NXP Semiconductors 22
33978
7.1.2 UV: undervoltage lockout
After the POR circuit has reset the logic, the IC is in undervoltage. In this state, the IC remembers all register conditions, but is in a lockout
mode, where no SPI communication is allowed. The AMUX is inactive and the current sources are off. The user does not receive a valid
response from the MISO, as it is disabled in this state. The chip oscillators (4.0 MHz for most normal mode activities, 192 kHz for LPM,
and limited normal mode functions) are turned on in the UV state. The chip moves to the Read fuses state when the VBATP voltage rises
above the UV threshold (~4.3 V rising). The internal fuses read in approximately 50 μs and the chip enters the Normal mode.
7.1.3 Normal mode
In normal mode, the chip operates as selected in the available registers. Any command may be loaded in normal mode, although not all
(Low-power mode) registers are used in the Normal mode. All the LPM registers must be programmed in Normal mode as the SPI is not
active in LPM. The Normal mode of the chip is used to operate the AMUX, communicate via the SPI, Interrupt the IC, wetting and sustain
currents, as well as the thresholds available to use. The WAKE_B pin is asserted (low) in Normal mode and can be used to enable a power
supply (ENABLE_B). Various fault detections are available in this mode including overvoltage, overtemperature, thermal warning, SPI
errors, and Hash faults.
7.1.4 Low-power mode
When the user needs to lower the IC current consumption, a low-power mode is used. The only method to enter LPM is through a SPI
word. After the chip is in low-power mode, the majority of circuitry is turned off including most power rails, the 4.0 MHz oscillator, and all
the fault detection circuits. This mode is the lowest current consumption mode on the chip. If a fault occurs while the chip is in this mode,
the chip does not see or register the fault (does not report via the SPI when awakened). Some items may wake the IC in this mode,
including the interrupt timer, falling edge of INT_B, CS_B, or WAKE_B (configurable), or a comparator only mode switch detection.
7.1.5 Polling mode
The 33978 uses a polling mode which periodically (selectable in LPM config register) interrogates the input pins to determine in what state
the pins are, and decide if there was a change of state from when the chip was in Normal mode. There are various configurations for this
mode, which allow the user greater flexibility in operation. This mode uses the current sources to pull-up (SG) or down (SB) to determine
if a switch is open or closed. More information is available in section 7.2, “Low-power mode operation".
In the case of a low VBATP, the polling pauses and waits until the VBATP rises out of UV or a POR occurs. The pause of the polling ensures
all of the internal rails, currents, and thresholds are up at the required levels to accurately detect open or closed switches. The chip does
not wake-up in this condition and simply waits for the VBATP voltage to rise or cause a POR.
After the polling ends, the chip either returns to the low-power mode, or enters Normal mode when a wake event was detected. Other
events may wake the chip as well, such as the falling edge of CS_B, INT_B, or WAKE_B (configurable). A comparator only mode switch
detection is always on in LPM or Polling mode, so a change of state for those inputs would effectively wake the IC in Polling mode as well.
If the Wake-up enable bits are disable on all channels (SG and SP) the device will not wake up with a change of state on any of the input
pins; in this case, the device will disable the polling timer to allow the lowest current consumption during low-power mode.
7.2 Low-power mode operation
Low-power mode (LPM) is used to reduce system quiescent currents. LPM may be entered only by sending the Enter Low-power mode
command. All register settings programmed in Normal mode are maintained while in LPM.
The 33978 exits LPM and enter Normal mode when any of the following events occur:
• Input switch change of state (when enabled)
• Interrupt timer expire
• Falling edge of WAKE_B (as set by the device configuration register)
• Falling edge of INT_B (with VDDQ = 5.0 V)
• Falling edge of CS_B (with VDDQ = 5.0 V)
• Power-ON Reset (POR)
The VDDQ supply may be removed from the device during LPM, however removing VDDQ from the device disables a wake-up from falling
edge of INT_B and CS_B. The IC checks the status of VDDQ after a falling edge of WAKE_B (as selected in the device configuration
register), INT_B and CS_B. The IC returns to LPM and does not report a Wake event, if VDDQ is low. If the VDDQ is high, the IC wakes up
and reports the Wake event. In cases where CS_B is used to wake the device, the first MISO data message is not valid.