1
5V, Rail-Rail I/O, Zero-Drift, Programmable Gain
Instrumentation Amplifiers
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
The ISL28533, ISL28534, ISL28535, ISL28633, ISL28634,
and ISL28635 are 5V Zero-Drift Rail-to-Rail Input/Output
Programmable Gain Instrumentation Amplifiers (PGIA). These
instrumentation amplifiers feature low offset, low noise, low
gain error and high CMRR. They are ideal for high precision
applications over the wide industrial temperature range.
These Instrumentation Amplifiers are designed with a unique
2-bit, 3-state logic interface that allows up to 9 selectable gain
settings. The ISL2853x single-ended output includes and
additional uncommitted zero-drift amplifier, useful to buffer
the REF input or used as a precision amplifier. The ISL2863x
differential output amplifier includes a reference pin to set the
common mode output voltage to interface with differential
input ADCs.
Applications
Pressure and strain gauge transducers
•Weight scales
•Flow sensors
Biometric: ECG/blood glucose
Temperature sensors
Test and measurement
Data acquisition systems
Low ohmic current sense
Features
Ultra high precision front end amplifier
Zero drift instrumentation amplifier
Pin selectable 9 gain settings: G = 1 to 1,000
Rail-to-Rail input/output
Single ended output (ISL28533, ISL28534, ISL28535)
Differential output (ISL28633, ISL28634, ISL28635)
RFI filtered inputs improve EMI rejection
Single supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5V to 5.5V
Dual supply . . . . . . . . . . . . . . . . . . . . . . . . . ±1.25V to ±2.75V
Low input offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5µV, Max
Low input offset drift . . . . . . . . . . . . . . . . . . . . . 50nV/°C, Max
High CMRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138dB, G = 100
Low gain error. . . . . . . . . . . . . . . . . . . . . <0.4%, All Gains, Max
Gain bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3MHz
Input voltage noise (0.1Hz to 10Hz). . . . . . . . . . . . . . 0.4µVP-P
Operating temperature range. . . . . . . . . . . .-40°C to +125°C
Related Literature
“DAQ on a Stick, Strain Gauge with ProgrammableChopper
Stabilized IN-Amp” AN1853
“ISL2853x_63xEV2Z User's Guide” AN1880
FIGURE 1. ISL2853x SINGLE-ENDED OUTPUT FIGURE 2. ISL2863x DIFFERENTIAL OUTPUT
+
-
+
-
INA-
A2
A1
INA+
+
-
+
-
REF
OUTA
A3
A4
RG
RG
9 GAIN
CONTROL
G0
G1
IN+
IN-
OUT
VA-
VA+
20k
20k
20k
20k
+
-
+
-
+
-
INA-
A2
A1
INA+
OUTA-
A3
RG
RG
G0
G1
+
-
+
-
OUTA+
REF
A4
VA-
VA+
20k
20k
20k
20k
9 GAIN
CONTROL
1M
1M
November 22, 2013
FN8364.1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas LLC 2013. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
2FN8364.1
November 22, 2013
Table of Contents
Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Typical Sensor Application Block Diagram, ISL28533 Single-Ended Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Typical Bridge Sensor Application Block Diagram, ISL28634 Differential Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
G0 and G1 Programmable Gain Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Operating Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Typical Instrumentation Amplifier Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Typical Operational Amplifier Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Precision Sensor Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Single-Ended Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Differential Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
RFI Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Gain Stage Output VA+/VA- Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Programmable Gain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Gain Setting with DCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Gain Switching Delay Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Dual Supply Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Power supply and REF Pin Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
common mode input range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Sensor Health Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Active Shield Guard Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
3FN8364.1
November 22, 2013
Pin Configurations
ISL28533, ISL28534, ISL28535 SINGLE ENDED OUTPUT
(14 LD TSSOP)
TOP VIEW
ISL28633, ISL28634, ISL28635 DIFFERENTIAL OUTPUT
(14 LD TSSOP)
TOP VIEW
Pin Descriptions
ISL28533
ISL28534
ISL28535
(SINGLE- ENDED OUT)
ISL28633
ISL28634
ISL28635
(DIFFERENTIAL OUT)
PIN
NAME
EQUIVALENT
CIRCUIT FUNCTION COMMENTS
4 4 INA+ Circuit 1 INA+ Input Positive Differential Input
5 5 INA- Circuit 1 INA- Input Negative Differential Input
12 - OUTA Circuit 2 INA Output Single Ended Output
- 12 OUTA+ Circuit 2 INA +Output Positive Differential Output
- 10 OUTA- Circuit 2 INA -Output Negative Differential Output
6 6 VA+ Circuit 1 A2 Output INA Gain Stage +Output
3 3 VA- Circuit 1 A1 Output INA Gain Stage -Output
11 11 REF Circuit 1 Output Reference INA Output Reference
1 1 G0 Circuit 1 Gain Control Logic Input
2 2 G1 Circuit 1 Gain Control Logic Input
8 - IN+ Circuit 1 Non-Inverting Op Amp Input Auxiliary Amplifier IN+
9 - IN- Circuit 1 Inverting Op Amp Input Auxiliary Amplifier IN-
10 - OUT Circuit 2 Op Amp Output Auxiliary Amplifier OUT
14 14 V+ Circuit 3 Positive supply Single Supply: +2.5V to +5.5V
Dual Supply: ±1.25V to ±2.75V
7 7 V- Circuit 3 Negative supply
- 8, 9 N.C. No Connect
13 13 DNC Do Not Connect Pin must float
1
2
3
4
G0
G1
VA-
INA+
-+
5
6
7
INA-
VA+
V-
10
9
8
11
12
13
14 V+
DNC
OUTA
REF
OUT
IN-
IN+
-+
1
2
3
4
G0
G1
VA-
INA+
5
6
7
INA-
VA+
V-
10
9
8
11
12
13
14 V+
DNC
OUTA+
REF
OUTA-
N.C.
N.C.
-+
V+
V-
OUT
CIRCUIT 2
V+
V-
CAPACITIVELY
COUPLED
ESD CLAMP
CIRCUIT 3
V+
V-
INA+,
INA-,
IN+,
IN-
CIRCUIT 1
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
4FN8364.1
November 22, 2013
Typical Sensor Application Block Diagram, ISL28533 Single-Ended
Output
FIGURE 3. SENSOR APPLICATION WITH COMMON MODE SENSING AND BUFFERED REFERENCE DRIVE
Typical Bridge Sensor Application Block Diagram, ISL28634
Differential Output
FIGURE 4. SIMPLIFIED STRAIN GAUGE SCHEMATIC
+
-
+
-
INA-
A2
A1
INA+
+
-
+
-
REF
OUTA
A3
A4
RG
RG
IN+
IN-
OUT
VA-
VA+
20k
20k
20k
20k
ISL28533
SENSOR
COMMON
MODE
SENSE
ISL26320
12-bit ADC
IN
ISL21090
5V V
REF
ISL21090
2.5V V
REF
V
CC
+5V
V+
REF+
OUT-
+
-
V
CM
10k
10k
OUT+
V
CC
V-
ISL28134
+
-
ISL28634
ISL26104
24-BIT ADC
TO GUI
ISL21010
5V VREF R5F10JBC (RL78/G1C)
Renesas
+5V
350
350
FOIL STRAIN
350
GAUGE 50
50
S
S
MICROCONTROLLER
+
-
+
-
VA+
VA-
ISL28233
ISL23328
Gain Control
Ch 1
Ch 2
Ch 4
Ch 3
DCP
*See ISLRE-BDGSTKEV1Z DAQ on a Stick User’s Guide” AN1853
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
5FN8364.1
November 22, 2013
G0 and G1 Programmable Gain Setting
G1
(NOTE)
G0
(NOTE)
ISL28533
ISL28633
ISL28534
ISL28634
ISL28535
ISL28635
00111
0Z 2 2 100
01 4 10 120
Z 0 5 50 150
Z Z 10 100 180
Z 1 20 200 200
1 0 40 300 300
1 Z 50 500 500
1 1 100 1000 1000
APPLICATIONS
MEDICAL
PIEZO-ELECTRIC
PRESSURE SENSOR
FLUID SENSOR
SHUNT SENSE
OPTICAL SENSORS
STRAIN GAUGE
THERMOCOUPLE
STRAIN GAUGE
NOTE: For valid logic “Z” state leave G0/G1 pins in high impedance state. Internal 100k pull-up and pull-down resistors on these pins establishes
logic “Z”. See Application Section for more information.
Ordering Information
PART NUMBER
(Notes 1, 2, 3)
PART
MARKING
TEMP RANGE
(°C)
PACKAGE
(Pb-Free)
PKG.
DWG. #
ISL28533FVZ 28533 FVZ -40 to +125 14 Ld TSSOP M14.173
ISL28534FVZ 28534 FVZ -40 to +125 14 Ld TSSOP M14.173
ISL28535FVZ 28535 FVZ -40 to +125 14 Ld TSSOP M14.173
ISL28633FVZ 28633 FVZ -40 to +125 14 Ld TSSOP M14.173
ISL28634FVZ 28634 FVZ -40 to +125 14 Ld TSSOP M14.173
ISL28635FVZ 28635 FVZ -40 to +125 14 Ld TSSOP M14.173
ISL28533EV2Z ISL28533 Evaluation Board
ISL28534EV2Z ISL28534 Evaluation Board
ISL28535EV2Z ISL28535 Evaluation Board
ISL28633EV2Z ISL28633 Evaluation Board
ISL28634EV2Z ISL28634 Evaluation Board
ISL28635EV2Z ISL28635 Evaluation Board
NOTES:
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635. For
more information on MSL please see tech brief TB363.
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
6FN8364.1
November 22, 2013
Absolute Maximum Ratings Thermal Information
Supply Voltage V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V
Input Voltage VIN to GND . . . . . . . . . . . . . . . . . . ((V-) - 0.3V) to ((V+) + 0.3V)
Input Differential Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to V-
Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA
Output Current IOUT (10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±40mA
Latch-Up
Class 2 Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA
ESD Rating
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8kV
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700V
Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV
Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W)
14 LD TSSOP (Notes 4, 5) . . . . . . . . . . . . . . 92 30
Maximum Storage Temperature Range . . . . . . . . . . . . . -65°C to +150°C
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +125°C
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . +140°C
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . 2.5V (±1.25V) to 5.5V (±2.75V)
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
5. For θJC, the “case temp” location is taken at the package top center.
Electrical Specifications V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +125°C.
PARAMETER DESCRIPTION CONDITIONS
MIN
(Note 6)TYP
MAX
(Note 6)UNIT
POWER SUPPLY DC SPECIFICATIONS
VSSupply Voltage VS = (V+) - (V-) 2.5 -5.5 V
ISSupply Current
VS = 5V
ISL2853X, RL = OPEN - 2.9 3.4 mA
--3.5 mA
ISL2863X, RL = OPEN - 3 3.5 mA
--3.6 mA
5V DC SPECIFICATIONS INSTRUMENTATION AMPLIFIER
VOS, I Input Stage Offset Voltage +25°C -5 ±0.6 5 µV
-40°C to +85°C -9 - 9 µV
-40°C to +125°C -10 -10 µV
TCVOS, I Input Stage Offset Voltage Temperature
Coefficient
-40°C to +125°C -50 ±5 50 nV/°C
VOS, O Output Stage Offset Voltage +25°C -15 ±2 15 µV
-40°C to +85°C -45 - 45 µV
-40°C to +125°C -65 -65 µV
TCVOS, O Output Stage Offset Voltage
Temperature Coefficient
-40°C to +125°C -0.5 ±0.15 0.5 µV/°C
IBInput Bias Current +25°C -400 ±50 400 pA
-40°C to +85°C -400 - 400 pA
-40°C to +125°C -1 -1nA
IOS Input Offset Current +25°C -300 ±50 300 pA
-40°C to +85°C -350 - 350 pA
-40°C to +125°C -1 -1nA
ZIN Input Impedance Common Mode - 10 - G
-5 - pF
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
7FN8364.1
November 22, 2013
EGAIN Gain Error G = 1 to 50 -0.2 ±0.05 0.2 %
-0.35 -0.35 %
G = 100 to 500 -0.3 ±0.05 0.3 %
-0.4 -0.4 %
G = 1000 -0.4 ±0.05 0.4 %
-0.5 -0.5 %
GAIN_TC Gain Drift G = 1 to 1,000
-40°C to +125°C
- 10 - ppm/°C
GNL Gain Non-Linearity VOUT = +0.1V to +4.9V; RL = 10k
G = 1 - 5 -ppm
G = 10 - 5 -ppm
G = 100 - 10 -ppm
G = 1000 - 10 -ppm
CMRR Common Mode Rejection Ratio VCM = +0.1V to +4.9V
G = 1 80 100 - dB
G = 10 100 114 - dB
90 --dB
G = 100 110 138 - dB
100 --dB
G = 1000 120 150 - dB
110 --dB
CMIR Common Mode Input Range Guaranteed by CMRR (V-) +0.1 -(V+) -0.1 V
VREF Range Reference Voltage Range ISL2853X V- -V+ V
ISL2863X (V-) +0.6 -(V+) -1 V
IREF Reference Input Current ISL2853X
VIN+ = VIN- = VREF = 2.5V
-0.5 0.1 0.5 µA
-1 -1µA
ISL2863X
VREF = 2.5V
-500 150 500 pA
-25 -25 nA
ZREF Reference Input Impedance ISL2853X 36 40 44 k
ISL2863X - 10 - G
PSRR Power Supply Rejection Ratio Vs = +2.5V to +5.5V
G=1V/V 110 130 - dB
G=10V/V 110 140 - dB
G=100V/V 120 140 - dB
G=1000V/V 120 140 - dB
ISC Short Circuit Output Source Current RL = Short to V- - 45 - mA
Short Circuit Output Sink Current RL = Short to V+ - -45 - mA
VOH High Output Voltage from V+
((V+) - VOUT)
RL = 10k V+ to VREF -10 15 mV
--20 mV
Electrical Specifications V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +125°C. (Continued)
PARAMETER DESCRIPTION CONDITIONS
MIN
(Note 6)TYP
MAX
(Note 6)UNIT
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
8FN8364.1
November 22, 2013
VOL Low Output Voltage from V-
((V-) + VOUT)
RL = 10k V- to VREF -10 15 mV
-- 20 mV
5V G0/G1 LOGIC INPUTS INSTRUMENTATION AMPLIFIER
VIH Logic Input High Threshold Vs = (V+) - (V-) 0.8*(Vs) -- V
VIL Logic Input Low Threshold Vs = (V+) - (V-) - - 0.2*(Vs) V
VIH_Z/VIL_Z Hi-Z Logic Input Range Vs = (V+) - (V-) 0.4*(Vs) - 0.6*(Vs) V
VOC Open Circuit Logic Voltage Set by 2 internal 100k Resistors;
VS = (V+) - (V-)
0.45*VS- 0.55*VSV
ZIN Logic Input Impedance - 50k - k
5V AC SPECIFICATIONS INSTRUMENTATION AMPLIFIER
eNTotal Input Referred Voltage Noise eN = (eNi2 + (eNo/G)2 + (IN*RS)2)
eNi Input Noise Voltage f = 0.1Hz to 10Hz; G = 100 - 0.4 - µVP-P
f = 1kHz; G = 100 - 17 - nV/Hz
eNo Output Noise Voltage f = 0.1Hz to 10Hz; G = 1 - 1.8 - µVP-P
f = 1kHz; G = 1 - 65 - nV/Hz
INInput Noise Current f = 10Hz; RS = 5M; G = 100 - 100 - fA/Hz
GBWP Gain Bandwidth Product G 10 - 2.3 - MHz
G < 10 - 1.6 - MHz
5V TRANSIENT RESPONSE INSTRUMENTATION AMPLIFIER
SR Slew Rate
20% to 80%
VOUT = 4VP-P; G = 1 - 0.8 - V/µs
VOUT = 4VP-P; G = 100 - 0.28 - V/µs
tGPD Gain Select Prop Delay All Gains, 2V to 4V output after gain
change
-1 - µs
tsSettling Time To 0.1%, 4VP-P Step - 20 - µs
To 0.01%, 4VP-P Step - 70 - µs
trecover Output Overload Recovery Time,
Recovery to 90% of output saturation
G = 1 - 1 - µs
5V DC SPECIFICATIONS OPERATIONAL AMPLIFIER
AvOPEN Open Loop Gain - 140 - dB
VOS Input Offset Voltage TA = +25°C -2.5 -0.2 2.5 µV
TA = -40°C to +85°C -3.475 - 3.475 µV
TA = -40°C to +125°C -4 --4 µV
TCVOS Input Offset Voltage Temperature
Coefficient
TA = -40°C to +125°C -15 -0.5 15 nV/°C
IBInput Bias Current TA = +25°C -300 ±15 300 pA
TA = -40°C to +85°C -300 - 300 pA
TA = -40°C to +125°C -550 -550 pA
Electrical Specifications V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +125°C. (Continued)
PARAMETER DESCRIPTION CONDITIONS
MIN
(Note 6)TYP
MAX
(Note 6)UNIT
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
9FN8364.1
November 22, 2013
IOS Input Offset Current -600 ±50 600 pA
TA = -40°C to +85°C -600 - 600 pA
TA = -40°C to +125°C -1100 -1100 pA
Common Mode
Input Voltage
Range
V+ = 5.0V, V- = 0V
Guaranteed by CMRR
0 - 5V
CMRR Common Mode Rejection Ratio VCM = 0V to 5V 110 135 - dB
97 --dB
PSRR Power Supply Rejection Ratio VS = 2.5V to 5.5V 120 135 - dB
ISC Short Circuit Output Source Current RL = Short to V- - 40 - mA
Short Circuit Output Sink Current RL = Short to V+ - -40 - mA
VOH Output Voltage Swing, HIGH
From VOUT to V+
RL = 10k to V--20 45 mV
RL = 10k to V--- 50 mV
VOL Output Voltage Swing, LOW
From V- to VOUT
RL = 10k to V+- 20 45 mV
RL = 10k to V+-- 50 mV
5V AC SPECIFICATIONS OPERATIONAL AMPLIFIER
CIN Input Capacitance Differential - 5.2 - pF
Common Mode - 5.6 - pF
eNInput Noise Voltage f = 0.1Hz to 10Hz - 0.25 - µVP-P
f = 1kHz - 10 - nV/Hz
INInput Noise Current f = 1kHz - 200 - fA/Hz
GBWP Gain Bandwidth Product - 3 - MHz
Electrical Specifications V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +125°C. (Continued)
PARAMETER DESCRIPTION CONDITIONS
MIN
(Note 6)TYP
MAX
(Note 6)UNIT
Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the
operating temperature range, -40°C to +125°C.
PARAMETER DESCRIPTION CONDITIONS
MIN
(Note 6) TYP
MAX
(Note 6) UNIT
2.5V DC SPECIFICATIONS INSTRUMENTATION AMPLIFIER
VOS, I Input Stage Offset Voltage +25°C -5 ±0.6 5 µV
-40°C to +85°C -9 - 9 µV
-40°C to +125°C -10 -10 µV
TCVOS, I Input Stage Offset Voltage Temperature
Coefficient
-40°C to +125°C -50 ±5 50 nV/°C
VOS, O Output Stage Offset Voltage +25°C -15 ±2 15 µV
-40°C to +85°C -45 - 45 µV
-40°C to +125°C -65 -65 µV
TCVOS, O Output Stage Offset Voltage
Temperature Coefficient
-40°C to +125°C -0.5 ±0.15 0.5 µV/°C
IBInput Bias Current +25°C -400 ±50 400 pA
-40°C to +85°C -400 - 400 pA
-40°C to +125°C -1 -1nA
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
10 FN8364.1
November 22, 2013
IOS Input Offset Current +25°C -300 ±50 300 pA
-40°C to +85°C -350 - 350 pA
-40°C to +125°C -1 -1nA
ZIN Input Impedance Common Mode - 10 - G
-5- pF
EGAIN Gain Error G = 1 to 50 -0.2 ±0.05 0.2 %
-0.35 -0.35 %
G = 100 to 500 -0.3 ±0.05 0.3 %
-0.4 -0.4 %
G = 1000 -0.4 ±0.05 0.4 %
-0.5 -0.5 %
GAIN_TC Gain Drift G = 1 to 1,000
-40°C to +125°C
- 10 - ppm/°C
CMRR Common Mode Rejection Ratio VCM = +0.1V to +2.4V
G = 1 80 100 - dB
G = 10 100 114 - dB
90 --dB
G = 100 110 138 - dB
100 --dB
G = 1000 120 150 - dB
110 --dB
CMIR Common Mode Input Range Guaranteed by CMRR (V-) +0.1 -(V+) -0.1 V
VREF Range Reference Voltage Range ISL2853x V- -V+ V
ISL2863x (V-) +0.6 -(V+) -1 V
IREF Reference Input Current ISL2853x
VIN+ = VIN- = VREF = 1.25V
-0.5 0.1 0.5 µA
-1 -1µA
ISL2863x -500 150 500 pA
-25 -25 nA
ZREF Reference Input Impedance ISL2853x 36 40 44 k
ISL2863x - 10 - G
PSRR Power Supply Rejection Ratio Vs = +2.5V to +5.5V
G = 1V/V 110 130 - dB
G = 10V/V 110 140 - dB
G = 100V/V 120 140 - dB
G = 1000V/V 120 140 - dB
ISC Short Circuit Output Source Current RL = Short to V- - 25 - mA
Short Circuit Output Sink Current RL = Short to V+ - -25 - mA
VOH Output Voltage Swing, HIGH RL = 10k to VREF -515mV
--20 mV
Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the
operating temperature range, -40°C to +125°C. (Continued)
PARAMETER DESCRIPTION CONDITIONS
MIN
(Note 6) TYP
MAX
(Note 6) UNIT
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
11 FN8364.1
November 22, 2013
VOL Output Voltage Swing, LOW RL = 10k to VREF -515mV
--20 mV
2.5V G0/G1 LOGIC INPUTS INSTRUMENTATION AMPLIFIER
VIH Logic Input High Threshold Vs = (V+) - (V-) 0.8*(Vs) -- V
VIL Logic Input Low Threshold Vs = (V+) - (V-) - - 0.2*(Vs) V
VIH_Z/VIL_Z Hi-Z Logic Input Range Vs = (V+) - (V-) 0.4*(Vs) - 0.6*(Vs) V
VOC Open Circuit Logic Voltage Set by 2 internal 100k Resistors;
VS = (V+) - (V-)
0.45*VS- 0.55*VSV
ZIN Logic Input Impedance - 50k - k
2.5V AC SPECIFICATIONS INSTRUMENTATION AMPLIFIER
eNTotal Input Referred Voltage Noise eN = (eNi2 + (eNo/G)2 + (IN*RS)2)
eNi Input Noise Voltage f = 0.1Hz to 10Hz; G = 100 - 0.4 - µVP-P
f = 1kHz; G = 100 - 17 - nV/Hz
eNo Output Noise Voltage f = 0.1Hz to 10Hz; G = 1 - 1.8 - µVP-P
f = 1kHz; G = 1 - 65 - nV/Hz
INInput Noise Current f = 10Hz; RS = 5M; G = 100 - 100 - fA/Hz
GBWP Gain Bandwidth Product G 10 - 2.3 - MHz
G < 10 - 1.6 - MHz
2.5V TRANSIENT RESPONSE INSTRUMENTATION AMPLIFIER
SR Slew Rate
10% to 90%
VOUT = 2VP-P; G = 1 - 0.8 - V/µs
VOUT = 2VP-P; G = 100 - 0.1 - V/µs
tGPD Gain Select Prop Delay All Gains - 1 - µs
tsSettling Time to 0.1%, 4VP-P Step To 0.1%, 2VP-P Step - 20 - µs
To 0.01%, 2VP-P Step - 70 - µs
trecover Output Overload Recovery Time,
Recovery to 90% of output saturation
-1.5- µs
2.5V DC SPECIFICATIONS OPERATIONAL AMPLIFIER
AvOPEN Open Loop Gain - 140 - dB
VOS Input Offset Voltage TA = +25°C -2.5 -0.2 2.5 µV
TA = -40°C to +85°C -3.475 - 3.475 µV
TA = -40°C to +125°C -4 --4 µV
TCVOS Input Offset Voltage Temperature
Coefficient
TA = -40°C to +125°C -15 -0.5 15 nV/°C
IBInput Bias Current TA = +25°C -300 ±15 300 pA
TA = -40°C to +85°C -300 - 300 pA
TA = -40°C to +125°C -550 -550 pA
Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the
operating temperature range, -40°C to +125°C. (Continued)
PARAMETER DESCRIPTION CONDITIONS
MIN
(Note 6) TYP
MAX
(Note 6) UNIT
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
12 FN8364.1
November 22, 2013
IOS Input Offset Current TA = +25°C -600 ±50 600 pA
TA = -40°C to +85°C -600 - 600 pA
TA = -40°C to +125°C -1100 -1100 pA
Common Mode
Input Voltage
Range
V+ = 2.5V, V- = 0V
Guaranteed by CMRR
0 -2.5 V
CMRR Common Mode Rejection Ratio VCM = 0V to 2.5V 110 135 - dB
97 --dB
PSRR Power Supply Rejection Ratio Vs = 2.5V to 5.5V 120 135 - dB
ISC Short Circuit Output Source Current RL = Short to V- - 25 - mA
Short Circuit Output Sink Current RL = Short to V+ - -25 - mA
VOH Output Voltage Swing, HIGH
From VOUT to V+
RL = 10k to VCM -1020mV
RL = 10k to VCM --25 mV
VOL Output Voltage Swing, LOW
From V- to VOUT
RL = 10k to VCM - 10 20 mV
RL = 10k to VCM --25 mV
2.5V AC SPECIFICATIONS OPERATIONAL AMPLIFIER
CIN Input Capacitance Differential - 5.2 - pF
Common Mode - 5.6 - pF
eNInput Noise Voltage f = 0.1Hz to 10Hz - 0.25 - µVP-P
f = 1kHz - 10 - nV/Hz
INInput Noise Current f = 1kHz - 200 - fA/Hz
GBWP Gain Bandwidth Product - 3 - MHz
NOTE:
6. Compliance to data sheet limits are assured by one or more methods: production test, characterization and/or design.
Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the
operating temperature range, -40°C to +125°C. (Continued)
PARAMETER DESCRIPTION CONDITIONS
MIN
(Note 6) TYP
MAX
(Note 6) UNIT
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
13 FN8364.1
November 22, 2013
Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply,
unless otherwise specified.
FIGURE 5. PGIA GAIN ERROR DISTRIBUTION, G = 1 FIGURE 6. PGIA GAIN ERROR DISTRIBUTION, G = 10
FIGURE 7. PGIA GAIN ERROR DISTRIBUTION, G = 100 FIGURE 8. PGIA GAIN ERROR DISTRIBUTION, G = 1,000
FIGURE 9. PGIA GAIN ERROR DISTRIBUTION, G = 1 TO 1,000 FIGURE 10. PGIA LONG TERM DRIFT OFFSET VOLTAGE
NUMBER OF AMPLIFIERS
GAIN ERROR (%)
6
8
10
12
0
2
4
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Vs = ± 2.5VDC
TA = -40°C TO +125°C
NUMBER OF AMPLIFIERS
GAIN ERROR (%)
6
8
10
12
0
2
4
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Vs = ± 2.5VDC
TA = -40°C to +125°C
NUMBER OF AMPLIFIERS
GAIN ERROR (%)
4
6
8
10
12
0
2
4
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Vs = ± 2.5VDC
TA = -40°C to +125°C
NUMBER OF AMPLIFIERS
GAIN ERROR (%)
4
6
8
10
12
0
2
4
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Vs = ± 2.5VDC
TA = -40°C to +125°C
NUMBER OF AMPLIFIERS
GAIN ERROR (%)
80
100
120
0
20
40
60
-0.1 -0.075 -0.05 -0.025 0
140
-0.1-0.075-0.05
-0.025
Vs = ± 2.5VDC
TA = +25°C
0
0 1020 304050 60
VOS (µV)
TIME (DAYS)
0.4
0.5
0.6
0.1
0.2
0.3
0.7
0.8
0.9
1.0
Vs = ± 2.5VDC
TA = +25°C
G = 1,000
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
14 FN8364.1
November 22, 2013
FIGURE 11. PGIA INPUT OFFSET VOLTAGE DISTRIBUTION FIGURE 12. PGIA OUTPUT OFFSET VOLTAGE DISTRIBUTION
FIGURE 13. PGIA RTI VOS vs COMMON-MODE VOLTAGE FIGURE 14. PGIA RTI VOS vs COMMON-MODE VOLTAGE
FIGURE 15. PGIA INPUT BIAS CURRENT vs TEMPERATURE FIGURE 16. PGIA IOS vs TEMPERATURE
Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
NUMBER OF AMPLIFIERS
VOSI (µV)
20
25
30
0
5
10
15
-2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0
Vs = ± 2.5VDC
NUMBER OF AMPLIFIERS
VOSO (µV)
6
8
10
12
14
0
2
4
-10 -8 -6 0 2 4 10
Vs = ± 2.5VDC
-4 -2 68
16
18
INPUT COMMOM MODE VOLTAGE(V)
-2
0
2
4
6
-6
-4
-2
-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
Vs = ± 1.25VDC
VOS (µV)
VOS (µV)
INPUT COMMON MODE VOLTAGE (V)
-2
0
2
4
6
-6
-4
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0
Vs = ± 2.5VDC
80
100
120
140
160
180
200
0
20
40
60
-50 -25 0 25 50 75 100 125 150
INPUT BIAS CURRENT (pA)
TEMPERATURE (°C)
IB+, VS = 5V
IB-, VS = 2.5V
IB+, VS = 2.5V
IB-, VS = 5V
-50
0
50
100
150
200
-200
-150
-100
-50 -25 0 25 50 75 100 125 150
IOS (pA)
TEMPERATURE (°C)
IOS, VS = 5V
IOS, VS = 2.5V
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
15 FN8364.1
November 22, 2013
FIGURE 17. PGIA INPUT COMMON-MODE RANGE vs OUTPUT
VOLTAGE
FIGURE 18. PGIA INPUT COMMON-MODE RANGE vs OUTPUT VOLTAGE
FIGURE 19. PGIA INPUT COMMON-MODE RANGE vs OUTPUT
VOLTAGE
FIGURE 20. PGIA INPUT COMMON-MODE RANGE vs DIFFERENTIAL
OUTPUT VOLTAGE
FIGURE 21. PGIA CMRR vs TEMPERATURE FIGURE 22. PGIA PSRR vs TEMPERATURE
Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
OUTPUT VOLTAGE (V)
COMMON MODE VOLTAGE (V)
0
1
2
3
-3
-2
-1
-3 -2 -1 0 1 2 3
Vs = ± 2. 5VDC
VREF = 0V
ISL2853x
OUTPUT VOLTAGE (V)
COMMON MODE VOLTAGE (V)
0
1
2
3
-3
-2
-1
-3 -2 -1 0 1 2 3
Vs = ± 2. 5VDC
VREF = +2.5V
ISL2853x
OUTPUT VOLTAGE (V)
COMMON MODE VOLTAGE (V)
0
1
2
3
-3
-2
-1
-3 -2 -1 0 1 2 3
Vs = ± 2. 5VDC
VREF = -2.5V
ISL2853x
0
1
2
3
-3
-2
-1
-6-4-20246
Vs = ± 2. 5VDC
VREF = 0V
ISL2863x
VOUT+ TO VOUT- (V)
COMMON MODE VOLTAGE (V)
TEMPERATURE (°C)
CMRR (dB)
80
100
120
140
160
180
0
20
40
60
-50 -25 0 25 50 75 100 125 150
Vs = ± 2. 5VDC
G = 1
G = 10
G = 100
G = 1000
TEMPERATURE (°C)
PSRR (dB)
60
80
100
120
140
160
180
0
20
40
60
-50 -25 0 25 50 75 100 125 150
G = 1
G = 10
G = 100
G = 1000
Vs = ± 2. 5VDC
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
16 FN8364.1
November 22, 2013
FIGURE 23. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT,
ISL2853x
FIGURE 24. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT,
ISL2863x
FIGURE 25. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT,
ISL2853x
FIGURE 26. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT,
ISL2863x
FIGURE 27. SUPPLY CURRENT vs SUPPLY VOLTAGE vs TEMPERATURE FIGURE 28. PGIA VOH AND VOL vs TEMPERATURE
Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
0.01
0.1
1
0.0001
0.001
LOAD CURRENT (mA)
VOLTAGE DROP FROM RAIL (V)
0.01 0.1 1 10010
VOL
Vs = +3V
VOH
LOAD CURRENT (mA)
VOLTAGE DROP FROM RAIL (V)
0.1
1
0.001
0.01
0.01 0.1 1100
10
Vs = +5V
VOH
VOL
2.8
3.0
3.2
3.4
3.6
3.8
4.0
2.0
2.2
2.4
2.6
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
T = -40°C
T = +25°C
T = +85°C
T = +125°C
SUPPLY CURRENT (mA)
SUPPLY VOLTAGE VS (V)
6
8
10
12
0
2
4
-50 -25 0 25 50 75 100 125
150
VOH 5V
VOL 5V
VOH 2.5V
VOL 2.5V
VOH AND VOL VOLTAGE (mV)
TEMPERATURE (°C)
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
17 FN8364.1
November 22, 2013
FIGURE 29. PGIA 0.1Hz TO 10Hz NOISE FIGURE 30. PGIA 0.1Hz TO 10Hz NOISE
FIGURE 31. PGIA VOLTAGE NOISE SPECTRAL DENSITY vs
FREQUENCY, 1Hz TO 100kHz
FIGURE 32. PGIA VOLTAGE NOISE SPECTRAL DENSITY vs
FREQUENCY, 1Hz TO 100kHz
FIGURE 33. PGIA CURRENT NOISE SPECTRAL DENSITY 1Hz TO
100kHz, ISL2853x
FIGURE 34. PGIA CURRENT NOISE SPECTRAL DENSITY 1Hz TO
100kHz, ISL2863x
Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
VOLTAGE NOISE PK TO PK (µV)
TIME (s)
110234 567 890
-3
-2
-1
1
2
3
Vs = ±2.5V
G = 1
0
-4
4
TIME (s)
110234 567 890
Vs = ±2.5V
G = 1000
-0.3
-0.2
-0.1
0.1
0.2
0.3
0
-0.4
0.4
-0.5
0.5
VOLTAGE NOISE PK TO PK (µV)
VOLTAGE NOISE (nV/Hz)
FREQUENCY (Hz)
1 10 100 1000 10k 100k
1
10
100
1k
10k
100k
Vs = ±2.5V
ISL2853x
G = 1
G = 100
VOLTAGE NOISE (nV/Hz)
FREQUENCY (Hz)
1 10 100 1000 10k 100k
1
10
100
Vs = ±2.5V
1k
10k
100k
ISL2863x
G = 1
G = 100
VS = ±2.5V
RS = 5M
1 10 100 1k 10k 100k
FREQUENCY (Hz)
CURRENT NOISE (fA/Hz)
1
0.1
10
100
1k
10k
G = 1
G = 100
Roll off from CSOURCE
ISL2853x
1 10 100 1k 10k 100k
1
0.1
10
100
1k
10k
CURRENT NOISE (fA/Hz)
FREQUENCY (Hz)
VS = ±2.5V
RS = 5M
Roll off from CSOURCE
ISL2863x
G = 1
G = 100
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
18 FN8364.1
November 22, 2013
FIGURE 35. PGIA GAIN VS FREQUENCY vs GAIN SETTINGS FIGURE 36. PGIA CMRR vs FREQUENCY
FIGURE 37. PGIA POSITIVE PSRR vs FREQUENCY FIGURE 38. PGIA NEGATIVE PSRR vs FREQUENCY
FIGURE 39. PGIA GAIN vs FREQUENCY vs CL, ISL2853x FIGURE 40. PGIA GAIN vs FREQUENCY vs CL, ISL2863x
Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
10 100 1k 10k 100k 1M
FREQUENCY (Hz)
GAIN (dB)
10M
20
30
40
50
60
70
-10
0
10
1000
500
300
200
100
50
20
20
10
4
2
1
Vs = ± 2. 5V
RL = 10k
60
80
100
120
140
160
0
20
40
60
CMRR (dB)
FREQUENCY (Hz)
10 100 1k 10M
1M
10k 100k
G = 100
G = 10
G = 1
Vs = ± 2. 5VDC
G = 1000
POSITIVE PSRR (dB)
FREQUENCY (Hz)
80
100
120
140
160
0
20
40
60
10 100 1k 10M
1M
10k 100k
G = 1
G = 10
Vs = ± 2. 5VDC
G = 100
FREQUENCY (Hz)
60
80
100
120
140
0
20
40
10 100 1k 10M
1M
10k 100k
NEGATIVE PSRR (dB)
G = 100
G = 1
G = 10
Vs = ± 2. 5VDC
FREQUENCY (Hz)
3
5
7
9
11
13
-5
-3
-1
1
1k 10k 100k 10M
1M
1000pF
470pF
3300pF
4700pF
2200pF
Vs = ± 2. 5VDC
VOUT = 100mVP-P
AV = 1V
RL = 10k
GAIN (dB)
FREQUENCY (Hz)
GAIN (dB)
1
3
5
7
9
11
-5
-3
-1
1470pF
3300pF
4700pF
2200pF
1000pF
1k 10k 100k 10M
1M
Vs = ± 2. 5VDC
VOUT = 10mVP-P
AV = 1V
RL = 10k
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
19 FN8364.1
November 22, 2013
FIGURE 41. PGIA SMALL SIGNAL PULSE RESPONSE, G = 1, ISL2853x FIGURE 42. PGIA SMALL SIGNAL PULSE RESPONSE, G = 1, ISL2863x
FIGURE 43. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1, 2, 10
ISL2853x
FIGURE 44. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1, 2, 10
ISL2863x
FIGURE 45. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1000,
ISL2853x
FIGURE 46. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1000,
ISL2863x
Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
TIME (µs)
VOLTAGE (V)
-10 010 20 30 40
-0.02
0
0.02
0.04
0.06
0.08
0.1
-0.1
-0.08
-0.06
-0.04
-0.02
Vs = ± 2. 5VD
C
R
L
=
OPEN
VOUT = 100mVP-P
0
0.02
0.04
0.06
-0.06
-0.04
-0.02
TIME (µs)
-10 010 20 30 40
-5 515 25 35
Vs = ± 2. 5VD
C
R
L
=
OPEN
VOUT = 100mVP-P
VOUT+ TO VOUT- (V)
TIME (µs)
VOLTAGE (V)
-10 010 20 30 40
-1
0
1
2
3
-3
-2
G = 10
G = 2
Vs = ± 2. 5VD
C
R
L
=
OPEN
VOUT = 4VP-P
G = 1
TIME (µs)
-1
0
1
2
3
-3
-2
-20 -10 10 20 30 40
0
AV = 2
Vs = ± 2. 5VDC
RL = OPEN
VOUT = 4VP-P
VOUT+ TO VOUT- (V)
AV = 1
AV = 10
TIME (µs)
-400 -200 200 400 800 1000
0600
-0.5
0
0.5
1.0
1.5
2.0
2.5
-2.5
-2.0
-1.5
-1.0 Vs = ± 2. 5VDC
RL = OPEN
VOUT = 4VP-P
VOLTAGE (V)
TIME (µs)
VOUT+ TO VOUT- (V)
-0.5
0
0.5
1.0
1.5
2.0
2.5
-2.5
-2.0
-1.5
-1.0
-400 -200 200 400 800 1000
0600
Vs = ± 2. 5VDC
RL = OPEN
VOUT = 4VP-P
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
20 FN8364.1
November 22, 2013
FIGURE 47. CAPACITIVE LOAD OVERSHOOT; ISL2853x FIGURE 48. CAPACITIVE LOAD OVERSHOOT; ISL2863x
FIGURE 49. POSITIVE OVERLOAD RECOVERY TIME, ISL2853x FIGURE 50. POSITIVE OVERLOAD RECOVERY TIME, ISL2863x
FIGURE 51. NEGATIVE OVERLOAD RECOVERY TIME, ISL2853x FIGURE 52. NEGATIVE OVERLOAD RECOVERY TIME, ISL2863x
Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
-0.02
0
0.02
0.04
0.06
0.08
0.1
-0.08
-0.06
-0.04
OUTPUT VOLTAGE (V)
TIME (µs)
-10 10 500203040
0pF
100pF
300pF
500pF
800pF
1000pF
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
-0.16
-0.14
-0.12
-0.1
-0.08
OUTPUT VOLTAGE (V)
TIME (µs)
-10 10 60020305040
0pF OUT+
0pF OUT-
100pF OUT+
100pF OUT-
300pF OUT+
300pF OUT-
500pF OUT+
500pF OUT-
800pF OUT+
800pF OUT-
1nF OUT+
1nF OUT-
-3
-2
-1
0
1
2
3
TIME (µs)
0610162024 8 1214 18
G
= 100
G
= 1
G
= 10
INPUT AND OUTPUT VOLTAGE (V)
VIN
-2
0
2
4
6
-6
-4
TIME (µs)
060 14018020 40 80 100 120 160
VIN
G = 100
G = 1
G = 10
INPUT AND OUTPUT VOLTAGE (V)
-1
0
1
2
3
-3
-2
-1
TIME (µs)
04 142681012
G = 100
INPUT AND OUTPUT VOLTAGE (V)
G = 1
VIN
G = 10
-2
0
2
4
6
-6
-4
TIME (µs)
VIN
G
= 100
INPUT AND OUTPUT VOLTAGE (V)
060 14018020 40 80 100 120 160
G
= 1
G
= 10
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
21 FN8364.1
November 22, 2013
FIGURE 53. CHANNEL SEPARATION vs FREQUENCY, HOSTILE INA,
MONITOR OPAMP
FIGURE 54. CHANNEL SEPARATION vs FREQUENCY, HOSTILE
OPAMP, MONITOR INA
Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply,
unless otherwise specified. (Continued)
CHANNEL SEPARATION (dB)
60
80
100
120
140
0
20
40
FREQUENCY (Hz)
10 100 1k 10M
1M
10k 100k
OpAmp AV = 1
60
80
100
120
140
0
20
40
CHANNEL SEPARATION (dB)
FREQUENCY (Hz)
10 100 1k 10M
1M
10k 100k
INA G = 1
INA G = 100
INA G = 10
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
22 FN8364.1
November 22, 2013
Typical Operational Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless
otherwise specified.
FIGURE 55. OP AMP VOS vs COMMON MODE FIGURE 56. OP AMP VOS vs COMMON MODE
FIGURE 57. OP AMP BIAS CURRENT vs TEMPERATURE FIGURE 58. OP AMP VOH AND VOL vs TEMPERATURE
FIGURE 59. OP AMP OUTPUT VOLTAGE SWING vs OUTPUT CURRENT FIGURE 60. OP AMP OUTPUT VOLTAGE SWING vs OUTPUT CURRENT
-100
0
100
200
300
400
-400
-300
-200
-50 -25 0 25 50 75 100 125 150
INPUT BIAS CURRENT (pA)
IB+, VS = 5V
IB-, VS = 5V
IB-, VS = 2.5V
TEMPERATURE (°C)
IB+, VS = 2.5V
15
20
25
30
35
0
5
10
-50 0 50 100 150
VOL 5V
VOH 5V
VOH 2.5V
VOL 2.5V
VOH AND VOL VOLTAGE (mV)
TEMPERATURE (°C)
0.01
0.1
1
0.0001
0.001
LOAD CURRENT (mA)
Vs = +3VDC
0.01 0.1 1100
10
VOLTAGE DROP FROM RAIL (V)
VOH
VOL
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
23 FN8364.1
November 22, 2013
FIGURE 61. OP AMP GAIN vs FREQUENCY FIGURE 62. OP AMP CAPACITIVE LOAD vs FREQUENCY
FIGURE 63. OP AMP POWER SUPPLY REJECTION RATIO FIGURE 64. OP AMP POWER SUPPLY REJECTION RATIO
FIGURE 65. OP AMP SMALL SIGNAL TRANSIENT RESPONSE FIGURE 66. OP AMP LARGE SIGNAL TRANSIENT RESPONSE
Typical Operational Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless
otherwise specified. (Continued)
60
80
100
120
140
0
20
40
POSITIVE PSRR (dB)
FREQUENCY (Hz)
10 100 1k 10M
1M
10k 100k
Vs = ± 2. 5VDC
A
V
= 1
TIME (µs)
OUTPUT VOLTAGE (V)
0
0.5
1.0
1.5
-1.5
-1.0
-0.5
AV = 1
AV = 10
-10 0 10 20 30 40
Vs = ± 1.25VDC
RL = OPEN
VOUT = 2VP-P
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
24 FN8364.1
November 22, 2013
FIGURE 67. OP AMP VOLTAGE NOISE SPECTRAL DENSITY vs
FREQUENCY
FIGURE 68. OP AMP 0.1Hz TO 10Hz PEAK-TO-PEAK VOLTAGE NOISE
FIGURE 69. OP AMP OPEN-LOOP GAIN AND PHASE vs FREQUENCY FIGURE 70. OP AMP CAPACITIVE LOAD OVERSHOOT
Typical Operational Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless
otherwise specified. (Continued)
0
0.05
0.10
0.15
-0.15
-0.10
-0.05
OUTPUT VOLTAGE (V)
TIME (µs)
-10 10 500203040
0pF
100pF
300pF
500pF
800pF
1000pF
Vs = ±2.5VDC
A
V
= 1
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
25 FN8364.1
November 22, 2013
Applications Information
Precision Sensor Amplifier
The ISL2853x and ISL2863x are a family of ultra high precision
instrumentation amplifiers. These amplifiers feature zero drift
circuitry that provides auto offset voltage correction and noise
reduction, delivering very low offset voltage drift of 5nV/°C and a
low 1/F noise frequency corner down in the sub Hz range. The
instrumentation amplifier integrates precision matched resistors
for the front gain stage and the differential second stage,
providing very high gain accuracy and excellent CMRR. The
precision performance makes these amplifiers ideal for analog
sensor front end, instrumentation and data acquisition
applications such as weigh scales, flow sensors and shunt
current sensing that require very low noise and high dynamic
range.
SINGLE-ENDED OUTPUT
The ISL28533, ISL28534 and ISL28535 family of parts are
differential input, single ended output instrumentation amplifiers
using a three op amp architecture (Figure 71). The first stage is
differential input/differential output and is used to set the gain.
The second stage is a difference amplifier which is used to
remove the common mode voltage from the differential signal.
With the integrated gain resistors and the programmable gains,
these instrumentation amplifiers require no external
components for gain setting and operation.
There is an additional uncommitted zero drift operational
amplifier included on the chip. This can be used to drive the REF
pin if needed to provide a low impedance to REF. The REF pin is
used to shift the output DC reference. Note that on this device the
REF input is a resistor that is part of the difference amplifier non-
inverting input. To ensure good common mode rejection in the
output stage the REF pin should be driven by a low impedance
source, such as the output of amplifier A4. Any parasitic
resistance added to the REF pin degrades the common mode
rejection of the difference amplifier.
DIFFERENTIAL OUTPUT
The ISL28633, ISL28634 and ISL28635 family of parts are
differential input, differential output instrumentation amplifiers
and are ideal as a pre-amplifier/driver for differential input ADCs
(Figure 72). With the integrated gain resistors and the
programmable gains, these instrumentation amplifiers require
no external components for gain setting and operation.
The first stage amplifier is identical to the first stage in the
ISL2853x family. The output stage is a difference amplifier which
is configured to provide differential output drive. The REF pin is
also available on this device and can be used to provide a DC
shift of the output signal. On this device the REF pin is a high
impedance input of an operational amplifier. The voltage used to
drive this pin can be developed using a resistor divider without
the need of an additional buffer without penalty of CMRR
degradation.
RFI FILTER
The instrumentation amplifier inputs of the ISL2853x and
ISL2863x have RFI filters for Electro Magnetic Interference (EMI)
reduction. In EMI sensitive applications, the high frequency RF
signal can appear as a rectified DC offset at the output of
precision amplifiers. Because the gain of the precision front end
can be 100 or greater it is critical not to amplify any conducted or
radiated noise that may be present at the amplifier inputs. The
RFI input is a 1k, 3pF LPF with a corner frequency of
approximately 50MHz (See Figure 73).
GAIN STAGE OUTPUT VA+/VA- PINS
The ISL2853x and ISL2863x instrumentation amplifiers include
pinouts for the output of the differential gain stage. VA+ is
referenced to the non-inverting input of the difference amplifier
while VA- is referenced to the inverting input. These pins can be
FIGURE 71. ISL2853x BLOCK DIAGRAM
+
-
+
-
INA-
A2
A1
INA+
+
-
+
-
REF
OUTA
A3
A4
RG
RG
3-STATE LOGIC FOR
RG GAIN CONTROL
G0
G1
IN+
IN-
OUT
VA-
VA+
20k
20k
20k
20k
FIGURE 73. RFI FILTER INPUTS
FIGURE 72. ISL2863x BLOCK DIAGRAM
+
-
+
-
+
-
INA-
A2
A1
INA+
OUTA+
A3
RG
RG
3-STATE LOGIC FOR
RG GAIN CONTROL
G0
G1
+
-
+
-
OUTA-
REF
A4
VA-
VA+
20k
20k
20k
20k
1M
1M
+
-
+
-
A2
A1
INA+
RG
RG
INA- RFI Filter
Fc = 50MHz
RFI Filter
Fc = 50MHz
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
26 FN8364.1
November 22, 2013
used for measuring the input common mode voltage for sensor
feedback and health monitoring. The differential gain stage
output pins VA+ and VA- buffers the input common mode voltage
while amplifying differential voltage. By tying two resistor across
VA+ and VA-, the buffered input common mode voltage is
extracted at the midpoint of the resistors (see Figure 74). This
voltage can be sent to an ADC for sensor monitoring or feedback
control, improving the precision and accuracy of the sensor.
PROGRAMMABLE GAIN LOGIC
The ISL2853x and ISL2863x feature a three-state logic interface
for digital programming of the amplifier gain. This allows the
PGIA’s gain to be changed without an external gain setting
resistors, improving the gain accuracy and reducing component
count.
The three-state logic pins have voltage levels for recognizing valid
logic states to set the gain of the amplifier (see Figure 75). With
three logic states per input, this allows nine gain settings with
just two digital input pins (see Table 2).
Logic states of the G0/G1 pins can be achieved by simple pin-
strapping to the supply rails for logic HI/LOW, or may be left
floating for logic Z. Internal resistors on the G0/G1 pins set the
logic level to mid-supply for logic Z. Alternatively a
micro-controller can be used to drive the pins HI/LOW or they
may be left in a High-Z state. The VIH,VIL, and logic Z threshold
levels are TTL/CMOS compatible for single 5V and 3V supplies.
See Table 1 for logic threshold levels.
It is important to note that logic threshold levels are referenced
to the V- negative supply rail of the amplifier. For dual supply
operation of the instrumentation amplifier logic threshold levels
are shifted by the magnitude of V-. Externally driven logic signals
require level shifting to properly set amplifier gain.
GAIN SETTING WITH DCP
For applications without a tri-state driver the alternative solution
for programmable switching the 9 gain settings is to use a DCP.
Using a Dual DCP implements the capability to select all 9 gains
with an I2C/SPI bus interface, saving valuable GPIO lines. The
ISL23328 is a Dual 128 tap DCP that can switch the G0 and G1
pins with an I2C interface (see Figure 76). The wiper of the DCP
can be swept from V+ to V- in 128 steps.
FIGURE 74. COMMON MODE SENSING WITH VA+/VA- PINS
FIGURE 75. G0/G1 LOGIC THRESHOLD LEVELS
+
-
+
-
A2
A1
INA+
RG
RG
VA-
VA+
INA-
Vx
10k
VA+ = Vcm + Vdm/2
VA- = Vcm - Vdm/2
Vx =
Vx = Vcm
[(VA+) + (VA-)] / 2
10k
+
-
+
-
+
-
VCM
-VDM
2
+VDM
2
V+
V-
VIL_ZMIN
VIH_ZMAX
VOC_L
VOC_H
VIL_0MAX
VIH_1MIN
Max Low Input for Logic “0”
Min High Input for Logic “1”
VOC = Floating Pin Voltage
Established by Internal Resistors
Max Input for Logic “Z”
Min Input for Logic “Z”
Logic “1”
Logic “Z”
Logic “0”
Undefined
Undefined
VIH_1MIN
VIH_ZMAX
VIL_ZMIN
VIL_0MAX
TABLE 1. LOGIC THRESHOLD VALUES
G0/G1 PARAMETER
THRESHOLD
VOLTAGE +5VDC +3VDC
1VIH_1
MIN 0.8*Vs 4V 2.4V
Z
VIH_ZMAX 0.6*Vs 3V 1.8V
VOC_H 0.55*Vs 2.75V 1.65V
VOC_L 0.45*Vs 2.5V 1.35V
VIL_ZMIN 0.4*Vs 2V 1.2V
0VIL_0
MAX 0.2*Vs 1V 0.6V
Vs = (V+) - (V-)
TABLE 2. PROGRAMMABLE GAIN SETTINGS
G1 G0
GAIN (V/V)
ISL28533
ISL28633
ISL28534
ISL28634
ISL28535
ISL28635
00 1 1 1
0Z 2 2 100
01 4 10 120
Z 0 5 50 150
Z Z 10 100 180
Z 1 20 200 200
1 0 40 300 300
1 Z 50 500 500
1 1 100 1000 1000
FIGURE 76. GAIN SWITCHING WITH ISL23328 DCP
V+
DUAL128 Tap
ISL23328
G0
G1
RW_0
RW_1
ISL2853X
ISL2863X
IN+
IN-
OUT+
REF
DCP
SCL
SDA
RHx
RLx
V-
I2C Bus
OUT-
V-
V+
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
27 FN8364.1
November 22, 2013
GAIN SWITCHING DELAY TIME
The G0 and G1 pins change the gain setting of the PGIA. For
applications that must switch gains at high frequency, consider
that there is a gain switching propagation delay of ~1µs before
output response. The total response time for a gain change must
also include the amplifier output settling time. See “Electrical
Specifications” starting on page 6 for output settling time.
DUAL SUPPLY OPERATION
ISL2853X and ISL2863X typical applications utilize single supply
operation. The single supply range is from 2.5V to 5V, but the
amplifiers can also operate with split supplies from ±1.25V to
±2.5V. The G0 and G1 logic thresholds are referenced to the
most negative supply rail (V-), therefore a logic level shifter is
needed in split supply applications when the G0 and G1 pins are
not strapped to the amplifier supply pins (i.e., when driven by a
single supply logic device).
POWER SUPPLY AND REF PIN SEQUENCING
As the REF pin in some applications is tied to a high accuracy
voltage reference VREF (such as the ISL21090), proper care
must be taken that the voltage at REF does not come up prior to
supply voltages V+ and V-. The REF pin ESD protection diodes will
be forward biased when the voltage at REF exceeds V+ or V- by
more than 0.3V. For applications where REF must be present
before V+ or V-, it is recommended to use the ISL2863x family of
PGIA. As the REF pin is an very high impedance input, having a
series resistance to limit the ESD diode current will not severely
impact CMRR performance. Typically a 1k resistor will
adequately limit this current.
COMMON MODE INPUT RANGE
The 3-Op Amp Instrumentation Amplifier architecture amplifies
differential input voltage. The common mode voltage is removed
by the difference amplifier at the second stage. Consideration of
input common mode and differential voltage must be taken to
not saturate the output of the A1 and A2 amplifiers. This is a
common mistake when input differential voltages plus the input
VCM combined is large enough to saturate the output. The PGIA
features rail to rail output amplifiers to maximize output dynamic
range thus signals VA+, VA- and VOUT+/VOUT- can drive near the
supply rails. Figures 17 to 20 give the typical input common
mode voltage range vs output voltage for different REF voltages.
Application Circuits
Typical application circuits for bridge sensor health monitor and
active shield guard driver are shown in Figures 77 and 78.
Sensor Health Monitor
A bridge type sensor uses four matched resistive elements to
create a balanced differential circuit. The bridge can be a
combination of discrete resistors and resistive sensors for a
quarter, half and full bridge applications. The bridge is excited by a
low noise, high accuracy voltage reference or current source on
two legs. The other two legs are the differential signal whose
output voltage change is analogous to changes in the sensed
environment. In a bridge circuit, the common mode voltage of the
differential signal is at the mid point potential voltage of the bridge
excitation source. For example in a single supply system using a
+5V reference for excitation, the common mode voltage is +2.5V.
The concept of sensor health monitoring is to keep track of the
bridge impedance within the data acquisition system. Changes in
the environment, degradation over time or a faulty bridge
resistive element will imbalance the bridge, causing
measurement errors. Since the bridge differential output
common mode voltage is one-half the excitation voltage, by
measuring this common mode the sensor impedance health can
be monitored, for example through an ADC channel (see
Figure 77). While common mode voltage can be measured
directly off the bridge, this is not recommended because the
bridge impedance is highly sensitive to any additional loading.
Sensing off the legs directly can give an erroneous reading of the
analog signal being measured. Since the VA+ and VA- pins buffer
the input common mode voltage, this provides a low impedance
point to drive the ADC without using additional amplifiers. By
continuously monitoring the common mode voltage this gives an
indication of sensor health.
Active Shield Guard Drive
Sensors that operate at far distances from the signal
conditioning circuits are subject to noise environments that
reduce the signal to noise ratio into an amplifier. Differential
signaling and shielded cables are a few techniques that are used
to reduce noise from sensitive signal lines. Reducing noise that
the instrumentation amplifier cannot reject (high frequency noise
or common mode voltage levels beyond supply rail) improves
measuring accuracy. Shielded cables offer excellent rejection of
noise coupling into signal lines. However, cable impedance
mismatch to signal wires form a common mode error into the
amplifier. Driving the cable shield to a low impedance potential
reduces the impedance mismatch. The cable shield is usually
tied to chassis ground as it makes an excellent low impedance
point and is easily accessible. However, this may not always be
the best potential voltage to tie the shield to, in particular for
single supply amplifiers.
In some data acquisition systems the sensor signal amplifiers
are powered with dual supplies (±5V or ±12V). By tying the shield
to analog ground 0V, this places the common mode voltage of
the shield right at the middle of the supply bias - where the
amplifiers operate with the best CMR performance. With single
supply amplifiers becoming more popular choice as a sensor
amplifier, shield at 0V is now at the lower power supply rail of the
amplifier - typically a common mode voltage where the same
CMR performance degrades. Tying the shield at common mode
voltage of mid supply rail is most applicable for high impedance
sensor applications.
An alternative solution for an improved shield guard drive is to
use the VA+ and VA- pins for sensing common mode and driving
the shield to this voltage (see Figure 78). Using the VA+ and VA-
pins generate a low impedance reference of the input common
mode voltage. Driving the shield to the input common mode
voltage reduces cable impedance mismatch and improves CMR
performance in single supply sensor applications. For further
buffering of the shield driver, the additional unused op amp on
the ISL2853x products can be used, reducing the need of adding
an external amplifier.
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
28 FN8364.1
November 22, 2013
FIGURE 77. APPLICATION CIRCUIT: SENSOR HEALTH MONITOR
FIGURE 78. APPLICATION CIRCUIT: ACTIVE SHIELD DRIVER
+
-
+
-
+
-
INA-
A2
A1
INA+
OUTA+
A3
RG
RG
+
-
+
-
OUTA-
REF
A4
VA-
VA+
20k
20k
20k
20k
+5V
ISL26102
24-bit ADC
IN+
REF+
IN-
REF-
10k
10k
+5V
OUTA-
OUTA+
VA-
VA+
350
350
350
VS-
VS+
V+
V-
GAUGE
FOIL STRAIN
V+
V-
ISL21090
5V VREF
ISL28634
+
-
+
-
INA-
A2
A1
INA+
+
-
+
-
REF
OUTA
A3
A4
RG
RG
IN+
IN-
OUT
VA-
VA+
20k
20k
20k
20k
ISL28533
10k
10k
V+
V-
COMMON MODE DRIVER
VCM
SENSE
+5V
100
+SIG
-SIG
SHIELDED CABLE
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
29 FN8364.1
November 22, 2013
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
For additional products, see www.intersil.com/en/products.html
About Intersil
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management
semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal
computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com.
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product
information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting
www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at
http://www.intersil.com/en/support/qualandreliability.html#reliability
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that
you have the latest revision.
DATE REVISION CHANGE
November 22, 2013 FN8364.1 Ordering information table on page 5: Removed “coming soon” for ISL28535FVZ and ISL28635FVZ and
Evaluation boards.
September 24, 2013 FN8364.0 Initial Release
ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635
30 FN8364.1
November 22, 2013
Package Outline Drawing
M14.173
14 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 3, 10/09
DETAIL "X"
SIDE VIEW
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
B
A
17
8
14
C
PLANE
SEATING
0.10 C0.10 CBA
H
PIN #1
I.D. MARK
5.00 ±0.10
4.40 ±0.10
0.25 +0.05/-0.06
6.40
0.20 C B A
0.05
0°-8°
GAUGE
PLANE
SEE
0.90 +0.15/-0.10
0.60 ±0.15
0.09-0.20
5
2
31
3
1.00 REF
0.65
1.20 MAX
0.25
0.05 MIN
0.15 MAX
(1.45)
(5.65)
(0.65 TYP) (0.35 TYP)
DETAIL "X"
1. Dimension does not include mold flash, protrusions or gate burrs.
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
2. Dimension does not include interlead flash or protrusion. Interlead
flash or protrusion shall not exceed 0.25 per side.
3. Dimensions are measured at datum plane H.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Dimension does not include dambar protrusion. Allowable protrusion
shall be 0.80mm total in excess of dimension at maximum material
condition. Minimum space between protrusion and adjacent lead is 0.07mm.
6. Dimension in ( ) are for reference only.
7. Conforms to JEDEC MO-153, variation AB-1.
NOTES:
END VIEW