels
(Input Data)
D
CLK
Q
R
From Global
Set/Reset Line
From Global Clock Ar ray 1
From Global Clock Ar ray 2
From Quadrant Clock Array 1
From Quadrant Clock Array 2
Input/
Output
Pad
D
CLK
QR
From Global Set/Reset Line
From Horizontal or Vertical
Routing Channels
(Output Enable)
From Horizontal or Vertical
Routing Channels
(Output Data)
From Horizontal or Vertical
Routing Channels
(Clock Enable)
Bidirectional
Boundary
Scan Circuit
Output
Slew Rate
Control
201
208
210
S0 S1
S0
S1
203 204 205
From Global Clock Ar ray 1
From Global Clock Ar ray 2
From Quadrant Clock Array 1
From Quadrant Clock Array 2
S0 S1
216
215
214
Bidirectional
Boundary
Scan Circuit
202
211
212
206
209
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 9
LVDS
When set to differential LV-PECL levels, the 10 clock inputs can interface to LVDS
levels using a 100 ohm shunt resistor as shown in the following figure. If these inputs
are not used for clock signals, they can be used as general purpose inputs.
Figure 8: Interfacing LVDS to LV-PECL
Logic Block
The logic block in the DL6000 is extremely flexible and can implement a wide variety
of functions. Each block has 18 inputs. One of the inputs is dedicated for clocking
and one is for a set or reset signal. The remaining 16 are general purpose inputs to
the logic block.
Each logic block contains combinatorial logic, RAM and two flip flops. The combi-
natorial section contains flexible building blocks optimized for high utilization.
Structures like multiplexers, AND/OR gates, comparators and arithmetic functions
are automatically mapped to these resources by the DynaChip Development Sys-
tem.
A multiplexer allows the outputs of the combinatorial logic to exit the block directly
or to serve as inputs to the two flip flops.
Figure 9: Logic Block
Figure 10 shows a detailed diagram of the logic block in the DL6000.
The logic block contains sections that are optimized for AND/OR logic, multiplex-
ers, arithmetic logic and RAM. All logic block inputs have polarity control allowing
signals to be inverted as they enter the block.
Each logic block contains two storage elements that can be configured as D-type or
T (toggle) flip flops. The flip flops share a common clock that can be driven by the
LV-PECL
3.3V
100
Z = 50
LVDS
3.3V
Z = 50
Local, Global or Quadrant Clock
Local or Global Set/Rst
I
N
P
U
T
S
O
U
T
P
U
T
S
F-F
F-F
COMB
M
U
XM
U
X
AND/OR
MUX
ARITHMETIC
32-bit RAM
DL6000 - Fast Field Programmable Gate Array
Page 10 DynaChip
device’s global or quadrant clocks or by local interconnect. The clock input to each
logic block has polarity control allowing the flip flops to be triggered from either
clock edge.
The flip flops also share a common set/reset signal that is driven by the device’s glo-
bal set/reset or by local interconnect. Each flip flop can be configured to have either
a set or reset capability. The set/reset input to each logic block has polarity control
allowing active high or active low operation.
Each logic block has 3 outputs that are driven by the combinatorial logic, RAM or
flip flops.
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 11
Figure 10: Logic Block Resources
A37
A35
A39
A40
A33
A31
MUX28
PC
PC
PC
G27
PC
PC
PC G15
PC
PC
PC
PC
PC
PC
PC
PC
PC
G10
PC
PC
PC
PC
PC
D/T
S
Q
R
D/T SQ
R
OR23
A30
A32
A34
G20
19
G22
PC
OR9
OR4
G7
A6
PC
F
R
M
Global SR
GCLK 1
GCLK 2
GCLK 1
GCLK 2
LSR
AND/OR
Logic
Clock Enable
Arithmetic
Logic
Multiplexer
Logic
RAM
Logic
LCLK
FA
FB
FD
FE
FF
FH
FI
FJ
RA
RB
RD
RE
RF
RH
RI
RJ
PC
Polarity Control
Programmable Point
GND
MUX11
MUX3
MUX5
MUX17
8
12
63
18
13 14
16
21
38
29
FJ
RI
RJ
RA
FD
FB
RB
FF
FE
FA
FH
RH
FI
36
26
CLK
WE
D0
D1
A0(0)
A0(1)
A0(2)
A0(3)
A1(0)
A1(1)
A1(2)
A1(3)
A4/W
A4R
F (Rout 1)
R (Rout0)
SRAM
64,65,66
MUX24
DL6000 - Fast Field Programmable Gate Array
Page 12 DynaChip
RAM
Each logic block in DL6000 family devices contain a 32-bit fully synchronous config-
urable RAM. The RAM can be configured as a 32x1 dual port RAM, a 32x1 single
port RAM or two 16x1 RAMs with independent data and addresses. The RAM is
“self-timed” which makes both read and write operations fully synchronous. The
user only needs to be concerned with maintaining setup and hold times for all inputs
with respect to the clock. This includes the WE, data and address inputs. There is no
need for standard RAM timing parameters such as ‘WE pulse width’, ‘write cycle’
or ‘read cycle’. From a timing standpoint, the RAM can be treated just like a flip-flop.
The RAM includes a clock generator cell and latches data on its inputs and outputs.
Upon receipt of a LOW-to-HIGH transition on the clock input, the clock generator
creates a set of internal signals for the RAM. During a write cycle, the clock generator
creates a pulse to latch the write enable, data and address inputs. During a read cycle
a pulse is generated to latch the addressed data in the output latches. Both read and
write operations are completed upon a single low-to-high transition of the clock.
This is true for both single and dual port modes. Timing diagrams for the 2 opera-
tions are shown in figure 11.
Figure 11: Read/Write Cycle Timing
tWS tWH
tAS tAH
tDS tDH
CLK
Write Cycle
WE
Addresses
Data
tWS tWH
tAS tAH
tROS
CLK
Read Cycle
WE
Addresses
Output
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 13
Figure 12: 32x1 Single Port RAM
Figure 12 shows the configuration for the 32x1 Single Port RAM. There are 5 bits for
address (A0 - A4), a data input (D), a write enable (WE) and a clock input. All 7 in-
puts are totally synchronous to the clock. Just like an edge triggered flip flop, the
only timing requirement is that all setup and hold times must be obeyed. When WE
is HIGH, the RAM is in the write mode. Data presented on the D input will be writ-
ten to the location specified by addresses A0 - A4. During a write cycle, the output
of the RAM is in an unknown state. When WE is LOW, the RAM is in the read mode.
The data stored in the location specified by A0 - A4 appears on the output after the
rising edge of the clock. This is a single clock operation. The WE and A0 - A4 are set-
up before the rising edge of the clock and the data stored in the RAM appears after
the rising edge of the clock.
DQ
LE
WE
D
ARW
O
WE
D
ARW
O
CLK
WE
A4
A[0:3]
D
Ò0Ó
Ò0Ó R
CLOCK
GENERATOR
DQ
LE
DQ
LE
DQ
LE
DQ
LE
RAM 1
RAM 0
DL6000 - Fast Field Programmable Gate Array
Page 14 DynaChip
Figure 13: Dual 16X1 Single Port RAM
Figure 13 shows the configuration for the dual 16X1 single port RAM. The cell con-
tains 2 separate 16X1 RAMs where each has their own address and data pins. The
dual RAM has 12 inputs. There are 4 bits of address (A00 - A03) and a data input (D0)
for RAM 0 and 4 separate bits of address (A10 - A13) and a separate data input (D1)
for RAM 1. Both RAMs share the same write enable (WE) and clock input. All 11 in-
puts are totally synchronous to the clock. Just like an edge triggered flip flop, the
only timing requirement is that all setup and hold times are obeyed. Operation of
the RAMs is identical to that of the 32X1 single port. When WE is HIGH, the RAMs
are in the write mode. Data presented on the D0 input will be written to the location
specified by addresses A00 - A03 while data presented on the D1 input will be writ-
ten to the location specified by addresses A10 - A13. During a write cycle, the out-
puts of the RAMs are in an unknown state. When WE is LOW, the RAMs are in the
read mode. After the rising edge of the clock, the data stored in the location specified
by A00 - A03 appears on the output of RAM 0 and the data stored in the location
specified by A10 - A13 appears on the output of RAM 1. This is a single clock oper-
ation.
DQ
LE
WE
D
ARW
O
DP
WE
D
ARW
O
DP
CLK
WE
D1
A1[0:3]
A0[0:3]
D0
CLOCK
GENERATOR
DQ
LE
DQ
LE
DQ
LE
DQ
LE
DQ
LE
DQ
LE
RAM 1
RAM 0
R
F
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 15
Figure 14: 32x1 Dual Port RAM
Figure 14 shows the configuration for the 32x1 Dual Port RAM. This is a true dual
port RAM with separate read and write addresses. The RAM has 5 bits of read ad-
dress (A0R - A4R), 5 bits of write address (A0W - A4W), a data input (D), a write en-
able (WE) and a clock input. All 12 inputs are totally synchronous to the clock. Just
like an edge triggered flip flop, the only timing requirement is that all setup and hold
times are obeyed. The operation of the dual port RAM is slightly different than that
of the single port RAMs. When WE is HIGH, the RAM is in the write mode. Data
presented on the D input will be written to the location specified by addresses A0W
- A4W.
The dual port RAM is always in read mode. The state of WE is unimportant thus WE
can either be a “0” or a “1”. The data stored in the location specified by A0R - A4R
will appear on the output after the rising edge of the clock. This is a single clock op-
eration.
There is one exception to the rule that the RAM is always in read mode. If the read
and write addresses are equal and WE is HIGH, the write function takes precedence
over the read. As a result, when reading and writing to the same location, only the
write function is enabled and the output will be at an unknown state. Note that if
WE is LOW, the dual port RAM is in read mode and there will never be a conflict
when the read and write addresses are identical.
DQ
LE
DQ
LE
DQ
LE
WE
D
AW
AR
O
WE
D
AR
AW
O
CLK
WE
A4W
A4R
AW[0:3]
AR[0:3]
D
Ò0Ó
Ò0Ó
R
CLOCK
GENERATOR
DQ
LE
DQ
LE
DQ
LE
DQ
LE
RAM 1
RAM 0
DL6000 - Fast Field Programmable Gate Array
Page 16 DynaChip
Clock Distribution
DL6000 family devices have 10 low-skew clock distribution networks. These net-
works are driven by dedicated pins on the device, internal logic or by the internal
PLLs.
Two of the clock networks are global clocks that can drive every flip flop in the de-
vice. Eight of the networks are quadrant clocks. The quadrant clocks can drive all the
logic block flip flops in one quarter of the device and the I/O flip flops adjacent to
these logic blocks.
When driven by input pins, each of the 10 clocks are programmable to LV-TTL, GTL
or LV-PECL interface levels. When set to LV-PECL, clock inputs can be single-ended
or differential.
Any I/O pin can be used to drive a clock signal out of the device for use elsewhere
in the system.
Phase Lock Loops
Devices in the DL6000 family contain 2 analog phase lock loop (PLL) circuits that are
used for clock multiplication, division and phase locking.
The output clock from the PLL has a duty cycle of 50% +/- 5% and a lock time of 1
ms.
As shown in figure 15, the output of each PLL can drive 1 global clock and 4 quad-
rant clock trees. The multipliers and dividers for each quadrant can be set indepen-
dently. This allows each PLL to generate up to 5 derivative frequencies from the
incoming clock.
Figure 15: PLL
Frequencies for quadrant clock outputs can be divided or multiplied according to
the following formula.
f
QCLKx
= fin*n / k
x
*m
Frequencies for global clock outputs can be multiplied according to the following
formula.
f
GCLK
= fin*n / m
f
in
mPhase
Detector
~
V
co
k
1
F
QCLK1
n
k
2
F
QCLK2
k
3
F
QCLK3
k
4
F
QCLK4
F
GCLK
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 17
Values for k, m, and n can be programmed as shown in table 3.
The following tables show the available multipliers and dividers for different fre-
quencies.
Notes:
(1) PLL1 is located in the top left corner and drives GCLK1, QCLK1TL, QCLK1TR, QCLK1BL,
and QCLK1BR.
(3) Some frequencies require an external resistor connected to the PLL1REST pin.
Variable Allowable Values
k 2,3,4,6 or 8
m 1 or 2
n 2,3,4,6 or 8
Table 3: PLL Variables
Fin Min Fin Max GCLK Multiplier QCLK Multiplier QCLK Dividers
14.4 20.6 8 4
2 2/3
2
1 1/3
1 (Lock)
19.2 27.5 6
1 (Lock) 3
2
1 1/2
1 (Lock)
3/4
28.8 41.3 4
1 (Lock) 2
1 1/3
1 (Lock)
2/3
1/2
38.3 55.0 3
1 (Lock) 1 1/2
1 (Lock) 3/4
1/2
3/8
57.5 82.5 2
1 (Lock) 1 (Lock) 2/3
1/2
1/3
1/4
76.7 110.0 1 1/2
1 (Lock) 1/2
3/4
3/8
1/4
3/16
115.0 200.0 1 (Lock) 1/2
1/3
1/4
1/6
1/8
Table 4: Multipliers and Dividers for PLL1
DL6000 - Fast Field Programmable Gate Array
Page 18 DynaChip
Notes:
(1) PLL2 is located in the top right corner and drives GCLK2, QCLK2TL, QCLK2TR,
QCLK2BL, and QCLK2BR.
(3) Some frequencies require an external resistor connected to the PLL2REST pin.
Note:
(1) Requires input clock jitter
100 ps.
Fin Min Fin Max GCLK Multiplier QCLK Multiplier QCLK Dividers
10.3 14.4 8 4
2 2/3
2
1 1/3
1 (Lock)
13.8 19.2 6 3
2
1 1/2
1 (Lock)
3/4
20.6 28.8 4
1 (Lock) 2
1 1/3
1 (Lock)
2/3
1/2
27.5 38.3 3
1 (Lock) 1 1/2
1 (Lock) 3/4
1/2
3/8
41.3 57.5 2
1 (Lock) 1 (Lock) 2/3
1/2
1/3
1/4
55.0 76.7 1.5
1 (Lock) 3/4
1/2
3/8
1/4
3/16
82.5 115.0 1 (Lock) 1/2
1/3
1/4
1/6
1/8
Table 5: Multipliers and Dividers for PLL2
GCLK Frequency Jitter
14 to 80 MHz 3% of clock period
81 to 165 MHz 350 ps
(1)
Table 6: PLL Jitter
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 19
Power Consumption
Power consumption for a specific design implemented in a DL6000 family device
depends on the following factors.
Number of logic blocks used
Operating frequency
Number of outputs used
I/O interface level setting (TTL or GTL)
Output slew rate selection
Number of global and quadrant clocks used
Operating supply voltage
The following table shows typical power consumption for various components of a
DL6035 operating at 100 MHz.
DL6035 Component Typical Power Consumption at 100 MHz
Logic Block (including interconnect) 4.6 mW
I/O Block set to TTL mode (excluding
off-chip current) 910 µW
I/O Block set to GTL mode (excluding
off-chip current) 7.5 mW
Each Global Clock 600 mW
Each Quadrant Clock 150 mW
Table 7: Typical Power Consumption
DL6000 - Fast Field Programmable Gate Array
Page 20 DynaChip
Configuration
Memory cells in DynaChip FPGAs store configuration bits that control all the pro-
grammable elements in the device. These configuration bits are called a bitstream
and they are loaded automatically from a PROM at power-up or under user control
through a microprocessor.
Systems that contain more than one DynaChip device can be set up in a program-
ming chain to simplify connections.
Configuration Modes
The DL6000 supports 6 configuration modes. Five are for loading a bitstream into
the device and one is for reading a bitstream out of a programmed device. The state
of three special pins called mode pins sets the configuration mode of the DL6000 de-
vice.
Serial Configuration Modes
There are 3 serial configuration modes as described in table 8.
Serial Configuration Mode Description
Serial Internal Last This mode is used in 2 situations.
1) To program a single device from a se-
rial PROM. In this mode, the DL6000
generates a clock signal to drive the
serial PROM.
2) For the last device in a programming
chain that uses a serial PROM. In this
mode, the DL6000 generates a clock
signal to drive the serial PROM and
the other DynaChip devices in the
chain.
Serial External Not Last This mode is used for each device ex-
cept the last device in a programming
chain that uses a serial PROM.
Serial External Last This mode is used to program a single
device using a serial bitstream and a
user supplied clock.
It is also used for the last device in a pro-
gramming chain that is programmed us-
ing a serial bitstream and a user supplied
clock.
Table 8: Serial Configuration Modes
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 21
Microprocessor Configuration Modes
There are 2 microprocessor configuration modes as described in table 9.
Dynamic Reconfiguration Using Full Chip Reset
Full Chip Reset enables the user to completely reset the device without turning off
the power. It is typically used to prepare a device for a complete reconfiguration af-
ter initial configuration. When full chip reset is asserted, all the configuration bits
and flip flops in the device are reset. This is similar to the internal reset that occurs
when the device is first powered-up.
Full chip reset is activated by setting the mode pins to ‘111’ and then asserting the
RESET pin (active low) for a minimum of 10 ms. The mode pins must be set before
the reset is asserted.
To reprogram the device after a full chip reset, set the mode pins to their appropriate
values (refer to table 10, page 22) and apply another RESET pulse of at least 10 ms.
As an alternative to using full chip reset, the device can be reprogrammed using a
complete bitstream that programs every element. Contact the factory for availability
of a complete bitstream.
Partial Reprogramming
After the device has been powered-up and programmed, the user can reprogram a
portion of the device on the fly without affecting the existing application.
To dynamically reprogram a portion of the device, set the mode pins to their appro-
priate value (refer to table10, page20), and then assert RESET (active low). The mode
pins must be set before the RESET is asserted.
The portion of the device that is not affected by the partial reprogramming operates
normally during reconfiguration.
Special bitstreams must be used for partial reconfiguration to insure that unused
logic and interconnect from the previous function are deleted. Contact the factory
for more information on availability of these special bitstreams.
Microprocessor Configuration Mode Description
Microprocessor Last This mode is used in 2 situations.
1) To program a single device from a mi-
croprocessor.
2) For the last device in a programming
chain that uses a microprocessor.
Microprocessor Not Last This mode is used for each device ex-
cept the last device in a programming
chain that uses a microprocessor.
Table 9: Microprocessor Configuration Modes
DL6000 - Fast Field Programmable Gate Array
Page 22 DynaChip
Some of the non-dedicated configuration I/O do not function as user I/O during dy-
namic reprogramming as indicated below:
In Serial Mode:
Pins M0, M1, M2 and D0, become dedicated for programming.
The DONE pin becomes dedicated for programming when the device is used in
a programming chain.
The DOUT pin becomes dedicated for programming if readback is required.
The rest of the I/O's remain operational.
In Processor Mode:
Pins M0, M1, M2, D0, D1-D7, WE and RDY become dedicated for programming.
The DONE pin becomes dedicated for programming when the device is used in
a programming chain.
The DOUT pin becomes dedicated for programming if readback is required.
The rest of the I/O's remain operational.
Readback
Once the device has been programmed, a configuration mode called readback can
be used to read the program bitstream out of the device to determine if it was loaded
properly.
Configuration Clock Frequencies
In Serial Internal Last mode, the DL6000 generates a 2.5 MHz clock that is used to
drive the serial PROM.
In Serial External Last mode, an external clock up to 25 MHz can be supplied to the
DL6000.
Mode Pin Settings
The state of three pins on the DL6000 device named M0, M1 and M2 determine the
loading mode. The settings for each mode are shown in table 10.
Note:
If the mode pins are not connected, they are pulled down to a logic ’0’.
Configuration Mode M2 M1 M0
Serial Internal Last 0 0 0
Serial External Not Last 1 0 0
Serial External Last 0 0 1
Microprocessor Last 1 0 1
Microprocessor Not Last 1 1 0
Readback 0 1 1
Full Chip Reset 1 1 1
Table 10: Mode Pin Settings
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 23
Flip Flop Initialization
After configuration, flip flops are in an unknown state. All flip flops can be initial-
ized by applying a global reset signal to the device.
Upon assertion of the global reset, I/O and logic block flip flops are either set or reset
depending on their definition in the design.
Configuration Schematics
The following schematics show typical connections to the DL6000 for each loading
mode.
Serial PROM Configuration Mode
In the serial PROM configuration mode, the device automatically loads itself from a
serial PROM when the system is powered up. The PROM provides serial data and
responds to a clock signal generated by the DL6000 device.
Systems using this loading mode should be connected as shown in figure 16.
Figure 16: Serial PROM Configuration Schematic
Microprocessor Configuration Mode
In the microprocessor configuration mode, the device is loaded under user control
from a microprocessor interface. Data is loaded into the DL6000 device byte-wide in
response to the rising edge of a write enable signal. The DL6000 device generates a
ready signal that indicates it is ready for the next byte of data.
Systems using the microprocessor configuration mode should be connected as
shown in figure 17.
Serial
Memory
DL6000
D0
SYSDONE
PCLK
Data
CLK
CE
Reset/OE M0
M1
M2
STRPGM
0
0
0
1Reset Reset
DL6000 - Fast Field Programmable Gate Array
Page 24 DynaChip
Figure 17: Microprocessor Configuration
A microprocessor can also be used to load the DL6000 family device in serial exter-
nal mode. In this configuration, the microprocessor supplies a clock and serial data
to the DL6000 family device.
Programming Chains
Programming chains simplify connections for systems that use more than one
DL6000 family device. Using programming chains, one DL6000, called the last de-
vice, connects to the source of the configuration data. The remaining DL6000 devices
connect in a chain using their serial configuration pins.
Systems using programming chains with a serial PROM should be connected as
shown in figure 18. Systems using programming chains with a microprocessor
should be connected as shown in figure 19.
RDY
WE
STRTPGM
SYSDONE
D0, D[7:1 ]
Data
M0
M1
M2
Reset
1
0
1
8
µPDL6000
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 25
Figure 18: Programming Chain Using Serial Memory
Most Negaitive Voltage
Most Positive Voltage
VCC
Data
GND
Serial
Memory
VCC
Done
PCLK
Reset
M0
M1
M2
STPGM
D0
GND
DL6000
SY S
Done
VCC
Done
PCLK
Reset
M0
M1
M2
STPGM
D0
GND
DL6000
SYS
Done
VCC
Reset
M0
M1
M2
STPGM
D0
GND
DL6000
PCLK
SYS
Done
Reset/OE
CLK
CE
0
0
1
1
0
0
1
0
0
0
Reset
DL6000 - Fast Field Programmable Gate Array
Page 26 DynaChip
Figure 19: Programming Chain Using Microprocessor
Bitstream Size
The size of the programming bitstream for a DL6000 family device depends on the
number of logic blocks that are used in the design. The following table shows the
maximum number of programming bits for each device in the DL6000 family.
Table 11: Maximum Number of Programming Bits
Device Maximum Number of Programming Bits
DL6009 140,000
DL6020 270,000
DL6035 450,000
DL6055 670,000
DL6080 940,000
DL6105 1,300,000
Most Positive Voltage
Most Negaitive Voltage
V
CC
D[7:0]
GND
Processor
V
CC
Done
Reset
M0
M1
M2
STPGM
D0, D[7:1]
RDY
WE GND
DL6000
SYS
Done
V
CC
Done
Reset
M0
M1
M2
STPGM
D0, D[7:1]
RDY
WE GND
DL6000
SYS
Done
V
CC
Reset
M0
M1
M2
STPGM
D0, D[7:1]
RDY
WE GND
DL6000
SYS
Done
0
1
1
0
1
1
1
0
1
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 27
Configuration Pins
Two types of pins are used in the configuration process. Permanently dedicated pins
are always dedicated to configuration functions. User pins that can have special
functions become user I/O pins after device configuration
Pin Dedicated Function
PCKI/
PCKO Yes This pin has 3 different functions depending on the pro-
gramming mode.
1) If the device is the only device to be programmed or is
last in a programming chain and an external clock is
not being used, this pin is an output that sends the
master clock to all other devices and the serial PROM.
2) If the device is in a programming chain and is not the
last device, this is an input pin that receives the master
clock from the last device.
3) If an external, user supplied clock controls the config-
uration process, this pin is the input for that clock.
When not in programming, this pin defaults to an input.
STRPGM Yes This pin should be connected as shown in the configura-
tion schematics.
RESET Yes This reset is used for dynamic reprogramming. It is as-
serted by setting the mode pins to any value except ‘111'
and asserting the RESET pin (active low) for a minimum
of 10 ms. Note that the mode pins must be set before the
RESET is asserted. All non-dedicated configuration I/O's
assume states based on the function defined by the pro-
gramming mode.
If dynamic reprogramming is not required, the RESET pin
should be connected as shown in the configuration sche-
matics.
SYS
DONE Yes This output pin is dedicated for programming. Once con-
figuration has been completed, this pin goes from low to
high and stays high until either the power is turned off or
a reset signal is applied. If the device is the last or only de-
vice to be programmed, this pin signals the device that
configuration has been completed and to start normal op-
eration. Also, if the device is the last in a programming
chain, this pin signals all other devices that programming
has been completed and to return to normal operation.
This signal also controls the enabling and disabling of a
serial PROM(s).
M0 - M2 No These pins are inputs during programming. They are
used to tell the device(s) which mode will be used for con-
figuration. The list of settings for each configuration mode
is shown in table 10. These pins become I/O's during nor-
mal operation. If the mode pins are not connected, they
are pulled down to a logic ‘0’.
DL6000 - Fast Field Programmable Gate Array
Page 28 DynaChip
Pin Dedicated Function
DONE No This is an input pin during programming that is only used
in a multiple device configuration mode. If the device is
not last, the DONE pin is tied to the SYSDONE pin of the
last device. A low to high on this pin signals that program-
ming has been completed and the device begins normal
operation. This pin can be used as an I/O during normal
operation.
D0 No This is an input pin during programming. It accepts serial
data from a memory source or another device. It can also
accept the LSB from a byte wide memory source for mi-
croprocessor configuration mode. This pin can be used
as an I/O during normal operation.
D1 - D7 No These are data input pins for the microprocessor configu-
ration mode. They are only activated after the reset signal
has been applied. They accepts bits 1 - 7 of data loaded
from a parallel source. Can be used as I/Os during normal
operation.
WE No This is a input pin during microprocessor configuration
mode. It is only activated after the reset signal has been
applied. This pin is used by the processor to signal the
DL6000 that 8-bits have been placed on the D[7:0] pins
for loading. This pin becomes an I/O during normal oper-
ation.
RDY No This is an output pin for microprocessor configuration
mode. It signals an external processor that 8 bits have
been loaded and the device is ready to receive the next 8
bits. This pin can be used as an I/O during normal opera-
tion.
DOUT No This outputs pin supplies the bitstream during readback
mode. This pin can be used as an I/O during normal op-
eration.
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 29
JTAG
All devices in the DL60000 family provide JTAG Boundary Scan. Completely com-
patible with IEEE specifications, this feature simplifies testing of boards with surface
mount packages or closely spaced pins.
Four JTAG instructions are supported as shown in table 12.
The JTAG ID register is read when the DL6000 is reset and when Opcode 1101 is
loaded. On power-up, the opcode defaults to 1101. Internal pull-up resistors are pro-
vided on the TDI and TMS pins.
The DL6000 JEDEC ID number is 331-300-6100-0.
JTAG Instructions Register Opcode
SAMPL/PRE BSC 1000
EXTEST BSC 0000
BYPASS BYPASS 1111
IDCODE ID 1101
Table 12: JTAG Instructions
DL6000 - Fast Field Programmable Gate Array
Page 30 DynaChip
Product Specifications
Maximum Ratings
Note:
Permanent damage to the device may occur if the Absolute Maximum ratings are exceeded.
This is a stress rating only. Functional operation of the device at these or any other condi-
tions other than those listed under the Recommended Operating Conditions is not im-
plied.
Exposure to Absolute Maximum Ratings conditions for extended periods of time may af-
fect device reliability.
Operating Conditions
Notes:
(1) 0.25µ devices require a core supply voltage of 2.5V +/- 5% and an I/O supply voltage of
3.3V +/- 5%.
(2) All junction temperatures above those listed as Operating conditions are illegal.
Symbol Description Value Unit
VCC VCC Pin Potential to GND Pin -0.5 to +5.0 V
VIN Input V oltage -0.5 to VCC + 0.5 V
VTS Voltage applied to 3-state output -0.5 to VCC + 0.5 V
TSTORE Storage temperature -65 to +150 C
TJJunction Temperature +150 C
Table 13: Absolute Maximum Rating
Symbol Description Min Max Unit
VCC(1) Supply voltage relative to GND
Commercial 0 C to 85 C junction 3.14 3.47 V
Industrial –40 C to 100 C junction 3.0 3.6 V
VTT GTL terminating voltage relative to GND
Commercial 0 C to 85 C junction 1.14 1.26 V
Industrial –40 C to 100 C junction 1.08 1.32 V
Table 14: Recommended Operating Conditions
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 31
DC Characteristics Over Operating Conditions
Notes:
(1) With 50% of the outputs simultaneously sinking 16 mA each.
(2) Sink/Source current in TTL mode varies with slew rate setting:
Fast slew rate: sink/source current = 16 mA (at VCC min)
Medium slew rate: sink/source current = 11 mA (at VCC min)
Slow slew rate: sink/source current = 5 mA (at VCC min)
(3) Sink current in GTL mode = 24 mA. Source current is provided by external pull-up resistor.
(4) VREF = 2/3 VTT
(5) All I/O pins except clock inputs are 5 volt tolerant.
(6) The maximum voltage applied to the following clock input pins should not exceed this
value, even if they are used as non-clock I/O.
QCLK1TL, QCLK1TLN, QCLK2TL, QCKL2TLN, QCLK1BL, QCKL1BLN, QCLK2BL,
QCKL2BLN, QCLK1BR, QCLK1BRN, QCLK2BR, QCKL2BRN, QCLK1TR, QCKL1TRN,
QCLK2TR, QCKL2TRN, GCLK1, GCLK1N, GCLK2, GCLK2N, PLLIREST, PLL2REST
Symbol Parameter Min Max Units Test Conditions
VIMAX(5) Max. voltage applied to input - 5.5 V
VCMAX(6) Max. voltage applied to clock
inputs - 3.63 V
VIH(TTL) High-level Input Voltage 2.0 VCC +
0.3 V
VIL(TTL) Low-level input voltage 0.0 0.8 V
VIH(CMOS) High-level Input Voltage 0.7VCC VCC V
VIL(CMOS) Low-level input voltage 0.0 0.3VCC V
VIH(GTL) High-level Input Voltage VREF +
0.2 VTT V
VIL(GTL) Low-level input voltage 0.0 VREF -
0.2 V
VIH(LVPECL) High-level input voltage 2.135 2.420 V When VCC = 3.3V
VIL(LVPECL) Low-level input voltage 1.490 1.825 V When VCC = 3.3V
VOH (TTL) High level output voltage 2.4 V VCC min, See note 2 for IOH
VOL(TTL) Low level output voltage (1,2) - 0.4 V VCC min, See note 2 for IOL
VOH(GTL) High level output voltage (3,4) -V
TT V
VOL(GTL) Low level output voltage (3) - 0.4 V IOL = 20 mA, VTT max
ICC Quiescent current - 10 mA VCC = MAX; All I/O’s open
IIL Leakage Current -10 +10 µA
CIN Input capacitance - 8.5 pF
Table 15: DC Electrical Characteristics
DL6000 - Fast Field Programmable Gate Array
Page 32 DynaChip
Clock and Set/Reset Buffer Switching Characteristics
Notes:
(1) Global and quadrant clock delays are measured from the input pin on the device to the
flip flop clock input.
(2) All delays are specified over commercial voltage and temperature range.
(3) Clock delays are also referred to as latency.
Notes:
(1) Global and quadrant clock delays are measured from the input pin on the device to the
flip flop clock input.
(2) All delays are specified over commercial voltage and temperature range.
(3) Clock delays are also referred to as latency.
Description Symbol
Speed Grade
Units-E -F -G
Max Max Max
Clock buffer delay with PLL TCPLL 1.1 1.0 0.9 ns
Global clock delay without PLL (1) TGCKD 6.7 5.6 5.0 ns
Global clock skew TGCKS .15 .15 .15 ns
Quadrant clock delay without PLL(1) TQCKD 5.5 5.0 4.5 ns
Quadrant clock skew TQCKS .15 .15 .15 ns
Clock min pulse width high TMPH 2.4 2.2 2.0 ns
Clock min pulse width low TMPL 2.4 2.2 2.0 ns
Global Set/Reset delay TGSR 33 30 27 ns
Table 16: Clock Buffer AC Characteristics (Input Set to TTL)
Description Symbol
Speed Grade
Units-E -F -G
Max Max Max
Clock buffer delay with PLL TCPLL 1.9 1.7 1.6 ns
Global clock delay without PLL (1) TGCKD 7.6 6.1 5.5 ns
Global clock skew TGCKS .15 .15 .15 ns
Quadrant clock delay without PLL(1) TQCKD 6.4 5.9 5.4 ns
Quadrant clock skew TQCKS .15 .15 .15 ns
Clock min pulse width high TMPH 2.4 2.2 2.0 ns
Clock min pulse width low TMPL 2.4 2.2 2.0 ns
Global Set/Reset delay TGSR 34 31 28 ns
Table 17: Clock Buffer AC Characteristics (Input Set to GTL)
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 33
Notes:
(1) Global and quadrant clock delays are measured from the input pin on the device to the
flip flop clock input.
(2) All delays are specified over commercial voltage and temperature range.
(3) Clock delays are also referred to as latency.
Notes:
(1) Global and quadrant clock delays are measured from the input pin on the device to the
flip flop clock input.
(2) All delays are specified over commercial voltage and temperature range.
(3) Clock delays are also referred to as latency.
(4) For RAM operation, see clock min pulse width high in table 25.
Description Symbol
Speed Grade
Units-E -F -G
Max Max Max
Clock buffer delay with PLL TCPLL 1.9 1.7 1.6 ns
Global clock delay without PLL (1) TGCKD 7.6 6.1 5.5 ns
Global clock skew TGCKS .15 .15 .15 ns
Quadrant clock delay without PLL(1) TQCKD 6.4 5.9 5.4 ns
Quadrant clock skew TQCKS .15 .15 .15 ns
Clock min pulse width high TMPH 2.4 2.2 2.0 ns
Clock min pulse width low TMPL 2.4 2.2 2.0 ns
Global Set/Reset delay TGSR 34 31 28 ns
Table 18: Clock Buffer AC Characteristics (Input Set to LV-PECL)
Description Symbol
Speed Grade
Units-E -F -G
Max Max Max
Clock buffer delay with PLL TCPLL 1.9 1.7 1.6 ns
Global clock delay without PLL (1) TGCKD 7.6 6.1 5.5 ns
Global clock skew TGCKS .15 .15 .15 ns
Quadrant clock delay without PLL(1) TQCKD 6.4 5.9 5.4 ns
Quadrant clock skew TQCKS .15 .15 .15 ns
Clock min pulse width high (4) TMPH 2.4 2.2 2.0 ns
Clock min pulse width low TMPL 2.4 2.2 2.0 ns
Global Set/Reset delay TGSR 34 31 28 ns
Table 19: Clock Buffer AC Characteristics (Input Set to Differential LV-PECL)
DL6000 - Fast Field Programmable Gate Array
Page 34 DynaChip
Input and Output Block Switching Characteristics
Notes:
(1) All delays are specified over commercial voltage and temperature range.
(2) Output delays are specified with no load. Add the following delays to adjust for loading.
Fast Slew Rate: 40 ps/pf
Medium Slew Rate: 60 ps/pf
Slow Slew Rate: 95 ps/pf
(3) The maximum loading for outputs switching at the same time in the same direction is
shown below. Significant ground bounce may occur if these guidelines are violated.
Fast Slew Rate: 200 pf between each power/ground pair
Medium Slew Rate: 300 pf between each power/ground pair
Slow Slew Rate: 400 pf between each power/ground pair
(4) Each output pin has individual slew rate control.
Three-state Buffer Characteristics
Notes:
(1) All delays are specified over commercial voltage and temperature range.
(2) Output delays are specified with no load. Add the following delays to adjust for loading.
Fast Slew Rate: 40 ps/pf
Medium Slew Rate: 60 ps/pf
Slow Slew Rate: 95 ps/pf
(3) Each output pin has individual slew rate control.
Description Symbol
Speed Grade
Units-E -F -G
Max Max Max
Input buffer combinatorial delay TINPD 4.3 3.2 2.6 ns
Input Register Set-up Time (global clock) TINIS1 2.1 1.6 1.3 ns
Input Register Hold Time (global clock) TINIH1 000ns
Input Register Clock to Output (global clock) TINCO1 3.5 2.6 2.1 ns
Output buffer combinatorial delay (no load)(2,3) TOUTIS1 6.0 4.6 3.5 ns
Output Register Set-up Time (global clock) TOUTIS2 3.5 2.6 1.9 ns
Output Register Hold Time (global clock) TOUTIH1 000ns
Output Register Clock to Output (global clock,
no load) (2,3) TOUTCO1 3.6 2.9 2.3 ns
I/O Register Clock Enable Setup Time TCES1 2.7 2.0 1.4 ns
I/O Register Clock Enable Hold Time TCEH1 000ns
Input Register GSR set/reset delays TGSRI 3.4 2.6 2.1 ns
Output Register GSR set/reset delays TGSRO 3.7 3.0 2.4 ns
Input Register GSR set/reset setup time TGSRIS1 0.5 0.4 0.3 ns
Output Register GSR set/reset setup time TGSROS1 0.5 0.4 0.3 ns
Table 20: Input and Output Buffer Parameters (I/O Set to TTL)
Description Symbol
Speed Grade
Units-E -F -G
Max Max Max
3-state to Pad Active (no load)(2,3) T3SOE 4.5 3.7 3.3 ns
3-state to Pad Hi-Z (no load) (2,3) TINIS1 4.5 3.7 3.3 ns
Table 21: Three-state Buffer Delays
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 35
Notes:
(1) All delays are specified over commercial voltage and temperature range.
(2) Output delays are specified with no load. Add the following delays to adjust for loading.
GTL: 27 ps/pf
Description Symbol
Speed Grade
Units-E -F -G
Max Max Max
Output buffer combinatorial delay (no load)(2) TOUTIS1 5.2 3.9 2.9 ns
Output Register Set-up Time (global clock) TOUTIS2 3.4 2.6 2.0 ns
Output Register Hold Time (global clock) TOUTIH1 000ns
Output Register Clock to Output (global
clock, no load) (2) TOUTCO1 2.8 2.2 1.8 ns
I/O Register Clock Enable Setup Time TCES1 2.8 2.0 1.6 ns
I/O Register Clock Enable Hold Time TCEH1 000ns
Input Register GSR set/reset delays TGSRI 3.5 2.6 2.1 ns
Output Register GSR set/reset delays TGSRO 2.9 2.3 1.9 ns
Input Register GSR set/reset setup time TGSRIS1 0.5 0.4 0.3 ns
Output Register GSR set/reset setup time TGSROS1 0.5 0.4 0.3 ns
Table 22: Input and Output Buffer Parameters (I/O Set to GTL)
Description Symbol
Speed Grade
Units-E -F -G
Max Max Max
Input buffer combinatorial delay TINPD 5.3 4.0 3.2 ns
Input Register Set-up Time (global clock) TINIS1 3.2 2.4 1.9 ns
Input Register Hold Time (global clock) TINIH1 000ns
Input Register Clock to Output (global clock) TINCO1 4.5 3.4 2.7 ns
Table 23: Input and Output Buffer Parameters (I/O Set to LV-PECL/LVDS)
DL6000 - Fast Field Programmable Gate Array
Page 36 DynaChip
Logic Block Switching Characteristics
Notes:
(1) All delays are specified over commercial voltage and temperature range.
(2) Industrial speed grade delays are 5% higher.
(3) Refer to figure 10 for a picture of the logic paths described in the above table.
(4) The AND/OR combinatorial delay, adder/multiplier delay and 4:1 multiplexer delay in-
clude the complete path through the logic block from inputs through outputs, connection
buffers and routing to the next logic block or active repeater.
(5) The AND/OR to flip flop, 4:1 multiplexer data to flip-flop, 4:1 multiplexer select to flip-
flop and adder/multiplier to flip flop delay includes all elements from inputs to the D/T
input of either flip flop.
(6) Logic block delays shown in table 24 include all connection buffer and routing delays
within a 9 block routing region. Additional delays are incurred only when a net must go
through an active repeater to reach a block in another routing region. See table 27 for ac-
tive repeater delays.
Description Symbol
Speed Grade
Units-E -F -G
Max Max Max
3-input AND/OR to flip-flop delay TANDR3 3.6 3.3 3.0 ns
6-input AND/OR to flip-flop delay TANDR6 4.2 3.8 3.4 ns
9-input AND/OR to flip-flop delay TANDR9 5.1 4.6 4.1 ns
4:1 Multiplexer data to flip-flop TMUXR 3.5 3.2 2.9 ns
4:1 Multiplexer select to flip-flop TMUXSR 3.5 3.2 2.9 ns
Adder/multiplier to flip-flop (sum) TADDCR 4.6 3.6 3.2 ns
3-input AND/OR combinatorial delay TANDC3 4.0 3.8 3.6 ns
6-input AND/OR combinatorial delay TANDC6 4.7 4.3 3.9 ns
9-input AND/OR combinatorial delay TANDC9 5.6 5.1 4.6 ns
Adder/Multiplier delay (sum) TADDC 4.5 4.1 3.7 ns
4:1 Multiplexer data delay TMUXC 4.1 3.7 3.4 ns
4:1 Multiplexer select delay TMUXS 4.1 3.7 3.4 ns
D Flip-flop setup time TSU 0.7 0.6 0.5 ns
T Flip-flop setup time TSUT 0.9 0.8 0.7 ns
Flip-flop clock to out (GCLK or QCLK) TCOG 2.0 1.8 1.6 ns
Flip-flop clock to out (LCK2) TCOL 5.5 5.0 4.5 ns
GSR set/reset to flip-flop out TGSRFF 2.2 2.0 1.8 ns
LSR set/reset delay TLSR 5.9 5.4 4.9 ns
Logic Block Pass Through TLBPT 4.0 3.6 3.2 ns
Table 24: Logic Block Switching Parameters
(Includes All Routing Delays Within Routing Region(6))
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 37
Figure 20: Logic Block Delays Includes Routing Within a Region
RAM Switching Characteristics
Notes:
(1) All delays are specified over commercial voltage and temperature range.
(2) Applies to RAM operation only. See table 19 for clock min pulse width high in all other
operating modes.
Description Symbol
Speed Grade
Units-E -F -G
Read/Write Operation Max Max Max
Address setup time before clock TAS 4.0 3.5 3.0 ns
Address hold time after clock TAH 000ns
WE setup time before clock TWS 4.0 3.5 3.0 ns
WE hold time after clock TWH 000ns
DIN setup time before clock TDS 4.0 3.5 3.0 ns
DIN hold time after clock TDH 000ns
Clock min pulse width high (2) TMPH 5.0 5.0 5.0 ns
Read Cycle Min Min Min
Output data valid after clock TROS 10.0 9.0 8.0 ns
Table 25: RAM Switching Parameters – Dual Port Mode
Logic
Block Logic
Block Logic
Block
Logic
Block Logic
Block Logic
Block
Logic
Block Logic
Block
Logic
Block
Logic
Block
Connection Buffer
Input Connect ion
Routing
Logic Block
The delay through all the se
elements are included in the
logic block delays in
table 23.
DL6000 - Fast Field Programmable Gate Array
Page 38 DynaChip
Note:
All delays are specified over commercial voltage and temperature range.
Programmable Interconnect Characteristics
Note:
All delays are specified over commercial voltage and temperature range.
Description Symbol
Speed Grade
Units-E -F -G
Read/Write Operation Max Max Max
Address setup time before clock TAS 4.0 3.5 3.0 ns
Address hold time after clock TAH 000ns
WE setup time before clock TWS 4.0 3.5 3.0 ns
WE hold time after clock TWH 000ns
DIN setup time before clock TDS 4.0 3.5 3.0 ns
DIN hold time after clock TDH 000ns
Read Cycle Min Min Min
Output data valid after clock TROS 11.0 10.0 9.0 ns
Table 26: RAM Switching Parameters – Single Port Mode
Description Symbol
Speed Grade
Units-E -F -G
Max Max Max
Horizontal Active Repeater Delay THRPT 1.2 0.9 0.8 ns
Vertical Active Repeater Delay TVRPT 0.9 0.7 0.6 ns
Vertical to Horizontal Active Repeater Delay TVHRPT 1.2 0.9 0.8 ns
Horizontal to Vertical Active Repeater Delay THVRPT 1.2 0.9 0.8 ns
Table 27: Active Repeater Switching Parameters
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 39
Pin Description
352-pin SBGA - DL6035
Pin Description 352 SBGA Ball No. Pin Description 352 SBGA Ball No.
RESET AE25 IO_46/QCLK1BLN V25
STRPGM AE24 IO_47/QCLK1BL V23
PCKI/PCKO AD22 IO_48 W26
SYSDONE AE3 IO_49/DI(5) W24
PLL1REST B25 IO_50/QCLK2BLN W25
PLL2REST C3 IO_51/QCLK2BL Y24
IO_2 (1) C24 IO_52 Y25
IO_3 C25 IO_53/DI(4) AA25
IO_4 E24 IO_54 Y23
IO_5 F23 IO_55/DI(3) AB25
IO_6 D25 IO_56 AA24
IO_7 F24 IO_57/DI(2) AA23
IO_8 B26 IO_58 AC26
IO_9 D26 IO_59/DI(1) AB24
IO_10 G24 IO_60 AC25
IO_11 E25 IO_61/DI(0) AD25
IO_12 H23 IO_62/TDO AB23
IO_13 H24 IO_63 AD24
IO_14/QCLK1TLN F25 IO_64 AC24
IO_15/QCLK1TL J24 IO_65 AD23
IO_16 G25 IO_66 AF25
IO_17 K23 IO_67/M0 AC22
IO_18/QCLK2TLN G26 IO_68 AE23
IO_19/QCLK2TL K24 IO_69 AE22
IO_20 H25 IO_70/M1 AC21
IO_21 L23 IO_71 AF22
IO_22 J25 IO_72/M2 AD21
IO_23 L24 IO_73 AC20
IO_24 K25 IO_74/DONE AE21
IO_25 L25 IO_75 AD20
IO_26 M23 IO_76/DOUT AE20
IO_27 L26 IO_77 AE19
IO_28 M24 IO_78 AD19
IO_29 N23 IO_79 AE18
IO_30/GCLK1N M25 IO_80 AC18
IO_31/GCLK1 N24 IO_81 AD18
IO_32 N25 IO_82 AF18
IO_33 P24 IO_83 AC17
IO_34 N26 IO_84 AE17
IO_35 R24 IO_85 AE16
IO_36 P25 IO_86 AD17
IO_37/WE R25 IO_87 AF16
IO_38 R23 IO_88 AC16
IO_39/RDY T25 IO_89 AD16
IO_40 T24 IO_90 AE15
IO_41/DI(7) T23 IO_91 AC15
IO_42 U26 IO_92 AE14
IO_43/DI(6) U24 IO_93 AF13
IO_44 U25 IO_94 AD15
IO_45 V24 IO_95 AE13
Table 28: DL6035/352 Pin Description
DL6000 - Fast Field Programmable Gate Array
Page 40 DynaChip
IO_96 AD14 IO_149/QCLK1BRN U3
IO_97 AE12 IO_150 U2
IO_98 AD13 IO_151 T4
IO_99 AD12 IO_152 T2
IO_100 AC13 IO_153 R2
IO_101 AC12 IO_154 T3
IO_102 AF11 IO_155 P2
IO_103 AD11 IO_156 R3
IO_104 AE11 IO_157 P4
IO_105 AE10 IO_158 P1
IO_106 AC11 IO_159 P3
IO_107 AE9 IO_160/GSR N2
IO_108 AD10 IO_161 N3
IO_109 AD9 IO_162 M2
IO_110 AE8 IO_163 M3
IO_111 AC9 IO_164/GCLK2 L2
IO_112 AE7 IO_165/GCLK2N K1
IO_113 AF6 IO_166 M4
IO_114 AD8 IO_167 K2
IO_115 AE6 IO_168 L3
IO_116 AD7 IO_169 L4
IO_117 AC7 IO_170 J2
IO_118 AE5 IO_171 K3
IO_119 AD6 IO_172 H1
IO_120 AF4 IO_173 K4
IO_121 AF2 IO_174 H2
IO_122 AC6 IO_175 J3
IO_123 AE4 IO_176/QCLK2TR G2
IO_124 AD5 IO_177/QCLK2TRN F1
IO_125 AC5 IO_178 J4
IO_126 AD3 IO_179 F2
IO_127/TMS AD4 IO_180/QCLK1TR H3
IO_128/TCK AE2 IO_181/QCLK1TRN G3
IO_129/TDI AD2 IO_182 E2
IO_130 AC3 IO_183 G4
IO_131 AC2 IO_184 D1
IO_132 AB4 IO_185 D2
IO_133 AB3 IO_186 F3
IO_134 AE1 IO_187 C2
IO_135 AA3 IO_188 F4
IO_136 AB2 IO_189 E3
IO_137 AB1 IO_190 D3
IO_138 Y4 IO_191 B2
IO_139 AA2 IO_193 (2) C4
IO_140 Y3 IO_194 B3
IO_141 W4 IO_195 C5
IO_142 Y2 IO_196 B4
IO_143 W3 IO_197 A3
IO_144/QCLK2BR W2 IO_198 D6
IO_145/QCKL2BRN V3 IO_199 B5
IO_146 V2 IO_200 C7
IO_147 U4 IO_201 D8
IO_148/QCLK1BR V1 IO_202 A5
Pin Description 352 SBGA Ball No. Pin Description 352 SBGA Ball No.
Table 28: DL6035/352 Pin Description
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 41
IO_203 C8 IO_256 B23
IO_204 C6 VCC_IO B1
IO_205 B6 VCC_IO E1
IO_206 D9 VCC_IO L1
IO_207 B7 VCC_IO R1
IO_208 C9 VCC_IO W1
IO_209 C10 VCC_IO AC1
IO_210 B8 VCC_IO AF5
IO_211 D11 VCC_IO AF9
IO_212 A8 VCC_IO AF12
IO_213 B9 VCC_IO AF17
IO_214 C11 VCC_IO AF20
IO_215 B10 VCC_IO AF23
IO_216 D12 VCC_IO AD26
IO_217 C12 VCC_IO Y26
IO_218 A10 VCC_IO T26
IO_219 C13 VCC_IO K26
IO_220 B11 VCC_IO H26
IO_221 B12 VCC_IO C26
IO_222 C14 VCC_IO A23
IO_223 B13 VCC_IO A18
IO_224 D14 VCC_IO A16
IO_225 A14 VCC_IO A12
IO_226 C15 VCC_IO A9
IO_227 B14 VCC_IO A4
IO_228 D15 VCC_CORE/CLK C1
IO_229 C16 VCC_CORE/CLK J1
IO_230 A15 VCC_CORE/CLK M1
IO_231 D16 VCC_CORE/CLK T1
IO_232 B15 VCC_CORE/CLK AA1
IO_233 B16 VCC_CORE/CLK AD1
IO_234 C17 VCC_CORE/CLK AF3
IO_235 B17 VCC_CORE/CLK AF8
IO_236 D17 VCC_CORE/CLK AF15
IO_237 C18 VCC_CORE/CLK AF21
IO_238 B18 VCC_CORE/CLK AF24
IO_239 C19 VCC_CORE/CLK AE26
IO_240 A19 VCC_CORE/CLK AB26
IO_241 B19 VCC_CORE/CLK R26
IO_242 D19 VCC_CORE/CLK M26
IO_243 B20 VCC_CORE/CLK J26
IO_244 C20 VCC_CORE/CLK E26
IO_245 C21 VCC_CORE/CLK A24
IO_246 A21 VCC_CORE/CLK A17
IO_247 D21 VCC_CORE/CLK A11
IO_248 B21 VCC_CORE/CLK A6
IO_249 A22 VCC_CORE/CLK A2
IO_250 C22 VCC_PLL E4
IO_251 B22 VCC_PLL E23
IO_252 B24 GND_IO D4
IO_253 C23 GND_IO H4
IO_254 A25 GND_IO N4
IO_255 D24 GND_IO R4
Pin Description 352 SBGA Ball No. Pin Description 352 SBGA Ball No.
Table 28: DL6035/352 Pin Description
DL6000 - Fast Field Programmable Gate Array
Page 42 DynaChip
Notes:
(1) IO_1 is not available due to the PLL1REST.
(2) IO_192 is not available due to the PLL2REST.
GND_IO V4 GND_CORE/CLK G1
GND_IO AA4 GND_CORE/CLK N1
GND_IO AC4 GND_CORE/CLK U1
GND_IO AC8 GND_CORE/CLK Y1
GND_IO AC10 GND_CORE/CLK AF1
GND_IO AC14 GND_CORE/CLK AF7
GND_IO AC19 GND_CORE/CLK AF10
GND_IO AC23 GND_CORE/CLK AF14
GND_IO W23 GND_CORE/CLK AF19
GND_IO U23 GND_CORE/CLK AF26
GND_IO P23 GND_CORE/CLK AA26
GND_IO J23 GND_CORE/CLK V26
GND_IO G23 GND_CORE/CLK P26
GND_IO D23 GND_CORE/CLK F26
GND_IO D20 GND_CORE/CLK A26
GND_IO D18 GND_CORE/CLK A20
GND_IO D13 GND_CORE/CLK A13
GND_IO D10 GND_CORE/CLK A7
GND_IO D7 GND_PLL D5
GND_CORE/CLK A1 GND_PLL D22
Pin Description 352 SBGA Ball No. Pin Description 352 SBGA Ball No.
Table 28: DL6035/352 Pin Description
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 43
208-pin QFP - DL6035
Pin Description 208 QFP Pin No. Pin Description 208 QFP Pin No.
VCC_PLL 1 VCC_CK 53
GND_CK 2 IO_128 TCK 54
VCC_CK 3 IO_127 TMS 55
GND_INT 4 SYSDONE 56
PLL2REST 5 IO_124 57
IO_190 6 IO_123 58
VCC_INT 7 GND_IO 59
IO_187 8 GND_INT 60
GND_IO 9 IO_120 61
IO_184 10 IO_119 62
VCC_IO 11 VCC_IO 63
IO_181 QCLK1TRN 12 VCC_INT 64
IO_180 QCLK1TR 13 IO_116 65
IO_177 QCLK2TRN 14 IO_115 66
SUBN-GND 15 IO_112 67
IO_176 QCLK2TR 16 IO_111 68
IO_172 17 IO_108 69
IO_171 18 IO_107 70
GND_IO 19 GND_IO 71
GND_INT 20 GND_INT 72
VCC_IO 21 IO_104 73
IO_166 22 VCC_IO 74
IO_165 GCLK2N 23 VCC_INT 75
IO_164 GCLK2 24 IO_99 76
IO_163 25 IO_96 77
GND_IO 26 IO_93 78
IO_161 27 IO_92 79
VCC_CK 28 IO_91 80
GND_CK 29 GND_IO 81
IO_160 GSR 30 IO_89 82
IO_159 31 VCC_INT 83
VCC_IO 32 IO_88 84
IO_157 33 IO_87 85
IO_156 34 VCC_IO 86
IO_155 35 GND_INT 87
GND_IO 36 IO_84 88
IO_153 37 IO_83 89
IO_152 38 IO_80 90
VCC_IO 39 IO_79 91
IO_149 QCLK1BRN 40 IO_76 DOUT 92
IO_148 QCLK1BR 41 GND_IO 93
IO_145 QCKL2BRN 42 IO_74 DONE 94
IO_144 QCLK2BR 43 VCC_INT 95
GND_INT 44 IO_72 M2 96
GND_IO 45 VCC_IO 97
VCC_INT 46 IO_70 M1 98
IO_136 47 PCKI/PCKO 99
VCC_IO 48 IO_68 100
6035 IO_131
6035X GTL_REF_EXT
49 IO_67 M0 101
IO_129 TDI 50 STRPGM 102
Blank Pin on the 35K
208 QFP 51 VCC_CK 103
GND_CK 52 GND_INT 104
Table 29: DL6035/208 Pin Description
DL6000 - Fast Field Programmable Gate Array
Page 44 DynaChip
GND_CK 105 GND_PLL 157
RESET 106 IO_256 158
IO_62 TDO 107 IO_255 159
IO_61 DI(0) 108 VCC_IO 160
VCC_INT 109 IO_254 161
IO_59 DI(1) 110 IO_253 162
GND_IO 111 VCC_INT 163
IO_57 DI(2) 112 GND_IO 164
GND_INT 113 IO_250 165
IO_55 DI(3) 114 GND_INT 166
VCC_IO 115 IO_246 167
IO_53 DI(4) 116 IO_245 168
IO_51 QCLK2BL 117 IO_242 169
IO_50 QCLK2BLN 118 IO_241 170
IO_49 DI(5) 119 VCC_IO 171
IO_47 QCLK1BL 120 IO_238 172
IO_46 QCLK1BLN 121 VCC_INT 173
IO_43 DI(6) 122 GND_IO 174
GND_IO 123 IO_234 175
IO_42 124 GND_INT 176
IO_41 DI(7) 125 IO_231 177
IO_39 RDY 126 IO_230 178
VCC_IO 127 IO_227 179
IO_37 WE 128 GND_IO 180
IO_35 129 IO_226 181
IO_34 130 IO_224 182
GND_CK 131 IO_223 183
VCC_CK 132 VCC_IO 184
IO_31 GCLK1 133 IO_222 185
IO_30 GCLK1N 134 IO_221 186
IO_28 135 IO_220 187
GND_IO 136 IO_219 188
IO_23 137 GND_IO 189
VCC_IO 138 IO_218 190
IO_19 QCLK2TL 139 IO_217 191
IO_18 QCLK2TLN 140 VCC_IO 192
IO_15 QCLK1TL 141 IO_214 193
IO_14 QCLK1TN 142 IO_213 194
IO_11 143 IO_210 195
GND_IO 144 IO_209 196
IO_8 145 IO_206 197
IO_7 146 IO_205 198
VCC_IO 147 GND_INT 199
IO_5 148 GND_IO 200
GND_INT 149 IO_202 201
IO_4 150 IO_201 202
IO_3 151 VCC_INT 203
PLL1REST 152 VCC_IO 204
VCC_INT 153 IO_198 205
VCC_CK 154 IO_194 206
GND_CK 155 IO_193 207
VCC_PLL 156 GND_PLL 208
Pin Description 208 QFP Pin No. Pin Description 208 QFP Pin No.
Table 29: DL6035/208 Pin Description
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 45
352-pin SBGA - DL6020
Pin Description 352 SBGA Ball No. Pin Description 352 SBGA Ball No.
RESET AE25 IO_59/DI(1) AB24
STRPGM AE24 IO_61/DI(0) AD25
PCKI/PCKO AD22 IO_62/TDO AB23
SYSDONE AE3 IO_63 AD24
PLL1REST B25 IO_64 AC24
PLL2REST C3 IO_65 AD23
IO_2 C24 IO_66 AF25
IO_3 C25 IO_67/M0 AC22
IO_4 E24 IO_68 AE23
IO_5 F23 IO_69 AE22
IO_6 D25 IO_70/M1 AC21
IO_7 F24 IO_72/M2 AD21
IO_8 B26 IO_74/DONE AE21
IO_9 D26 IO_76/DOUT AE20
IO_10 G24 IO_77 AE19
IO_11 E25 IO_78 AD19
IO_12 H23 IO_79 AE18
IO_13 H24 IO_81 AD18
IO_14/QCLK1TLN F25 IO_82 AF18
IO_15/QCLK1TL J24 IO_83 AC17
IO_17 K23 IO_85 AE16
IO_18/QCLK2TLN G26 IO_87 AF16
IO_19/QCLK2TL K24 IO_88 AC16
IO_20 H25 IO_89 AD16
IO_22 J25 IO_91 AC15
IO_24 K25 IO_93 AF13
IO_25 L25 IO_94 AD15
IO_26 M23 IO_95 AE13
IO_28 M24 IO_96 AD14
IO_30/GCLK1N M25 IO_98 AD13
IO_31/GCLK1 N24 IO_99 AD12
IO_32 N25 IO_100 AC13
IO_33 P24 IO_101 AC12
IO_34 N26 IO_102 AF11
IO_35 R24 IO_103 AD11
IO_36 P25 IO_105 AE10
IO_37/WE R25 IO_106 AC11
IO_39/RDY T25 IO_108 AD10
IO_41/DI(7) T23 IO_110 AE8
IO_43/DI(6) U24 IO_112 AE7
IO_44 U25 IO_113 AF6
IO_46/QCLK1BLN V25 IO_115 AE6
IO_47/QCLK1BL V23 IO_117 AC7
IO_49/DI(5) W24 IO_118 AE5
IO_50/QCLK2BLN W25 IO_119 AD6
IO_51/QCLK2BL Y24 IO_120 AF4
IO_53/DI(4) AA25 IO_122 AC6
IO_55/DI(3) AB25 IO_123 AE4
IO_57/DI(2) AA23 IO_124 AD5
IO_58 AC26 IO_125 AC5
Table 30: DL6020 Pin Description
DL6000 - Fast Field Programmable Gate Array
Page 46 DynaChip
IO_126 AD3 IO_196 B4
IO_127/TMS AD4 IO_197 A3
IO_128/TCK AE2 IO_198 D6
IO_129/TDI AD2 IO_199 B5
IO_130 AC3 IO_201 D8
IO_131 AC2 IO_202 A5
IO_132 AB4 IO_204 C6
IO_133 AB3 IO_205 B6
IO_134 AE1 IO_207 B7
IO_135 AA3 IO_208 C9
IO_137 AB1 IO_210 B8
IO_138 Y4 IO_212 A8
IO_139 AA2 IO_213 B9
IO_140 Y3 IO_215 B10
IO_142 Y2 IO_216 D12
IO_143 W3 IO_217 C12
IO_144/QCLK2BR W2 IO_219 C13
IO_145/QCKL2BRN V3 IO_221 B12
IO_146 V2 IO_222 C14
IO_148/QCLK1BR V1 IO_223 B13
IO_149/QCLK1BRN U3 IO_224 D14
IO_151 T4 IO_225 A14
IO_152 T2 IO_226 C15
IO_154 T3 IO_227 B14
IO_156 R3 IO_229 C16
IO_158 P1 IO_230 A15
IO_159 P3 IO_232 B15
IO_160/GSR N2 IO_233 B16
IO_162 M2 IO_235 B17
IO_164/GCLK2 L2 IO_237 C18
IO_165/GCLK2N K1 IO_238 B18
IO_167 K2 IO_240 A19
IO_168 L3 IO_242 D19
IO_170 J2 IO_243 B20
IO_171 K3 IO_245 C21
IO_173 K4 IO_247 D21
IO_174 H2 IO_248 B21
IO_176/QCLK2TR G2 IO_249 A22
IO_177/QCLK2TRN F1 IO_250 C22
IO_178 J4 IO_251 B22
IO_180/QCLK1TR H3 IO_252 B24
IO_181/QCLK1TRN G3 IO_253 C23
IO_183 G4 IO_254 A25
IO_185 D2 IO_255 D24
IO_186 F3 IO_256 B23
IO_187 C2 VCC_IO B1
IO_188 F4 VCC_IO E1
IO_189 E3 VCC_IO L1
IO_190 D3 VCC_IO R1
IO_191 B2 VCC_IO W1
IO_193 C4 VCC_IO AC1
IO_194 B3 VCC_IO AF5
IO_195 C5 VCC_IO AF9
Pin Description 352 SBGA Ball No. Pin Description 352 SBGA Ball No.
Table 30: DL6020 Pin Description
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 47
Note:
Pins that are not shown should be left disconnected on the board.
VCC_IO AF12 GND_IO N4
VCC_IO AF17 GND_IO R4
VCC_IO AF20 GND_IO V4
VCC_IO AF23 GND_IO AA4
VCC_IO AD26 GND_IO AC4
VCC_IO Y26 GND_IO AC8
VCC_IO T26 GND_IO AC10
VCC_IO K26 GND_IO AC14
VCC_IO H26 GND_IO AC19
VCC_IO C26 GND_IO AC23
VCC_IO A23 GND_IO W23
VCC_IO A18 GND_IO U23
VCC_IO A16 GND_IO P23
VCC_IO A12 GND_IO J23
VCC_IO A9 GND_IO G23
VCC_IO A4 GND_IO D23
VCC_CORE/CLK C1 GND_IO D20
VCC_CORE/CLK J1 GND_IO D18
VCC_CORE/CLK M1 GND_IO D13
VCC_CORE/CLK T1 GND_IO D10
VCC_CORE/CLK AA1 GND_IO D7
VCC_CORE/CLK AD1 GND_CORE/CLK A1
VCC_CORE/CLK AF3 GND_CORE/CLK G1
VCC_CORE/CLK AF8 GND_CORE/CLK N1
VCC_CORE/CLK AF15 GND_CORE/CLK U1
VCC_CORE/CLK AF21 GND_CORE/CLK Y1
VCC_CORE/CLK AF24 GND_CORE/CLK AF1
VCC_CORE/CLK AE26 GND_CORE/CLK AF7
VCC_CORE/CLK AB26 GND_CORE/CLK AF10
VCC_CORE/CLK R26 GND_CORE/CLK AF14
VCC_CORE/CLK M26 GND_CORE/CLK AF19
VCC_CORE/CLK J26 GND_CORE/CLK AF26
VCC_CORE/CLK E26 GND_CORE/CLK AA26
VCC_CORE/CLK A24 GND_CORE/CLK V26
VCC_CORE/CLK A17 GND_CORE/CLK P26
VCC_CORE/CLK A11 GND_CORE/CLK F26
VCC_CORE/CLK A6 GND_CORE/CLK A26
VCC_CORE/CLK A2 GND_CORE/CLK A20
VCC_PLL E4 GND_CORE/CLK A13
VCC_PLL E23 GND_CORE/CLK A7
GND_IO D4 GND_PLL D5
GND_IO H4 GND_PLL D22
Pin Description 352 SBGA Ball No. Pin Description 352 SBGA Ball No.
Table 30: DL6020 Pin Description
DL6000 - Fast Field Programmable Gate Array
Page 48 DynaChip
352-pin SBGA - DL6009
Pin Description 352 SBGA Ball No. Pin Description 352 SBGA Ball No.
RESET AE25 IO_93 AF13
STRPGM AE24 IO_94 AD15
PCKI/PCKO AD22 IO_96 AD14
SYSDONE AE3 IO_98 AD13
PLL1REST B26 IO_101 AC12
PLL2REST C3 IO_103 AD11
IO_3 C25 IO_105 AE10
IO_5 F23 IO_106 AC11
IO_7 F24 IO_108 AD10
IO_9 D26 IO_110 AE8
IO_11 E25 IO_112 AE7
IO_14/QCLK1TLN F25 IO_115 AE6
IO_15/QCLK1TL J24 IO_117 AC7
IO_18/QCLK2TLN G26 IO_120 AF4
IO_19/QCLK2TL K24 IO_122 AC6
IO_22 J25 IO_123 AE4
IO_26 M23 IO_125 AC5
IO_30/GCLK1N M25 IO_127/TMS AD4
IO_31/GCLK1 N24 IO_128/TCK AE2
IO_33 P24 IO_129/TDI AD2
IO_35 R24 IO_132 AB4
IO_37/WE R25 IO_135 AA3
IO_39/RDY T25 IO_137 AB1
IO_41/DI(7) T23 IO_138 Y4
IO_43/DI(6) U24 IO_140 Y3
IO_46/QCLK1BLN V25 IO_142 Y2
IO_47/QCLK1BL V23 IO_144/QCLK2BR W2
IO_49/DI(5) W24 IO_145/QCKL2BRN V3
IO_50/QCLK2BLN W25 IO_148/QCLK1BR V1
IO_51/QCLK2BL Y24 IO_149/QCLK1BRN U3
IO_53/DI(4) AA25 IO_151 T4
IO_55/DI(3) AB25 IO_154 T3
IO_57/DI(2) AA23 IO_156 R3
IO_59/DI(1) AB24 IO_158 P1
IO_61/DI(0) AD25 IO_159 P3
IO_62/TDO AB23 IO_160/GSR N2
IO_64 AC24 IO_162 M2
IO_65 AD23 IO_164/GCLK2 L2
IO_67/M0 AC22 IO_165/GCLK2N K1
IO_68 AE23 IO_167 K2
IO_70/M1 AC21 IO_170 J2
IO_72/M2 AD21 IO_173 K4
IO_74/DONE AE21 IO_176/QCLK2TR G2
IO_76/DOUT AE20 IO_177/QCLK2TRN F1
IO_79 AE18 IO_180/QCLK1TR H3
IO_82 AF18 IO_181/QCLK1TRN G3
IO_85 AE16 IO_183 G4
IO_88 AC16 IO_185 D2
IO_89 AD16 IO_188 F4
IO_91 AC15 IO_189 E3
Table 31: DL6009 Pin Description
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 49
IO_194 B3 VCC_IO A12
IO_196 B4 VCC_IO A9
IO_198 D6 VCC_IO A4
IO_199 B5 VCC_CORE/CLK C1
IO_201 D8 VCC_CORE/CLK J1
IO_202 A5 VCC_CORE/CLK M1
IO_204 C6 VCC_CORE/CLK T1
IO_205 B6 VCC_CORE/CLK AA1
IO_207 B7 VCC_CORE/CLK AD1
IO_210 B8 VCC_CORE/CLK AF3
IO_212 A8 VCC_CORE/CLK AF8
IO_213 B9 VCC_CORE/CLK AF15
IO_216 D12 VCC_CORE/CLK AF21
IO_219 C13 VCC_CORE/CLK AF24
IO_222 C14 VCC_CORE/CLK AE26
IO_223 B13 VCC_CORE/CLK AB26
IO_226 C15 VCC_CORE/CLK R26
IO_229 C16 VCC_CORE/CLK M26
IO_232 B15 VCC_CORE/CLK J26
IO_233 B16 VCC_CORE/CLK E26
IO_235 B17 VCC_CORE/CLK A24
IO_237 C18 VCC_CORE/CLK A17
IO_240 A19 VCC_CORE/CLK A11
IO_242 D19 VCC_CORE/CLK A6
IO_245 C21 VCC_CORE/CLK A2
IO_247 D21 VCC_PLL E4
IO_249 A22 VCC_PLL E23
IO_251 B22 GND_IO D4
IO_252 B24 GND_IO H4
IO_253 C23 GND_IO N4
IO_255 D24 GND_IO R4
IO_256 B23 GND_IO V4
VCC_IO B1 GND_IO AA4
VCC_IO E1 GND_IO AC4
VCC_IO L1 GND_IO AC8
VCC_IO R1 GND_IO AC10
VCC_IO W1 GND_IO AC14
VCC_IO AC1 GND_IO AC19
VCC_IO AF5 GND_IO AC23
VCC_IO AF9 GND_IO W23
VCC_IO AF12 GND_IO U23
VCC_IO AF17 GND_IO P23
VCC_IO AF20 GND_IO J23
VCC_IO AF23 GND_IO G23
VCC_IO AD26 GND_IO D23
VCC_IO Y26 GND_IO D20
VCC_IO T26 GND_IO D18
VCC_IO K26 GND_IO D13
VCC_IO H26 GND_IO D10
VCC_IO C26 GND_IO D7
VCC_IO A23 GND_CORE/CLK A1
VCC_IO A18 GND_CORE/CLK G1
VCC_IO A16 GND_CORE/CLK N1
Pin Description 352 SBGA Ball No. Pin Description 352 SBGA Ball No.
Table 31: DL6009 Pin Description
DL6000 - Fast Field Programmable Gate Array
Page 50 DynaChip
Note:
Pins that are not shown should be left disconnected on the board.
GND_CORE/CLK U1 GND_CORE/CLK V26
GND_CORE/CLK Y1 GND_CORE/CLK P26
GND_CORE/CLK AF1 GND_CORE/CLK F26
GND_CORE/CLK AF7 GND_CORE/CLK A26
GND_CORE/CLK AF10 GND_CORE/CLK A20
GND_CORE/CLK AF14 GND_CORE/CLK A13
GND_CORE/CLK AF19 GND_CORE/CLK A7
GND_CORE/CLK AF26 GND_PLL D5
GND_CORE/CLK AA26 GND_PLL D22
Pin Description 352 SBGA Ball No. Pin Description 352 SBGA Ball No.
Table 31: DL6009 Pin Description
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 51
Package Drawings
352-pin SBGA
Figure 21: Package Drawing of 352-pin SBGA
SIDE VIEW
0.91
1.54
0.63
UNIT SHOWN FROM BALL ARRAY SIDE
(Dimensions in mm)
A1 BALL PAD CORNER
1.625 REF
1.625 REF
1.27 TYP. REF
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
20212223242526 19 18 17 16 15 14 13 12 11 10
987654321
35 mm
35 mm
DL6000 - Fast Field Programmable Gate Array
Page 52 DynaChip
208-pin Thermal Enhanced PQFP (PQ208)
Figure 22: Package Drawing of 208-pin PQFP
Top View
Side View
Pin 1 ID
208 157
156
10552
1
10453
12 - 15°
0.13-0.27
3.2-3.6
Metal Heat Sink
Dimension in Millimeters
Lead Pitch 0.50
4.1 Max
Stand-Off
0.25 Min
30.4 - 31.2 Sq
28.00 Sq +/- 0.1
DL6000 - Fast Field Programmable Gate Array
DynaChip Page 53
Ordering Information
Order codes are shown below.
DynaChip, DL6000, DL5000, FFPGA and DynaTool are registered trademarks of DynaChip. These prod-
ucts may be covered by the following U.S. patents: 5355035, 5397943, 5504440, 4497108, 5614844, 5570059,
5406133, 5654665.
DynaChip
1255 Oakmead Pkwy.
Sunnyvale, CA 94086
Phone: 408-481-3100
Fax: 408-481-3136
Email: support@dyna.com
http://www.dyna.com
The information contained in this document is subject to change without notice.
DL6009BG352FC
Prefix
Device
Package Type
Pin Count
Speed Grade
Temperature Range
DL - Prefix
6009 - 9,000 Gate Device
6020 - 20,000 Gate Device
6035 - 35,000 Gate Device
6055 - 55,000 Gate Device
6080 - 80,000 Gate Device
6105 - 105,000 Gate Device
BG - Ball Grid Array
QP - Quad Flat Pack
PG - Pin Grid Array
E
F
G
C - Commercial
I - Industrial
See Product Specifications
Sales Representatives
http://www.dyna.com
38
39
36
41
37
40
International
36 Actron Technology (China/Hong Kong)
26/F., Lever Centre
69-71 King Yip Street
Kwun Tong, Kowloon, Hong Kong
852-2727-3978
FAX: 852-2727-4330
37 Ambar Components, Ltd. (U.K. & Eire)
Rabans Close
Aylesbury Bucks. HP19 3RS,
England, U.K.
44 1296 397396
FAX: 44 1296 397439
38 CMR Design Automation Pvt. Ltd.
(India)
E 534 Greater Kailash II
New Delhi 110 048
India
91 11 6477085
FAX: 91 11 6213498
39 Dasko, Co. Ltd. (Korea)
#3808, KWTC 159-1,
Samsung-dong, Kangnam-ku
Seoul 135-729 Korea
82-2-551-3143
FAX: 82-2-551-6411
40 El-Gev Electronics Ltd. (Israel)
11 Ha'Avoda Street
Rosh Ha'Ayin 48101
Israel
Shipping office
183 Donna Court
Lynbrook, NY 11563
(516) 599-4399
FAX (516) 599-4920
41 JEPICO Corp. (Japan)
Shinjuku Dai-ichi Seimei Building
Nishi-Shinjuku 2-7-1
Shinjuku-ku, Tokyo 163-0729, Japan
(03) 3348-0611
FAX: (03) 3348-0623
Sales Representatives
http://www.dyna.com
10 InTelaTech Inc. (Vancouver)
3665 Kingsway
Suite 300
Vancouver, B.C. V5R 5W2
(604) 434-5699, ext. 252
FAX: (604) 434-5655
11 InTelaTech Inc. (Calgary)
140, 6815 8th Street N.E.
Calgary, AB T2E 7H7
(403) 686-2268
FAX: (403) 686-6926
12 J-Square Marketing Inc. (CT, NY, No. NJ)
P. O. Box 103
Jericho, NY 11753-0103
(516) 935-3200
FAX: (516) 935-0029
Ship to: 161C Levittown Parkway
Hicksville, NY 11801
13 James E. Zimmerman Sales (W. NY)
111 Marsh Road
Pittsford, NY 14534
(716) 381-3186
FAX: (716) 385-2103
14 KMA Sales Company (IL)
1040 S. Arlington Heights
Arlington Heights, IL 60005
(847) 398-5300
FAX: (847) 398-5708
15 KMA Sales Company (WI)
2433 North Mayfair Road
Suite 202
Milwaukee, WI 53226-1406
(414) 259-1771
FAX: (414) 259-0246
16 Millennium Sales, Inc. (No. TX, OK, LA,
AR)
1701 North Greenville
#1107
Richardson, TX 75081
(972) 235-5990
FAX: (972) 618-4163
17 Millennium Sales, Inc. (Austin and San
Antonio, Texas)
12343 Hymeadow Drive
Suite 2A
Austin, TX 78750
(512) 335-2375
FAX: (512) 335-2376
18 Millennium Sales, Inc. (Houston and
South Texas)
14714 Oak Bluff Court
Houston, TX 77070
(281) 655-9688
FAX: (281) 655-9703
19 Mission Technology (Orange County)
24422 Avenida de la Carlotta
Suite 315
Laguna Hills, CA 92653
(714) 951-3696
FAX: (714) 951-3874
20 Mission Technology (San Diego)
16466 Bernardo Center Drive
Suite 188
San Diego, CA 92128
(619) 674-6191
FAX: (619) 674-6196
21 Mission Technology (Los Angeles)
6345 Balboa Boulevard
Suite 240
Encino, CA 91316
(818) 342-3141
FAX: (818) 342-9564
22 NELCO Electronics (Denver, Utah, New
Mexico)
9725 E. Hampden Avenue
Suite 100
Denver, CO 80231
(303) 671-7677
FAX: (303) 671-7994
23 Oasis Sales (Minnesota, Western
Wisconsin, N. Dakota, and S. Dakota)
4620 West 77th Street
Suite 100
Edina, MN 55435
(612) 841-1088
FAX: (612) 841-1103
24 Premier Technical Sales, Inc. (Bay Area)
3235 Kifer Road
Suite 110
Santa Clara, CA 95051
(408) 736-2260
FAX: (408) 736-2826
25 ProComp Assoc., Inc. (MA, VT, NH, ME,
RI)
1049 East Street
Tewksbury, MA 01876
(978) 858-0100
FAX: (978) 858-0110
26 SierraTek Marketing (Sacramento, NV)
11531 Sun Valley Road
Truckee, CA 96161
(916) 587-8360
FAX: (916) 587-8361
27 Thompson Associates, Inc. (Southern
Ohio)
1025 Centerville-Station Road
Centerville, OH 45459
(937) 435-7733
FAX: (937) 435-1898
28 Thompson Associates, Inc. (Northern
Ohio)
23240 Chagrin Boulevard
Suite 150
Beachwood, OH 44122
(216) 831-6277
FAX: (216) 831-2553
29 Thompson Assoc., Inc. (Columbus, OH)
5321 Grosbeak Glen
Orient, OH 43146
(614) 877-4304
FAX: (614) 877-0872
30 Thompson Associates Inc. (West PA)
1311 Laclair Street
Pittsburgh, PA 15218
(412) 244-0317
FAX: (412) 244-0318
31 Thompson Associates, Inc. (Eastern
Michigan)
26105 Orchard Lake Road
Suite 212
Farmington Hills, MI 48334
(248) 476-0505
FAX: (248) 476-0156
32 Thompson Associates, Inc. (Western
Michigan)
3116 Chamberlain SE
Grand Rapids, MI 49508
(616) 247-6574
FAX: (616) 247-1211
33 Trinity Technologies, Inc. (Northwest)
6443 SW Beaverton-Hillsdale Highway
Suite 320
Portland, OR 97221
(503) 291-1333
FAX: (503) 291-2529
34 Trinity Technologies, Inc. (Northwest)
10710 3rd Avenue NW
Seattle, WA 98177
(206) 440-3059
FAX: (206) 364-6739
35 Tusar (Southwest)
P. O. Box 12460
Scottsdale, AZ 85267-2460
(602) 998-3688
FAX: (602) 991-0468
Ship to: 6016 E. Larkspur
Scottsdale, AZ 85254
North America
(cont.)
Sales Representatives
http://www.dyna.com
01
02
03
04
05
06
22
40
07
09
10 11
12
13
14
15
16
17 18
19
20
21
23
24
25
26
27
28
29
30
31
32
33 34
35
08
North America
01 Apollo Technical Sales (East Coast)
1275 S. Patrick Drive
Suite M2
Satellite Beach, FL 32937
(407) 777-7511
Fax (407) 777-5251
02 Apollo Technical Sales (Central Florida)
1703 Magnolia Avenue
#C13
South Daytona, FL 32119
(904) 304-3225
Fax: (904) 304-3221
03 Apollo Technical Sales (So. Florida)
1251 S. Federal Highway
Suite E-120
Boca Raton, FL 33432-7352
(561) 347-1500
Fax: (561) 750-9127
04 Apollo Technical Sales (West Coast
Florida)
43 Leeward Island
Clearwater, FL 33767
(813) 445-1640
FAX: (813) 468-9496
05 BGR-WYCK (Chesapeake)
11350 Random Hills Road
Suite 800
Fairfax, VA 22030
(703) 934-6053
FAX: (703) 648-0231
06 BGR-WYCK (So. NJ to Virginia)
3701 Church Road
Mt. Laurel, NJ 08054
(609) 727-1070
FAX: (609) 727-9633
07 InTelaTech Inc. (Montreal)
1755 St. Regis Street
Suite 220
DDO, Quebec H9B 2M9
(514) 421-5833
FAX: (514) 421-4105
08 InTelaTech Inc. (Ottawa)
260 Hearst Way
Suite 248
Kanata, ON K2L 3H1
(613) 599-7330
FAX: (613) 599-7329
09 InTelaTech Inc. (Toronto)
5225 Orbitor Drive
Suite 2
Mississauga, ON L4W 4Y8
(905) 629-0082
FAX: (905) 629-1795