LTC5567
1
5567f
Typical applicaTion
FeaTures DescripTion
300MHz to 4GHz Active
Downconverting Mixer with
Wideband IF
The LTC
®
5567 is optimized for RF downconverting mixer
applications that require wide IF bandwidth. The part is
also a pin-compatible upgrade to the LT5557 active mixer,
offering higher linearity and 1dB compression, wider
bandwidth, and lower output spurious levels. Integrated
RF and LO transformers and LO buffer amplifiers allow a
very compact solution.
The RF input is 50Ω matched from 1.4GHz to 3GHz, and
easily matched for higher or lower RF frequencies with
simple external matching. The LO input is 50Ω matched
from 1GHz to 4GHz, even when the IC is disabled. The LO
input is easily matched for higher or lower frequencies, as
low as 300MHz, with simple external matching. The low
capacitance differential IF output is usable up to 2.5GHz.
applicaTions
n High IIP3: +26.9dBm at 1950MHz
n 1.9dB Conversion Gain
n Low Noise Figure: 11.8dB at 1950MHz
n 16.5dB NF Under 5dBm Blocking
n Low Power: 294mW
n Wide IF Frequency Range Up to 2.5GHz
n LO Input 50Ω Matched when Shutdown
n –40°C to 105°C Operation (TC)
n Very Small Solution Size
n Pin Compatible with LT5557
n 16-Lead (4mm × 4mm) QFN package
n Wireless Infrastructure Receivers
n DPD Observation Receivers
n CATV Infrastructure
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
RF
EN
EN
10nF
249Ω
249Ω
LO
1.65GHz
0dBm
3.3V
89mA
10nF
VCC
IF+
LTC5567
IF
IADJ
2.7pF
RF
1.69GHz
TO
2.24GHz
330pF 200Ω LOAD
330pF
BIAS
RF
5567 TA01a
3.9pF
LO
LO
100Ω
100Ω
390nH
IF
AMP
390nH
DPD Observation Receiver Mixer with 500MHz IF Bandwidth and
+13dBm Input P1dB into 200Ω Load Voltage Conversion Gain, IIP3
and NF vs IF Frequency
IF FREQUENCY (MHz)
40 90
GV (dB), IIP3 (dBm), SSB NF (dB)
390 440 490 540
5567 TA01b
140 190 240 290 340 590
12
10
8
6
4
14
18
20
22
28
16
24
26 IIP3
GV
NF
RF = 1.69GHz TO 2.24GHz
LO = 1.65GHz
ZRF = 50Ω
ZIF = 200Ω DIFFERENTIAL
TC = 25°C
LTC5567
2
5567f
pin conFiguraTionabsoluTe MaxiMuM raTings
Supply Voltage (VCC, IF+, IF) ..................................4.0V
Enable Input Voltage (EN) ................0.3V to VCC + 0.3V
LO Input Power (300MHz to 4.5GHz) .................+10dBm
LO Input DC Voltage ............................................... ±0.1V
RF Input Power (300MHz to 4GHz) .................... +15dBm
RF Input DC Voltage ............................................... ±0.1V
TEMP Monitor Input Current ..................................10mA
Operating Temperature Range (TC) ........ 40°C to 105°C
Junction Temperature (TJ) .................................... 150°C
Storage Temperature Range .................. 65°C to 150°C
(Note 1)
16 15 14 13
5678
TOP VIEW
17
GND
UF PACKAGE
16-LEAD (4mm × 4mm) PLASTIC QFN
9
10
11
12
4
3
2
1TEMP
GND
RF
GND
GND
IF+
IF
GND
GND
LO
NC
GND
EN
VCC
NC
IADJ
TJMAX = 150°C, θJC = 8°C/W
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB
orDer inForMaTion
LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION CASE TEMPERATURE RANGE
LTC5567IUF#PBF LTC5567IUF#TRPBF 5567 16-Lead (4mm × 4mm) Plastic QFN –40°C to 105°C
Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
ac elecTrical characTerisTics
VCC = 3.3V, EN = High. Test circuit shown in Figure 1.
(Notes 2, 3, 4)
PARAMETER CONDITIONS MIN TYP MAX UNITS
RF Input Frequency Range 300 to 4000 MHz
LO Input Frequency Range 300 to 4500 MHz
IF Output Frequency Range External Matching Required 5 to 2500 MHz
RF Input Return Loss ZO = 50Ω, 1400MHz to 3000MHz, C3 = 2.7pF >12 dB
LO Input Return Loss ZO = 50Ω, 1000MHz to 4000MHz, C5 = 3.9pF >10 dB
IF Output Impedance Differential at 153MHz 532Ω ||1.0pF R||C
LO Input Power –6 0 6 dBm
RF to LO Isolation RF = 300MHz to 1000MHz
RF = 1000MHz to 4000MHz >59
>50 dB
dB
RF to IF Isolation RF = 300MHz to 700MHz
RF = 700MHz to 1000MHz
RF = 1000MHz to 4000MHz
>47
>40
>28
dB
dB
dB
LTC5567
3
5567f
ac elecTrical characTerisTics
VCC = 3.3V, EN = High. TC = 25°C, PLO = 0dBm, IF = 153MHz,
PRF = –6dBm (–6dBm/tone for 2-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Power Conversion Gain RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
0.8
1.5
2.0
1.9
1.7
1.2
dB
dB
dB
dB
dB
Conversion Gain Flatness RF = 1950 ±30MHz, LO = 1797MHz, IF = 153 ±30MHz ±0.09 dB
Conversion Gain vs Temperature TC = –40°C to 105ºC, RF = 1950MHz, Low Side LO –0.013 dB/°C
2-Tone Input 3rd Order Intercept (∆fRF = 2MHz) RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
24.2
26.0
26.7
26.9
26.0
26.5
dBm
dBm
dBm
dBm
dBm
2-Tone Input 2nd Order Intercept
(∆fRF = 154MHz = fIM2)RF = 450MHz (527MHz/373MHz), LO = 603MHz
RF = 850MHz (927MHz/773MHz), LO = 1003MHz
RF = 1950MHz (2027MHz/1873MHz), LO = 1797MHz
RF = 2550MHz (2627MHz/2473MHz), LO = 2397MHz
RF = 3500MHz (3577MHz/3423MHz), LO = 3347MHz
67
64
72
71
63
dBm
dBm
dBm
dBm
dBm
SSB Noise Figure RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
12.5
11.4
11.8
12.6
14.6
13.5
dB
dB
dB
dB
dB
SSB Noise Figure Under Blocking RF = 850MHz, High Side LO, 750MHz Blocker at 5dBm
RF = 1950MHz, Low Side LO, 2050MHz Blocker at 5dBm 16.5
16.5 dB
dB
LO to RF Leakage LO = 300MHz to 700MHz
LO = 700MHz to 2200MHz
LO = 2200MHz to 4500MHz
<–62
<–56
<–47
dBm
dBm
dBm
LO to IF Leakage LO = 300MHz to 500MHz
LO = 500MHz to 700MHz
LO = 700MHz to 4500MHz
<–43
<–37
<–41
dBm
dBm
dBm
1/2IF Output Spurious Product
(fRF Offset to Produce Spur at fIF = 153MHz) 850MHz: fRF = 926.5MHz at –6dBm, fLO = 1003MHz
1950MHz: fRF = 1873.5MHz at –6dBm, fLO = 1797MHz –78
–73 dBc
dBc
1/3IF Output Spurious Product
(fRF Offset to Produce Spur at fIF = 153MHz) 850MHz: fRF = 952MHz at –6dBm, fLO = 1003MHz
1950MHz: fRF = 1848MHz at –6dBm, fLO = 1797MHz –82
–80 dBc
dBc
Input 1dB Compression RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
11.0
10.9
10.1
10.2
10.4
dBm
dBm
dBm
dBm
dBm
LTC5567
4
5567f
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: The LTC5567 is guaranteed functional over the –40°C to 105°C
case temperature range (θJC = 8°C/W).
Note 3: SSB Noise Figure measured with a small-signal noise source,
bandpass filter and 2dB matching pad on RF input, and bandpass filter on
the LO input.
Note 4: Specified performance includes 4:1 IF transformer and evaluation
PCB losses.
Typical Dc perForMance characTerisTics
Supply Current vs Supply Voltage
TEMP Diode Voltage vs Junction
Temperature
EN = High, Test circuit shown in Figure 1.
Dc elecTrical characTerisTics
VCC = 3.3V, TC = 25°C. Test circuit shown in Figure 1. (Note 2)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Supply Voltage (VCC) 3.0 3.3 3.6 V
Supply Current Enabled
Disabled EN = High
EN = Low 89 105
100 mA
µA
Enable Logic Input (EN)
Input High Voltage (On) 2.5 V
Input Low Voltage (Off) 0.3 V
Input Current –0.3V to VCC + 0.3V –30 100 µA
Turn-On Time 0.6 µs
Turn-Off Time 0.5 µs
Mixer DC Current Adjust (IADJ)
Open-Circuit DC Voltage 2.2 V
Short-Circuit DC Current Pin Shorted to Ground 1.8 mA
Temperature Sensing Diode (TEMP)
DC Voltage at TJ = 25°C IIN = 10µA
IIN = 80µA 716
773 mV
mV
Voltage Temperature Coefficient IIN = 10µA
IIN = 80µA –1.75
–1.56 mV/°C
mV/°C
VCC SUPPLY VOLTAGE (V)
3.0
98
96
94
92
90
88
86
84 3.3 3.5
5567 G01
3.1 3.2 3.4 3.6
SUPPLY CURRENT (mA)
TC = 105°C
TC = 85°C
TC = 55°C
TC = 25°C
TC = –10°C
TC = –40°C
JUNCTION TEMPERATURE (°C)
–45 –20
500
TEMP DIODE VOLTAGE (mV)
550
600
650
700
900
5 30 55 80
5567 G02
105 130
750
800
850
IIN = 80µA
IIN = 10µA
LTC5567
5
5567f
Conversion Gain, IIP3 and NF
vs RF Frequency (High Side LO)
RF Isolation vs RF Frequency LO Leakage vs LO Frequency
Conversion Gain, IIP3 and NF
vs RF Frequency (Low Side LO)
1950MHz Conversion Gain, IIP3
and NF vs LO Power (Low Side LO)
1950MHz Conversion Gain, IIP3
and NF vs LO Power (High Side LO)
2550MHz Conversion Gain, IIP3
and NF vs LO Power (Low Side LO)
2550MHz Conversion Gain, IIP3
and NF vs LO Power (High Side LO)
Typical perForMance characTerisTics
1400MHz to 3000MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 153MHz unless otherwise noted.
RF FREQUENCY (GHz)
1.4
10
IIP3 (dBm), NF (dB)
G
C
(dB)
12
16
18
20
30
24
1.8 2.2 2.4
5567 G03
14
26
28
22
0
2
5
1
4
3
1.6 2.0 2.6 2.8 3.0
IIP3
GC
NF
TC = 25°C
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
NF
20
–2 24
24
16
2
6
10
26
18
22
14
–4 0 6
5567 G04
TC = 85°C
TC = 25°C
TC = –40°C
IIP3
GC
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
20
–2 24
24
16
2
6
10
26
18
22
14
–4 0 6
5567 G05
IIP3
GC
NF
TC = 85°C
TC = 25°C
TC = –40°C
RF FREQUENCY (GHz)
1.4
10
IIP3 (dBm), NF (dB)
G
C
(dB)
12
16
18
20
30
24
1.8 2.2 2.4
5567 G06
14
26
28
22
0
2
5
1
4
3
1.6 2.0 2.6 2.8 3.0
IIP3
GC
NF
TC = 25°C
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
NF
20
–2 2 4
24
16
2
6
10
26
18
22
14
–4 0 6
5567 G07
IIP3
GC
TC = 85°C
TC = 25°C
TC = –40°C
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
20
–2 24
24
16
2
6
10
26
18
22
14
–4 0 6
5567 G08
IIP3
GC
NF
TC = 85°C
TC = 25°C
TC = –40°C
RF FREQUENCY (GHz)
1.4
45
55
3.0
5567 G09
35
25 1.8 2.2 2.61.6 2.0 2.4 2.8
40
50
30
60 RF-LO
RF-IF
TC = 25°C
LO FREQUENCY (GHz)
1.2
LO LEAKAGE (dBm)
–40
–30
–20
2.8
5567 G10
–50
–60
–70 1.6 2.0
LO-IF
LO-RF
2.4 3.2
TC = 25°C
LTC5567
6
5567f
SSB Noise Figure
vs RF Blocker Level
1950MHz Conversion Gain
Distribution
Conversion Gain, IIP3, NF and RF
Input P1dB vs Temperature
1950MHz IIP3 Distribution
Conversion Gain, IIP3 and NF
vs Supply Voltage
1950MHz SSB NF Distribution
2-Tone IF Output Power, IM3 and
IM5 vs RF Input Power
Single Tone IF Output Power, 2 × 2
and 3 × 3 Spurs vs RF Input Power
2 × 2 and 3 × 3 Spur Suppression
vs LO Power
Typical perForMance characTerisTics
1400MHz to 3000MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 153MHz unless otherwise noted.
RF INPUT POWER (dBm/TONE)
–12
–90
OUTPUT POWER/TONE (dBm)
–70
–50
IM3
IM5
–30
–9 –6 –3 0
5567 G11
3
–10
10
–80
–60
–40
–20
0
6
IFOUT
TC = 25°C
RF1 = 1949MHz
RF2 = 1951MHz
LO = 1797MHz
RF INPUT POWER (dBm)
–15
85
OUTPUT POWER (dBm)
75
55
–45
–35
15
–15
–9 –3 0 12
5567 G12
65
–5
5
–25
–12 –6 3 6 9
IFOUT
(RF = 1950MHz)
2RF-2LO
(RF = 1873.5MHz)
3RF-3LO
(RF = 1848MHz)
TC = 25°C
LO = 1797MHz
LO INPUT POWER (dBm)
–6
–90
RELATIVE SPUR LEVEL (dBc)
–85
–80
–75
–70
–60
–4 –2 0 2
5567 G13
4 6
–65
2RF-2LO
(RF = 1873.5MHz)
3RF-3LO
(RF = 1848MHz)
TC = 25°C
RF = 1950MHz
PRF = –6dBm
LO = 1797MHz
RF BLOCKER POWER (dBm)
–25
SSB NF (dB)
14
20
21
22
–15 –5 0
5567 G14
12
18
16
13
19
11
17
15
–20 –10 510
TC = 25°C
RF = 1950MHz
BLOCKER = 2050MHz
LO = 1797MHz
PLO = –3dBm
PLO = 3dBm
PLO = 0dBm
CASE TEMPERATURE (°C)
–45
0
G
C
AND SSB NF (dB), IIP3 AND P1dB (dBm)
4
8
12
28
20
–15 15
24
16
2
6
10
26
18
22
14
45 75 105
5567 G15
IIP3
SSB NF
P1dB
GC
RF = 1950MHz
LOW SIDE LO
VCC SUPPLY VOLTAGE (V)
3.0
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
6
12
18
3.1 3.2 3.3 3.4
5567 G16
3.5
24
30
NF
GC
3
9
15
21
27
3.6
RF = 1950MHz
LOW SIDE LO
IIP3
TC = 85°C
TC = 25°C
TC = –40°C
CONVERSION GAIN (dB)
0.6 1.0
DISTRIBUTION (%)
30
40
50
1.4 1.8
5567 G17
20
10
25
35
45
15
5
02.2 2.6 3.0
105°C
25°C
–40°C
RF = 1950MHz, LOW SIDE LO
IIP3 (dBm)
24.6
DISTRIBUTION (%)
25.8
5567 G18
20
10
25
15
5
026.4 27.6 28.825.2 27.0 28.2
30
RF = 1950MHz, LOW SIDE LO
105°C
25°C
–40°C
SSB NOISE FIGURE (dB)
10.2
DISTRIBUTION (%)
30
50
10.8 11.4 12.0 12.6 13.2
5567 G19
20
10
25
40
45
35
15
5
013.8
RF = 1950MHz
LOW SIDE LO
105°C
25°C
–40°C
LTC5567
7
5567f
Conversion Gain, IIP3 and NF
vs RF Frequency
850MHz Conversion Gain,
IIP3 and NF vs LO Power
850MHz Conversion Gain,
IIP3 and NF vs Supply Voltage
2-Tone IF Output Power, IM3 and
IM5 vs RF Input Power
Single Tone IF Output Power, 2 × 2
and 3 × 3 Spurs vs RF Input Power
2 × 2 and 3 × 3 Spur Suppression
vs LO Power
RF Isolation and LO Leakage vs
Frequency
Conversion Gain, IIP3, NF and RF
Input P1dB vs Temperature
SSB Noise Figure
vs RF Blocker Level
Typical perForMance characTerisTics
700MHz to 1000MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 153MHz unless otherwise noted.
RF FREQUENCY (MHz)
700
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
20
750 800 950
24
16
2
6
10
26
18
22
14
850 900 1000
5567 G20
IIP3
NF
GC
HIGH SIDE LO
TC = 25°C
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
20
–2 24
24
16
2
6
10
26
18
22
14
–4 0 6
5567 G21
IIP3
GC
NF
RF = 850MHz
HIGH SIDE LO
TC = 85°C
TC = 25°C
TC = –40°C
VCC SUPPLY VOLTAGE (V)
3.0
1
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
10
13
16
3.4
28
5567 G22
7
3.2
3.1 3.5
3.3 3.6
19
22
25 IIP3
GC
NF
RF = 850MHz
HIGH SIDE LO
TC = 85°C
TC = 25°C
TC = –40°C
RF/LO FREQUENCY (MHz)
700
0
RF ISOLATION (dB)
LO LEAKAGE (dBm)
20
30
40
50
60
70
–70
10 –60
–50
–40
–30
–20
–10
0
800 900 1000 1100
5567 G23
1200
RF-LO
ISO
LO-IF
LO-RF
RF-IF
ISO
TC = 25°C
CASE TEMPERATURE (°C)
–45
0
GC (dB), NF (dB), IIP3 (dBm), P1dB (dBm)
4
8
12
28
20
15 75
24
16
2
6
10
26
18
22
14
–15 45 105
5567 G24
IIP3
GC
NF
P1dB
RF = 850MHz
HIGH SIDE LO
RF BLOCKER POWER (dBm)
–25
SSB NF (dB)
14
20
21
22
–15 –5 0
5567 G25
12
18
16
13
19
11
17
15
–20 –10 5 10
TC = 25°C
RF = 850MHz
BLOCKER = 750MHz
LO = 1003MHz
PLO = –3dBm
PLO = 3dBm
PLO = 0dBm
RF INPUT POWER (dBm/TONE)
–12
–80
OUTPUT POWER/TONE (dBm)
–60
–40
–20
–9 –6 –3 0
5567 G26
3
0
20
–70
–50
–30
–10
10
6
IFOUT
IM3 IM5
TC = 25°C
RF1 = 849MHz
RF2 = 851MHz
LO = 1003MHz
RF INPUT POWER (dBm)
–15
85
OUTPUT POWER (dBm)
75
55
–45
–35
15
–15
–9 –3 0 12
5567 G27
65
–5
5
–25
–12 –6 369
IFOUT
(RF = 850MHz)
2LO-2RF
(RF = 926.5MHz)
3LO-3RF
(RF = 952MHz)
TC = 25°C
LO = 1003MHz
LO INPUT POWER (dBm)
–6
–90
RELATIVE SPUR LEVEL (dBc)
–85
–80
–75
–70
–60
–4 –2 0 2
5567 G28
4 6
–65
2LO-2RF
(RF = 926.5MHz)
3LO-3RF
(RF = 952MHz)
TC = 25°C
RF = 850MHz
PRF = –6dBm
LO = 1003MHz
LTC5567
8
5567f
3GHz to 4GHz application. Test circuit shown in Figure 1.
Conversion Gain, IIP3 and NF vs
RF Frequency
Conversion Gain, IIP3 and NF
vs RF Frequency
RF Isolation vs RF Frequency LO leakage vs LO Frequency
450MHz Conversion Gain,
IIP3 and NF vs LO Power
3500MHz Conversion Gain,
IIP3 and NF vs LO Power
Conversion Gain, IIP3 and RF
Input P1dB vs Temperature
3500MHz Conversion Gain,
IIP3 and NF vs Supply Voltage
RF Isolation and LO Leakage
vs RF and LO Frequency
Typical perForMance characTerisTics
400MHz to 500MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 153MHz unless otherwise noted.
RF FREQUENCY (MHz)
400
1
G
C
(dB), IIP3 (dBm), SSB NF (dB)
3
7
9
11
21
23
25
27
15
425 450
5567 G29
5
17
19
13
475 500
IIP3
NF
GC
HIGH SIDE LO
TC = 25°C
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), NF (dB)
3
9
12
15
2
27
5567 G30
6
–2–4 40 6
18
21
24 IIP3
GC
NF
HIGH SIDE LO TC = 85°C
TC = 25°C
TC = –40°C
RF/LO FREQUENCY (MHz)
400
RF ISOLATION (dB)
LO LEAKAGE (dBm)
45
50
55
550 650
5567 G31
40
35
30 450 500 600
60
65
70
–50
–40
–30
–60
–70
–80
–20
–10
0
700
RF-LO
LO-IF
LO-RF
RF-IF TC = 25°C
0
4
8
12
28
20
24
16
2
6
10
26
18
22
14
RF FREQUENCY (GHz)
3.0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
3.2 3.4
5567 G32
3.6 4.03.8
IIP3
NF
GC
LOW SIDE LO
TC = 25°C
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
3
9
12
15
2
27
5567 G33
6
–2
–4 4
0 6
18
21
24
TC = 85°C
TC = 25°C
TC = –40°C
IIP3
GC
NF
RF = 3.5GHz
LOW SIDE LO
VCC SUPPLY VOLTAGE
3.0
0
GC (dB), IIP3 (dBm), SSB NF (dB)
3
9
12
15
3.4
27
5567 G34
6
3.23.1 3.53.3 3.6
18
21
24 IIP3
GC
NF
RF = 3.5GHz
LOW SIDE LO
TC = 85°C
TC = 25°C
TC = –40°C
RF FREQUENCY (GHz)
3.0
–40
RF ISOLATION (dB)
10
20
30
40
–10
–20
–30
0
60
RF-LO
RF-IF
3.2 3.4 3.6
5567 G35
3.8 4.0
50
TC = 25°C
LO FREQUENCY (GHz)
2.6
LO LEAKAGE (dBm)
LO-IF
LO-RF
2.9 3.2 3.5 3.8
5567 G36
4.1 4.4
–60
–50
–40
–55
–45
–35
–30
–20
–25
TC = 25°C
CASE TEMPERATURE (°C)
–45
0
G
C
(dB), IIP3 (dBm), P1dB (dBm), SSBNF (dB)
4
8
12
28
20
15 75
24
16
2
6
10
26
18
22
14
–15 45 105
5567 G37
IIP3
GC
NF
P1dB
RF = 3500MHz
LOW SIDE LO
LTC5567
9
5567f
pin FuncTions
TEMP (Pin 1): Temperature Sensing Diode. This pin is
connected to the anode of a diode that may be used to
measure the die temperature, by forcing a current and
measuring the voltage.
GND (Pins 2, 4, 9, 12, 13, 16, Exposed Pad Pin 17):
Ground. These pins must be soldered to the RF ground
plane on the circuit board. The exposed pad metal of the
package provides both electrical contact to ground and
good thermal contact to the printed circuit board.
RF (Pin 3): Single-Ended RF Input. This pin is internally
connected to the primary winding of the integrated RF
transformer, which has low DC resistance to ground. A
series DC-blocking capacitor must be used if the RF
source has DC voltage present. The RF input is 50Ω
impedance matched from 1.4GHz to 3GHz, as long as
the mixer is enabled. Operation down to 300MHz or up
to 4GHz is possible with external matching.
EN (Pin 5): Enable Pin. When the input voltage is greater
than 2.5V, the mixer is enabled. When the input voltage is
less than 0.3V, the mixer is disabled. Typical input current is
less than 30µA. This pin has an internal pull-down resistor.
VCC (Pin 6): Power Supply Pin. This pin must be connected
to a regulated 3.3V supply, with a bypass capacitor located
close to the pin. Typical DC current consumption is 34mA.
NC (Pins 7, 14): These pins are not connected internally.
They can be left floating, connected to ground, or to VCC.
IADJ (Pin 8): This pin allows adjustment of the mixer DC
supply current. Typical open-circuit DC voltage is 2.2V.
This pin should be left floating for optimum performance.
IF+/IF (Pin 11/Pin 10): Open-Collector Differential IF
Output. These pins must be connected to the VCC supply
through impedance-matching inductors or a transformer
center tap. Typical DC current consumption is 27.5mA
into each pin.
LO (Pin 15): Single-Ended Local Oscillator Input. This
pin is internally connected to the primary winding of an
integrated transformer, which has low DC resistance to
ground. A series DC-blocking capacitor must be used to
avoid damage to the internal transformer. This input is
50Ω impedance matched from 1GHz to 4GHz, even when
the IC is disabled. Operation down to 300MHz or up to
4.5GHz is possible with external matching.
block DiagraM
5567 BD
GND
GND
RF
EN NC
VCC
IF+
IF
IADJ
TEMP
BIAS
RF
LO
LO
12
11
9
10
8
5 76
GND NC GND
1316 1415
GND
GND
1
2
4
GND
(EXPOSED PAD)
17
3
LTC5567
10
5567f
TesT circuiT
RF
0.015"
0.062"
0.015"
GND
BIAS
GND
DC1861A
EVALUATION BOARD
LAYER STACK-UP
(NELCO N4000-13)
RFIN
50Ω
L3
C3
C4
5567 F01
RF
EN
C2
R2
R1
LOIN
50Ω
VCC
3.3V
89mA
C1 C9
VCC
IF+
LTC5567
IF
IADJNC
C7
T1
C8
C5
L1
L2
17
GND
2
3
GND
1TEMP
4GND GND 9
65 7 8
EN
C6
GND
LO
12
11
10
GND NC GND
16 1415 13
IFOUT
50Ω
R4
APPLICATION RF MATCH LO MATCH
RF (MHz) LO C3 C4 L3 C5 C6
300 to 400 HS 120pF 18pF 2.2nH 47pF 15pF
400 to 500 HS 120pF 12pF 2nH 27pF 10pF
700 to 1000 HS 120pF 4.7pF 6.8pF 2.7pF
1400 to 3000 LS, HS 2.7pF 3.9pF
3000 to 4000 LS 3.9pF 0.7pF 3.9pF
LS = Low side, HS = High side
REF DES VALUE SIZE VENDOR REF DES VALUE SIZE VENDOR
C1, C2 10nF 0402 AVX C9 F 0603 AVX
C3 - C6 See Table 0402 AVX T1 4:1 Mini-Circuits TC8-1-10LN+
C7, C8 330pF 0402 AVX L1, L2 300nH 0603 Coilcraft 0603HP
R1, R2 3.01k, 1% 0402 L3 See Table 0402 Coilcraft 0402HP
Figure 1. Standard Downmixer Test Circuit Schematic (153MHz Bandpass IF Matching)
LTC5567
11
5567f
applicaTions inForMaTion
Introduction
The LTC5567 incorporates a high linearity double-balanced
active mixer, a high-speed limiting LO buffer and bias/
enable circuits. See the Pin Functions and Block Diagram
sections for a description of each pin. A test circuit sche-
matic showing all external components required for the
data sheet specified performance is shown in Figure 1.
A few additional components may be used to modify the
DC supply current or frequency response, which will be
discussed in the following sections.
The LO and RF inputs are single ended. The IF output is
differential. Low side or high side LO injection may be
used. The test circuit, shown in Figure 1, utilizes bandpass
IF output matching and an 8:1 IF transformer to realize a
50Ω single-ended IF output. The evaluation board layout
is shown in Figure 2.
RF Input
A simplified schematic of the mixers RF input is shown
in Figure 3. As shown, one terminal of the integrated RF
transformers primary winding is connected to Pin 3, while
the other terminal is DC-grounded internally. For this rea-
son, a series DC-blocking capacitor (C3) is needed if the
RF source has DC voltage present. The DC resistance of
the primary winding is approximately 4Ω. The secondary
winding of the RF transformer is internally connected to
the RF buffer amplifier.
The RF input is 50Ω matched from 1400MHz to 3000MHz
with a single 2.7pF series capacitor on the input. Matching
to RF frequencies above or below this frequency range is
easily accomplished by adding shunt capacitor C4, shown
in Figure 3. For RF frequencies below 500MHz, series
Figure 2. Evaluation Board Layout
LTC5567
12
5567f
applicaTions inForMaTion
inductor L3 is also needed. The evaluation board does
not have provisions for L3, so the RF input trace needs
to be cut to install it in series. The RF input matching ele-
ment values for each application are tabulated in Figure 1.
Measured RF input return losses are shown in Figure 4.
The RF input impedance and input reflection coefficient,
versus frequency are listed in Table 1.
Table 1. RF Input Impedance and S11 (At Pin 3, No External
Matching, Mixer Enabled)
FREQUENCY
(MHz)
INPUT
IMPEDANCE
S11
MAG ANGLE
200 6.0 + j8.0 0.79 161.6
350 9.0 + j11.9 0.71 152.1
450 11.0 + j14.1 0.66 147.0
575 13.3 + j15.9 0.61 142.5
700 15.4 + j17.5 0.57 138.1
900 18.5 + j20.0 0.52 131.1
1100 21.7 + j22.0 0.48 125.1
1400 27.4 + j24.2 0.41 115.6
1700 33.7 + j24.2 0.33 107.9
1950 39.1 + j21.6 0.26 103.1
2200 42.6 + j16.1 0.19 104.9
2450 42.6 + j9.9 0.13 120.8
2700 38.8 + j4.3 0.14 155.9
3000 31.9 + j2.3 0.22 171.3
3300 24.8 + j4.0 0.34 167.9
3600 19.5 + j8.2 0.45 158.3
3900 15.4 + j13.4 0.56 147.3
4200 12.6 + j18.7 0.64 136.8
4500 10.9 + j24.2 0.70 126.6
LO Input
A simplified schematic of the LO input, with external
components is shown in Figure 5. Similar to the RF in-
put, the integrated LO transformers primary winding is
DC-grounded internally, and therefore requires an external
DC-blocking capacitor. Capacitor C5 provides the neces-
sary DC-blocking, and optimizes the LO input match over
the 1GHz to 4GHz frequency range. The nominal LO input
level is 0dBm although the limiting amplifiers will deliver
excellent performance over a ±5dB input power range. LO
input power greater than +6dBm may cause conduction
of the internal ESD diodes.
To optimize the LO input match for frequencies below
1GHz, the value of C5 is increased and shunt capacitor C6
is added. A summary of values for C5 and C6, versus LO
LO
BUFFER
LO
C6
5569 F05
LTC5567
15
C5 LOIN
Figure 5. LO Input Schematic
RF
BUFFER
RF
C4
5567 F03
L3
LTC5567
3
C3
RFIN
Figure 3. RF Input Schematic
Figure 4. RF Input Return Loss
FREQUENCY (GHz)
0.2
RETURN LOSS (dB)
–15
–10
–5
3.2
5567 F04
–20
–25
1.2 2.20.7 3.71.7 2.7 4.74.2
–30
–35
0
400MHz TO 500MHz APP.
700MHz TO 1000MHz APP.
1400MHz TO 3000MHz APP.
3GHz TO 4GHz APP.
TC = 25°C
LTC5567
13
5567f
applicaTions inForMaTion
frequency range is listed in Table 2. Measured LO input
return losses are shown in Figure 6. Finally, LO input im-
pedance and input reflection coefficient, versus frequency
is shown in Table 3.
Table 2. LO Input Matching Values vs LO Frequency Range
FREQUENCY (MHz) C5 (pF) C6 (pF)
285 to 392 330 33
338 to 415 330 22
415 to 505 56 18
525 to 635 27 10
645 to 803 15 7.5
800 to 1150 6.8 2.7
1000 to 4000 3.9
3000 to 4500 1.8 0.2
Figure 6. LO Input Return Loss
Figure 7. LO Input Return Loss—Mixer Enabled and Disabled
FREQUENCY (GHz)
0.2
RETURN LOSS (dB)
–15
–10
–5
3.2
5567 F06
–20
1.2 2.20.7 3.71.7 2.7 4.74.2
–25
0
C5 = 27pF, C6 = 10pF
C5 = 6.8pF, C6 = 2.7pF
C5 = 3.9pF
C5 = 1.8pF, C6 = 0.2pF
TC = 25°C
FREQUENCY (GHz)
0.2
RETURN LOSS (dB)
0
–2
–4
–6
–8
–10
12
14
16
18 4.74.2
5567 F07
1.2 2.2 3.2 3.70.7 1.7 2.7
TC = 25°C
C5 = 3.9pF
DISABLED
ENABLED
Table 3. LO Input Impedance and S11 (At Pin 15, No External
Matching, Mixer Enabled)
FREQUENCY
(MHz)
INPUT
IMPEDANCE
S11
MAG ANGLE
350 5.2 + j14.9 0.83 146.5
400 6.0 + j17.3 0.81 141.7
450 6.6 + j19.5 0.80 137.0
500 7.2 + j21.5 0.78 132.7
600 9.1 + j26.5 0.75 123.6
800 15.1 + j35.7 0.67 106.0
1000 24.9 + j43.6 0.58 89.5
1500 67.5 + j36.4 0.33 47.1
2000 61.7 – j4.2 0.11 –18.3
2500 40.3 – j7.1 0.13 –139.4
3000 31.7 + j1.8 0.23 173.1
3500 29.8 + j12.3 0.29 140.0
4000 31.5 + j22.9 0.35 113.2
4500 36.0 + j32.4 0.38 92.8
The LO buffers have been designed such that the LO input
impedance does not change significantly when the IC is
disabled. This feature only requires that supply voltage is
applied. The actual performance of this feature is shown
in Figure 7. As shown, the LO input return loss is better
than 10dB over the 1GHz to 4GHz frequency range when
the IC is enabled or disabled.
IF Output
The IF output schematic with external matching compo-
nents is shown in Figure 8. As shown, the output is dif-
ferential open collector. Each IF output pin must be biased
at the supply voltage (VCC), which is applied through the
external matching inductors (L1 and L2) shown in Figure8.
Each pin draws approximately 27.5mA of DC supply cur-
rent (55mA total).
LTC5567
14
5567f
applicaTions inForMaTion
The differential IF output impedance can be modeled as a
frequency-dependent parallel R-C circuit, using the values
listed in Table 4. This data is referenced to the package
pins (with no external components) and includes the
effects of the IC and package parasitics. Resistors R1
and R2 are used to reduce the output resistance, which
increases the IF bandwidth and input P1dB, but reduces
the conversion gain. The standard downmixer test circuit
shown in Figure 1 uses bandpass matching and 3.01k
resistors to realize a 400Ω differential output, followed by
an 8:1 transformer to get a 50Ω single-ended output. C7
and C8 are 330pF DC-blocking capacitors. The values of
L1 and L2 are calculated to resonate with the internal IF
capacitance (CIF) at the desired IF center frequency, using
the following equation:
L1, L2=
1
2πfIF
( )
22CIF
For IF frequencies below 100MHz, the inductor values
become unreasonably high and the highpass impedance
matching network described in a later section is preferred,
due to its lower inductor values.
measured 1dB (conversion gain) IF frequency range for
each inductor value is shown. The inductor values listed are
less than the ideal calculated values due to the additional
capacitance of the 8:1 transformer. For differential IF out-
put applications where the 8:1 transformer is eliminated,
the ideal calculated values should be used. Measured IF
output return losses are shown in Figure 9.
Table 4. IF Output Impedance and Bandpass Matching Element
Values vs IF Frequency.
IF FREQUENCY
(MHz)
DIFFERENTIAL IF
OUTPUT IMPEDANCE
(RIF || CIF)
IF MATCHING USING TC8-1
L1, L2
1dB IF FREQUENCY
RANGE (MHz)
140 532Ω||1.0pF 390nH 65 to 327
153 532Ω||1.0pF 300nH 84 to 350
190 530Ω ||1.0pF 210nH 107 to 375
250 525Ω ||1.0pF 120nH 160 to 415
380 511Ω ||1.0pF 51nH 288 to 520
500 500Ω ||1.03pF
1000 454Ω ||1.07pF
1500 364Ω ||1.12pF
2000 268Ω ||1.24pF
2500 209Ω ||1.41pF
Figure 9. IF Output Return Loss—400Ω Bandpass
Matching with 8:1 Transformer
FREQUENCY (MHz)
30
RETURN LOSS (dB)
20
–10
0
25
15
–5
150 250 350 450
5567 F09
55010050 200 300 400 500
390nH
300nH
210nH
120nH
51nH
T1 = TC8-1
R1, R2 = 3.01k
C7, C8 = 330pF
1011 LTC5567
5567 F08
L1 L2
R1 R2
T1
C2
10nF
VCC
IFOUT
50Ω
IF+IF
VCC
C8C7
Figure 8. IF Output Schematic with External Matching Wideband Differential IF Output
Wide IF bandwidth and high input 1dB compression are
obtained by reducing the IF output resistance with resistors
R1 and R2. This will reduce the mixers conversion gain,
but will not degrade the IIP3 or noise figure.
Table 4 summarizes the optimum IF matching inductor
values, versus IF center frequency, to be used in the
standard downmixer test circuit shown in Figure 1. The
LTC5567
15
5567f
applicaTions inForMaTion
Figure 12. Voltage Conversion Gain, IIP3 and NF vs IF
Output Frequency for Wideband 200Ω Differential IF
Figure 11. Test Circuit for Wideband 200Ω Differential Output
The IF matching shown in Figure 10 uses 249Ω resistors
and 390nH supply chokes to produce a wideband 200Ω
differential output. This differential output is suitable for
driving a wideband differential amplifier, filter, or a wide-
band 4:1 transformer. The evaluation board layout allows
the removal of the IF transformer to evaluate the mixer
performance with a differential output.
The complete test circuit, shown in Figure 11, uses re-
sistive impedance matching attenuators (L-pads) on the
evaluation board to transform each 100Ω IF output to
50Ω. An external 0°/180° power combiner is then used to
convert the 100Ω differential output to 50Ω single-ended,
to facilitate measurement.
Table 5 compares the IF bandwidth and 1dB compression
for the standard 400Ω and wideband 200Ω IF output re-
sistances. As shown, the 200Ω matching doubles the IF
bandwidth, and increases the RF input P1dB to +13dBm.
Table 5. IF Bandwidth and 1dB Compression for 400Ω and
200Ω Differential IF Output Resistance (RF = 1.69 to 2.24GHz,
LO = 1.65GHz, VCC = 3.3V, TC = 25°C, L1, L2 = 390nH)
ROUT
(Ω)
R1, R2
(Ω)
P1dB
(dBm)
1dB (CONVERSION GAIN)
IF FREQUENCY RANGE
400 3.01k 10.1 65MHz to 327MHz
200 249 13.0 45MHz to 580MHz
Measured voltage conversion gain, IIP3 and SSB noise
figure, at the 200Ω differential output are plotted in Fig-
ure12. Voltage gain, rather than power gain, is plotted
to emphasize the voltage gain due to the 200Ω output.
As shown, the conversion gain is flat within 1dB over the
45MHz to 590MHz IF output frequency range.
IF FREQUENCY (MHz)
40 90
G
V
(dB), IIP3 (dBm), SSB NF (dB)
390 440 490 540
5567 F12
140 190 240 290 340
590
12
10
8
6
4
14
18
20
22
28
16
24
26 IIP3
GV
NF
RF = 1.69GHz TO 2.24GHz
LO = 1.65GHz
ZRF = 50Ω
ZIF = 200Ω DIFFERENTIAL
TC = 25°C
IF
LTC5567
5567 F10
330pF
330pF
249Ω
249Ω
390nH
390nH
VCC
IF+100Ω
200Ω
LOAD
100Ω
Figure 10. Wideband 200Ω Differential Output
IFOUT
50Ω
IFOUT
200Ω
IF+
50Ω
IF
50Ω
RF
EN
EN
10nF
249Ω
249Ω
LO
1.65GHz
0dBm
3.3V
89mA
10nF
VCC
IF+
LTC5567
IF
IADJ
2.7pF
RF
1.69GHz
TO
2.24GHz
330pF 1MHz TO 500MHz
COMBINER
L-PADS AND 180° COMBINER
FOR 50Ω SINGLE-ENDED MEASUREMENT
330pF
BIAS
RF
5567 F11
3.9pF
LO
LO 71.5Ω
69.8Ω
71.5Ω
69.8Ω
390nH
390nH
OUT
180°
LTC5567
16
5567f
applicaTions inForMaTion
Figure 14. Voltage Conversion Gain versus IF Frequency
for 153MHz Highpass and Wideband Bandpass IF Matching
Networks
Highpass IF Matching
By simply changing component values, the bandpass IF
output matching network can be changed to a highpass
impedance transforming network. This matching network
will drive a lower impedance differential load (or trans-
former), like the 200Ω wideband bandpass matching
previously described, while delivering higher conversion
gain, similar to the 400Ω bandpass matching. The high-
pass matching network will have less IF bandwidth than
the bandpass matching. It also uses smaller inductance
values; an advantage when designing for IF center frequen-
cies well below 100MHz.
Referring to the small-signal output network schematic in
Figure 13, the reactive matching element values (L1, L2,
C7 and C8) are calculated using the following equations.
The source resistance (RS) is the parallel combination of
external resistors R1 + R2 and the internal IF resistance,
RIF taken from Table 4. The differential load resistance
(RL) is typically 200Ω, but can be less. CIF, the IF output
capacitance, is taken from Table 4. Choosing RS in the
380Ω to 450Ω range will yield power conversion gains
around 2dB.
RS = RIF || 2·R1 (R1 = R2)
Q = √(RS/RL–1) (RS > RL)
YL = Q/RS + (ωIF • CIF)
L1, L2 = 1/(2 • YL • ωIF)
C7, C8 = 2/(Q • RL • ωIF)
Figure 13. IF Output Circuit for Highpass Matching Element
Value Calculations
wideband test circuit, shown in Figure 11, was modified
with the following new element values, and re-tested.
L1, L2 = 150nH
C7, C8 = 10pF
R1, R2 = 1.1k
Measured voltage conversion gain for the highpass and
wideband bandpass methods are shown in Figure 14, for
comparison. Both circuits are driving a 200Ω differential
load, but the highpass version delivers 2.3dB of additional
gain at 153MHz. Measured performance for both circuits
is summarized in Table 6. As shown, the highpass method
has less than half the IF bandwidth, and 3dB lower P1dB.
Table 6. Measured Performance Comparison for Highpass
and Wideband IF Matching (RF = 1950MHz, IF = 153MHz,
Low Side LO).
IF MATCHING
GV
(dB)
IIP3
(dBm)
P1dB
(dBm)
1dB (CONVERSION GAIN)
IF FREQUENCY RANGE
Highpass 8.5 26.9 10.0 110MHz to 320MHz
Wideband 6.2 26.9 13.0 45MHz to 590MHz
IF FREQUENCY (MHz)
50
VOLTAGE CONVERSION GAIN (dB)
2
6
4
8
450
5567 F14
0
–2
–4
–5
3
7
5
9
1
–1
–3
150 250 350 550400100 200 300 500
RF = 1.7GHz TO 2.2GHz
LO = 1.65GHz AT 0dBm
ZRF = 50Ω
ZIF = 200Ω DIFFERENTIAL
TC = 25°C
WIDEBAND
BANDPASS
153MHz
HIGHPASS
IF
LTC5567
5567 F13
C8
C7
R1
R2
L1
L2
VCC
IF+
RIF CIF RL
11
10
To demonstrate the highpass impedance transformer
output matching, these equations were used to calculate
the element values for a 153MHz IF frequency and 200Ω
differential load resistance. The output matching on the
Mixer Bias Current Reduction
The IADJ pin (Pin 8) is available for reducing the mixer
core DC current consumption at the expense of linearity
and P1dB. For the highest performance, this pin should
be left open circuit. As shown in Figure 15, an internal
bias circuit produces a 3mA reference current for the
mixer core. If a resistor is connected to Pin 8, as shown
LTC5567
17
5567f
applicaTions inForMaTion
11 10 IFVCC
VCC
ICC
34mA
L2L1
VCC
8IADJ
55mA
BIAS
3mA
BIAS
R3
LTC5567
5567 F12
IF+6
Figure 15. IADJ Interface
in Figure 15, a portion of the reference current can be
shunted to ground, resulting in reduced mixer core cur-
rent. For example, R3 = 1k will shunt away 1mA from Pin
8 and reduce the mixer core current by 33%. The nominal,
open-circuit DC voltage at the IADJ pin is 2.2V. Table 7
lists DC supply current and RF performance at 1950MHz
for various values of R3.
Table 7. Mixer Performance with Reduced Current
(RF = 1950MHz, Low Side LO, IF = 153MHz)
R3 (Ω) ICC (mA) GC (dB)
IIP3
(dBm)
P1dB
(dBm) NF (dB)
Open 89.0 1.9 26.9 10.2 11.8
10k 84.6 1.9 25.7 10.2 11.5
1k 70.4 1.6 21.4 10.1 10.5
330 62.9 1.3 19.3 9.5 10.3
100 58.3 1.0 17.9 8.5 10.1
Enable Interface
Figure 16 shows a simplified schematic of the enable
interface. To enable the mixer, the EN voltage must be
higher than 2.5V. If the enable function is not required,
the pin should be connected directly to VCC. The volt-
age at the EN pin should never exceed the power supply
voltage (VCC) by more than 0.3V. If this should occur, the
supply current could be sourced through the ESD diode,
potentially damaging the IC.
4
6
CLAMP
300k
CMOS
500Ω
LTC5567 VCC
EN EN
5567 F16
Figure 16. Enable Input Circuit
The EN pin has an internal 300k pull-down resistor.
Therefore, the mixer will be disabled with the enable pin
left floating.
Supply Voltage Ramping
Fast ramping of the supply voltage can cause a current
glitch in the internal ESD clamp circuits connected to the
VCC pin. Depending on the supply inductance, this could
result in a supply voltage transient that exceeds the 4.0V
maximum rating. A supply voltage ramp time greater than
1ms is recommended.
Spurious Output Levels
Mixer spurious output levels versus harmonics of the
RF and LO are tabulated in Table 8. The spur levels were
measured on a standard evaluation board using the test
circuit shown in Figure 1. The spur frequencies can be
calculated using the following equation:
fSPUR = (M • fRF) – (N • fLO)
Table 8. IF Output Spur Levels (dBm)
(RF = 1950MHz, PRF = –2dBm, PIF = 0dBm at 153MHz, Low Side
LO, PLO = 0dBm, VCC = 3.3V, TC = 25°C)
N
M
0 1 2 3 4 5 6 7 8 9
0–43 –24 –47 –30 –57 –46 –64 –50 –81
1–30 0 –56 –57 –59 –37 –69 –47 –78 –58
2–60 –56 –67 –68 –72 –78 –78 –85 –87 *
3* –81 –89 * * * * * * *
4* * –73 * * * * * –90 *
5* * * * * * * * * *
6* * * * * * * * *
7* * *
*Less than –90dBc
LTC5567
18
5567f
Typical applicaTions
300MHz RF Application with 70MHz Highpass IF Matching
IFOUT
50Ω
70MHz NOM
RF
EN
EN
10nF
1.1k
1.1k
LOIN
50Ω
370MHz ±40MHz
3.3V
89mA
10nF
VCC
IF+
LTC5567
IF
IADJ
120pF
RFIN
50Ω
300MHz ±40MHz
22pF
TC4-1W
4:1
22pF
BIAS
RF
5567 TA03a
330pF
LO
LO
22pF
390nH
3.3nH
390nH TYPICAL PERFORMANCE
(RF = 300MHz, IF = 70MHz, LO = 370MHz AT 0dBm)
GC = 0.6dB
IIP3 = 26.3dBm
SSB NF = 13.3dB
INPUT P1dB = 10.9dBm
22pF
Conversion Gain, IIP3 and NF
vs RF Frequency
RF Isolation and LO leakage vs
RF and LO Frequency RF, LO and IF Port Return Losses
RF FREQUENCY (MHz)
260
–2
0
G
C
(dB), IIP3 (dBm), NF (dB)
4
8
12
28
20
300
24
16
2
6
10
26
18
22
14
340280 320 360 380 400
5567 TA03b
IIP3
NF
GC
HIGH SIDE LO
PLO = 0dBm
IF = 70MHz
TC = 25°C
RF/LO FREQUENCY (MHz)
260
RF ISOLATION (dB)
LO LEAKAGE (dBm)
45
50
55
340 420
5567 TA03c
40
35
30 300 380
60
65
70
–50
–40
–30
–60
–70
–80
–20
–10
0
460
RF-LO
LO-IF
LO-RF
RF-IF
FREQUENCY (MHz)
40
RETURN LOSS (dB)
20
–10
10
5
0
35
30
25
15
–5
150 250 350
5567 TA03d
45010050 200 300 400
LO
RF
IF
LTC5567
19
5567f
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.
4.00 ±0.10
(4 SIDES)
NOTE:
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
ON THE TOP AND BOTTOM OF PACKAGE
PIN 1
TOP MARK
(NOTE 6)
0.55 ±0.20
1615
1
2
BOTTOM VIEW—EXPOSED PAD
2.15 ±0.10
(4-SIDES)
0.75 ±0.05 R = 0.115
TYP
0.30 ±0.05
0.65 BSC
0.200 REF
0.00 – 0.05
(UF16) QFN 10-04
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
0.72 ±0.05
0.30 ±0.05
0.65 BSC
2.15 ±0.05
(4 SIDES)
2.90 ±0.05
4.35 ±0.05
PACKAGE OUTLINE
PIN 1 NOTCH R = 0.20 TYP
OR 0.35 × 45° CHAMFER
UF Package
16-Lead Plastic QFN (4mm × 4mm)
(Reference LTC DWG # 05-08-1692 Rev Ø)
package DescripTion
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
LTC5567
20
5567f
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 FAX: (408) 434-0507 www.linear.com
LINEAR TECHNOLOGY CORPORATION 2012
LT 0412 • PRINTED IN USA
relaTeD parTs
Typical applicaTion
PART NUMBER DESCRIPTION COMMENTS
Infrastructure
LT
®
5527 400MHz to 3.7GHz, 5V Downconverting Mixer 2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply
LT5557 400MHz to 3.8GHz, 3.3V Downconverting Mixer 2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply
LTC559x 600MHz to 4.5GHz Dual Downconverting Mixer
Family 8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply
LTC5569 300MHz to 4GHz, 3.3V Dual Active
Downconverting Mixer 2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply
LTC554x 600MHz to 4GHz, 5V Downconverting Mixer Family 8dBm Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply
LTC6400-X 300MHz Low Distortion IF Amp/ADC Driver Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz, Differential I/O
LTC6416 2GHz 16-Bit ADC Buffer 40dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping
LTC6412 31dB Linear Analog VGA 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB
LT5554 Ultralow Distort IF Digital VGA 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps
LT5578 400MHz to 2.7GHz Upconverting Mixer 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer
LT5579 1.5GHz to 3.8GHz Upconverting Mixer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports
LTC5588-1 200MHz to 6GHz I/Q Modulator 31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor
LTC5585 700MHz to 3GHz Wideband I/Q Demodulator >530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling
RF Power Detectors
LT5538 40MHz to 3.8GHz Log Detector ±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range
LT5581 6GHz Low Power RMS Detector 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current
LTC5582 40MHz to 10GHz RMS Detector ±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic Range
LTC5583 Dual 6GHz RMS Power Detector Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation
ADCs
LTC2208 16-Bit, 130Msps ADC 78dBFS Noise Floor, >83dB SFDR at 250MHz
LTC2153-14 14-Bit, 310Msps Low Power ADC 68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption
CATV Downconverting Mixer with 1GHz IF Bandwidth
IFOUT
50MHz TO
1000MHz
50Ω
RFIN
1150MHz
50Ω
10pF
1.8pF
5567 TA02a
RF
EN
402Ω
402Ω
LOIN
1200MHz
TO 2150MHz
50Ω
VCC
3.0V TO 3.6V
10nF F
10V
VCC
IF+
LTC5567
IF
IADJNC
1nF
T1
MABACT0066
1nF
3.9pF
220nF
10nF
15nH
68nH
68nH
15nH
17
GND
2
3
GND
1TEMP
4GND
GND 9
65 7 8
EN
GND
LO 12
11
10
GND NC GND
16 1415 13
IF OUTPUT FREQUENCY (MHz)
0
G
C
(dB), OIP3 (dBm)
2RF-LO SPUR (dBc)
600
5567 TA02b
200 800400 1000
OIP3
2RF-LO
GC
RF = 1150MHz
PRF = –6dBm
HIGH SIDE LO
PLO = 0dBm
TC = 25°C
6
24
27
30
0
18
12
3
21
–3
15
9
–80
–20
–10
0
–100
–40
–60
–90
–30
–110
–50
–70
Conversion Gain, OIP3 and 2RF-LO
Spur vs IF Output Frequency