Dual/Quad Low Power, High Speed
JFET Operational Amplifiers
AD8682/AD8684
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2006–2007 Analog Devices, Inc. All rights reserved.
FEATURES
Low supply current: 250 μA/amp maximum
High slew rate: 9 V/μs
Bandwidth: 3.5 MHz typical
Low offset voltage: 1 mV maximum @ 25°C
Low input bias current: 20 pA maximum @ 25°C
CMRR: 90 dB typical
Fast settling time
Unity gain stable
APPLICATIONS
Portable telecommunications
Low power industrial and instrumentation
Loop filters
Active and precision filters
Integrators
Strain gauge amplifiers
Portable medical instrumentation
Supply current monitoring
PIN CONFIGURATIONS
OUT A
1
–IN A
2
+IN A
3
V–
4
V+
8
OUT B
7
–IN B
6
+IN B
5
AD8682
TOP VIEW
(Not to Scale)
0
6278-001
Figure 1. 8-Lead SOIC_N and 8-Lead MSOP
OUT A
1
–IN A
2
+IN A
3
V+
4
OUT D
14
–IN D
13
+IN D
12
V–
11
+IN B
5
+IN C
10
–IN B
6
–IN C
9
OUT B
7
OUT C
8
AD8684
TOP VIEW
(Not to Scale)
06278-002
Figure 2. 14-Lead SOIC_N and 14-Lead TSSOP
GENERAL DESCRIPTION
The AD8682 and AD8684 are dual and quad low power, precision
(1 mV) JFET amplifiers featuring excellent speed at low supply
currents. The slew rate is typically 9 V/μs with a supply current
under 250 μA per amplifier. These unity-gain stable amplifiers
have a typical gain bandwidth of 3.5 MHz. The JFET input stage
ensures bias current is typically a few picoamps and below 125 pA
maximum over the full temperature operating range.
The devices are ideal for portable, low power applications,
especially with high source impedance. The devices are unity gain
stable and can drive higher capacity loads (G = 1, noninverting),
as an example of their excellent dynamic response over a wide
range of conditions, delivering dc precision performance at low
quiescent currents.
AD8682/AD8684
Rev. A | Page 2 of 16
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications....................................................................................... 1
Pin Configurations ........................................................................... 1
General Description......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Electrical Characteristics............................................................. 3
Absolute Maximum Ratings............................................................ 4
Thermal Resistance ...................................................................... 4
ESD Caution...................................................................................4
Typical Performance Characteristics ..............................................5
Applications Information .............................................................. 10
High-Side Signal Conditioning................................................ 10
Phase Inversion........................................................................... 10
Active Filters ............................................................................... 10
Programmable State Variable Filter ......................................... 11
Outline Dimensions....................................................................... 12
Ordering Guide .......................................................................... 13
REVISION HISTORY
7/07—Rev. 0 to Rev. A
Change to Figure 21 ......................................................................... 8
Change to Figure 31 ......................................................................... 9
10/06—Revision 0: Initial Version
AD8682/AD8684
Rev. A | Page 3 of 16
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = ±15.0 V, TA = 25°C, VCM = 0 V, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 0.35 1 mV
AD8682 +25°C TA ≤ +85°C 2.5 mV
−40°C TA ≤ +25°C 3 mV
AD8684 +25°C TA ≤ +85°C 3.5 mV
−40°C TA ≤ +25°C 4 mV
Input Bias Current IB 6 20 pA
−40°C TA ≤ +85°C 125 pA
Input Offset Current IOS 20 pA
−40°C TA ≤ +85°C 100 pA
Input Voltage Range −11 +15 V
Common-Mode Rejection Ratio CMRR −11 V ≤ VCM ≤ +15 V, −40°C ≤ TA +85°C 70 90 dB
Large Signal Voltage Gain AVO R
L = 10 kΩ 20 V/mV
R
L = 10 kΩ, −40°C ≤ TA ≤ +85°C 15 V/mV
Offset Voltage Drift ΔVOS/ΔT 10 μV/°C
Bias Current Drift ΔIB/ΔT 8 pA/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH R
L = 10 kΩ +13.5 +13.9 V
Output Voltage Low VOL R
L = 10 kΩ −13.9 −13.5 V
Short-Circuit Limit ISC Source 3 10 mA
Sink −12 −8 mA
Open-Loop Output Impedance ZOUT f = 1 MHz 200 Ω
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±4.5 V to ±18 V, −40°C ≤ TA ≤ +85°C 92 114 dB
Supply Current/Amplifier ISY V
O = 0 V, −40°C ≤ TA ≤ +85°C 210 250 μA
Supply Voltage Range VS ±4.5 ±18 V
DYNAMIC PERFORMANCE
Slew Rate SR RL = 10 kΩ 7 9 V/μs
Full-Power Bandwidth BWP 1% distortion 125 kHz
Settling Time tS To 0.01% 1.6 μs
Gain Bandwidth Product GBP 3.5 MHz
Phase Margin ØM 55 Degrees
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 1.3 μV p-p
Voltage Noise Density en f = 1 kHz 36 nV/√Hz
Current Noise Density in 0.01 pA/√Hz
AD8682/AD8684
Rev. A | Page 4 of 16
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Rating
Supply Voltage ±18 V
Input Voltage ±18 V
Differential Input Voltage1 36 V
Output Short-Circuit Duration Indefinite
Storage Temperature Range −65°C to +150°C
Operating Temperature Range −40°C to +85°C
Junction Temperature Range −65°C to +150°C
Lead Temperature (Soldering, 60 sec) 300°C
1 For supply voltages less than ±18 V, the absolute maximum input voltage is
equal to the supply voltage.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
Table 3.
Package Type θJA θ
JC Unit
8-Lead MSOP [RM-8] 210 45 °C/W
8-Lead SOIC_N [R-8] 158 43 °C/W
14-Lead TSSOP [RU-14] 180 35 °C/W
14-Lead SOIC [R-14] 120 36 °C/W
ESD CAUTION
AD8682/AD8684
Rev. A | Page 5 of 16
TYPICAL PERFORMANCE CHARACTERISTICS
FREQUENCY (Hz)
OPEN-LOOP GAIN (dB)
1k
–40
–20
60
80
10k 1M 10M100k
20
40
0
V
S
= ±15V
T
A
= 25°C
PHASE (Degree)
–45
135
45
90
0
–90
180
06278-003
Figure 3. AD8682 Open-Loop Gain and Phase vs. Frequency
TEMPERATURE (°C)
OPEN-LOOP GAIN (V/mV)
–75
0
5
35
45
–25 100 12525
15
25
10
20
30
40
75500–50
VS = ±15V
RL = 10k
06278-004
Figure 4. AD8682 Open-Loop Gain vs. Temperature
LOAD CAPACITANCE (pF)
OVERSHOOT (%)
0
0
10
70
80
200 400 500
30
50
20
40
60
300100
V
S
= ±15V
R
L
= 2k
V
IN
= 100mV p-p
A
VCL
= 1
T
A
= 25°C
+OS
–OS
06278-005
Figure 5. Small Signal Overshoot vs. Load Capacitance
FREQUENCY (Hz)
CLOSED-LOOP GAIN (dB)
1k
–30
–20
60
70
10k 1M 10M100k
20
40
0
V
S
= ±15V
T
A
= 25°C
–10
50
10
30
A
VCL
= 100
A
VCL
= 10
A
VCL
= 1
06278-006
Figure 6. AD8682 Closed-Loop Gain vs. Frequency
TEMPERATURE (°C)
SLEW
R
A
TE (V/µs)
–75
0
5
30
–25 100 12525
15
25
10
V
S
= ±15V
R
L
= 10k
C
L
= 50pF
20
75500–50
–SR
+SR
06278-007
Figure 7. Slew Rate vs. Temperature
TEMPERATURE (°C)
INPUT BIAS CURRENT (pA)
–75
0.1
1000
–25 100 12525
1
100
10
75500–50
V
S
= ±15V
V
CM
= 0V
06278-008
Figure 8. AD8682 Input Bias Current vs. Temperature
AD8682/AD8684
Rev. A | Page 6 of 16
FREQUENCY (Hz)
VOLTAGE NOISE DENSITY (nV/
Hz)
10
1
1000
100 10k1k
100
10
VS = ±15V
TA = 25°C
06278-009
Figure 9. Voltage Noise Density vs. Frequency
COMMON-MODE VOLTAGE (V)
INPUT BIAS CURRENT (pA)
–15
0.1
1000
10 15–5
1
100
10
50–10
V
S
= ±15V
T
A
= 25°C
06278-010
Figure 10. Input Bias Current vs. Common-Mode Voltage
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (µA)
0
450
480
±20±10
455
465
460
±15±5
TA = 25°C
470
475
06278-011
Figure 11. AD8682 Supply Current vs. Supply Voltage
SUPPLY VOLTAGE (V)
OUTPUT VOLTAGE SWING (V)
0
–20
20
±20±10
–15
–5
–10
±15±5
T
A
= 25°C
R
L
= 10k
0
15
V
OH
V
OL
5
10
06278-012
Figure 12. Output Voltage Swing vs. Supply Voltage
FREQUENCY (Hz)
OUTPUT IMPEDANCE ()
1k
0.1
100
1000
10k 1M100 100k
1
10
V
S
= ±15V
T
A
= 25°C
A
VCL
= 100
A
VCL
= 10
A
VCL
= 1
06278-013
Figure 13. Closed-Loop Output Impedance vs. Frequency
TEMPERATURE (°C)
SUPPLY CURRENT (µA)
–50
450
480
12525
455
750
460
475
465
470
–25 50 100
06278-014
Figure 14. AD8682 Supply Current vs. Temperature
AD8682/AD8684
Rev. A | Page 7 of 16
LOAD RESISTANCE ()
ABSOLUTE OUTPUT VOLTAGE (V)
0
6
16
1k 10k100
2
4
V
S
= ±15V
T
A
= 25°C
V
OL
V
OH
12
8
10
14
06278-015
Figure 15. Absolute Output Voltage vs. Load Resistance
FREQUENCY (Hz)
PSRR (dB)
1k
–60
40
140
10k 1M100 100k
0
20
–40
–20
60
100
120
80
–PSRR
+PSRR
V
S
= ±15V
T
A
= 25°C
06278-016
Figure 16. AD8682 PSRR vs. Frequency
TEMPERATURE (°C)
SHORT-CIRCUIT CURRENT (mA)
–50
0
14
12525
4
750
6
12
8
10
–25 50 100
2
SINK
SOURCE
VS = ±15V
TA = 25°C
06278-017
Figure 17. AD8682 Short-Circuit Current vs. Temperature
FREQUENCY (Hz)
MAXIMUM OUTPUT SWING (V p-p)
100
0
5
25
30
1k 100k 1M10k
15
20
10
V
S
= ±15V
T
A
= 25°C
R
L
= 10k
A
VCL
= 1
06278-018
Figure 18. Maximum Output Swing vs. Frequency
FREQUENCY (Hz)
CMRR (dB)
1k
–60
40
140
10k 1M100 100k
0
20
–40
–20
60
100
120
80
V
S
= ±15V
T
A
= 25°C
06278-019
Figure 19. AD8682 CMRR vs. Frequency
20
18
16
14
12
10
8
6
4
2
0
UNITS
–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
VOS (µV)
06278-020
VS= ±15V
TA= 25°C
100 × AD8682
(200 OP AMPS)
Figure 20. AD8682 VOS Distribution
AD8682/AD8684
Rev. A | Page 8 of 16
TCV
OS
(µV/°C)
UNITS
0
0
400
20
80
16
120
160
40
28 32 3624
200
280
320
360
240
4128
V
S
= ±15V
300 × AD8682
(600 OP AMPS)
06278-021
Figure 21. AD8682 TCVOS Distribution SOIC_N Package
50
45
40
35
30
25
20
15
10
5
0
OPEN-LOOP GAIN (V/mV)
–50 –25 0 25 50 75 100 125
TEMPERATURE (°C)
06278-022
Figure 22. AD8684 Open-Loop Gain vs. Temperature
FREQUENCY (Hz)
1k 10k 100k 1M 100M10M
60
CLOSED-LOOP GAIN (dB)
40
20
10
0
50
30
–10
–20
V
S
= ±15V
T
A
= 25°C
06278-023
A
VCL
= 10
A
VCL
= 1
A
VCL
= 100
Figure 23. AD8684 Closed-Loop Gain vs. Frequency
06278-024
1000
100
10
1
0.1
INPUT BIAS CURRENT (pA)
–50 –25 0 25 50 75 100 125
TEMPERATURE (°C)
–75
Figure 24. AD8684 Input Bias Current vs. Temperature
06278-025
950
945
940
930
925
920
915
910
SUPPLY CURRENT (µA)
0102030
SUPPLY VOLTAGE (V)
935
40
Figure 25. AD8684 Relative Supply Current vs. Supply Voltage
06278-026
950
945
940
935
930
925
920
915
910
–50 –25 0 25 50 75 100 125
SUPPLY CURRENT (µA)
TEMPERATURE (°C)
Figure 26. AD8684 Supply Current vs. Temperature
AD8682/AD8684
Rev. A | Page 9 of 16
1k 10k 100k 1M 10M
FREQUENCY (Hz)
PSRR+
PSRR–
V
S
= ±15V
140
120
100
80
60
40
20
0
PSRR (dB)
06278-027
V
S
= ±15V
T
A
= 25°C
100 × AD8684
(400 OP AMPS)
40
35
30
25
20
15
10
5
0
UNITS
–1.0 –0.8 –0.6 1.0
V
OS
(µV)
06278-030
–0.4 –0.2 0 0.2 0.4 0.6 0.8
Figure 30. AD8684 VOS Distribution Package
Figure 27. AD8684 PSRR vs. Frequency
14
12
10
8
6
4
2
0
SHORT-CIRCUIT CURRENT (mA)
–50 –25 0 25 50 75 100
TEMPERATURE (°C)
06278-028
125
SINK
SOURCE
06278-031
V
S
= ±15V
300 × AD8684
(1200 OP AMPS)
800
700
600
500
400
300
200
100
0
UNITS
TCV
OS
(µV/°C)
24 605652484440363228201612840
Figure 28. AD8684 Short-Circuit Current vs. Temperature Figure 31. AD8684 TCVOS Distribution Package
1k 10k 100k 1M 10M
FREQUENCY (Hz)
V
S
= ±15V
140
120
100
80
60
40
20
0
CMRR (dB)
06278-029
Figure 29. AD8684 CMRR vs. Frequency
AD8682/AD8684
Rev. A | Page 10 of 16
APPLICATIONS INFORMATION
The AD8682 and AD8684 are dual and quad JFET op amps that
are optimized for high speed at low power. This combination
makes these amplifiers excellent choices for battery-powered or
low power applications that require above average performance.
Applications benefiting from this performance combination
include telecommunications, geophysical exploration, portable
medical equipment, and navigational instrumentation.
HIGH-SIDE SIGNAL CONDITIONING
There are many applications requiring the sensing of signals near
the positive rail. The AD8682 and the AD8684 were tested and
are guaranteed over a common-mode range (−11 V ≤ VCM
+15 V) that includes the positive supply.
The AD8682/AD8684 are commonly used in the sensing of
power supply currents and in current sensing applications, such
as the partial circuit shown in Figure 32. In this circuit, the voltage
drop across a low value resistor, such as the 0.1 Ω shown here, is
amplified and compared to 7.5 V. The output can then be used
for current limiting.
1/2
AD8682
100k
500k
100k
500k
0.1
15V
R
L
06278-042
Figure 32. High-Side Signal Conditioning
PHASE INVERSION
Most JFET input amplifiers invert the phase of the input signal
if either input exceeds the input common-mode range. For the
AD8682/AD8684, negative signals in excess of approximately
14 V cause phase inversion. This is caused by saturation of the
input stage leading to the forward-biasing of a drain-gate diode.
A simple fix for this in noninverting applications is to place
a resistor in series with the noninverting input. This limits the
amount of current through the forward-biased diode and prevents
shutting down of the output stage. For the AD8682/AD8684,
a value of 200 kΩ has been found to work; however, it adds
a significant amount of noise.
15
10
5
0
–5
–10
–15
V
OUT
151050–5–10–15
V
IN
06278-043
Figure 33. AD8682 Phase Reversal
ACTIVE FILTERS
The wide bandwidth and high slew rates of the AD8682/AD8684
make either one an excellent choice for many filter applications.
There are many active filter configurations, but the four most
popular configurations are: Butterworth, elliptical, Bessel, and
Chebyshev. Each type has a response that is optimized for a
given characteristic, as shown in Table 4.
Table 4.
Type Selectivity Overshoot Phase Amplitude (Pass Band) Amplitude (Stop Band)
Butterworth Moderate Good Maximum flat
Chebyshev Good Moderate Nonlinear Equal ripple
Elliptical Best Poor Equal ripple Equal ripple
Bessel (Thompson) Poor Best Linear
AD8682/AD8684
Rev. A | Page 11 of 16
PROGRAMMABLE STATE VARIABLE FILTER
The circuit shown in Figure 34 can be used to accurately program
the Q factor; the cutoff frequency, fC; and the gain of a 2-pole
state variable filter. The AD8684 has been used in this design
because of its high bandwidth, low power, and low noise. This
circuit takes only three packages to build because of the quad
configuration of the op amps and DACs.
The DACs shown are used in voltage mode; therefore, many
values are dependent on the accuracy of the DAC only and not
on the absolute values of the DAC resistive ladders. As a result, this
makes the circuit unusually accurate for a programmable filter.
Adjusting DAC 1 changes the signal amplitude across R1; therefore,
the DAC attenuation × R1 determines the amount of signal current
that charges the integrating capacitor, C1.
This cutoff frequency can be expressed as
=256
1D1
R1C1
fC
where D1 is the digital code for the DAC.
DAC3 is used to set the gain. The gain equation is
=256
D3
R5
R4
Gain
DAC 2 is used to set the Q of the circuit. Adjusting this DAC
controls the amount of feedback from the band-pass node to
the input summing node. Note that the digital value of the
DAC is in the numerator; therefore, zero code is not a valid
operating point.
=D2R3
R2
Q256
1/4
AD8684
1/4
DAC8408
R5
2k
R4
2k
1/4
AD8684 1/4
AD8684
1/4
DAC8408
R1
2k
C1
1000pF
1/4
AD8684 1/4
AD8684
1/4
DAC8408
R1
2k
C1
1000pF
1/4
AD8684
1/4
DAC8408
R2
2k
R3
2k
1/4
AD8684
1/4
AD8684
R6
2k
HIGH PASS
BAND PASS
LOW
PASS
V
IN
R7
2k
06278-044
DAC 3
DAC 1
DAC 4
DAC 2
Figure 34. Programmable State Variable Filter
AD8682/AD8684
Rev. A | Page 12 of 16
OUTLINE DIMENSIONS
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-012-A A
060506-A
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
0.50 (0.0196)
0.25 (0.0099) 45°
1.75 (0.0688)
1.35 (0.0532)
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0040)
4
1
85
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
1.27 (0.0500)
BSC
6.20 (0.2440)
5.80 (0.2284)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10
Figure 35. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
COMPLIANT TO JEDEC STANDARDS MO-187-AA
0.80
0.60
0.40
4
8
1
5
PIN 1
0.65 BSC
SEATING
PLANE
0.38
0.22
1.10 MAX
3.20
3.00
2.80
COPLANARITY
0.10
0.23
0.08
3.20
3.00
2.80
5.15
4.90
4.65
0.15
0.00
0.95
0.85
0.75
Figure 36. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
AD8682/AD8684
Rev. A | Page 13 of 16
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-012-AB
060606-A
14 8
7
1
6.20 (0.2441)
5.80 (0.2283)
4.00 (0.1575)
3.80 (0.1496)
8.75 (0.3445)
8.55 (0.3366)
1.27 (0.0500)
BSC
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0039)
0.51 (0.0201)
0.31 (0.0122)
1.75 (0.0689)
1.35 (0.0531)
0.50 (0.0197)
0.25 (0.0098)
1.27 (0.0500)
0.40 (0.0157)
0.25 (0.0098)
0.17 (0.0067)
COPLANARITY
0.10
45°
Figure 37. 14-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-14)
Dimensions shown in millimeters and (inches)
4.50
4.40
4.30
14 8
71
6.40
BSC
PIN 1
5.10
5.00
4.90
0.65
BSC
SEATING
PLANE
0.15
0.05 0.30
0.19
1.20
MAX
1.05
1.00
0.80 0.20
0.09
0.75
0.60
0.45
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 38. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
ORDERING GUIDE
Model Temperature Range Package Description Package Option Branding
AD8682ARZ1−40°C to +85°C 8-Lead SOIC_N R-8
AD8682ARZ-REEL1
−40°C to +85°C 8-Lead SOIC_N R-8
AD8682ARZ-REEL71
−40°C to +85°C 8-Lead SOIC_N R-8
AD8682ARMZ-R21
−40°C to +85°C 8-Lead MSOP RM-8 A1K
AD8682ARMZ-REEL1
−40°C to +85°C 8-Lead MSOP RM-8 A1K
AD8684ARZ1
−40°C to +85°C 14-Lead SOIC_N R-14
AD8684ARZ-REEL1
−40°C to +85°C 14-Lead SOIC_N R-14
AD8684ARZ-REEL71
−40°C to +85°C 14-Lead SOIC_N R-14
AD8684ARUZ1
−40°C to +85°C 14-Lead TSSOP RU-14
AD8684ARUZ-REEL1
−40°C to +85°C 14-Lead TSSOP RU-14
1 Z= RoHS Compliant Part.
AD8682/AD8684
Rev. A | Page 14 of 16
NOTES
AD8682/AD8684
Rev. A | Page 15 of 16
NOTES
AD8682/AD8684
Rev. A | Page 16 of 16
NOTES
©2006–2007 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D06278-0-7/07(A)