LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators General Description Features The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage. Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic -- where the low power drain of the LM339 is a distinct advantage over standard comparators. n n n n n n n n n n n n Wide supply voltage range LM139/139A Series 2 to 36 VDC or 1 to 18 VDC LM2901: 2 to 36 VDC or 1 to 18 VDC LM3302: 2 to 28 VDC or 1 to 14 VDC Very low supply current drain (0.8 mA) -- independent of supply voltage Low input biasing current: 25 nA 5 nA Low input offset current: 3 mV Offset voltage: Input common-mode voltage range includes GND Differential input voltage range equal to the power supply voltage Low output saturation voltage: 250 mV at 4 mA Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems Advantages n n n n n n High precision comparators Reduced VOS drift over temperature Eliminates need for dual supplies Allows sensing near GND Compatible with all forms of logic Power drain suitable for battery operation One-Shot Multivibrator with Input Lock Out DS005706-12 (c) 2001 National Semiconductor Corporation DS005706 www.national.com LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators August 2000 LM139/LM239/LM339/LM2901/LM3302 Absolute Maximum Ratings (Note 10) If Military/Aerospace specified devices are required, Office/Distributors for availability and specifications. please contact the National Semiconductor LM139/LM239/LM339 LM139A/LM239A/LM339A LM2901 36 VDC or 18 VDC 36 VDC -0.3 VDC to +36 VDC Sales LM3302 28 VDC or 14 VDC Supply Voltage, V+ Differential Input Voltage (Note 8) 28 VDC Input Voltage -0.3 VDC to +28 VDC Input Current (VIN < -0.3 VDC), (Note 3) 50 mA 50 mA Power Dissipation (Note 1) Molded DIP 1050 mW 1050 mW Cavity DIP 1190 mW Small Outline Package 760 mW Output Short-Circuit to GND, (Note 2) Continuous Continuous Storage Temperature Range -65C to +150C -65C to +150C Lead Temperature (Soldering, 10 seconds) 260C 260C Operating Temperature Range -40C to +85C LM339/LM339A 0C to +70C LM239/LM239A -25C to +85C LM2901 -40C to +85C LM139/LM139A -55C to +125C Soldering Information Dual-In-Line Package Soldering (10 seconds) 260C 260C Small Outline Package Vapor Phase (60 seconds) 215C 215C Infrared (15 seconds) 220C 220C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD rating (1.5 k in series with 100 pF) 600V 600V Electrical Characteristics (V+ =5 VDC, TA = 25C, unless otherwise stated) Parameter Conditions LM139A LM239A, LM339A Min LM139 Units Min Typ Max Typ Max Min Typ Input Offset Voltage (Note 9) 1.0 2.0 1.0 2.0 2.0 Max 5.0 mVDC Input Bias Current IIN(+) or IIN(-) with Output in 25 100 25 250 25 100 nADC 25 nADC V+-1.5 VDC Linear Range, (Note 5), VCM =0V Input Offset Current IIN(+)-IIN(-), VCM =0V Input Common-Mode V+ =30 VDC (LM3302, Voltage Range Supply Current 3.0 25 V+-1.5 0 5.0 50 V+-1.5 0 3.0 0 V+ =28 VDC) (Note 6) RL = on all Comparators, 0.8 2.0 RL = , V+ =36V, 0.8 2.0 0.8 2.0 mADC 1.0 2.5 1.0 2.5 mADC (LM3302, V+ =28 VDC) Voltage Gain RL15 k, V+ =15 VDC 50 200 50 200 50 200 V/mV 300 300 ns 1.3 1.3 s Vo = 1 VDC to 11 VDC Large Signal Response Time VIN =TTL Logic Swing, VREF = 300 1.4 VDC, VRL =5 VDC, RL =5.1 k Response Time VRL =5 VDC, RL =5.1 k, 1.3 (Note 7) www.national.com 2 (Continued) (V+ =5 VDC, TA = 25C, unless otherwise stated) Parameter Conditions LM139A Min Typ Output Sink Current VIN(-) =1 VDC, VIN(+) =0, Saturation Voltage VIN(-) =1 VDC, VIN(+) =0, 6.0 LM239A, LM339A Max 16 Min Typ 6.0 16 Max LM139 Min Typ 6.0 Units Max 16 mADC VO1.5 VDC 250 400 250 400 250 400 mVDC ISINK4 mA Output Leakage Current VIN(+) =1 VDC,VIN(-) =0, 0.1 0.1 0.1 nADC VO =5 VDC Electrical Characteristics (V+ =5 VDC, TA = 25C, unless otherwise stated) Parameter Conditions LM239, LM339 Min LM2901 LM3302 Units Typ Max Min Typ Max Min Typ Input Offset Voltage (Note 9) 2.0 5.0 2.0 7.0 3 Max 20 mVDC Input Bias Current IIN(+) or IIN(-) with Output in 25 250 25 250 25 500 nADC 100 nADC V+-1.5 VDC Linear Range, (Note 5), VCM =0V Input Offset Current IIN(+)-IIN(-), VCM =0V Input Common-Mode V+ =30 VDC (LM3302, Voltage Range Supply Current 5.0 50 V+-1.5 0 5 50 V+-1.5 0 3 0 V+ =28 VDC) (Note 6) RL = on all Comparators, 0.8 2.0 0.8 2.0 0.8 2.0 mADC RL = , V+ =36V, 1.0 2.5 1.0 2.5 1.0 2.5 mADC (LM3302, V+ =28 VDC) Voltage Gain RL15 k, V+ =15 VDC 50 200 25 100 300 1.3 2 30 V/mV 300 300 ns 1.3 1.3 s 16 mADC Vo = 1 VDC to 11 VDC Large Signal Response Time VIN =TTL Logic Swing, VREF = 1.4 VDC, VRL =5 VDC, RL =5.1 k, Response Time VRL =5 VDC, RL =5.1 k, (Note 7) Output Sink Current VIN(-) =1 VDC, VIN(+) =0, 6.0 16 6.0 16 6.0 VO1.5 VDC Saturation Voltage VIN(-) =1 VDC, VIN(+) =0, 250 400 250 400 250 500 mVDC ISINK4 mA Output Leakage Current VIN(+) =1 VDC,VIN(-) =0, 0.1 0.1 0.1 LM139A LM239A, LM339A nADC VO =5 VDC Electrical Characteristics (V+ = 5.0 VDC, (Note 4)) Parameter Conditions Min Typ Input Offset Voltage (Note 9) Max Min Typ 4.0 LM139 Max Min Typ 4.0 Units Max 9.0 mVDC Input Offset Current IIN(+)-IIN(-), VCM =0V 100 150 100 nADC Input Bias Current IIN(+) or IIN(-) with Output in 300 400 300 nADC V+-2.0 VDC 700 mVDC Linear Range, VCM =0V (Note 5) Input Common-Mode Voltage Range Saturation Voltage V+ =30 VDC (LM3302, 0 V+-2.0 0 V+-2.0 0 + V =28 VDC) (Note 6) VIN(-) =1 VDC, VIN(+) =0, 700 700 ISINK4 mA 3 www.national.com LM139/LM239/LM339/LM2901/LM3302 Electrical Characteristics LM139/LM239/LM339/LM2901/LM3302 Electrical Characteristics (Continued) (V+ = 5.0 VDC, (Note 4)) Parameter LM139A Conditions Min Typ Output Leakage Current VIN(+)= 1 VDC, VIN(-) =0, LM239A, LM339A Max Min Typ LM139 Max Min Typ Units Max 1.0 1.0 1.0 ADC 36 36 36 VDC VO =30 VDC, (LM3302, VO =28 VDC) Differential Input Voltage Keep all VIN's0 VDC (or V-, if used), (Note 8) Electrical Characteristics (V+ = 5.0 VDC, (Note 4)) Parameter Conditions LM239, LM339 Min Typ Max LM2901 Min Typ LM3302 Max Min Typ Units Max Input Offset Voltage (Note 9) 9.0 9 15 40 mVDC Input Offset Current IIN(+)-IIN(-), VCM =0V 150 50 200 300 nADC Input Bias Current IIN(+) or IIN(-) with Output in 400 200 500 1000 nADC V+-2.0 VDC 700 700 mVDC 1.0 1.0 1.0 ADC 36 36 28 VDC Linear Range, VCM =0V (Note 5) Input Common-Mode V+ =30 VDC (LM3302, V+ =28 VDC) Voltage Range (Note 6) Saturation Voltage V+-2.0 VIN(-) =1 VDC, VIN(+) =0, 700 V+-2.0 0 400 0 ISINK4 mA Output Leakage Current VIN(+)= 1 VDC, VIN(-) =0, VO =30 VDC, (LM3302, VO =28 VDC) Differential Input Voltage Keep all VIN's0 VDC (or V-, if used), (Note 8) Note 1: For operating at high temperatures, the LM339/LM339A, LM2901, LM3302 must be derated based on a 125C maximum junction temperature and a thermal resistance of 95C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239 and LM139 must be derated based on a 150C maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small (PD100 mW), provided the output transistors are allowed to saturate. Note 2: Short circuits from the output to V+ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20 mA independent of the magnitude of V+. Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 VDC (at 25)C. Note 4: These specifications are limited to -55CTA+125C, for the LM139/LM139A. With the LM239/LM239A, all temperature specifications are limited to -25CTA+85C, the LM339/LM339A temperature specifications are limited to 0CTA+70C, and the LM2901, LM3302 temperature range is -40CTA+85C. Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines. Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+ -1.5V at 25C, but either or both inputs can go to +30 VDC without damage (25V for LM3302), independent of the magnitude of V+. Note 7: The response time specified is a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section. Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 VDC (or 0.3 VDCbelow the magnitude of the negative power supply, if used) (at 25C). Note 9: At output switch point, VO.1.4 VDC, RS =0 with V+ from 5 VDC to 30 VDC; and over the full input common-mode range (0 VDC to V+ -1.5 VDC), at 25C. For LM3302, V+ from 5 VDC to 28 VDC. Note 10: Refer to RETS139AX for LM139A military specifications and to RETS139X for LM139 military specifications. www.national.com 4 LM139/LM239/LM339, LM139A/LM239A/LM339A, LM3302 Input Current Supply Current Output Saturation Voltage DS005706-34 DS005706-35 Response Time for Various Input Overdrives -- Negative Transition DS005706-36 Response Time for Various Input Overdrives -- Positive Transition DS005706-37 DS005706-38 Typical Performance Characteristics Supply Current LM2901 Input Current Output Saturation Voltage DS005706-40 DS005706-39 5 DS005706-41 www.national.com LM139/LM239/LM339/LM2901/LM3302 Typical Performance Characteristics LM139/LM239/LM339/LM2901/LM3302 Typical Performance Characteristics LM2901 (Continued) Response Time for Various Input Overdrives -- Negative Transition Response Time for Various Input Overdrives-Positive Transition DS005706-42 DS005706-43 Application Hints The differential input voltage may be larger than V+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 VDC (at 25C). An input clamp diode can be used as shown in the applications section. The output of the LM139 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V+ terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V+) and the of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60 RSAT of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents. The LM139 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing this input resistors to < 10 k reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required. All pins of any unused comparators should be tied to the negative supply. The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2 VDC to 30 VDC. It is usually unnecessary to use a bypass capacitor across the power supply line. Typical Applications Basic Comparator (V+ = 5.0 VDC) Driving CMOS Driving TTL DS005706-3 DS005706-5 DS005706-4 www.national.com 6 (V+ = 5.0 VDC) (Continued) OR Gate AND Gate DS005706-8 Typical Applications LM139/LM239/LM339/LM2901/LM3302 Typical Applications DS005706-9 (V+ = 15 VDC) One-Shot Multivibrator DS005706-10 Bi-Stable Multivibrator DS005706-11 7 www.national.com LM139/LM239/LM339/LM2901/LM3302 Typical Applications (V+ = 15 VDC) (Continued) One-Shot Multivibrator with Input Lock Out DS005706-12 Pulse Generator DS005706-17 www.national.com 8 LM139/LM239/LM339/LM2901/LM3302 Typical Applications (V+ = 15 VDC) (Continued) Large Fan-In AND Gate ORing the Outputs DS005706-13 DS005706-15 9 www.national.com LM139/LM239/LM339/LM2901/LM3302 Typical Applications (V+ = 15 VDC) (Continued) Time Delay Generator DS005706-14 Non-Inverting Comparator with Hysteresis Inverting Comparator with Hysteresis DS005706-18 DS005706-19 www.national.com 10 LM139/LM239/LM339/LM2901/LM3302 Typical Applications (V+ = 15 VDC) (Continued) Squarewave Oscillator Basic Comparator DS005706-21 DS005706-16 Limit Comparator Comparing Input Voltages of Opposite Polarity DS005706-20 DS005706-24 11 www.national.com LM139/LM239/LM339/LM2901/LM3302 Typical Applications (V+ = 15 VDC) (Continued) Output Strobing Crystal Controlled Oscillator DS005706-22 * Or open-collector logic gate without pull-up resistor DS005706-25 www.national.com 12 V+ =+30 VDC 250 mVDCVC+50 VDC 700 Hzfo100 kHz DS005706-23 (V+ = 15 VDC) (Continued) 13 LM139/LM239/LM339/LM2901/LM3302 Two-Decade High-Frequency VCO Typical Applications www.national.com LM139/LM239/LM339/LM2901/LM3302 Typical Applications (V+ = 15 VDC) (Continued) Zero Crossing Detector (Single Power Supply) Transducer Amplifier DS005706-30 DS005706-28 Split-Supply Applications (V+ =+15 VDC and V- =-15 VDC) MOS Clock Driver DS005706-31 www.national.com 14 LM139/LM239/LM339/LM2901/LM3302 Split-Supply Applications (V+ =+15 VDC and V- =-15 VDC) (Continued) Zero Crossing Detector Comparator With a Negative Reference DS005706-32 DS005706-33 Schematic Diagram DS005706-1 15 www.national.com LM139/LM239/LM339/LM2901/LM3302 Connection Diagrams Dual-In-Line Package DS005706-2 Order Number LM139J, LM139J/883 (Note 11), LM139AJ, LM139AJ/883 (Note 12), LM239J, LM239AJ, LM339J See NS Package Number J14A Order Number LM339AM, LM339AMX, LM339M, LM339MX or LM2901M See NS Package Number M14A Order Number LM339N, LM339AN, LM2901N or LM3302N See NS Package Number N14A DS005706-27 Order Number LM139AW/883 or LM139W/883 (Note 11) See NS Package Number W14B, LM139AWGRQMLV (Note 13) See NS Package Number WG14A Note 11: Available per JM38510/11201 Note 12: Available per SMD# 5962-8873901 Note 13: See STD Mil Dwg 5962R96738 for Radiation Tolerant Device www.national.com 16 LM139/LM239/LM339/LM2901/LM3302 Physical Dimensions inches (millimeters) unless otherwise noted Ceramic Dual-In-Line Package (J) Order Number LM139J, LM139J/883, LM139AJ, LM139AJ/883, LM239J, LM239AJ, LM339J NS Package Number J14A S.O. Package (M) Order Number LM339AM, LM339AMX, LM339M, LM339MX, LM2901M or LM2901MX NS Package Number M14A 17 www.national.com LM139/LM239/LM339/LM2901/LM3302 Physical Dimensions inches (millimeters) unless otherwise noted (Continued) Molded Dual-In-Line Package (N) Order Number LM339N, LM339AN, LM2901N or LM3302N NS Package Number N14A Order Number LM139AW/883, LM139W/883, LM139AWG/883 or LM139WG/883 NS Package Number W14B www.national.com 18 LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Francais Tel: +33 (0) 1 41 91 8790 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507 National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators Notes