This is information on a product in full production.
August 2012 Doc ID 14407 Rev 2 1/35
1
TDA7563A
4 x 50 W power amplifier with full I2C diagnostics,
high efficiency and low voltage operation
Datasheet production data
Features
Multipower BCD technology
MOSFET output power stage
DMOS power output
New high efficiency (class SB)
High output power capability 4 x 28 W / 4 Ω @
14.4 V, 1 kHz, 10 % THD, 4 x 50 W max power
Max. output power 4 x 72 W / 2 Ω
Full I
2
C bus driving:
Standby
Independent front/rear soft play/mute
Selectable gain 26 dB /12 dB (for low noise
line output function)
High efficiency enable/disable
–I
2
C bus digital diagnostics (including DC
and AC load detection)
Full fault protection
DC offset detection
Four independent short circuit protection
Clipping detector pin with selectable threshold
(2 %/10 %)
Standby/mute pin
Linear thermal shutdown with multiple thermal
warning
ESD protection
Description
The TDA7563A is a new BCD technology Quad
Bridge type of car radio amplifier in Flexiwatt27 &
PowerSO36 packages specially intended for car
radio applications.
Thanks to the DMOS output stage the TDA7563A
has a very low distortion allowing a clear powerful
sound. Among the features, its superior efficiency
performance coming from the internal exclusive
structure, makes it the most suitable device to
simplify the thermal management in high power sets.
The dissipated output power under average
listening condition is in fact reduced up to 50%
when compared to the level provided by
conventional class AB solutions.
This device is equipped with a full diagnostics
array that communicates the status of each
speaker through the I2C bus.
PowerSO36 (Slug up)
Flexiwatt27 (Vert.)
'!0'03
'!0'03
'!0'03
Flexiwatt27 (SMD)
'!0'03
Flexiwatt27 (Horiz.)
Table 1. Device summary
Order code Package Packing
TDA7563A Flexiwatt27 (vertical) Tube
TDA7563AH Flexiwatt27 (horizontal) Tube
TDA7563ASM Flexiwatt27 (SMD) Tube
TDA7563ASMTR Flexiwatt27 (SMD) Tape and reel
TDA7563APD PowerSO36 (slug up) Tube
www.st.com
Contents TDA7563A
2/35 Doc ID 14407 Rev 2
Contents
1 Block, pins connection and application diagrams . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Fast muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.1 I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.3 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.4 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.5 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.6 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9 Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
TDA7563A List of tables
Doc ID 14407 Rev 2 3/35
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. Double fault table for turn on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 6. Chip address: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 7. IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8. IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 9. DB1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 10. DB2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 11. DB3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 12. DB4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 13. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
List of figures TDA7563A
4/35 Doc ID 14407 Rev 2
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. Pin connections - Flexiwatt27 (Top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. Pin connections - PowerSO36 (Top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 5. Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. Output power vs. supply voltage (4Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 7. Output power vs. supply voltage (2Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 8. Distortion vs. output power (4Ω, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 9. Distortion vs. output power (4Ω, HI-EFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 10. Distortion vs. output power (2Ω, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 11. Distortion vs. frequency (4Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 12. Distortion vs. frequency (2Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 13. Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 14. Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 15. Power dissipation and efficiency vs. output power (4Ω, STD, SINE) . . . . . . . . . . . . . . . . . 12
Figure 16. Power dissipation and efficiency vs. output power (4Ω, HI-EFF, SINE) . . . . . . . . . . . . . . . 12
Figure 17. Power dissipation vs. average output power (audio program simulation, 4Ω) . . . . . . . . . . 12
Figure 18. Power dissipation vs. average output power (audio program simulation, 2Ω) . . . . . . . . . . 12
Figure 19. Turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 20. SVR and output behavior (case 1: without turn-on diagnostic). . . . . . . . . . . . . . . . . . . . . . 14
Figure 21. SVR and output pin behavior (case 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . . 14
Figure 22. Thresholds for short to GND/VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 23. Thresholds for short across the speaker/open speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 24. Thresholds for line-drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 25. Restart timing without diagnostic enable (permanent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 26. Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 27. Current detection: Load impedance |Z| vs. output peak voltage. . . . . . . . . . . . . . . . . . . . . 18
Figure 28. Thermal foldback diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 29. Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 30. Timing diagram on the I2C bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 31. Timing acknowledge clock pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 32. Flexiwatt27 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 30
Figure 33. Flexiwatt27 (vertical) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . . . 31
Figure 34. Flexiwatt27 (SMD) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . 32
Figure 35. PowerSO36 (slug up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 33
TDA7563A Block, pins connection and application diagrams
Doc ID 14407 Rev 2 5/35
1 Block, pins connection and application diagrams
Figure 1. Block diagram
Figure 2. Application circuit
3HORT#IRCUIT
0ROTECTION
$IAGNOSTIC
)#"53
-UTE -UTE
4HERMAL
0ROTECTION
$UMP
#LIP
$ETECTOR
).,&
).22
).2&
).,2
6## 6##
#$?/54
/542&
/542&
/5422
/5422
/54,&
/54,&
/54,2
/54,2
3HORT#IRCUIT
0ROTECTION
$IAGNOSTIC
3HORT#IRCUIT
0ROTECTION
$IAGNOSTIC
3HORT#IRCUIT
0ROTECTION
$IAGNOSTIC
2EFERENCE
#,+ $!4!
362 !#?'.$ 4! " 3?'.$
07?'.$
&
&
2
2
2& 22 ,& ,2
34"9 -54%
*$3*36
*$3*36
).2&
#M&
).22
#M&
/542&
/5422
).,&
#M&
).,2
#M&
/54,&
/54,2
#
M&
#
M&
4! "
+
6CC 6CC
#
M&
666##
#
M&
$!4!
)#"53
#,+







3'.$  
#$/54
6









Block, pins connection and application diagrams TDA7563A
6/35 Doc ID 14407 Rev 2
Figure 3. Pin connections - Flexiwatt27 (Top view)
Figure 4. Pin connections - PowerSO36 (Top view)
*$3*36
4! "
34"9
07?'.$,2
/54,2
#$/54
/54,2
6##
/54,&
07?'.$,&
/54,&
362
).,&
).,2
3?'.$
).22
).2&
!#'.$
/542&
07?'.$2&
/542&
6##
#+
/5422
/5422
07?'.$22
$!4!
4! "


















4! "
34"9
07?'.$,2
/54,2
#$/54
/54,2
6##
/54,&
07?'.$,&
/54,&
362
).,&
).,2
3?'.$
).22
).2&
!#'.$
/542&
07?'.$2&
/542&
6##
#+
/5422
/5422
07?'.$22
$!4!
!$3%,)#$)3


















)OH[LZDWWKRUL]RQWDO60' )OH[LZDWWYHUWLFDO
*$3*36
#$
.#
.#
/54
07'.$
/54
.#
.#
#+/54
.#
.#
/54
07'.$
07'.$
.#
/54
6## 













4! "6##
/54
6##
$!4!
!#'.$
).
).



/543'.$ 
.#
34"9
6##
).
/54
).






07'.$362 
TDA7563A Electrical specifications
Doc ID 14407 Rev 2 7/35
2 Electrical specifications
2.1 Absolute maximum ratings
2.2 Thermal data
2.3 Electrical characteristics
Refer to the test circuit, V
S
= 14.4 V; f = 1 kHz; R
L
= 4
Ω
; T
amb
= 25 °C unless otherwise specified.
Table 2. Absolute maximum ratings
Symbol Parameter Value Unit
Vop Operating supply voltage 18 V
VSDC supply voltage 28 V
Vpeak Peak supply voltage (for t = 50 ms) 50 V
VCK CK pin voltage 6 V
VDATA Data pin voltage 6 V
IOOutput peak current (not repetitive t = 100 ms) 8 A
IOOutput peak current (repetitive f > 10 Hz) 6 A
Ptot Power dissipation Tcase = 70 °C 85 W
Tstg, TjStorage and junction temperature -55 to 150 °C
Table 3. Thermal data
Symbol Parameter PowerSO36 Flexiwatt 27 Unit
Rth j-case Thermal resistance junction-to-case Max 1 1 °C/W
Table 4. Electrical characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
Power amplifier
VSSupply voltage range - 8 - 18 V
IdTotal quiescent drain current - - 170 300 mA
P
O
Output power
Max. power (V
S
= 15.2 V, square
wave input (2-Vrms)) -50-W
THD = 10-%
THD = 1-%
25
20
28
22 -W
W
R
L
= 2-Ω; EIAJ (V
S
= 13.7-V)
R
L
= 2-Ω; THD 10-%
R
L
= 2-Ω; THD 1-%
R
L
= 2-Ω; max power
55
40
32
60
68
50
40
75
-
W
W
W
W
Electrical specifications TDA7563A
8/35 Doc ID 14407 Rev 2
THD Total harmonic distortion
PO = 1 to 10 W; STD MODE
HE MODE; PO = 1.5 W
HE MODE; PO = 8 W
-
0.015
0.01
0.1
0.1
0.1
0.5
%
%
%
PO = 1-10 W, f = 10kHz; STD mode - 0.15 0.5 %
RL = 2Ω; HE MODE; Po = 3W - 0.02 0.5 %
GV = 12 dB; STD mode
VO = 0.1 to 5 VRMS
-0.0150.1 %
CTCross talk f = 1 kHz to 10 kHz, Rg = 600 Ω50 60 - dB
RIN Input impedance - 60 100 130 KΩ
GV1 Voltage gain 1 (default) - 25 26 27 dB
ΔGV1 Voltage gain match 1 - -1 1 dB
GV2 Voltage gain 2 - 11 12 13 dB
ΔGV2 Voltage gain match 2 - -1 - 1 dB
EIN1 Output noise voltage 1 Rg = 600 Ω;
filter 20 Hz to 22 kHz -35-µV
EIN2 Output noise voltage 2 Rg = 600 Ω; GV = 12 dB
filter 20 Hz to 22 kHz -11-µV
SVR Supply voltage rejection f = 100 Hz to 10 kHz; V
r
= 1 Vpk;
R
g
= 600 Ω50 70 - dB
BW Power bandwidth - 100 - - kHz
A
SB
Standby attenuation - 90 110 dB
I
SB
Standby current Vstandby = 0 - 1 10 µA
A
M
Mute attenuation - 80 100 dB
V
OS
Offset voltage Mute & Play -60 0 60 mV
V
AM
Min. supply mute threshold - 7 7.5 8 V
T
ON
Turn on delay D2/D1 (IB1) 0 to 1 - 5 20 ms
T
OFF
Turn off delay D2/D1 (IB1) 1 to 0 - 5 20 ms
V
SBY
Standby/mute pin for standby - 0 - 1.5 V
V
MU
Standby/mute pin for mute - 3.5 - 5 V
CMRR Input CMRR VCM = 1 Vpk-pk; Rg = 0 Ω-55-dB
V
OP
Standby/mute pin for operating 7 - V
S
V
I
MU
Standby/mute pin current V
standby/mute
= 8.5 V - 20 40 μA
V
standby/mute
< 1.5 V - 0 5 μA
CD
LK
Clip det. high leakage current CD off / VCD = 6 V - 0 5 μA
CD
SAT
Clip det. saturation voltage CD on; I
CD
= 1 mA - - 300 mV
CD
THD
Clip det. THD level D0 (IB1) = 1 5 10 15 %
D0 (IB1) = 0 1 2 3 %
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
TDA7563A Electrical specifications
Doc ID 14407 Rev 2 9/35
Turn on diagnostics 1 (Power amplifier mode)
Pgnd
Short to GND det. (below this
limit, the output is considered in
short circuit to GND)
Power amplifier in standby
--1.2V
Pvs
Short to Vs det. (above this
limit, the output is considered in
short circuit to VS)
Vs -1.2 - - V
Pnop
Normal operation thresholds.
(within these limits, the output
is considered without faults).
1.8 - Vs -1.8 V
Lsc Shorted load det. - - 0.5 Ω
Lop Open load det. 130 - - Ω
Lnop Normal load det. 1.5 - 70 Ω
Turn on diagnosticS 2 (Line driver mode)
Pgnd
Short to GND det. (below this
limit, the output is considered in
short circuit to GND)
Power amplifier in standby - - 1.2 V
Pvs
Short to Vs det. (above this
limit, the output is considered in
short circuit to VS)
- Vs -1.2 - - V
Pnop
Normal operation thresholds.
(within these limits, the output
is considered without faults).
- 1.8 - Vs -1.8 V
Lsc Shorted load det. - - 1.5 Ω
Lop Open load det. - 400 - - Ω
Lnop Normal load det. - 4.5 - 200 Ω
Permanent diagnostics 2 (Power amplifier mode or line driver mode)
Pgnd
Short to GND det. (below this
limit, the output is considered in
short circuit to GND)
Power amplifier in mute or play,
one or more short circuits
protection activated
--1.2V
Pvs
Short to Vs det. (above this
limit, the output is considered in
short circuit to Vs)
Vs -1.2 - - V
Pnop
Normal operation thresholds.
(within these limits, the output
is considered without faults).
1.8 - Vs -1.8 V
L
SC
Shorted load det. Power amplifier mode - - 0.5 Ω
Line driver mode - - 1.5 Ω
V
O
Offset detection Power amplifier in play, STD mode
AC input signals = 0 ±1.5 ±2 ±2.5 V
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Electrical specifications TDA7563A
10/35 Doc ID 14407 Rev 2
2.4 Electrical characteristics curves
I
NL
Normal load current detection V
O
< (V
S
-5)pk 500 - - mA
I
OL
Open load current detection - - 250 mA
I
2
C bus interface
S
CL
Clock frequency - - - 400 kHz
V
IL
Input low voltage - - - 1.5 V
V
IH
Input high voltage - 2.3 - - V
Figure 5. Quiescent current vs. supply voltage Figure 6. Output power vs. supply voltage (4
Ω
)
Figure 7. Output power vs. supply voltage (2
Ω
) Figure 8. Distortion vs. output power (4
Ω
, STD)
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
*$3*36

9V9










,GP$
9LQ 
12/2$'6
*$3*36
9V9
       













3R:
5/ 2KP
I .+]
7+' 
3RPD[
7+' 
*$3*36
     
9V9










3R:
5/ 2KP
I .+]
7+' 
3RPD[
7+' 
*$3*36




  
0O7
4($
34! .$!2$ -/$%
636
2,7
F+(Z
F+(Z
TDA7563A Electrical specifications
Doc ID 14407 Rev 2 11/35
Figure 9. Distortion vs. output power (4Ω, HI-
EFF)
Figure 10. Distortion vs. output power (2Ω,
STD)
Figure 11. Distortion vs. frequency (4Ω) Figure 12. Distortion vs. frequency (2Ω)
Figure 13. Crosstalk vs. frequency Figure 14. Supply voltage rejection vs.
frequency
*$3*36




  
0O7
4($
()%&&-/$%
636
2,7
F+(Z
F+(Z
*$3*36




  
0O7
4($
F+(Z
34!.$!2$-/$%
6
3
6
2
,
7
F+(Z
*$3*36




    
F(Z
4($
34!.$!2$-/$%
6
3
6
2
,
7
0O7
*$3*36




    
F(Z
4($
34!.$!2$-/$%
6
3
6
2
,
7
0O7
*$3*36









    
34!.$!2$-/$%
2
,
7
0
O
7
2G
7
F(Z
#2/334!,+D"
*$3*36









    
F(Z
362D"
34$(%-/$%
2G
7
6RIPPLE6RMS
Electrical specifications TDA7563A
12/35 Doc ID 14407 Rev 2
Figure 15. Power dissipation and efficiency vs.
output power (4Ω, STD, SINE)
Figure 16. Power dissipation and efficiency vs.
output power (4Ω, HI-EFF, SINE)
Figure 17. Power dissipation vs. average
output power (audio program
simulation, 4Ω)
Figure 18. Power dissipation vs. average
output power (audio program
simulation, 2Ω)
*$3*36

3R:









3WRW:









Q
3WRW
67$1'$5'02'(
9V 9
5/ [2KP
I .+]6,1(
Q
*$3*36
3R:
 









3WRW:









Q
Q
3WRW
+,())02'(
9V 9
5/ [2KP
I .+]6,1(
*$3*36

0O7








0TOT7
6S6
2,X/HM
'!533)!../)3%
34$-/$%
()%&&-/$%
#,)0
34! 24
*$3*36

0O7









0TOT7
6S6
2,X/HM
'!533)!../)3% 34$-/$%
()%&&-/$%
#,)0
34!24
TDA7563A Diagnostics functional description
Doc ID 14407 Rev 2 13/35
3 Diagnostics functional description
3.1 Turn-on diagnostic
It is activated at the turn-on (standby out) under I2C bus request. Detectable output faults
are:
SHORT TO GND
–SHORT TO Vs
SHORT ACROSS THE SPEAKER
OPEN SPEAKER
To verify if any of the above misconnections are in place, a subsonic (inaudible) current
pulse (Figure 19) is internally generated, sent through the speaker(s) and sunk back.The
Turn On diagnostic status is internally stored until a successive diagnostic pulse is
requested (after a I2C reading).
If the "standby out" and "diagnostic enable" commands are both given through a single
programming step, the pulse takes place first (power stage still in standby mode, low,
outputs = high impedance).
Afterwards, when the amplifier is biased, the PERMANENT diagnostic takes place. The
previous Turn On state is kept until a short appears at the outputs.
Figure 19. Turn-on diagnostic: working principle
Figure 20 and 21 show SVR and OUTPUT waveforms at the turn-on (standby out) with and
without TURN-ON DIAGNOSTIC.
,VRXUFH
9Va9
,VLQN WPV
,P$
,VLQN
,VRXUFH
aPV
0HDVXUHWLPH
'!0'03
#(
#(
Diagnostics functional description TDA7563A
14/35 Doc ID 14407 Rev 2
Figure 20. SVR and output behavior (case 1: without turn-on diagnostic)
Figure 21. SVR and output pin behavior (case 2: with turn-on diagnostic)
The information related to the outputs status is read and memorized at the end of the
current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the
process. As for SHORT TO GND / VS the fault-detection thresholds remain unchanged from
26 dB to 12 dB gain setting. They are as follows:TDA7563A
Figure 22. Thresholds for short to GND/VS
'!0'03
%LDVSRZHUDPSWXUQRQ W
'LDJQRVWLF(QDEOH
3HUPDQHQW
3HUPDQHQWGLDJQRVWLF
DFTXLVLWLRQWLPHP67\S
3HUPDQHQW'LDJQRVWLFVGDWDRXWSXW
SHUPLWWHGWLPH
,&%'$7$
9VYU
2XW
)$8/7
HYHQW 5HDG'DWD
'!0'03
%LDVSRZHUDPSWXUQRQ
SHUPLWWHGWLPH
7XUQRQGLDJQRVWLF
DFTXLVLWLRQWLPHP67\S
W
5HDG'DWD
3HUPDQHQWGLDJQRVWLF
DFTXLVLWLRQWLPHP67\S
3HUPDQHQW'LDJQRVWLFVGDWDRXWSXW
SHUPLWWHGWLPH
'LDJQRVWLF(QDEOH
7XUQRQ
7XUQRQ'LDJQRVWLFVGDWDRXWSXW
SHUPLWWHGWLPH
,&%'$7$
9VYU
2XW
'LDJQRVWLF(QDEOH
3HUPDQHQW
)$8/7
HYHQW
3#TO'.$ X 3#TO6S
6 6 636 63
X.ORMAL/PERATION
6 636
'!0'03
TDA7563A Diagnostics functional description
Doc ID 14407 Rev 2 15/35
Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies
from 26 dB to 12 dB gain setting, since different loads are expected (either normal speaker's
impedance or high impedance). The values in case of 26 dB gain are as follows:
Figure 23. Thresholds for short across the speaker/open speaker
If the Line-Driver mode (Gv= 12 dB and Line Driver Mode diagnostic = 1) is selected, the
same thresholds will change as follows:
Figure 24. Thresholds for line-drivers
3.2 Permanent diagnostics
Detectable conventional faults are:
Short to GND
–Short to Vs
Short across the speaker
The following additional features are provided:
Output offset detection
The TDA7563A has 2 operating statuses:
1. RESTART mode. The diagnostic is not enabled. Each audio channel operates
independently from each other. If any of the a.m. faults occurs, only the channel(s)
interested is shut down. A check of the output status is made every 1 ms (Figure 25).
Restart takes place when the overload is removed.
2. DIAGNOSTIC mode. It is enabled via I
2
C bus and self activates if an output overload
(such to cause the intervention of the short-circuit protection) occurs to the speakers
outputs. Once activated, the diagnostics procedure develops as follows (Figure 26):
To avoid momentary re-circulation spikes from giving erroneous diagnostics, a
check of the output status is made after 1ms: if normal situation (no overloads) is
detected, the diagnostic is not performed and the channel returns back active.
Instead, if an overload is detected during the check after 1 ms, then a diagnostic
cycle having a duration of about 100 ms is started.
After a diagnostic cycle, the audio channel interested by the fault is switched to
RESTART mode. The relevant data are stored inside the device and can be read
by the microprocessor. When one cycle has terminated, the next one is activated
'!0'03
3#ACROSS,OAD X /PEN,OAD
6 77)NFINITE
X.ORMAL/PERATION
77
'!0'03
3#ACROSS,OAD X /PEN,OAD
777INFINITE
X.ORMAL/PERATION
77
Diagnostics functional description TDA7563A
16/35 Doc ID 14407 Rev 2
by an I
2
C reading. This is to ensure continuous diagnostics throughout the car-
radio operating time.
To check the status of the device a sampling system is needed. The timing is
chosen at microprocessor level (over half a second is recommended).
Figure 25. Restart timing without diagnostic enable (permanent) - Each 1ms time, a
sampling of the fault is done
Figure 26. Restart timing with diagnostic enable (permanent)
T
M3 M3M3M3 M3
/VERCURRENT AND SHOR T
CIRCUIT PROTECTIONINTERVENTION
IESHORT CIRCUI TT O'.$
3HORT CIRCUI TREMOVED
/UT
'!0'03
T
/VERCURRENT ANDSHORT
CIRCUITPROTECTION INTERVENTI ON
IESHORTC IRCUI TTO'.$
3HORTCIRCUIT REMOVED
M3 M3 M3M3
'!0'03
TDA7563A Output DC offset detection
Doc ID 14407 Rev 2 17/35
4 Output DC offset detection
Any DC output offset exceeding +/- 2 V are signalled out. This inconvenient might occur as a
consequence of initially defective or aged and worn-out input capacitors feeding a DC
component to the inputs, so putting the speakers at risk of overheating.
This diagnostic has to be performed with low-level output AC signal (or Vin = 0).
The test is run with selectable time duration by microprocessor (from a "start" to a "stop"
command):
START = Last reading operation or setting IB1 - D5 - (OFFSET enable) to 1
STOP = Actual reading operation
Excess offset is signalled out if persistent throughout the assigned testing time. This feature
is disabled if any overloads leading to activation of the short-circuit protection occurs in the
process.
4.1 AC diagnostic
It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more
in general, presence of capacitively (AC) coupled loads.
This diagnostic is based on the notion that the overall speaker's impedance (woofer +
parallel tweeter) will tend to increase towards high frequencies if the tweeter gets
disconnected, because the remaining speaker (woofer) would be out of its operating range
(high impedance). The diagnostic decision is made according to peak output current
thresholds, as follows:
Iout > 500mApk = NORMAL STATUS
Iout < 250mApk = OPEN TWEETER
To correctly implement this feature, it is necessary to briefly provide a signal tone (with the
amplifier in "play") whose frequency and magnitude are such to determine an output current
higher than 500mApk with in normal conditions and lower than 250mApk should the parallel
tweeter be missing.
The test has to last for a minimum number of 3 sine cycles starting from the activation of the
AC diagnostic function IB2<D2>) up to the I2C reading of the results (measuring period). To
confirm presence of tweeter, it is necessary to find at least 3 current pulses over 500mA
over all the measuring period, else an "open tweeter" message will be issued.
The frequency / magnitude setting of the test tone depends on the impedance
characteristics of each specific speaker being used, with or without the tweeter connected
(to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals
are recommended for their negligible acoustic impact and also to maximize the impedance
module's ratio between with tweeter-on and tweeter-off.
Figure 27 shows the Load Impedance as a function of the peak output voltage and the
relevant diagnostic fields.
This feature is disabled if any overloads leading to activation of the short-circuit protection
occurs in the process.
Output DC offset detection TDA7563A
18/35 Doc ID 14407 Rev 2
Figure 27. Current detection: Load impedance |Z| vs. output peak voltage
4.2 Multiple faults
When more misconnections are simultaneously in place at the audio outputs, it is
guaranteed that at least one of them is initially read out. The others are notified after
successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled.
This is true for both kinds of diagnostic (Turn on and Permanent).
The table below shows all the couples of double-fault possible. It should be taken into
account that a short circuit with the 4 ohm speaker unconnected is considered as double
fault.
Table 5. Double fault table for turn on diagnostic
S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2
outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More
precisely, in Channels LF and RR, so = CH+, sk = CH-; in Channels LR and RF, so = CH-, sk
= CH+.
In Permanent Diagnostic the table is the same, with only a difference concerning Open
Load(*), which is not among the recognizable faults. Should an Open Load be present
during the device's normal working, it would be detected at a subsequent Turn on Diagnostic
cycle (i.e. at the successive Car Radio Turn on).




6OUT 0EAK
,OAD\Z\/HM
)OUTPEAKM!
)OUTPEAKM!
,OWCURRENTDETECTIONAREA
/PENLOAD
$OFTHE$"XBYRES
(IGHCURRENTDETECTIONAREA
.ORMALLOAD
$OFTHE$"XBYTES
)"$
'!0'03

S. GND (so) S. GND (sk) S. Vs S. Across L. Open L.
S. GND (so) S. GND S. GND S. Vs + S. GND S. GND S. GND
S. GND (sk) / S. GND S. Vs S. GND Open L. (*)
S. Vs / / S. Vs S. Vs S. Vs
S. Across L. / / / S. Across L. N.A.
Open L. / / / / Open L. (*)
TDA7563A Output DC offset detection
Doc ID 14407 Rev 2 19/35
4.3 Faults availability
All the results coming from I2C bus, by read operations, are the consequence of
measurements inside a defined period of time. If the fault is stable throughout the whole
period, it will be sent out.
To guarantee always resident functions, every kind of diagnostic cycles (Turn on,
Permanent, Offset) will be reactivate after any I2C reading operation. So, when the micro
reads the I2C, a new cycle will be able to start, but the read data will come from the previous
diag. cycle (i.e. The device is in Turn On state, with a short to Gnd, then the short is
removed and micro reads I2C. The short to Gnd is still present in bytes, because it is the
result of the previous cycle. If another I2C reading operation occurs, the bytes do not show
the short). In general to observe a change in Diagnostic bytes, two I2C reading operations
are necessary.
Thermal protection TDA7563A
20/35 Doc ID 14407 Rev 2
5 Thermal protection
Thermal protection is implemented through thermal foldback (Figure 28).
Thermal foldback begins limiting the audio input to the amplifier stage as the junction
temperatures rise above the normal operating range. This effectively limits the output power
capability of the device thus reducing the temperature to acceptable levels without totally
interrupting the operation of the device.
The output power will decrease to the point at which thermal equilibrium is reached.
Thermal equilibrium will be reached when the reduction in output power reduces the
dissipated power such that the die temperature falls below the thermal foldback threshold.
Should the device cool, the audio level will increase until a new thermal equilibrium is
reached or the amplifier reaches full power. Thermal foldback will reduce the audio output
level in a linear manner.
Three Thermal warning are available through the I2C bus data.
Figure 28. Thermal foldback diagram
'!0'03
4J #
4(   3(
34!24
4(3(
%.$
6O UT 4(7!2 .
/.
4J #
6OU T
4J #
3$ WITHSAMEINPUT
SIGNAL
4 4
3$
#$OUT
4(7!2.
/.
4(7!2.
/.
TDA7563A Fast muting
Doc ID 14407 Rev 2 21/35
6 Fast muting
The muting time can be shortened to less than 1.5ms by setting (IB2) D5 = 1. This option
can be useful in transient battery situations (i.e. during car engine cranking) to quickly
turnoff the amplifier for avoiding any audible effects caused by noise/transients being
injected by preamp stages. The bit must be set back to “0” shortly after the mute transition.
I2C bus TDA7563A
22/35 Doc ID 14407 Rev 2
7 I2C bus
7.1 I
2
C programming/reading sequences
A correct turn on/off sequence respectful of the diagnostic timings and producing no audible
noises could be as follows (after battery connection):
TURN-ON: PIN2 > 7V --- 10ms --- (STANDBY OUT + DIAG ENABLE) --- 500 ms (min) ---
MUTING OUT
TURN-OFF: MUTING IN --- 20 ms --- (DIAG DISABLE + STANDBY IN) --- 10ms --- PIN2 = 0
Car Radio Installation: PIN2 > 7V --- 10ms DIAG ENABLE (write) --- 200 ms --- I2C read
(repeat until All faults disappear).
OFFSET TEST: Device in Play (no signal) -- OFFSET ENABLE - 30ms - I2C reading (repeat
I2C reading until high-offset message disappears).
7.2 I2C bus interface
Data transmission from microprocessor to the TDA7563A and vice versa takes place
through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up
resistors to positive supply voltage must be connected).
7.3 Data validity
As shown by Figure 29, the data on the SDA line must be stable during the high period of
the clock.
The HIGH and LOW state of the data line can only change when the clock signal on the SCL
line is LOW.
7.4 Start and stop conditions
As shown by Figure 30 a start condition is a HIGH to LOW transition of the SDA line while
SCL is HIGH.
The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.
7.5 Byte format
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an
acknowledge bit. The MSB is transferred first.
TDA7563A I2C bus
Doc ID 14407 Rev 2 23/35
7.6 Acknowledge
The transmitter(*) puts a resistive HIGH level on the SDA line during the acknowledge clock
pulse (see Figure 31). The receiver(**) the acknowledges has to pull-down (LOW) the SDA
line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock
pulse.
(*) Transmitter
master (µP) when it writes an address to the TDA7563A
slave (TDA7563A) when the µP reads a data byte from TDA7563A
(**) Receiver
slave (TDA7563A) when the µP writes an address to the TDA7563A
master (µP) when it reads a data byte from TDA7563A
Figure 29. Data validity on the I2C bus
Figure 30. Timing diagram on the I2C bus
Figure 31. Timing acknowledge clock pulse
3$!
3#,
$!4!,).%
34!",%$!4!
6!,)$
#(!.'%
$!4!
!,,/7%$ '!0'03
3#,
3$!
34!24
)
#"53
34/0 '!0'03
3#,
-3"

3$!
34!24 !#+./7,%$'-%.4
&2/-2%#%)6%2 '!0'03
Software specifications TDA7563A
24/35 Doc ID 14407 Rev 2
8 Software specifications
All the functions of the TDA7563A are activated by I2C interface.
The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from μP to
TDA7563A) or read instruction (from TDA7563A to µP).
Table 6. Chip address:
X = 0 Write to device
X = 1 Read from device
If R/W = 0, the µP sends 2 "Instruction Bytes": IB1 and IB2.
D7 D0
1101100XD8 Hex
Table 7. IB1
D7 0
D6 Diagnostic enable (D6 = 1)
Diagnostic defeat (D6 = 0)
D5 Offset Detection enable (D5 = 1)
Offset Detection defeat (D5 = 0)
D4
Front Channel
Gain = 26dB (D4 = 0)
Gain = 12dB (D4 = 1)
D3
Rear Channel
Gain = 26dB (D3 = 0)
Gain = 12dB (D3 = 1)
D2 Mute front channels (D2 = 0)
Unmute front channels (D2 = 1)
D1 Mute rear channels (D1 = 0)
Unmute rear channels (D1 = 1)
D0 CD 2% (D0 = 0)
CD 10% (D0 = 1)
TDA7563A Software specifications
Doc ID 14407 Rev 2 25/35
If R/W = 1, the TDA7563A sends 4 "Diagnostics Bytes" to µP: DB1, DB2, DB3 and DB4.
Table 8. IB2
D7 0
D6 0
D5 Normal muting time (D5 = 0)
Fast muting time (D5 = 1)
D4 Standby on - Amplifier not working - (D4 = 0)
Standby off - Amplifier working - (D4 = 1)
D3 Power amplifier mode diagnostic (D3 = 0)
Line driver mode diagnostic (D3 = 1)
D2 Current Detection Diagnostic Enabled (D2 =1)
Current Detection Diagnostic Defeat (D2 =0)
D1 Right Channel Power amplifier working in standard mode (D1 = 0)
Power amplifier working in high efficiency mode (D1 = 1)
D0 Left Channel Power amplifier working in standard mode (D0 = 0)
Power amplifier working in high efficiency mode (D0 = 1)
Table 9. DB1
D7 Thermal warning active (D7 = 1), TJ = 155°C
D6 Diag. cycle not activated or not terminated (D6 = 0)
Diag. cycle terminated (D6 = 1)
D5
Channel LF
Current Detection
Output peak current <250mA - Output load (D5 = 1)
Output peak current >500mA - Output load (D5 = 0)
D4
Channel LF
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel LF
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel LF
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Offset diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel LF
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel LF
No short to GND (D1 = 0)
Short to GND (D1 = 1)
Software specifications TDA7563A
26/35 Doc ID 14407 Rev 2
Table 10. DB2
D7 Offset detection not activated (D7 = 0)
Offset detection activated (D7 = 1)
D6 0
D5
Channel LR
Current Detection
Output peak current <250mA - Output load (D5 = 1)
Output peak current >500mA - Output load (D5 = 0)
D4
Channel LR
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel LR
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel LR
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel LR
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel LR
No short to GND (D1 = 0)
Short to GND (D1 = 1)
TDA7563A Software specifications
Doc ID 14407 Rev 2 27/35
Table 11. DB3
D7 Standby status (= IB2 - D4)
D6 Diagnostic status (= IB1 - D6)
D5
Channel RF
Current Detection
Output peak current <250mA - Output load (D5 = 1)
Output peak current >500mA - Output load (D5 = 0)
D4
Channel RF
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel RF
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel RF
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel RF
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel RF
No short to GND (D1 = 0)
Short to GND (D1 = 1)
Software specifications TDA7563A
28/35 Doc ID 14407 Rev 2
Table 12. DB4
D7 Thermal warning 2 active (D7 = 1), TJ = 140°C
D6 Thermal warning 3 active (D6 = 1), TJ = 120°C
D5
Channel RR
Current Detection
Output peak current <250mA - Output load (D5 = 1)
Output peak current >500mA - Output load (D5 = 0)
D4
Channel RR
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel R
R Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel RR
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel RR
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel RR
No short to GND (D1 = 0)
Short to GND (D1 = 1)
TDA7563A Examples of bytes sequence
Doc ID 14407 Rev 2 29/35
9 Examples of bytes sequence
1 - Turn-On diagnostic - Write operation
2 - Turn-On diagnostic - Read operation
The delay from 1 to 2 can be selected by software, starting from 1ms
3a - Turn-On of the power amplifier with 26dB gain, mute on, diagnostic defeat, CD = 2%.
3b - Turn-Off of the power amplifier
4 - Offset detection procedure enable
5 - Offset detection procedure stop and reading operation (the results are valid only for the offset
detection bits (D2 of the bytes DB1, DB2, DB3, DB4).
The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs, produced by
input capacitor with anomalous leakage current or humidity between pins.
The delay from 4 to 5 can be selected by software, starting from 1ms
Start Address byte with D0 = 0 ACK IB1 with D6 = 1 ACK IB2 ACK STOP
Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
X0000000 XXX1XX11
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
X0XXXXXX XXX0XXXX
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
XX1XX11X XXX1XXXX
Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP
Package information TDA7563A
30/35 Doc ID 14407 Rev 2
10 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 32. Flexiwatt27 (horizontal) mechanical data and package dimensions
'!0'03
9
+
+
+
+
9
%
'
/
//
',0 PP LQFK
0,1 7<3 0$; 0,1 7<3 0$;
$      
%      

&
'  
(      
)  
*      
*      
+      
+  
+  
+  
/      
/
/      
/
/ 
/      
/      
0      
0  
0  
1  
3      
5  
5  
5  
5  
5  
9 7\S
9 7\S
9 7\S
9 7\S
GDPEDUSURWXVLRQQRWLQFOXGHGPROGLQJSURWXVLRQLQFOXGHG
287/,1($1'
0(&+$1,&$/'$7$
)OH[LZDWW
+RUL]RQWDO
&
9
&
*)
*
5
5
5
9
9
1
5
/
/
5
5
0
0
0
9
3/
/
(
TDA7563A Package information
Doc ID 14407 Rev 2 31/35
Figure 33. Flexiwatt27 (vertical) mechanical data and package dimensions
(
2
'
6
6
'
,
(
(
&
-
,
6
/, ,
(
2
.
6
2
2
2
#
"
,
-
2
, 2 2
%
$
!
6
6
%
0IN
'!0'03
',0 PP LQFK
0,1 7<3 0$; 0,1 7<3 0$;
$      
%      
&  
'      
(      
)  
*      
*      
+      
+  
+  
+  
/      
/      
/      
/      
/ 
/  
0      
0
1  

2
5  
5
5 


5 
5  
9 7\S
9 7\S
7\S9
9 7\S
GDPEDUSURWXVLRQQRWLQFOXGHGPROGLQJSURWXVLRQLQFOXGHG
287/,1($1'
0(&+$1,&$/'$7$
)OH[LZDWWYHUWLFDO
Package information TDA7563A
32/35 Doc ID 14407 Rev 2
Figure 34. Flexiwatt27 (SMD) mechanical data and package dimensions
   
'!0'03
$)- MM INCH
-). 490 -!8 -). 490 -!8
!  
"      
#  
$  
%      
&      
'      
'      
'      
(      
(  
(  
(  
,      
,      
,      
,      
,      
,      
,      
-  
.  
.      
.      
0      
2  
2  
2      
2      
2  
4    
AAA  
6 
6  
6      
6     
6  
6  
'OLDENPARAMETERS
n$IMENSIONh&vDOESNTINCLUDEDAMBARPROTRUSION
n$IMENSIONS(vANDh,INCLUDEMOLDFLASHORPROTRUSIONS
&LEXIWATT
3-$
/54,).%!.$
-%#(!.)#!,$!4!
"
9
9
9
9
9
9
9
+
+
+
5
5
1
5
/
/
/
+
$
'
&
%
7
9
67$1'2))
9
'HWDLO´$´
5RWDWHG&&:
6($7,1*3/$1(
*$8*(3/$1(

6
6
DDD
/
1
1
3
0
/
9
5
5
/
/HDG
/HDG
(
)
6HHGHWDLO$
*
*
*
TDA7563A Package information
Doc ID 14407 Rev 2 33/35
Figure 35. PowerSO36 (slug up) mechanical data and package dimensions










 






 

 

'!0'03
*
3RZHU626/8*83
287/,1($1'
0(&+$1,&$/'$7$
PP LQFK
',0 0,1 7<3 0$; 0,1 7<3 0$;
$    
$    
$    
$  
D    
E    
F    
'    
'    
'  
(    
(    
(  
(    
(    

H 
H  
*  
+    
K  
/    
1  
V
³'DQG(´GRQRWLQFOXGHPROGIODVKRUSURWXVLRQV
0ROGIODVKRUSURWXVLRQVVKDOOQRWH[FHHGPP´
1RLQWUXVLRQDOORZHGLQZDUGVWKHOHDGV
+
$
$
0
%
'(7$,/$
6($7,1*3/$1(
&23/$1$5,7<
(
(
$
5
(
$
'(7$,/$
*$*(
3/$1(
(
'
'
K[
';
H
H
E
 


1
(
VOXJWDLOZLGWK
0$%
D
67$1'2))
67$1'2))
67$1'2))
F
$
&
*&
Revision history TDA7563A
34/35 Doc ID 14407 Rev 2
11 Revision history
Table 13. Document revision history
Date Revision Changes
07-Feb-2008 1 Initial release.
10-Aug-2012 2 Updated Section 10: Package information.
TDA7563A
Doc ID 14407 Rev 2 35/35
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com