AH125 1/2W High Linearity InGaP HBT Amplifier Product Features * 400 - 3600 MHz * +28 dBm P1dB * +45 dBm Output IP3 * 16.2 dB Gain @ 2140 MHz * 150 mA current draw Product Description Functional Diagram The AH125 is a high dynamic range driver amplifier in a low-cost surface mount package. The InGaP/GaAs HBT is able to achieve high performance across a broad range with +45 dBm OIP3 and +28 dBm of compressed 1dB power while drawing 150 mA current. The AH125 is available in a lead-free/green/RoHS-compliant SOT-89 package. All devices are 100% RF and DC tested. GND 4 * +5 V Single Supply The AH125 is targeted for use as a driver amplifier in * MTTF > 100 Years wireless infrastructure where high linearity, medium power, * Lead-free/Green/RoHS-compliant and high efficiency are required. Internal biasing allows the AH125 to maintain high linearity over temperature and SOT-89 Package operate directly off a single +5V supply. This combination * Class 2 HBM ESD rating (>2kV) makes the device an excellent candidate for transceiver line cards in current and next generation multi-carrier 3G base stations or repeaters. 1 2 3 RF IN GND RF OUT Function RF Input RF Output / Vcc Ground Pin No. 1 3 2, 4 Applications * Repeaters * Mobile Infrastructure * LTE / WCDMA / EDGE / CDMA Specifications Parameter Typical Performance Units Min Typ Operational Bandwidth Test Frequency Gain Input Return Loss Output Return Loss W-CDMA Channel Power(2) MHz MHz dB dB dB dBm +19 Output P1dB Output IP3(3) Noise Figure Quiescent Collector Current Device Voltage dBm dBm dB mA V +28 +45 4.4 150 +5 @ -50 dBc ACLR 400 14 +41 130 2140 16.2 12 12 Max Parameter 3600 Frequency Gain Input Return Loss Output Return Loss W-CDMA Channel Power(2) MHz dB dB dB 920 20 20 9.9 1960 17 16 9 2140 16.2 12 12 dBm +19 +19 +19 Output P1dB Output IP3 (3) Noise Figure Quiescent Collector Current Device Voltage dBm dBm dB mA V +28.1 +47 7.7 +27.8 +47 4.6 150 +5 +28.0 +45 4.4 18 Units @ -50 dBc ACLR 170 Typical 1. Test conditions unless otherwise noted: 25C, Vsupply = +5 V, in tuned application circuit. 2. W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.3 dB @ 0.01% Probability, 3.84 MHz BW 3. OIP3 is measured with two tones separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the OIP3 using a 2:1 rule. Measured at 17dBm/tone for 900 MHz, 14 dBm/tone for 1960 MHz, and 12 dBm/tone for 2140 MHz. Absolute Maximum Rating Ordering Information Parameter Rating Part No. Description Storage Temperature RF Input Power, CW, 50 , T=25C Device Voltage Max Junction Temperature, TJ -65 to +150 C Input P10dB +6 V Thermal Resistance, JC 64.3 C / W AH125-89G AH125-89PCB900 AH125-89PCB1960 AH125-89PCB2140 AH125-89PCB2600 1/2W High Linearity InGaP HBT Amplifier 900 MHz Evaluation Board 1960 MHz Evaluation Board 2140 MHz Evaluation Board 2600 MHz Evaluation Board For 106 hours MTTF 200 C Operation of this device above any of these parameters may cause permanent damage. Standard T/R size = 1000 pieces on a 7" reel. Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 1 of 12 April 2010 AH125 1/2W High Linearity InGaP HBT Amplifier Typical Device Data S-Parameters (VDevice = +5 V, ICC = 150 mA, 25 C, unmatched 50 ohm system) Notes: The gain for the unmatched device in 50 ohm system is shown as the trace in black color. For a tuned circuit for a particular frequency, it is expected that actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown in the dashed red line. S-Parameters (VDevice = +5 V, ICC = 150 mA, 25 C, unmatched 50 ohm system, calibrated to device leads) Freq (MHz) 100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 S11 (dB) S11 (ang) S21 (dB) S21 (ang) S12 (dB) S12 (ang) S22 (dB) S22 (ang) -2.51 -6.65 -0.47 -0.50 -0.56 -0.65 -0.78 -0.82 -0.93 -0.93 -0.94 -0.91 -0.93 -0.90 -0.96 -1.07 -1.18 -1.18 -1.11 176.96 -179.55 -166.72 179.58 173.91 170.52 166.87 163.90 161.34 157.61 154.21 151.59 149.24 145.94 143.87 139.90 136.50 133.80 132.39 19.12 16.82 19.86 16.95 15.09 13.68 12.37 11.21 10.11 9.40 8.47 7.66 7.06 6.70 6.12 5.74 5.09 4.62 4.12 153.71 171.45 129.11 110.14 99.64 91.32 83.49 76.80 71.12 64.93 58.83 53.42 49.26 43.87 39.45 34.00 29.36 24.20 20.26 -33.85 -41.51 -32.54 -32.11 -32.29 -32.15 -32.04 -32.11 -31.97 -31.94 -31.97 -31.80 -32.04 -31.63 -31.18 -31.37 -31.25 -31.12 -31.25 -7.98 -51.50 37.90 15.12 6.66 2.53 -2.50 -4.03 -7.89 -9.93 -10.87 -14.20 -16.18 -16.91 -18.50 -23.47 -20.88 -27.12 -26.33 -4.58 -3.50 -6.46 -4.57 -4.14 -3.89 -3.71 -3.64 -3.70 -3.64 -3.54 -3.48 -3.67 -3.72 -3.54 -3.52 -3.70 -3.72 -3.64 -168.55 167.66 -173.90 -177.11 177.58 173.40 169.83 167.10 164.08 160.19 156.60 153.92 152.18 147.67 143.63 141.32 140.24 135.07 130.47 Device S-parameters are available for download off of the website at: http://www.tqs.com Application Circuit PCB Layout Circuit Board Material: .062" total thickness with a .014" FR4 top RF layer, 4 layers (other layers added for rigidity), 1 oz copper, r = 4.3, Microstrip line details: width = .031", spacing = .035" Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 2 of 12 April 2010 AH125 1/2W High Linearity InGaP HBT Amplifier 700-800 MHz Reference Design 802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels, 5 MHz Carrier BW Typical O-FDMA Performance at 25C Frequency Gain Input Return Loss Output Return Loss EVM Pout=+18 dBm ACLR Pout=+18 dBm Output P1dB Output IP3 700 20.4 12 7.5 750 20.3 17 6.8 800 MHz 20.1 dB 25 dB 6.3 dB 0.9 0.7 0.7 % -52.6 -56 -54.4 dBc +28.9 +29.4 +29.2 dBm +43.7 +46.2 +45.5 dBm mA Quiescent Current, Icq 150 V Vcc +5 Pout=+18 dBm/tone, 1MHz spacing Notes: 1. The primary RF microstrip line is 50 . 2. Components shown on the silkscreen but not on the schematic are not used. 3. 0 jumpers can be replaced with copper trace in target application. 4. The edge of C11 is placed at 40 mil from AH125 RFout pin. (1.7o @ 750 MHz) 5. The edge of R3 is placed at 210 mil from the edge of C11. (8.7o @ 750 MHz) 6. The edge of C9 is placed next to the edge of R3. 7. The edge of R1 is placed at 100 mil from AH125 RFin pin. (4.2o @ 750 MHz) 8. The edge of C10 is placed 250 mil from the edge of R1. (10.4o @ 750 MHz) Return Loss Gain vs. Frequency 22 TLEAD=+25C TLEAD=+25C TLEAD=+25C -5 20 19 18 45 -10 OIP3 (dBm) Return Loss (dB) 21 Gain (dB) OIP3 vs. Output Power/Tone 50 0 -15 -20 40 35 -25 S11 700 MHz S22 -30 17 700 720 740 760 Frequency (MHz) 780 700 800 720 740 760 780 800 10 12 Frequency (MHz) 800 MHz 14 16 18 20 Output Power/Tone (dBm) ACLR vs. Output Power EVM vs. Output Power 5 -40 802.16-2004 O-FDMA, 64QAM1/2, 1024-FFT, 20 symbols and 30 subchannels, 5 MHz Carrier BW W-CDMA 3GPP Test Model 1+64 DPCH PAR = 9.7 dB @ 0.01% Probability 3.84 MHz BW TLEAD=+25C -45 ACLR (dBc) 4 EVM (%) 750 MHz 30 3 2 TLEAD=+25C -50 -55 -60 1 700 MHz 700 MHz 750 MHz 800 MHz 15 16 17 18 19 Output Power (dBm) 20 750 MHz 800 MHz -65 0 21 22 15 16 17 18 Output Power (dBm) 19 20 Note: For improved output return loss, 10dB, please contact TriQuint applications support for a reference design employing feedback. Corresponding OIP3 performance will be ~+43dBm. Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 3 of 12 April 2010 AH125 1/2W High Linearity InGaP HBT Amplifier 869-960 MHz Reference Design (AH125-89PCB900) W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.3 dB @ 0.01% Probability, 3.84 MHz BW Typical W-CDMA Performance at 25C Frequency Gain Input Return Loss Output Return Loss ACLR Pout=+18 dBm Output P1dB Output IP3 869 20 14 10 920 20 20 9.9 960 20 22 9.9 MHz dB dB dB -52 -52.5 -52 dBc +27.4 +28.1 +27.9 dBm Pout=+17dBm/tone, 1MHz spacing Noise Figure Quiescent Current, Icq Vcc +44 +47 +49 dBm 7.9 7.7 150 +5 7.5 dB mA V R4 Notes: 1. The primary RF microstrip line is 50 . 2. Components shown on the silkscreen but not on the schematic are not used. 3. 0 jumpers can be replaced with copper trace in target application. 4. The edge of R2 is placed at 280 mil from AH125 RFout pin. (14.3o @ 920 MHz) 5. The edge of C9 is placed 35 mil from the edge of R2. (1.8o @ 920 MHz) 6. The edge of R1 is placed at 100 mil from AH125 RFin pin. (5.1o @ 920 MHz) 7. The edge of C10 is placed 130 mil from the edge of R1. (6.6o @ 920 MHz) C8 C8 C4 L1 C10 R1 R2 C2 C9 C10 C1 C9 Input Return Loss vs. Frequency Gain vs. Frequency 0 -5 -5 20 19 |S22| (dB) |S11| (dB) |S21| (dB) 21 Output Return Loss vs. Frequency 0 22 -10 -15 +25C +85C -40C 18 840 860 880 900 920 940 Frequency (MHz) 960 -25 840 980 -15 -20 -20 -40C -10 860 880 +25C -40C +85C 900 920 940 Frequency (MHz) 960 -25 840 980 ACLR vs. Output Power over Frequency Gain vs. Temperature 22 860 880 +25C +85C 900 920 940 Frequency (MHz) 960 980 ACLR vs. Output Power over Temperature -40 -40 W-CDMA 3GPP Test Model 1+64 DPCH PAR = 10.2 dB @ 0.01% Probability 3.84 MHz BW -45 W-CDMA 3GPP Test Model 1+64 DPCH PAR = 10.2 dB @ 0.01% Probability 3.84 MHz BW TLEAD=+25C -45 Freq.=920 MHz 20 -50 ACLR (dBc) ACLR (dBc) |S21| (dB) 21 -55 -60 -50 -55 -60 19 869 MHz 920 MHz -65 -65 960 MHz 869 MHz 18 960 MHz -40C -15 10 35 Temperature (C) 60 85 14 15 OIP3 vs. Pout/Tone over Temperature 16 17 18 Output Power (dBm) 19 14 20 Freq.=920 MHz 1 MHz tone spacing 45 +85C 869 MHz 35 920 MHz -40C 960 MHz 11 12 13 14 15 16 Output Power per Tone (dBm) 17 18 +25C +85C 35 35 10 45 40 40 +25C 20 1 MHz tone spacing Pout=+17dBm per tone OIP3 (dBm) OIP3 (dBm) 40 19 50 50 45 16 17 18 Output Power (dBm) OIP3 vs. Frequency TLEAD=+25C 1 MHz tone spacing 50 +85C 55 55 -40C 15 OIP3 vs. Pout/Tone over Frequency 55 +25C -70 -70 -40 OIP3 (dBm) 920 MHz 10 11 12 13 14 15 16 Output Power per Tone (dBm) 17 18 860 880 900 920 Frequency (MHz) 940 960 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 4 of 12 April 2010 AH125 1/2W High Linearity InGaP HBT Amplifier 869-960 MHz Reference Design (AH125-89PCB900) W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.3 dB @ 0.01% Probability, 3.84 MHz BW Current vs. Output Power P1dB vs. Frequency TLEAD=+25C P1dB (dBm) Icq (mA) 170 160 150 140 Output Power vs. Input Power 30 30 29 28 TLEAD=+25C Output Power (dBm) 180 28 27 26 25 869 MHz 920 MHz -40C 960 MHz +25C 10 12 14 16 18 Output Power (dBm) 20 22 20 869 MHz 920 MHz 960 MHz 18 860 22 24 +85C 24 130 26 880 900 920 Frequency (MHz) 940 960 0 1 2 3 4 5 6 7 8 9 Input Power (dBm) Noise Figure vs. Frequency 10.0 NF (dB) 9.0 8.0 7.0 -40C +25C +85C 6.0 860 880 900 920 940 960 980 1000 Frequency (MHz) Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 5 of 12 April 2010 AH125 1/2W High Linearity InGaP HBT Amplifier 1805-1880 MHz Reference Design W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW Typical W-CDMA Performance at 25C Frequency Gain Input Return Loss Output Return Loss ACLR Pout=+18 dBm Output P1dB Output IP3 1805 17.8 9.5 9.4 1842 18.2 16.5 8.4 -51 -51 +28 Pout=+14dBm/tone, 1MHz spacing 1880 MHz 18.1 dB 17.0 dB 7.8 dB -49 dBc +27.9 +27.8 dBm +44 Quiescent Current, Icq Vcc +45 +43.5 dBm 150 +5 mA V 0 1.1 pF 2.4 pF Notes: 1. The primary RF microstrip line is 50 . 2. Components shown on the silkscreen but not on the schematic are not used. 3. 0 jumpers can be replaced with copper trace in target application. 4. The edge of C9 is placed at 250 mil from AH125 RFout pin. (25.5 o @ 1845 MHz) 5. The edge of R1 is placed against the edge of C10. 6. The edge of C10 is placed at 30 mil from AH125 RFin pin. (3.1 o @ 1845 MHz) Gain vs. Frequency TLEAD=+25C 18 17 16 -45 -10 -15 -20 S11 1840 1860 Frequency (MHz) 1880 1900 -55 -30 1.80 S22 1805 MHz 1842 MHz 1880 MHz -65 1.82 1.84 1.86 Frequency (MHz) 1.88 1.90 11 12 13 14 15 16 17 18 19 20 21 Output Power (dBm) OIP3 vs. Output Power per Tone P1dB vs. Frequency 30 48 TLEAD=+25C 1 MHz tone spacing TLEAD=+25C 29 P1dB (dBm) 46 OIP3 (dBm) TLEAD=+25C -50 -60 -25 1820 W-CDMA 3GPP TM +64DPCH PAR=10.2dB @ 0.01% probability 3.84 MHz BW TLEAD=+25C ACLR (dBc) Return Loss (dB) |S21| (dB) -40 -5 19 15 1800 ACLR vs. Output Power Return Loss vs. Frequency 0 20 44 42 40 28 27 26 25 1805 MHz 1842 MHz 1880 MHz 38 8 10 12 14 Output Power/Tone (dBm) 16 18 24 1820 1830 1840 1850 1860 Frequency (MHz) 1870 1880 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 6 of 12 April 2010 AH125 1/2W High Linearity InGaP HBT Amplifier 1930-1990 MHz Reference Design (AH125-89PCB1960) W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.3 dB @ 0.01% Probability, 3.84 MHz BW Typical W-CDMA Performance at 25C Frequency Gain Input Return Loss Output Return Loss ACLR Pout=+18 dBm Output P1dB Output IP3 1930 17 12 10 1960 17 16 9 -53 -53 1990 MHz 17 dB 23 dB 8 dB -53 dBc +27.8 +27.8 +27.7 dBm Pout=+14dBm/tone, 1MHz spacing Noise Figure Quiescent Current, Icq Vcc +45 +47 +47 dBm 4.5 4.6 150 +5 4.6 dB mA V R4 Notes: 1. The primary RF microstrip line is 50 . 2. Components shown on the silkscreen but not on the schematic are not used. 3. 0 jumpers can be replaced with copper trace in target application. 4. The edge of C9 is placed at 215 mil from AH125 RFout pin. (23.3 o @ 1960 MHz) 5. The edge of R1 is placed against the edge of C10. 6. The edge of C10 is placed at 80 mil from AH125 RFin pin. (8.7 o @ 1960 MHz) C8 C8 C4 C3 L1 C10 R20 C20 R1 R2 C2 C9 C10 C1 C9 17 16 0 0 -5 -5 -10 -10 |S22| (dB) |S11| (dB) 18 |S21| (dB) Output Return Loss vs. Frequency Input Return Loss vs. Frequency Gain vs. Frequency 19 -15 -20 -20 15 -25 -25 -40C 14 1.90 1.92 +25C -40C +85C 1.94 1.96 Frequency (GHz) 1.98 -30 1.90 2.00 1.92 ACLR vs. Output Power +85C 1.94 1.96 Frequency (GHz) -40C 1.98 -30 1.90 2.00 1.98 2.00 OIP3 vs. Frequency TLEAD=+25C 1 MHz tone spacing Pout/tone=+14 dBm 50 45 40 45 40 -60 1930 MHz 1960 MHz 1.96 55 OIP3 (dBm) -55 1930 MHz 1.94 +85C Frequency (GHz) 50 -50 1960 MHz 1990 MHz 1960 MHz 35 -65 14 +25C TLEAD=+25C 1 MHz tone spacing -45 12 1.92 OIP3 vs. Output Power/Tone TLEAD=+25C OIP3 (dBm) ACLR (dBc) -40 +25C 55 -35 WCDMA 3GPP Test Model 1+64 DPCH PAR = 10.3 dB @ 0.01% Probability 3.84 MHz BW -15 16 18 Output Power (dBm) 20 10 22 11 12 13 14 15 16 Output Power (dBm) 17 35 1.93 18 1.94 1.98 1.99 Noise Figure vs. Frequency Current vs. Output Power P1dB vs. Frequency 200 30 1.95 1.96 1.97 Frequency (GHz) 6.0 TLEAD=+25C TLEAD=+25C 29 180 27 NF (dB) Icq (mA) P1dB (dBm) 5.0 28 160 140 4.0 26 3.0 120 25 4.75 V 24 1.93 5.00 V -40C 5.25 V 100 1.94 1.95 1.96 1.97 Frequency (GHz) 1.98 1.99 10 12 14 16 18 Output Power (dBm) 20 22 2.0 1.90 1.92 +25C 1.94 1.96 Frequency (GHz) +85C 1.98 2.00 Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 7 of 12 April 2010 AH125 1/2W High Linearity InGaP HBT Amplifier 2010-2025 MHz Reference Design TD-SCDMA 3 Carrier, PAR = 10 dB @ 0.01% Probability, 1.28 MHz BW Typical TD-SCDMA Performance at 25C Frequency 2010 2015 2025 MHz Gain 16.3 16.3 16.4 dB Input Return Loss 12.6 13.1 14.4 dB Output Return Loss 8.2 8.1 7.9 dB ACLR -49.5 -50 -50.1 dBc Pout=+16 dBm Output P1dB Output IP3 Pout=+10 dBm/tone, 1MHz spacing +28 +28.3 +28 dBm +45 +45 +45 dBm Quiescent Current, Icq Vcc mA V 150 +5 R4 Notes: 1. The primary RF microstrip line is 50 . 2. Components shown on the silkscreen but not on the schematic are not used. 3. 0 jumpers can be replaced with copper trace in target application. 4. The edge of C9 is placed at 120 mil from AH125 RFout pin. (13.4o @ 2015 MHz) 5. The edge of C2 is placed 275 mil from the edge of C9. (30.7o @ 2015 MHz) 6. The edge of C10 is placed at 60 mil from AH125 RFin pin. (6.7o @ 2015 MHz) 7. The edge of R1 is placed next to the edge of C10. C8 C8 C4 C3 C20 R20 L1 C10 C1 R1 R2 C2 C9 C10 C9 Gain vs. Frequency -35 TLEAD=+25C -40 17 16 15 ACLR (dBc) Return Loss (dB) Gain (dB) TLEAD=+25C TLEAD=+25C -5 18 -10 -15 -20 2015 2020 Frequency (MHz) 2025 -25 2010 2030 S22 2010 MHz 2015 2020 2025 2030 10 TLEAD=+25C 1 MHz tone spacing 35 2.7 GHz 13 14 15 18 20 TLEAD=+25C 280 260 240 220 200 180 30 P1dB=+28.3 dBm 28 26 24 22 20 140 12 Output Power/Tone (dBm) 14 16 Output Power (dBm) 160 30 11 2025 MHz Output Power vs. Input Power TLEAD=+25C Output Power (dBm) Collector Current (mA) 40 2015 MHz 32 300 45 10 12 Collector Current vs Output Power 320 9 -55 -65 OIP3 vs. Output Power per Tone 2015 MHz -50 Frequency (MHz) 50 2010 MHz -45 -60 S11 14 2010 OIP3 (dBm) ACLR vs. Output Average Power Return Loss 0 19 16 17 10 12 14 16 18 20 22 24 Output Power (dBm) 26 28 30 4 6 8 10 12 Input Power (dBm) TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com 14 16 Page 8 of 12 April 2010 AH125 1/2W High Linearity InGaP HBT Amplifier 2110-2170 MHz Reference Design (AH125-89PCB2140) W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.3 dB @ 0.01% Probability, 3.84 MHz BW Typical W-CDMA Performance at 25C Frequency Gain Input Return Loss Output Return Loss ACLR 2110 16.1 10 13 Pout=+18 dBm Output P1dB Output IP3 Pout=+12 dBm/tone, 1MHz spacing Noise Figure Quiescent Current, Icq Vcc 2140 16.2 12 12 2170 MHz 16.3 dB 15 dB 11 dB -52 -52 -52 dBc +28 +28 +28 dBm +49 +45 +47 dBm 4.3 4.4 150 +5 4.4 dB mA V R4 Notes: 1. The primary RF microstrip line is 50 . 2. Components shown on the silkscreen but not on the schematic are not used. 3. 0 jumpers can be replaced with copper trace in target application. 4. The edge of C9 is placed at 120 mils from AH125 RFout pin. (14.2 o @ 2140 MHz) 5. The edge of C2 is placed at 280 mils from the edge of C9. (33.2 o @ 2140 MHz) 6. The edge of C10 is placed at 60 mils from AH125 RFin pin. (7.1 o @ 2140 MHz) 7. The edge of R1 is placed 10 mils from the edge of C10. (1.2 o @ 2140 MHz) C8 C8 C4 C3 L1 C10 R1 R2 C2 C9 C10 C1 C9 16 15 0 0 -5 -5 |S22| (dB) |S11| (dB) |S21| (dB) 17 -10 -15 14 2.10 2.12 +25C +85C 2.14 2.16 Frequency (GHz) -40C 2.18 -25 2.10 2.20 2.12 +25C -40C +85C 2.14 2.16 Frequency (GHz) 2.18 -25 2.10 2.20 15 -45 -50 -55 -60 2110 MHz 2140 MHz 10 35 Temperature (C) 60 -55 -40C 12 14 16 Output Power (dBm) 18 20 10 +85C 14 16 Output Power (dBm) 18 20 2.18 2.20 Noise Figure vs. Frequency 30 8 TLEAD=+25C TLEAD=+25C 1 MHz tone spacing 7 29 6 45 28 NF (dB) P1dB (dBm) 50 OIP3 (dBm) 12 P1dB vs. Frequency OIP3 vs. Output Power/Tone 55 +25C -65 10 85 2.20 -50 2170 MHz -65 -15 2.18 -60 2170 MHz 14 2.14 2.16 Frequency (GHz) W-CDMA 3GPP Test Model 1+64 DPCH PAR = 10.3 dB @ 0.01% Probability 3.84 MHz BW TLEAD=+25C ACLR (dBc) ACLR (dBc) 16 +85C -40 W-CDMA 3GPP Test Model 1+64 DPCH PAR = 10.3 dB @ 0.01% Probability 3.84 MHz BW -45 17 -40 2.12 +25C ACLR vs. Output Power -40 2140 MHz -15 ACLR vs. Output Power Gain vs. Temperature 18 2110 MHz -10 -20 -20 -40C |S21| (dB) Output Return Loss Input Return Loss Gain vs. Frequency 18 27 26 40 5 4 3 2 2110 MHz 2140 MHz 25 2170 MHz 35 8 9 10 11 12 13 14 15 Pout/Tone (dBm) 16 17 18 24 2.11 1 2.12 2.13 2.14 2.15 Frequency (GHz) 2.16 2.17 0 2.10 -40C 2.12 +25C 2.14 2.16 Frequency (GHz) +85C Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 9 of 12 April 2010 Application Note 1/2W High Linearity InGaP HBT Amplifier 2.5-2.7 GHz Reference Design 802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels, 5 MHz Carrier BW Typical Performance at 25C Frequency (GHz) Gain Input Return Loss Output Return Loss EVM 2.5 13.9 9.5 9.4 2.6 14.0 13.1 8.7 2.7 Units 13.7 dB 12.9 dB 8.2 dB 1.5 1.25 1.3 % +28 +28 +28 dBm +49 +48 +47 dBm mA V Pout=+19 dBm Output P1dB Output IP3 Pout=+16 dBm/tone, 1MHz spacing VCC Quiescent Current, Icq Vcc 150 +5 R4 0 Ohms C3 22pF L1 RF Input J1 C1 0 Ohms Z= 50 Ohm L=55 mils R1 Z= 50 Ohm L=55 mils 18nH 0805CS Z= 50 Ohm L=90 mils 1 0 Ohms C9 0.6pF 2 C10 0.8pF R1 R2 3 U1 1pF C4 1000pF RF Output J2 22pF AH125-89PCB2600 R4 Notes: 9. The primary RF microstrip line is 50 . 10. Components shown on the silkscreen but not on the schematic are not used. 11. 0 jumpers can be replaced with copper trace in target application. 12. Distance from side edge of C10 to side edge of U1 pin 1 is 55 mils (7.9@2600 MHz). 13. Distance from end edge of R1 to side edge of U1 pin 1 is 110 mils (15.8@2600 MHz).. 14. Distance from side edge of C9 to side edge of U1 pin 3 is 90 mils (13.0@2600 MHz).. C8 C4 C3 U1 1 2 L1 3 R2 C9 R1 C10 C1 C2 Circuit Board Material: 0.014" FR4, single layer, 1 oz copper, r = 4.3, Microstrip line details: width = .031", spacing = .035" Return Loss vs. Frequency Gain vs. Frequency 15 0 TLEAD=+25C TLEAD=+25C Return Loss (dB) Gain (dB) 14 13 12 11 -10 -15 S11 10 2.40 2.50 2.60 Frequency (GHz) 2.70 2.80 -20 2.40 2.50 2.60 TLEAD=+25C 55 W-CDMA 3GPP Test Model 1+64 DPCH PAR = 10.2 dB @ 0.01% Probability 3.84 MHz BW -40 3 2 1 TLEAD=+25C -45 -50 -55 2.6 GHz 2.5 GHz 2.7 GHz 0 2.6 GHz 14 16 18 Output Power (dBm) 20 22 40 2.5 GHz 2.7 GHz 2.6 GHz 2.7 GHz 30 -65 12 45 35 -60 2.5 GHz TLEAD=+25C 1 MHz tone spacing 50 OIP3 (dBm) ACLR (dBc) 4 2.80 OIP3 vs. Output Power/Tone ACLR vs. Output Power -35 802.16-2004 O-FDMA, 64QAM-1/2 1024-FFT, 20 symbols and 30 subchannels 5 MHz Carrier BW S22 2.70 Frequency (GHz) EVM vs. Output Power 5 EVM (%) -5 12 14 16 18 Output Power (dBm) 20 22 10 12 14 16 18 20 22 Output Power/Tone (dBm) Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 10 of 12 April 2010 C8 1uF Application Note 1/2W High Linearity InGaP HBT Amplifier 3.4-3.6 GHz Reference Design 802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels, 5 MHz Carrier BW Typical O-FDMA Performance at 25C Frequency Gain Input Return Loss Output Return Loss EVM Pout=+18 dBm Output P1dB Output IP3 3.4 11.5 8 16 3.5 12.1 15 13 3.6 12 21 11 GHz dB dB dB 1.1 1.0 1.1 % +27 +27.3 +27.5 dBm +49.5 +45.7 45.2 Pout=+16 dBm/tone, 1MHz spacing Quiescent Current, Icq Vcc 150 +5 dBm mA V Notes: 1. The primary RF microstrip line is 50 . 2. Components shown on the silkscreen but not on the schematic are not used. 3. 0 jumpers can be replaced with copper trace in target application. 4. The edge of C9 is placed at 60 mil from AH125 RFout pin. (11.6o @ 3.5 GHz) 5. The edge of C10 is placed at 45 mil from AH125 RFin pin. (8.7o @ 3.5 GHz) 6. The edge of L2 is placed next to the edge of C10. R4 C8 C8 C4 C3 L1 C10 R1 R2 C2 C9 C10 C1 C9 Circuit Board Material: 0.014" FR4, single layer, 1 oz copper, r = 4.3, Microstrip line details: width = .031", spacing = .035" 0 5 TLEAD=+25C TLEAD=+25C -5 11 10 9 -10 -15 3.50 Frequency (GHz) 3.60 -30 3.30 3.70 S22 3.4 GHz Current vs Output Power 3.50 3.60 10 3.70 170 160 150 3.5 GHz 16 18 Output Power (dBm) 20 10 5 22 45 40 3.4 GHz 22 3.6 GHz 20 50 15 3.5 GHz 3.4 GHz 3.6 GHz 0 14 18 TLEAD=+25C 1 MHz tone spacing 3.6 GHz 140 16 55 OIP3 (dBm) Collector Efficiency (%) 180 12 14 OIP3 vs. Output Power/Tone Efficiency vs Output Power TLEAD=+25C 3.4 GHz 12 Output Power (dBm) 20 TLEAD=+25C 3.5 GHz 0 3.40 Frequency (GHz) 190 10 2 1 S11 3.40 3 -20 -25 8 3.30 TLEAD=+25C 802.16-2004 O-FDMA, 64QAM1/2, 1024-FFT, 20 symbols and 30 subchannels, 5 MHz Carrier BW 4 EVM (%) Return Loss (dB) Gain (dB) 12 Collector Current (mA) EVM vs. Output Power Return Loss vs. Frequency Gain vs. Frequency 13 3.5 GHz 3.6 GHz 35 10 12 14 16 18 Output Power (dBm) 20 22 12 14 16 18 20 Output Power/Tone (dBm) Note: This reference design was constructed on FR4 to illustrate potential AH125 performance in the 3.4-3.6 GHz frequency range. For customer applications of AH125 at these frequencies, we recommend the use of more suitable materials such as Rogers 3000 series. Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 11 of 12 April 2010 AH125 1/2W High Linearity InGaP HBT Amplifier Mechanical Information This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260 C reflow temperature) and leaded (maximum 245 C reflow temperature) soldering processes. The plating material on the leads is NiPdAu. Outline Drawing Product Marking The AH125 will be marked with an "AH125G" designator with a lot code marked below the part designator. The "Y" represents the last digit of the year the part was manufactured, the "XXX" is an autogenerated number, and "Z" refers to a wafer number in a batch. AH125G YXXX-Z MSL / ESD Rating Land Pattern ESD Rating: Value: Test: Standard: Class 2 Passes 2000V to <4000V Human Body Model (HBM) JEDEC Standard JESD22-A114 ESD Rating: Value: Test: Standard: Class IV Passes 2000V min. Charged Device Model (CDM) JEDEC Standard JESD22-C101 MSL Rating: Level 3 at +260 C convection reflow Standard: JEDEC Standard J-STD-020 Mounting Config. Notes 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010"). 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance. 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink. 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink. 5. RF trace width depends upon the PC board material and construction. 6. Use 1 oz. Copper minimum. 7. All dimensions are in millimeters (inches). Angles are in degrees. Specifications and information are subject to change without notice TriQuint Semiconductor, Inc * Phone 503-615-9000 * FAX: 503-615-8900 * e-mail: info-sales@tqs.com * Web site: www.TriQuint.com Page 12 of 12 April 2010