TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Outstanding Combination of dc Precision
and AC Performance:
Unity-Gain Bandwidth...15 MHz Typ
Vn3.3 nV/Hz at f = 10 Hz Typ,. . . . 2.5 nV/Hz at f = 1 kHz Typ
VIO 25 µV Max. . . .
AVD 45 V/µV Typ With RL = 2 k,. . . 19 V/µV Typ With RL = 600
D
Available in Standard-Pinout Small-Outline
Package
D
Output Features Saturation Recovery
Circuitry
D
Macromodels and Statistical information
description
The TLE20x7 and TLE20x7A contain innovative
circuit design expertise and high-quality process
control techniques to produce a level of ac
performance and dc precision previously unavail-
able in single operational amplifiers. Manufac-
tured using Texas Instruments state-of-the-art
Excalibur process, these devices allow upgrades
to systems that use lower-precision devices.
In the area of dc precision, the TLE20x7 and
TLE20x7A offer maximum offset voltages of
100 µV and 25 µV, respectively, common-mode
rejection ratio of 131 dB (typ), supply voltage
rejection ratio of 144 dB (typ), and dc gain of
45 V/µV (typ). AVAILABLE OPTIONS
PACKAGED DEVICES
CHIP
TAVIOmax AT
25°CSMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
CHIP
FORM
(Y)
0°Cto70°C
25 µVTLE2027ACD
TLE2037ACD
TLE2027ACP
TLE2037ACP TLE2027Y
TLE2037Y
0°C
to
70°C
100 µVTLE2027CD
TLE2037CD
TLE2027CP
TLE2037CP TLE2027Y
TLE2037Y
40°Cto105°C
25 µVTLE2027AID
TLE2037AID
TLE2027AIP
TLE2037AIP
40°C
to
105°C
100 µVTLE2027ID
TLE2037ID
TLE2027IP
TLE2037IP
–55°Cto125°C
25 µVTLE2027AMD
TLE2037AMD TLE2027AMFK
TLE2037AMFK TLE2027AMJG
TLE2037AMJG TLE2027AMP
TLE2037AMP
55 C
to
125 C
100 µVTLE2027MD
TLE2037MD TLE2027MFK
TLE2037MFK TLE2027MJG
TLE2037MJG TLE2027MP
TLE2037MP
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2027ACDR).
Chip forms are tested at 25°C only.
Copyright 1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
1
2
3
4
8
7
6
5
OFFSET N1
IN
IN +
VCC
OFFSET N2
VCC +
OUT
NC
D, JG, OR P PACKAGE
(TOP VIEW)
3 2 1 20 19
910111213
4
5
6
7
8
18
17
16
15
14
NC
VCC+
NC
OUT
NC
NC
IN
NC
IN+
NC
FK PACKAGE
(TOP VIEW)
NC
OFFSET N1
NC
NC NC
NC
NC
NC OFFSET N2
CC
V
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
description (continued)
The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification
of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hz and 2.5 nV/Hz at frequencies
of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate
(–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability , the TLE2037 and TLE2037A should be
operated with a closed-loop gain of 5 or greater.
Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard
8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for
operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 105°C. The
M-suffix devices are characterized for operation over the full military temperature range of –55 °C to 125°C.
symbol
OUT
OFFSET N2
IN –
IN +
OFFSET N1
+
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202xY chip information
This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression
or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ±10%.
ALL DIMENSIONS ARE IN MILS.
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
(1) (2) (3)
(4)
(5)
(6)
(7)(8)
90
73
(1)
(2)
(3)
(4)
(6)
(7)
(8)
+
OUT
IN+
IN
VCC+
VCC
OFFSET N1
OFFSET N2
(1)
(3)
(2)
(8)
(7)
(4)
(6)
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
SLOS192 – FEBRUARY 1997
T
emp
l
ate
R
e
l
ease
D
ate:
7
11
94
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic
IN
IN +
R24 R26
Q57
Q56
Q55
Q60
OUT
Q62
Q59
Q61
Q58
R25
Q48
Q54
Q53
Q52
Q49
Q50
R23
R22
R21
R20
Q46
Q42
R19
Q47
Q44
Q43
Q40 Q45
Q41
Q39
Q38
Q37
Q35
R15
Q36
R16
R17
C4
C3
R13
Q34
Q33
Q32
R9
Q27
Q30
R8 R11
Q25 Q28
C2
Q31
Q26 Q29
R18R14R12R10R7
Q19
C1
Q24Q23
Q20
R6
R3
Q21
Q22
Q16
Q15
Q18
R5
R4
Q13
Q14
Q17
R2
R1
OFFSET N2
OFFSET N1
Q12
Q10
Q9
Q11
Q8
Q7
Q5
Q6
Q4
Q1
Q3
Q2
Q51
CC
V
CC+
V
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLE2027 TLE2037
Transistors 61 61
Resistors 26 26
epiFET 1 1
Capacitors 4 4
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) 19 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply voltage, VCC 19 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±1.2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input) VCC±
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each Input) ±1 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VCC+ 50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VCC 50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix 40°C to 105°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case temperature for 60 seconds, TC: FK package 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 260°C. . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300°C. . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only , and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may af fect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC .
2. Differential voltages are at IN+ with respect to IN–. Excessive current flows if a differential input voltage in excess of approximately
±1.2 V is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE TA 25°C
POWER RATING DERATING FACTOR
ABOVE TA = 25°CTA = 70°C
POWER RATING TA = 105°C
POWER RATING TA = 125°C
POWER RATING
D725 mW 5.8 mW/°C464 mW 261 mW 145 mW
FK 1375 mW 11.0 mW/°C 880 mW 495 mW 275 mW
JG 1050 mW 8.4 mW/°C 672 mW 378 mW 210 mW
P1000 mW 8.0 mW/°C640 mW 360 mW 200 mW
recommended operating conditions
C SUFFIX I SUFFIX M SUFFIX
UNIT
MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, VCC±±4±19 ±4±19 ±4±19 V
Common mode in
p
ut voltage VIC
TA = 25°C–11 11 –11 11 –11 11
V
Common
-
mode
inp
u
t
v
oltage
,
V
IC TA = Full range10.5 10.5 10.4 10.4 10.2 10.2
V
Operating free-air temperature, TA0 70 –40 105 –55 125 °C
Full range is 0°C to 70°C for C-suffix devices, –40 °C to 105 °C for I-suffix devices, and –55°C to 125°C for M-suffix devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–6 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE20x7C electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
T
TLE20x7C TLE20x7AC
UNIT
PARAMETER
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 20 100 10 25
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 145 70 µ
V
αVIO Temperature coef ficient of
input offset voltage Full range 0.4 1 0.2 1 µV/°C
Input offset voltage
long-term drift (see Note 4) VIC = 0, RS = 50 25°C 0.006 1 0.006 1 µV/mo
IIO
In
p
ut offset current
25°C 6 90 6 90
nA
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150 150
nA
IIB
In
p
ut bias current
25°C 15 90 15 90
nA
I
IB
Inp
u
t
bias
c
u
rrent
Full range 150 150
nA
VICR
Common-mode input
25°C–11
to
11
–13
to
13
–11
to
11
–13
to
13
V
V
ICR voltage range
S =
Full range 10.5
to
10.5
10.5
to
10.5
V
25°C 10.5 12.9 10.5 12.9
VOM
Maximum positive peak
L =
Full range 10 10
V
V
OM + output voltage swing
25°C 12 13.2 12 13.2
V
L =
Full range 11 11
25°C 10.5 –13 10.5 –13
VOM
Maximum negative peak
L =
Full range –10 –10
V
V
OM
g
output voltage swing
25°C–12 13.5 –12 13.5
V
L =
Full range –11 –11
V
O
= ±11 V, RL = 2 k25°C 5 45 10 45
VO = ±10 V, RL = 2 kFull range 2 4
AVD
Large-signal differential
25°C 3.5 38 8 38
V/µV
A
VD
gg
voltage amplification
O =
,
L =
Full range 1 2.5
V/
µ
V
V
= ±10 V, 25°C 2 19 5 19
RL = 600 Full range 0.5 2
CiInput capacitance 25°C 8 8 pF
zoOpen-loop output
impedance IO = 0 25°C 50 50
CMRR
Common-mode rejection V
= V
min, 25°C 100 131 117 131
dB
CMRR
j
ratio
RS = 50 Full range 98 114
dB
kSVR
Supply-voltage rejection VCC±= ±4 V to ±18 V,
RS = 50 25°C 94 144 110 144
dB
k
SVR
ygj
ratio (VCC±/VIO)VCC±= ±4 V to ±18 V,
RS = 50 Full range 92 106
dB
ICC
Su
pp
ly current
25°C 3.8 5.3 3.8 5.3
mA
I
CC
S
u
ppl
y
c
u
rrent
O =
,
Full range 5.6 5.6
mA
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE20x7C operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
TEST CONDITIONS
TLE20x7C TLE20x7AC
UNIT
PARAMETER
TEST
CONDITIONS
MIN TYP MAX MIN TYP MAX
UNIT
RL = 2 k,
CL100
p
F
TLE2027 1.7 2.8 1.7 2.8
C
L =
100
p
F
,
See Figure 1 TLE2037 6 7.5 6 7.5
SR Slew rate at unity gain RL = 2 k,
C
L
= 100 pF, TLE2027 1.2 1.2 V/µs
L,
TA = 0°C to 70°C,
See Figure 1 TLE2037 5 5
V
Equivalent input noise volt- RS = 20 , f = 10 Hz 3.3 8 3.3 4.5
nV/Hz
V
n
q
age (see Figure 2) RS = 20 , f = 1 kHz 2.5 4.5 2.5 3.8 n
V/H
z
VN(PP) Peak-to-peak equivalent in-
put noise voltage f = 0.1 Hz to 10 Hz 50 250 50 130 nV
I
Equivalent input noise cur- f = 10 Hz 1.5 4 1.5 4
pA/Hz
I
n
q
rent f = 1 kHz 0.4 0.6 0.4 0.6 p
A/H
z
THD
Total harmonic distortion
VO = +10 V,
AVD = 1,
See Note 5 TLE2027 <0.002% <0.002%
THD
Total
harmonic
distortion
VO = +10 V,
AVD = 5,
See Note 5 TLE2037 <0.002% <0.002%
B1
Unity-gain bandwidth R
L
= 2 k,TLE2027 7 13 9 13
MHz
B
1
yg
(see Figure 3)
L,
CL = 100 pF TLE2037 35 50 35 50
MH
z
BOM
Maximum output-swing
RL=2k
TLE2027 30 30
kHz
B
OM
g
bandwidth
R
L =
2
k
TLE2037 80 80
kH
z
φm
Phase margin at unity gain RL = 2 k,TLE2027 55°55°
φ
m
gyg
(see Figure 3)
L
CL = 100 pF TLE2037 50°50°
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–8 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE20x7I electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE20x7I TLE20x7AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 20 100 10 25
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 180 105 µ
V
αVIO Temperature coef ficient of
input offset voltage Full range 0.4 1 0.2 1 µV/°C
Input offset voltage
long-term drift (see Note 4) VIC = 0, RS = 50 25°C 0.006 1 0.006 1 µV/mo
IIO
In
p
ut offset current
25°C 6 90 6 90
nA
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150 150
nA
IIB
In
p
ut bias current
25°C 15 90 15 90
nA
I
IB
Inp
u
t
bias
c
u
rrent
Full range 150 150
nA
VICR
Common-mode input
RS=50
25°C–11
to
11
–13
to
13
–11
to
11
–13
to
13
V
V
ICR voltage range
R
S =
50
Full range 10.4
to
10.4
10.4
to
10.4
V
RL= 600
25°C 10.5 12.9 10.5 12.9
VOM
Maximum positive peak
R
L =
600
Full range 10 10
V
V
OM + output voltage swing
RL=2k
25°C 12 13.2 12 13.2
V
R
L =
2
k
Full range 11 11
RL= 600
25°C 10.5 –13 10.5 –13
VOM
Maximum negative peak
R
L =
600
Full range –10 –10
V
V
OM
g
output voltage swing
RL=2k
25°C–12 13.5 –12 13.5
V
R
L =
2
k
Full range –11 –11
V
O
= ±11 V, RL = 2 k25°C 5 45 10 45
VO = ±10 V, RL = 2 kFull range 2 3.5
AVD
Large-signal differential
VO=±10 V RL=1k
25°C 3.5 38 8 38
V/µV
A
VD
gg
voltage amplification
V
O =
±10
V
,
R
L =
1
k
Full range 1 2.2
V/
µ
V
VO=±10 V RL= 600
25°C 2 19 5 19
V
O =
±10
V
,
R
L =
600
Full range 0.5 1.1
CiInput capacitance 25°C 8 8 pF
zoOpen-loop output
impedance IO = 0 25°C 50 50
CMRR
Common-mode rejection V
IC
= V
ICR
min, 25°C 100 131 117 131
dB
CMRR
j
ratio
IC ICR ,
RS = 50 Full range 96 113
dB
kSVR
Supply-voltage rejection VCC±= ±4 V to ±18 V,
RS = 50 25°C 94 144 110 144
dB
k
SVR
ygj
ratio (VCC±/VIO)VCC±= ±4 V to ±18 V,
RS = 50 Full range 90 105
dB
ICC
Su
pp
ly current
VO= 0 No load
25°C 3.8 5.3 3.8 5.3
mA
I
CC
S
u
ppl
y
c
u
rrent
V
O =
0
,
No
load
Full range 5.6 5.6
mA
Full range is – 40°C to 105°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE20x7I operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
TEST CONDITIONS
TLE20x7I TLE20x7AI
UNIT
PARAMETER
TEST
CONDITIONS
MIN TYP MAX MIN TYP MAX
UNIT
RL = 2 k,
CL100
p
F
TLE2027 1.7 2.8 1.7 2.8
C
L =
100
p
F
,
See Figure 1 TLE2037 6 7.5 6 7.5
SR Slew rate at unity gain RL = 2 k,
C
L
= 100 pF, TLE2027 1.1 1.1 V/µs
L,
TA = –40°C to 85°C,
See Figure 1 TLE2037 4.7 4.7
V
Equivalent input noise RS = 20 , f = 10 Hz 3.3 8 3.3 4.5
nV/Hz
V
n
q
voltage (see Figure 2) RS = 20 , f = 1 kHz 2.5 4.5 2.5 3.8 n
V/H
z
VN(PP) Peak-to-peak equivalent
input noise voltage f = 0.1 Hz to 10 Hz 50 250 50 130 nV
I
Equivalent input noise f = 10 Hz 1.5 4 1.5 4
pA/Hz
I
n
q
current f = 1 kHz 0.4 0.6 0.4 0.6 p
A/H
z
THD
Total harmonic distortion
VO = +10 V,
AVD = 1,
See Note 5 TLE2027 < 0.002% < 0.002%
THD
Total
harmonic
distortion
VO = +10 V,
AVD = 5,
See Note 5 TLE2037 < 0.002% < 0.002%
B1
Unity-gain bandwidth R
L
= 2 k,TLE2027 7 13 9 13
MHz
B
1
yg
(see Figure 3)
L,
CL = 100 pF TLE2037 35 50 35 50
MH
z
BOM
Maximum output-swing
RL=2k
TLE2027 30 30
kHz
B
OM
g
bandwidth
R
L =
2
k
TLE2037 80 80
kH
z
φ
Phase margin at unity R
L
= 2 k,TLE2027 55°55°
φ
m
gy
gain (see Figure 3)
L,
CL = 100 pF TLE2037 50°50°
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE20x7M electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE20x7M TLE20x7AM
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 20 100 10 25
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 200 105 µ
V
αVIO Temperature coef ficient of
input offset voltage Full range 0.4 1* 0.2 1* µV/°C
Input offset voltage
long-term drift (see Note 4) VIC = 0, RS = 50 25°C 0.006 1* 0.006 1* µV/mo
IIO
In
p
ut offset current
25°C 6 90 6 90
nA
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150 150
nA
IIB
In
p
ut bias current
25°C 15 90 15 90
nA
I
IB
Inp
u
t
bias
c
u
rrent
Full range 150 150
nA
VICR
Common-mode input
RS=50
25°C–11
to
11
–13
to
13
–11
to
11
–13
to
13
V
V
ICR voltage range
R
S =
50
Full range 10.3
to
10.3
10.4
to
10.4
V
RL= 600
25°C 10.5 12.9 10.5 12.9
VOM
Maximum positive peak
R
L =
600
Full range 10 10
V
V
OM + output voltage swing
RL=2k
25°C 12 13.2 12 13.2
V
R
L =
2
k
Full range 11 11
RL= 600
25°C 10.5 –13 10.5 –13
VOM
Maximum negative peak
R
L =
600
Full range –10 –10
V
V
OM
g
output voltage swing
RL=2k
25°C–12 13.5 –12 13.5
V
R
L =
2
k
Full range –11 –11
V
O
= ±11 V, RL = 2 k25°C 5 45 10 45
VO = ±10 V, RL = 2 kFull range 2.5 3.5
AVD Large-signal differential
voltage am
p
lification
VO=±10 V RL=1k
25°C 3.5 38 8 38 V/µV
VD
voltage
am lification
V
O =
±10
V
,
R
L =
1
k
Full range 1.8 2.2
µ
VO=±10 V RL= 600
25°C
2
19
5
19
V
O =
±10
V
,
R
L =
600
25°C
2
19
5
19
Ci Input capacitance 25°C 8 8 pF
zoOpen-loop output
impedance IO = 0 25°C 50 50
CMRR
Common-mode rejection V
IC
= V
ICR
min, 25°C 100 131 117 131
dB
CMRR
j
ratio
IC ICR ,
RS = 50 Full range 96 113
dB
kSVR
Supply-voltage rejection VCC±= ±4 V to ±18 V,
RS = 50 25°C 94 144 110 144
dB
k
SVR
ygj
ratio (VCC±/VIO)VCC±= ±4 V to ±18 V,
RS = 50 Full range 90 105
dB
ICC
Su
pp
ly current
VO= 0 No load
25°C 3.8 5.3 3.8 5.3
mA
I
CC
S
u
ppl
y
c
u
rrent
V
O =
0
,
No
load
Full range 5.6 5.6
mA
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
Full range is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE20x7M operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
TEST CONDITIONS
TLE20x7M TLE20x7AM
UNIT
PARAMETER
TEST
CONDITIONS
MIN TYP MAX MIN TYP MAX
UNIT
RL = 2 k,
CL100
p
F
TLE2027 1.7 2.8 1.7 2.8
C
L =
100
p
F
,
See Figure 1 TLE2037 6* 7.5 6* 7.5
SR Slew rate at unity gain RL = 2 k,
C
L
= 100 pF, TLE2027 1 1 V/µs
L,
TA = –55°C to 125°C,
See Figure 1 TLE2037 4.4* 4.4*
V
Equivalent input noise RS = 20 , f = 10 Hz 3.3 8* 3.3 4.5*
nV/Hz
V
n
q
voltage (see Figure 2) RS = 20 , f = 1 kHz 2.5 4.5* 2.5 3.8* n
V/H
z
VN(PP) Peak-to-peak equivalent
input noise voltage f = 0.1 Hz to 10 Hz 50 250* 50 130* nV
I
Equivalent input noise f = 10 Hz 1.5 4* 1.5 4*
pA/Hz
I
n
q
current f = 1 kHz 0.4 0.6* 0.4 0.6* p
A/H
z
THD
Total harmonic distortion
VO = +10 V,
AVD = 1,
See Note 5 TLE2027 < 0.002% < 0.002%
THD
Total
harmonic
distortion
VO = +10 V,
AVD = 5,
See Note 5 TLE2037 < 0.002% < 0.002%
B1
Unity-gain bandwidth R
L
= 2 k,TLE2027 7* 13 9* 13
MHz
B
1
yg
(see Figure 3)
L,
CL = 100 pF TLE2037 35 50 35 50
MH
z
BOM
Maximum output-swing
RL=2k
TLE2027 30 30
kHz
B
OM
g
bandwidth
R
L =
2
k
TLE2037 80 80
kH
z
φm
Phase margin at unity RL = 2 k,TLE2027 55°55°
φ
m
gy
gain (see Figure 3)
L
CL = 100 pF TLE2037 50°50°
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE20x7Y electrical characteristics, VCC± = ±15 V, TA = 25°C (unless otherwise noted)
PARAMETER
TLE20x7Y
UNIT
PARAMETER
MIN TYP MAX
UNIT
VIO Input offset voltage 20 µV
Input offset voltage
long-term drift (see Note 4) V
= 0, R
= 50 0.006 µV/mo
IIO Input offset current
6 nA
IIB Input bias current 15 nA
VICR Common-mode input voltage range RS = 50 –13
to
13 V
VOM
Maximum
p
ositive
p
eak out
p
ut voltage swing
RL = 600 12.9
V
V
OM +
Ma
x
im
u
m
positi
v
e
peak
o
u
tp
u
t
v
oltage
s
w
ing
RL = 2 k13.2
V
VOM
Maximum negative
p
eak out
p
ut voltage swing
RL = 600 –13
V
V
OM
Ma
x
im
u
m
negati
v
e
peak
o
u
tp
u
t
v
oltage
s
w
ing
RL = 2 k13.5
V
VO = ±11 V, RL = 2 k45
AVD
Large-signal differential voltage am
p
lification
VO = ±10 V, RL = 1 k38
V/µV
AVD
Large
-
signal
differential
voltage
am lification
VO = ±10 V,
RL = 600 19
V/µV
CiInput capacitance 8 pF
zoOpen-loop output impedance IO = 0 50
CMRR Common-mode rejection ratio VIC = VICRmin,
RS = 50 131 dB
kSVR Supply-voltage rejection ratio (VCC±/VIO)VCC±= ±4 V to ±18 V,
RS = 50 144 dB
ICC Supply current VO = 0, No load 3.8 mA
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE20x7Y operating characteristics at specified free-air temperature, VCC ± = ±15 V
PARAMETER
TEST CONDITIONS
TLE20x7Y
UNIT
PARAMETER
TEST
CONDITIONS
MIN TYP MAX
UNIT
SR
Slew rate at unity gain
R
L
= 2 k,C
L
= 100 pF, TLE2027 2.8
V/µs
SR
Sle
w
rate
at
u
nit
y
gain
L,L,
See Figure 1 TLE2037 7.5
V/
µ
s
V
Equivalent in
p
ut noise voltage (see Figure 2)
RS = 20 , f = 10 Hz 3.3
nV/Hz
V
n
Eq
u
i
v
alent
inp
u
t
noise
v
oltage
(see
Fig
u
re
2)
RS = 20 , f = 1 kHz 2.5 n
V/H
z
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 50 nV
I
Equivalent in
p
ut noise current
f = 10 Hz 1.5
pA/Hz
I
n
Eq
u
i
v
alent
inp
u
t
noise
c
u
rrent
f = 1 kHz 0.4 p
A/H
z
THD
Total harmonic distortion
VO = +10 V, AVD = 1,
See Note 5 TLE2027 <0.002%
THD
Total
harmonic
distortion
VO = +10 V, AVD = 5,
See Note 5 TLE2037 <0.002%
B1
Unity gain bandwidth (see Figure 3)
RL=2kC
L= 100
p
F
TLE2027 13
MHz
B
1
Unit
y-
gain
band
w
idth
(see
Fig
u
re
3)
R
L =
2
k
,
C
L =
100
pF
TLE2037 50
MH
z
BOM
Maximum out
p
ut swing bandwidth
RL=2k
TLE2027 30
kHz
B
OM
Ma
x
im
u
m
o
u
tp
u
t
-
s
w
ing
band
w
idth
R
L =
2
k
TLE2037 80
kH
z
φm
Phase margin at unity gain (see Figure 3)
RL=2kC
L= 100
p
F
TLE2027 55°
φ
m
Phase
margin
at
unity
gain
(see
Figure
3)
RL
=
2
k
,
CL
=
100
F
TLE2037 50°
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
VO
20
20
2 k
15 V
15 V
+
RL = 2 k
CL =
100 pF
(see Note A)
VO
15 V
VI+
15 V
Rf
NOTE A: CL includes fixture capacitance.
RI
Figure 1. Slew-Rate Test Circuit Figure 2. Noise-Voltage Test Circuit
VO
2 k
CL =
100 pF
(see Note A)
10 k
100
VI
–15 V
15 V
+
VO
2 k
15 V
15 V
+
VICL =
100 pF
(see Note A)
NOTES: A. CL includes fixture capacitance.NOTE A: CL includes fixture capacitance. B. For the TLE2037 and TLE2037A,
AVD must be 5.
Rf
RI
Figure 3. Unity-Gain Bandwidth and Figure 4. Small-Signal Pulse-
Phase-Margin Test Circuit (TLE2027 Only) Response Test Circuit
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
initial estimates of parameter distributions
In the ongoing program of improving data sheets and supplying more information to our customers, Texas
Instruments has added an estimate of not only the typical values but also the spread around these values. These
are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the
characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown
at the points where data was actually collected. The 95% and 5% points are used instead of ±3 sigma since
some of the distributions are not true Gaussian distributions.
The number of units tested and the number of different wafer lots used are on all of the graphs where distribution
bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is
a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always
the case on newly released products since there can only be data available from a few wafer lots.
The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each
distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested
fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices
fell outside every distribution bar.
– Supply Current – mA
CC
I
4.5
5
4
3.5
3
2.5
TA – Free-Air Temperature – °C
1501251007550250–25–50–75
(5% of the devices fell below this point.)
5% point on the distribution bar
and lower points on the distribution bar.
90% of the devices were within the upper
(5% of the devices fell above this point.)
95% point on the distribution bar
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
VCC± = ±15 V
VO = 0
No Load
Sample Size = 835 Units
From 2 W ater Lots
Figure 5. Sample Graph With Distribution Bars
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO Input of fset voltage Distribution 6, 7
VIO Input offset voltage change vs T ime after power on 8, 9
IIO Input offset current vs Free-air temperature 10
IIB
In
p
ut bias current
vs Free-air temperature 11
I
IB
Inp
u
t
bias
c
u
rrent
vs Common-mode input voltage 12
IIInput current vs Dif ferential input voltage 13
VO(PP) Maximum peak-to-peak output voltage vs Frequency 14, 15
VOM
Maximum (positive/negative) peak output vs Load resistance 16, 17
V
OM
(g)
voltage vs Free-air temperature
,
18, 19
vs Suppl
y
volta
g
e 20
AVD
Large signal differential voltage am
p
lification
vs
vs
Su ly
voltage
Load resistance
20
21
A
VD
Large
-
signal
differential
v
oltage
amplification
vs Frequency 22 – 25
vs Free-air temperature 26
zoOutput impedance vs Frequency 27
CMRR Common-mode rejection ratio vs Frequency 28
kSVR Supply-voltage rejection ratio vs Frequency 29
vs Supply voltage 30, 31
IOS Short-circut output current vs
yg
Elapsed time
,
32, 33
OS
vs Free-air temperature 34, 35
ICC
Su
pp
ly current
vs Supply voltage 36
I
CC
S
u
ppl
y
c
u
rrent
vs
yg
Free-air temperature 37
Voltage follower
p
ulse res
p
onse
Small signal 38, 40
Voltage
-
follo
w
er
p
u
lse
response
g
Large signal
,
39, 41
VnEquivalent input noise voltage vs Frequency 42
Noise voltage (referred to input) Over 10-second interval 43
B1
Unity gain bandwidth
vs Supply voltage 44
B
1
Unit
y-
gain
band
w
idth
vs
yg
Load capacitance 45
Gain bandwidth
p
roduct
vs Supply voltage 46
Gain
band
w
idth
prod
u
ct
vs
yg
Load capacitance 47
SR Slew rate vs Free-air temperature 48, 49
vs Supply voltage 50, 51
φ
mPhase margin vs
yg
Load capacitance
,
52, 53
φm
g
vs Free-air temperature 54, 55
Phase shift vs Frequency 22 – 25
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
Percentage of Amplifiers – %
VIO – Input Offset Voltage – µV
TA = 25°C
VCC± = +15 V
16
14
12
10
8
6
4
2
0 120906030–30–60–90 120
0
ÎÎÎÎ
D Package
ÎÎÎÎÎÎÎÎÎÎÎÎ
1568 Amplifiers Tested From 2 Wafer Lots
DISTRIBUTION
INPUT OFFSET VOLTAGE
Figure 7
INPUT OFFSET VOLTAGE CHANGE
vs
TIME AFTER POWER ON
00t – Time After Power On – s
10 20 30 40 50 60
2
4
6
8
10
12
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
AVIO – Change in Input Offset Voltage –
ÁÁ
ÁÁ
ÁÁ
VIO µV
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
50 Amplifiers Tested From 2 W afer Lots
VCC± = ±15 V
TA = 25°C
ÎÎÎÎ
ÎÎÎÎ
D Package
Figure 8
t – Time After Power On – s
INPUT OFFSET VOLTAGE CHANGE
vs
TIME AFTER POWER ON
6
5
4
3
2
1
00 20 40 60 80 100 120 140 160 180
AVIO – Change in Input Offset Voltage –
ÁÁ
ÁÁ
VIO µV
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
50 Amplifiers Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C
ÎÎÎÎ
ÎÎÎÎ
P Package
Figure 9
0
IIO – Input Offset Current – nA
5
10
15
20
25
30
1501251007550250–25–50
T
A
– Free-Air Temperature – °C
–75
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
IO
I
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC± = ±15 V
VIC = 0
Sample Size = 833 Units
From 2 W afer Lots
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
–20
–75
IIB – Input Bias Current – nA
TA – Free-Air Temperature – °C
–10
0
10
20
30
40
50
60
50 25 0 25 50 75 100 125 150
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
VCC ± = ±15 V
VIC = 0
Sample Size = 836 Units
From 2 W afer Lots
IB
I
Figure 11
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
0
–12 VIC – Common-Mode Input Voltage – V
–8 –4 0 4 8 12
5
10
15
20
25
30
35
40
TA = 25°C
VCC± = ±15 V
IIB – Input Bias Current – nA
IB
I
Figure 12
II – Input Current – mA
–1
1.8
VID – Differential Input Voltage – V
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
1.2 0.6 0 0.6 1.2 1.8
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
I
I
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
VIC = 0
TA = 25°C
Figure 13
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
TA = – 55°C
TA = 125°C
10 M1 M100 k
30
25
20
15
10
5
f – Frequency – Hz
10 k
0
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC±= ±15 V
RL = 2 k
TLE2027
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
0
10 k
f – Frequency – Hz
5
10
15
20
25
30
100 k 1 M 100 M
TA = – 55°C
10 M
ÁÁÁ
ÁÁÁ
ÁÁÁ
VO(PP)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 2 k
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ÎÎÎÎ
ÎÎÎÎ
TA = 125°C
TLE2037
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
Figure 15
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
0
100
VOM+ – Maximum Positive Peak Output Voltage – V
RL – Load Resistance –
2
4
6
8
10
12
14
1 k 10 k
ÁÁ
ÁÁ
ÁÁ
VOM +
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
VCC ± = ±15 V
TA = 25°C
Figure 16
0
100
VOM– – Maximum Negative Peak Output Voltage – V
RL – Load Resistance –
–2
–4
–6
–8
–10
–12
–14
1 k 10 k
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
ÁÁ
ÁÁ
ÁÁ
VOM
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
TA = 25°C
Figure 17
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
12.9
–75
T
A
– Free-Air Temperature – °C
13
13.1
13.2
13.3
13.4
13.5
50 25 0 25 50 75 100 125 150
VOM+ – Maximum Positive Peak Output Voltage – V
ÁÁ
ÁÁ
ÁÁ
VOM +
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 2 k
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
From 2 W afer Lots
ÎÎÎÎÎÎÎ
Sample Size = 832 Units
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 18
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
–14
–75
T
A
– Free-Air Temperature – °C
13.8
13.6
13.4
13.2
–13
50 25 0 25 50 75 100 125 150
ÎÎÎÎÎ
RL = 2 k
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
VOM– – Maximum Negative Peak Output Voltage – V
ÁÁÁ
ÁÁÁ
ÁÁÁ
VOM
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Sample Size = 831 Units
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
From 2 W afer Lots
Figure 19
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
0
0
VCC± – Supply Voltage – V
50
48 12 16 20
10
20
30
40 RL = 2 k
RL = 1 k
RL = 600
ÎÎÎÎ
TA = 25°C
AVD – Large-Signal differential
ÁÁ
ÁÁ
ÁÁ
AVD Vµ
V/
V oltage Amplification –
Figure 20
10
0
50
100 200 400 1 k 4 k 10 k
2 k
40
30
20
RL – Load Resistance –
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
TA = 25°C
VCC± = ±15 V
AVD – Large-Signal differential
ÁÁ
ÁÁ
ÁÁ
AVD Vµ
V/
V oltage Amplification –
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
AVD
Phase Shift
VCC± = ± 15 V
RL = 2 k
CL = 100 pF
TA = 25°C
Phase Shift
275°
75°
250°
225°
200°
175°
150°
125°
100°140
120
100
80
60
40
20
100 k100
160
100 M
f – Frequency – Hz
00.1
AVD – Large-Signal Differential
ÁÁ
ÁÁ
AVD
Voltage Amplification – dB
Figure 21
TLE2027
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
0.1
0
f – Frequency – MHz
100 M
160
100 100 k
20
40
60
80
100
120
140 100°
125°
150°
175°
200°
225°
250°
75°
275°
ÎÎÎÎÎ
ÎÎÎÎÎ
Phase Shift
ÎÎÎ
ÎÎÎ
AVD
Phase Shift
AVD – Large-Signal Differential
Á
Á
Á
AVD
Voltage Amplification – dB
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
CL = 100 pF
VCC± = ±15 V
RL = 2 k
Figure 22
TLE2037
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
300°
100°
275°
250°
225°
200°
175°
150°
125°
Phase Shift
AVD
Phase Shift
704020
3
0
–3
–6
–9
–12
–15
6
100
f – Frequency – MHz
–1810
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ± 15 V
RL = 2 k
CL = 100 pF
TA = 25°C
AVD – Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification – dB
Figure 23
TLE2027
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
– 5
–10
15
1 2 4 10 40 100
20
10
5
0
30
25
20
f – Frequency – MHz
Phase Shift
275
300
175
200
225
250
100
125
150
°
°
°
°
°
°
°
°
°
ÎÎÎÎÎ
ÎÎÎÎÎ
Phase Shift
ÎÎÎ
ÎÎÎ
AVD
AVD – Large-Signal Differential
ÁÁ
ÁÁ
AVD
Voltage Amplification – dB
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
CL = 100 pF
RL = 2 k
VCC± = ±15 V
Figure 24
TLE2037
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 25
–75
30
TA – Free-Air Temperature – °C150
60
–50 –25 0 25 50 75 100 125
40
50
VCC ± = ±15 V
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 2 k
ÎÎÎÎÎ
RL = 1 k
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
AVD – Large-Signal differential
ÁÁ
ÁÁ
ÁÁ
AVD Vµ
V/
V oltage Amplification –
OUTPUT IMPEDANCE
vs
FREQUENCY
Figure 26
10
100
zo – Output Impedance –
f – Frequency – Hz 100 M
100
100 1 k 10 k 100 k 1 M 10 M
–10
1
10 AVD = 100
See Note A
AVD = 10
ÁÁ
ÁÁ
zo
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
TA = 25°C
NOTE A: For this curve, the TLE2027 is AVD = 1 and the
TLE2037 is AVD = 5.
10
0
CMRR – Common-Mode Rejection Ratio – dB
f – Frequency – Hz 100 M
140
100 1 k 10 k 100 k 1 M 10 M
20
40
60
80
100
120
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎ
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ±= ±15 V
Figure 27
10
0
– Supply-Voltage Rejection Ratio – dB
f – Frequency – Hz 100 M
140
100 1 k 10 k 100 k 1 M 10 M
20
40
60
80
100
120
ÎÎÎÎ
kSVR
ÎÎÎ
ÎÎÎ
kSVR+
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎ
TA = 25°C
ÎÎÎÎÎÎ
VCC ±= ±15 V
SVR
K
Figure 28
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
0
–30
IOS – Short-Circuit Output Current – mA
–42
2 4 6 8 10 12 14 16 18 20
–32
–34
–36
–38
–40
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
VCC± – Supply Voltage – V
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VID = 100 mV
VO = 0
TA = 25°C
ÎÎÎÎ
P Package
ÁÁ
ÁÁ
OS
I
Figure 29
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
0
30
44
2 4 6 8 10 12 14 16 18 20
32
34
36
38
40
42
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
VID = – 100 mV
VO = 0
TA = 25°C
P Package
IOS – Short-Circuit Output Current – mA
ÁÁ
ÁÁ
OS
I
VCC± – Supply Voltage – V
Figure 30
0
–35
t – Elasped Time – s 180
–45
30 60 90 120 150
–37
–39
–41
–43
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎ
P Package
TA = 25°C
VO = 0
VID = 100 mV
VCC ± = ±15 V
IOS – Short-Circuit Output Current – mA
ÁÁÁ
ÁÁÁ
ÁÁÁ
OS
I
Figure 31
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
0
34
t – Elasped Time – s 180
44
30 60 90 120 150
36
38
40
42
IOS – Short-Circuit Output Current – mA
ÁÁ
ÁÁ
OS
I
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎ
P Package
TA = 25°C
VO = 0
VID = 100 mV
VCC ± = ±15 V
Figure 32
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
–75
–24
T
A
– Free-Air Temperature – °C150
–48
–50 –25 0 25 50 75 100 125
–28
–32
–36
–40
–44
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
IOS – Short-Circuit Output Current – mA
ÁÁ
ÁÁ
ÁÁ
OS
I
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
VID = 100 mV
VO = 0
P Package
Figure 33
26
TA – Free-Air Temperature – °C
46
30
34
38
42
1251007550250–25 50 150–75
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
IOS – Short-Circuit Output Current – mA
ÁÁ
ÁÁ
ÁÁ
OS
I
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
VID = –100 mV
VO = 0
P Package
Figure 34
ÁÁÁÁ
ÁÁÁÁ
0
0
ICC – Supply Current – mA
VCC± – Supply Voltage – V
6
2 4 6 8 10 12 14 16 18 20
1
2
3
4
5
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
ÁÁ
ÁÁ
CC
I
VO = 0
No Load
ÎÎÎÎ
TA = 125°C
ÎÎÎÎ
ÎÎÎÎ
TA = 25°C
ÎÎÎÎ
ÎÎÎÎ
TA = – 55°C
Figure 35
–75
2.5
TA – Free-Air Temperature – °C150
5
–50 –25 0255075 100 125
3
3.5
4
4.5
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
ICC – Supply Current – mA
ÁÁ
ÁÁ
CC
I
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC ± = ±15 V
VO = 0
No Load
Sample Size = 836 Units
From 2 W afer Lots
Figure 36
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 37
VO– Output Voltage – mV
50
0
–50
8006004002000
100
1000
t – Time – ns
100
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
RL = 2 k
CL = 100 pF
TA = 25°C
See Figure 4
TLE2027
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
Figure 38
t – Time – µs250 5 10 15 20
10
5
0
– 5
– 10
15
– 15
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
RL = 2 k
CL = 100 pF
TA = 25°C
See Figure 1
VO– Output Voltage – V
TLE2027
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TA = 25°C
See Figure 4
VCC ± = ±15 V
AVD = 5
RL = 2 k
CL = 100 pF
50
0
–50
300
2001000
100
400
t – Time – ns
100
VO – Output Voltage – mV
ÁÁ
ÁÁ
VO
Figure 39
TLE2037
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
–15
15
–10
–5
0
5
10
TA = 25°C
CL = 100 pF
RL = 2 k
AVD = 5
ÎÎÎÎÎÎ
VCC ± = ±15 V
8642010
t – Time – µs
VO – Output Voltage – V
ÁÁ
ÁÁ
VO
ÎÎÎÎÎ
ÎÎÎÎÎ
See Figure 1
Figure 40
TLE2037
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
1
0
Vn – Equivalent Input Noise Voltage – nVHz
f – Frequency – Hz 100 k
10
10 100 1 k 10 k
2
4
6
8
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC ± = ±15 V
RS = 20
TA = 25°C
See Figure 2
Sample Size = 100 Units
From 2 W afer Lots
Vn
ÁÁ
ÁÁ
ÁÁ
nV/ Hz
Figure 41
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-SECOND INTERVAL
0
–50
Noise Voltage – nV
t – Time – s 10
50
2468
–40
–30
–20
–10
0
10
20
30
40
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
VCC ± = ±15 V
f = 0.1 to 10 Hz
TA = 25°C
Figure 42
Figure 43
20
B1– Unity-Gain Bandwidth – MHz
18
16
14
12
201816141210864222
| VCC± | – Supply Voltage – V
10 0
RL = 2 k
CL = 100 pF
TA = 25°C
See Figure 3
TLE2027
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
Figure 44
0
48
VCC± – Supply Voltage – V
52
246810 12 14 16 18 20
49
50
51
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 2 k
CL = 100 pF
TA = 25°C
f = 100 kHz
Gain-Bandwidth Product – MHz
TLE2037
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 45
VCC± = ±15 V
RL = 2 k
TA = 25°C
See Figure 3
1000
12
8
4
16
10000
CL – Load Capacitance – pF
0100
B1– Unity-Gain Bandwidth – MHz
TLE2027
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
100
48
Gain-Bandwidth Product – MHz
CL – Load Capacitance – pF 10000
52
49
50
51
1000
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
TA = 25°C
RL = 2 k
VCC± = ±15 V
Figure 46
TLE2037
GAIN-BANDWIDTH PRODUCT
vs
LOAD CAPACITANCE
Figure 47
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
AVD = 1
RL = 2 k
CL = 100 pF
See Figure 1
2.8
2.6
2.4
2.2
1251007550250–25–50
3
150
TA – Free-Air Temperature – °C
SR – Slew Rate – V/ s
2–75
µ
TLE2027
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 48
–75
5
T
A
– Free-Air Temperature – °C150
10
–50 –25 0 25 50 75 100 125
6
7
8
9
sµ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
AVD = 5
RL = 2 k
CL = 100 pF
See Figure 1
SR – Slew Rate – V/
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
TLE2037
SLEW RATE
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 49
56°
54°
52°
50°
48°
46°
44°
2018161412108642
58°
22
| VCC± | – Supply Voltage – V
– Phase Margin
42°0
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 2 k
CL = 100 pF
TA = 25°C
See Figure 3
ÁÁ
ÁÁ
m
φ
TLE2027
PHASE MARGIN
vs
SUPPLY VOLTAGE
Figure 50
0
m
VCC± – Supply Voltage – V
246810 12 14 16 18 20
38°
40°
42°
44°
46°
48°
50°
52°
φ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
CL = 100 pF
AVD = 5
RL = 2 k
– Phase Margin
TLE2037
PHASE MARGIN
vs
SUPPLY VOLTAGE
Figure 51
1000
40°
20°
60°
CL – Load Capacitance – pF
0°100
– Phase Margin
ÁÁ
ÁÁ
m
φ
TLE2027
PHASE MARGIN
vs
LOAD CAPACITANCE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
RL = 2 k
TA = 25°C
See Figure 3
10°
30°
50°
Figure 52
100
0°
CL – Load Capacitance – pF
10000
1000
10°
20°
30°
40°
50°
60°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ±15 V
RL = 2 k
TA = 25°C
m
φ – Phase Margin
TLE2037
PHASE MARGIN
vs
LOAD CAPACITANCE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 53
– Phase Margin
ÁÁ
ÁÁ
m
φ
60°
55°
50°
45°
40°
1251007550250–25–50
65°
150
TA – Free-Air Temperature – °C
35°–75
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
V
CC± = ±15 V
RL = 2 k
TA = 25°C
See Figure 3
TLE2027
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Figure 54
–75
45°
TA – Free-Air Temperature – °C
150
–50 –25 0 25 50 75 100 125
49°
51°
53°
55°
47°
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CL = 100 pF
RL = 2 k
AVD = 5
VCC ± = ±15 V
m
φ – Phase Margin
TLE2037
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input offset voltage nulling
The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset
voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not
needed, the null pins may be left disconnected.
4.7 k
1 kVCC +
OUT
IN
IN +
VCC
+
4.7 k
+
VCC
OUT
VCC +
10 k
IN
IN +
(a) STANDARD ADJUSTMENT (b) ADJUSTMENT WITH IMPROVED SENSITIVITY
Figure 55. Input Offset Voltage Nulling Circuits
voltage-follower applications
The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device.
For feedback resistor values greater than 10 k, this pole degrades the amplifier phase margin. This problem
can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56).
RF
IF 1 mA
+
VI
VO
VCC
VCC
CF = 20 to 50 pF
Figure 56. Voltage Follower
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim
Parts
, the model generation software used
with Microsim
PSpice
. The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and
Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Gain-bandwidth product
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
8
ro2
7
12
VCC +
IN +
IN
VCC
1
2dp
rp 11
rc1 c1 rc2
Q2Q1
13 14
3
re1 re2
4
lee
ve
–+
54
10
ree cee 53
vc +
r2 6
gcm ga
de
dc
vb
9
+
egnd
99
+
fb
C2
vlim +
ro1
5
OUT
90
hlim + dip
91 92
dln
vip vin
+
+
Figure 57. Boyle Macromodel
PSpice
and
Parts
are trademarks of MicroSim Corporation.
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information (continued)
.subckt TLE2027 1 2 3 4 5
*c1 11 12 4.003E-12
c2 6 7 20.00E-12
dc 5 53 dz
de 54 5 dz
dlp 90 91 dz
dln 92 90 dx
dp 4 3 dz
egnd 99 0 poly(2) (3,0)
(4,0) 0 5 .5
fb 7 99 poly(5) vb vc
ve vlp vln 0 954.8E6 –1E9 1E9 1E9
–1E9
ga 6 0 11 12
2.062E-3
gcm 0 6 10 99
531.3E-12
iee 10 4 dc 56.01E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
Figure 58. TLE2027 Macromodel Subcircuit
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 530.5
rc2 3 12 530.5
re1 13 10 –393.2
re2 14 10 –393.2
ree 10 99 3.571E6
ro1 8 5 25
ro2 7 99 25
rp 3 4 8.013E3
vb 9 0 dc 0
vc 3 53 dc 2.400
ve 54 4 dc 2.100
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.modeldx D(Is=800.0E-18)
.modelqx NPN(Is=800.0E-18
Bf=7.000E3)
.ends
.subckt TLE2037 1 2 3 4 5
*c1 11 12 4.003E–12
c2 6 7 7.500E–12
dc 5 53 dz
de 54 5 dz
dlp 90 91 dz
dln 92 90 dx
dp 4 3 dz
egnd 99 0 poly(2) (3,0)
(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc
ve vip vln 0 923.4E6 A800E6
800E6 800E6 A800E6
ga 6 0 11 12 2.121E–3
gcm 0 6 10 99 597.7E–12
iee 10 4 dc 56.26E–6
hlim 90 0 vlim 1K
q1 11 2 13 qx
Figure 59. TLE2037 Macromodel Subcircuit
q2 12 1 14 qz
r2 6 9 100.0E3
rc1 3 11 471.5
rc2 3 12 471.5
re1 13 10 A448
re2 14 10 A448
ree 10 99 3.555E6
ro1 8 5 25
ro2 7 99 25
rp 3 4 8.013E3
vb 9 0 dc 0
vc 3 53 dc 2.400
ve 54 4 dc 2.100
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dxD(Is=800.0E–18)
.model qxNPN(Is=800.0E–18
Bf=7.031E3)
.ends
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUAR Y 1997
6–34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1998, Texas Instruments Incorporated