This is information on a product in full production.
February 2015 DocID024030 Rev 5 1/226
STM32F427xx
STM32F429xx
ARM Cortex-M4 32b MCU+FPU, 225DMIPS, up to 2MB Flash/256+4KB RAM, USB
OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 180 MHz,
MPU, 225 DMIPS/1.25 DMIPS/MHz
(Dhrystone 2.1), and DSP instructions
Memories
Up to 2 MB of Flash memory organized into
two banks allowing read-while-write
Up to 256+4 KB of SRAM including 64-KB
of CCM (core coupled memory) data RAM
Flexible external memory controller with up
to 32-bit data bus:
SRAM,PSRAM,SDRAM/LPSDR SDRAM ,
Compact Flash/NOR/NAND memories
LCD parallel interface, 8080/6800 modes
LCD-TFT controller up to XGA resolution with
dedicated Chrom-ART Accelerator™ for
enhanced graphic content creation (DMA2D)
Clock, reset and supply management
1.7 V to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
4-to-26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC (1%
accuracy)
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Low power
Sleep, Stop and Standby modes
–V
BAT supply for RTC, 20×32 bit backup
registers + optional 4 KB backup SRAM
3×12-bit, 2.4 MSPS ADC: up to 24 channels
and 7.2 MSPS in triple interleaved mode
2×12-bit D/A converters
General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
Up to 17 timers: up to twelve 16-bit and two 32-
bit timers up to 180 MHz, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input
Debug mode
SWD & JTAG interfaces
Cortex-M4 Trace Macrocell™
Up to 168 I/O ports with interrupt capability
Up to 164 fast I/Os up to 90 MHz
Up to 166 5 V-tolerant I/Os
Up to 21 communication interfaces
Up to 3 × I2C interfaces (SMBus/PMBus)
Up to 4 USARTs/4 UARTs (11.25 Mbit/s,
ISO7816 interface, LIN, IrDA, modem
control)
Up to 6 SPIs (45 Mbits/s), 2 with muxed
full-duplex I2S for audio class accuracy via
internal audio PLL or external clock
1 x SAI (serial audio interface)
2 × CAN (2.0B Active) and SDIO interface
Advanced connectivity
USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
8- to 14-bit parallel camera interface up to
54 Mbytes/s
True random number generator
CRC calculation unit
RTC: subsecond accuracy, hardware calendar
96-bit unique ID
Table 1. Device summary
Reference Part number
STM32F427xx
STM32F427VG, STM32F427ZG, STM32F427IG,
STM32F427AG, STM32F427VI, STM32F427ZI,
STM32F427II, STM32F427AI
STM32F429xx
STM32F429VG, STM32F429ZG, STM32F429IG,
STM32F429BG, STM32F429NG, STM32F429AG,
STM32F429VI, STM32F429ZI, STM32F429II,,
STM32F429BI, STM32F429NI,STM32F429AI,
STM32F429VE, STM32F429ZE, STM32F429IE,
STM32F429BE, STM32F429NE
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm) UFBGA169 (7 × 7 mm)
LQFP176 (24 × 24 mm)
LQFP208 (28 x 28 mm) UFBGA176 (10 x 10 mm)
&"'!
WLCSP143
TFBGA216 (13 x 13 mm)
www.st.com
Contents STM32F427xx STM32F429xx
2/226 DocID024030 Rev 5
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 ARM® Cortex®-M4 with FPU and embedded Flash and SRAM . . . . . . . 19
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 19
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20
3.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 LCD-TFT controller (available only on STM32F429xx) . . . . . . . . . . . . . . 22
3.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23
3.13 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.16 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.18.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 30
3.19 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 30
3.20 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.21 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DocID024030 Rev 5 3/226
STM32F427xx STM32F429xx Contents
5
3.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.22.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.22.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.22.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.22.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.22.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.22.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.23 Inter-integrated circuit interface ( I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.24 Universal synchronous/asynchronous receiver transmitters (USART) . . 35
3.25 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.26 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.27 Serial Audio interface (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.29 Audio and LCD PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.30 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 38
3.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 38
3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.33 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 39
3.34 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 39
3.35 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.36 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.37 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.38 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.39 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.40 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.41 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.42 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Contents STM32F427xx STM32F429xx
4/226 DocID024030 Rev 5
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 96
6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 96
6.3.5 reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . 97
6.3.6 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 125
6.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 131
6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3.19 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.20 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.21 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.24 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.25 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.26 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.27 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 187
6.3.28 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 188
6.3.29 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 190
DocID024030 Rev 5 5/226
STM32F427xx STM32F429xx Contents
5
6.3.30 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 216
A.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
B.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 217
B.2 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 219
B.3 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
List of tables STM32F427xx STM32F429xx
6/226 DocID024030 Rev 5
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F427xx and STM32F429xx features and peripheral counts . . . . . . . . . . . . . . . . . . 14
Table 3. Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 27
Table 4. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 5. Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 7. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 8. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 9. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 10. STM32F427xx and STM32F429xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 11. FMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 12. STM32F427xx and STM32F429xx alternate function mapping . . . . . . . . . . . . . . . . . . . . . 73
Table 13. STM32F427xx and STM32F429xx register boundary addresses. . . . . . . . . . . . . . . . . . . . 85
Table 14. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 15. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 16. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 17. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 18. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 95
Table 19. VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 20. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 96
Table 21. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 96
Table 22. reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 23. Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM. . . . . . 100
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 26. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . 102
Table 27. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . 103
Table 28. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . 103
Table 29. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 104
Table 30. Typical current consumption in Run mode, code with data processing running from
Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch),
VDD=1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 31. Typical current consumption in Run mode, code with data processing running
from Flash memory, regulator OFF (ART accelerator enabled except prefetch). . . . . . . 107
Table 32. Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V . . . . . . . . . . . . . 108
Table 33. Tyical current consumption in Sleep mode, regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . 109
Table 34. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 35. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 36. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 37. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 38. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 39. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 41. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 42. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 43. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
DocID024030 Rev 5 7/226
STM32F427xx STM32F429xx List of tables
8
Table 44. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 45. PLLISAI (audio and LCD-TFT PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 46. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 47. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 48. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 49. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 50. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 51. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 52. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 53. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 54. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 55. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 56. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 57. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 58. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 59. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 60. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 61. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 62. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 63. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 64. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 65. USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 66. USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 67. USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 68. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 69. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 70. Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 71. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 72. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 73. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 74. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 75. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 76. ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 77. ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 78. ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 79. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 156
Table 80. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 156
Table 81. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 82. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 83. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 84. internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 85. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 86. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 165
Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 91. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 92. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 167
List of tables STM32F427xx STM32F429xx
8/226 DocID024030 Rev 5
Table 93. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 94. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 169
Table 95. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 96. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 97. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 98. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 99. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 100. Switching characteristics for PC Card/CF read and write cycles
in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 101. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 102. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 103. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 104. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 105. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 106. LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 107. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 108. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 109. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 110. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 111. LQPF100 100-pin, 14 x 14 mm low-profile quad flat package mechanical data. . . . . . . . 193
Table 112. WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 113. WLCSP143 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 196
Table 114. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 115. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 116. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Table 117. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table 118. UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Table 119. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 120. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table 121. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Table 122. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 216
Table 123. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
DocID024030 Rev 5 9/226
STM32F427xx STM32F429xx List of figures
11
List of figures
Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 and UFBGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. STM32F427xx and STM32F429xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. STM32F427xx and STM32F429xx Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 6. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 25
Figure 7. PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 8. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 9. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 10. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 29
Figure 11. STM32F42x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 12. STM32F42x WLCSP143 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 13. STM32F42x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 14. STM32F42x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 15. STM32F42x LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 16. STM32F42x UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 17. STM32F42x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 18. STM32F42x TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 19. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 20. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 21. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 22. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 23. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 24. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 25. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . 104
Figure 26. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . 105
Figure 27. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 28. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 29. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 30. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 31. LACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 32. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 33. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 34. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 35. FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 36. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 37. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 38. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Figure 39. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 40. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 41. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 42. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 43. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
List of figures STM32F427xx STM32F429xx
10/226 DocID024030 Rev 5
Figure 44. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 45. USB OTG full speed timings: definition of data signal rise and fall time. . . . . . . . . . . . . . 148
Figure 46. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 47. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 48. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 49. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 50. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 51. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 158
Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 158
Figure 54. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 163
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 165
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 59. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 60. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 62. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 63. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 176
Figure 64. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 176
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory
read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 66. PC Card/CompactFlash controller waveforms for attribute memory
write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 178
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 179
Figure 69. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 70. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 71. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 182
Figure 72. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 182
Figure 73. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 74. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 75. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 76. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 77. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 78. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 79. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 80. LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . . 192
Figure 81. LQPF100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Figure 82. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Figure 83. WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Figure 84. WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 85. WLCSP143 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 86. LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . . 198
Figure 87. - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 88. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Figure 89. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package outline . . . . . . . . . . . . . . 201
Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint. . . . . . . . . 203
DocID024030 Rev 5 11/226
STM32F427xx STM32F429xx List of figures
11
Figure 91. LQFP176 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Figure 92. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline . . . . . . . . . . . . . . 205
Figure 93. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Figure 94. LQFP208 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Figure 95. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Figure 96. UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Figure 97. UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 98. UFBGA176+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 99. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Figure 100. TFBGA176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 101. USB controller configured as peripheral-only and used
in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Figure 102. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 217
Figure 103. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 218
Figure 104. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 105. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Figure 106. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Figure 107. RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Introduction STM32F427xx STM32F429xx
12/226 DocID024030 Rev 5
1 Introduction
This datasheet provides the description of the STM32F427xx and STM32F429xx line of
microcontrollers. For more details on the whole STMicroelectronics STM32 family, please
refer to Section 2.1: Full compatibility throughout the family.
The STM32F427xx and STM32F429xx datasheet should be read in conjunction with the
STM32F4xx reference manual.
For information on the Cortex®-M4 core, please refer to the Cortex®-M4 programming
manual (PM0214), available from www.st.com.
DocID024030 Rev 5 13/226
STM32F427xx STM32F429xx Description
42
2 Description
The STM32F427xx and STM32F429xx devices are based on the high-performance ARM®
Cortex®-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4
core features a Floating point unit (FPU) single precision which supports all ARM® single-
precision data-processing instructions and data types. It also implements a full set of DSP
instructions and a memory protection unit (MPU) which enhances application security.
The STM32F427xx and STM32F429xx devices incorporate high-speed embedded
memories (Flash memory up to 2 Mbyte, up to 256 kbytes of SRAM), up to 4 Kbytes of
backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two
APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
They also feature standard and advanced communication interfaces.
Up to three I2Cs
Six SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals can
be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
Four USARTs plus four UARTs
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI),
Two CANs
One SAI serial audio interface
An SDIO/MMC interface
Ethernet and camera interface
LCD-TFT display controller
Chrom-ART Accelerator™.
Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a
camera interface for CMOS sensors. Refer to Table 2: STM32F427xx and STM32F429xx
features and peripheral counts for the list of peripherals available on each part number.
The STM32F427xx and STM32F429xx devices operates in the –40 to +105 °C temperature
range from a 1.7 to 3.6 V power supply.
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor
(refer to Section 3.17.2: Internal reset OFF). A comprehensive set of power-saving mode
allows the design of low-power applications.
The STM32F427xx and STM32F429xx devices offer devices in 8 packages ranging from
100 pins to 216 pins. The set of included peripherals changes with the device chosen.
Description STM32F427xx STM32F429xx
14/226 DocID024030 Rev 5
These features make the STM32F427xx and STM32F429xx microcontrollers suitable for a wide range of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Figure 4 shows the general block diagram of the device family.
Table 2. STM32F427xx and STM32F429xx features and peripheral counts
Peripherals STM32F427
Vx STM32F429Vx STM32F427
Zx STM32F429Zx STM32F427
Ax
STM32F429
Ax
STM32F427
Ix STM32F429Ix STM32F429Bx STM32F429Nx
Flash memory in Kbytes 1024 2048 512 1024 2048 1024 2048 512 1024 2048 1024 2048 1024 2048 1024 2048 512 1024 2048 512 1024 2048 512 1024 2048
SRAM in
Kbytes
System 256(112+16+64+64)
Backup 4
FMC memory controller Yes(1)
Ethernet Yes
Timers
General-
purpose 10
Advanced
-control 2
Basic 2
Random number generator Yes
STM32F427xx STM32F429xx Description
DocID024030 Rev 5 15/226
Communication
interfaces
SPI / I2S 4/2 (full duplex)(2) 6/2 (full duplex)(2)
I2C 3
USART/
UART 4/4
USB OTG
FS Yes
USB OTG
HS Yes
CAN 2
SAI 1
SDIO Yes
Camera interface Yes
LCD-TFT (STM32F429xx
only) No Yes No Yes No Yes No Yes
Chrom-ART Accelerator™ Yes
GPIOs 82 114 130 140 168
12-bit ADC
Number of channels
3
16 24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency 180 MHz
Operating voltage 1.8 to 3.6 V(3)
Operating temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
Packages LQFP100 WLCSP143
LQFP144 UFBGA169 UFBGA176
LQFP176 LQFP208 TFBGA216
1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit
NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. For UFBGA169 package, only SDRAM, NAND and multiplexed
static memories are supported.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset
OFF).
Table 2. STM32F427xx and STM32F429xx features and peripheral counts (continued)
Peripherals STM32F427
Vx STM32F429Vx STM32F427
Zx STM32F429Zx STM32F427
Ax
STM32F429
Ax
STM32F427
Ix STM32F429Ix STM32F429Bx STM32F429Nx
Description STM32F427xx STM32F429xx
16/226 DocID024030 Rev 5
2.1 Full compatibility throughout the family
The STM32F427xx and STM32F429xx devices are part of the STM32F4 family. They are
fully pin-to-pin, software and feature compatible with the STM32F2xx devices, allowing the
user to try different memory densities, peripherals, and performances (FPU, higher
frequency) for a greater degree of freedom during the development cycle.
The STM32F427xx and STM32F429xx devices maintain a close compatibility with the
whole STM32F10xx family. All functional pins are pin-to-pin compatible. The STM32F427xx
and STM32F429xx, however, are not drop-in replacements for the STM32F10xx devices:
the two families do not have the same power scheme, and so their power pins are different.
Nonetheless, transition from the STM32F10xx to the STM32F42x family remains simple as
only a few pins are impacted.
Figure 1, Figure 2, and Figure 3, give compatible board designs between the STM32F4xx,
STM32F2xx, and STM32F10xx families.
Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package







 

633
633
6$$
633
633
633
:RESISTORORSOLDERINGBRIDGEª
PRESENTFORTHE34-&XXX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
AIC
633
633
6$$
4WO :RESISTORSCONNECTEDTO
633FORTHE34-&XX
633FORTHE34-&XX
633FOR34-&XX
6$$FOR34-&XX
6336$$OR.#FORTHE34-&XX
DocID024030 Rev 5 17/226
STM32F427xx STM32F429xx Description
42
Figure 2. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package
Figure 3. Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 and UFBGA176 packages
DLG









966
UHVLVWRURUVROGHULQJEULGJH
SUHVHQWIRUWKH670)[[
FRQILJXUDWLRQQRWSUHVHQWLQWKH
670)[[FRQILJXUDWLRQ

966

7ZRUHVLVWRUVFRQQHFWHGWR
966IRUWKH670)[[
9669''RU1&IRUWKH670)[[
9''RUVLJQDOIURPH[WHUQDOSRZHUVXSSO\VXSHUYLVRUIRUWKH670)[[
966
9''
966
966
3'5B21
966
9''
966IRU670)[[
9''IRU670)[[
6LJQDOIURP
H[WHUQDOSRZHU
VXSSO\
VXSHUYLVRU
1RWSRSXODWHGZKHQ
UHVLVWRURUVROGHULQJ
EULGJHSUHVHQW
1RWSRSXODWHGIRU670)[[
069






7ZRUHVLVWRUVFRQQHFWHGWR
9669''RU1&IRUWKH670)[[
9''RUVLJQDOIURPH[WHUQDOSRZHUVXSSO\VXSHUYLVRUIRUWKH670)[[
3'5B21
966
9''
6LJQDOIURPH[WHUQDO
SRZHUVXSSO\
VXSHUYLVRU
 *1'IRU670)[[
%<3$66B5(*IRU670)[[
Description STM32F427xx STM32F429xx
18/226 DocID024030 Rev 5
Figure 4. STM32F427xx and STM32F429xx block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to APB1 are clocked
from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
2. The LCD-TFT is available only on STM32F429xx devices.
'0)/0/24!
!("!0"
%84)47+50
!&
0!;=
4)-07-
COMPLCHAN4)-?#(;=.
CHAN4)-?#(;=%42
"+).AS!&
53!24
2848#+
#43243AS!&
30)
-/3)-)3/
3#+.33AS!&
!0"-(Z
!0"-(Z
ANALOGINPUTSCOMMON
TOTHE!$#S
6$$2%&?!$#
5!24
-/3)3$-)3/3$?EXT3#+#+
.3373-#+AS!&
30)3
4828
BX#!.
$!#?/54
AS!&
)4&
77$'
+""+032!-
24#?!&
/3#?).
/3#?/54
6$$!633!
.234
SMCARD
IR$!
B
3$)/--#
$;=
#-$#+AS!&
6"!4TO6
$-!
3#,3$!3-"!AS!&
)#3-"53
*4!'37
!2-#ORTEX-
-(Z
.6)#
%4-
-05
42!#%#,+
42!#%$;=
%THERNET-!#

$-!
&)&/
-))OR2-))AS!&
-$)/AS!&
53"
/4'(3
$0$-
5,0)#+$;=$)2340.84
)$6"533/&
$-!
3TREAMS
&)&/
!24!##%,
#!#(%
32!-+"
#,+.%;=!;=
$;=./%..7%.
.",;=3$#,+%;=3$.%;=
3$.7%.,
.7!)4.)/2$.2%'#$
).42
2.'
#AMERA
INTERFACE
(39.#639.#
05)8#,+$;=
0(9
53"
/4'&3
$0
$-
)$6"533/&
&)&/
!("-(Z
0(9
&)&/
53!24-"PS
4EMPERATURESENSOR
!$#
!$#
!$#
)&
)&
6$$!
6$$!
0/20$2
"/2
3UPPLY
SUPERVISION
6$$!
06$
)NT
0/2
RESET
84!,K(Z
-!.!'4
24#
2#(3
2#,3
3TANDBY
INTERFACE
)7$'
6"!4
6$$!
6$$
!75
2ESET
CLOCK
CONTROL
0,,
0#,+X
6$$TO6
633
6#!06#!0
6OLTAGE
REGULATOR
TO6
6$$ 0OWERMANAGMT
6$$
24#?!&
"ACKUPREGISTER
!("BUSMATRIX3-
!0"-(Z
,3
4)-
4)-
CHANNELSAS!&
$!#
$!#
-"&LASH
%XTERNALMEMORYCONTROLLER&-#
32!-3$2!-032!-
./2&LASH0##ARD
.!.$&LASH
4)-
4)-
4)-
4)-
4)-
4)-
4)-
$"53
-36
&)&/
&05
!0"-(ZMAX
32!-+"
##-DATA2!-+"
!("
!("-(Z
.*4234*4$)
*4#+37#,+
*4$/37$*4$/
)"53
3"53
$-!
&)&/
$-!
3TREAMS
&)&/
0";=
0#;=
0$;=
0%;=
0&;=
0';=
0(;=
0);=
'0)/0/24"
'0)/0/24#
'0)/0/24$
'0)/0/24%
'0)/0/24&
'0)/0/24'
'0)/0/24(
'0)/0/24)
4)-07-
B
B
4)-
B
4)-
B
SMCARD
IR$!
53!24
COMPLCHAN4)-?#(;=.
CHAN4)-?#(;=%42
"+).AS!&
CHANNELAS!&
CHANNELAS!&
2848#+
#43243AS!&
ANALOGINPUTSCOMMON
TOTHE!$#
ANALOGINPUTSFOR!$#
$!#?/54
AS!&
B
B
BX#!.
)#3-"53
)#3-"53
3#,3$!3-"!AS!&
3#,3$!3-"!AS!&
30)3
-/3)3$-)3/3$?EXT3#+#+
.3373-#+AS!&
4828
2848AS!&
2848AS!&
2848AS!&
#43243AS!&
2848AS!&
#43243AS!&
CHANNELAS!&
5!24
53!24
53!24
SMCARD
IR$!
SMCARD
IR$!
B
B
B
CHANNELAS!&
4)-
CHANNELSAS!&
B
B
B
B
CHANNELS
CHANNELS%42AS!&
CHANNELS%42AS!&
CHANNELS%42AS!&
$-!
!("!0"
,3
/3#?).
/3#?/54
(#,+X
84!,/3#
-(Z
&)&/
30)
3#+.33AS!&
30)
3#+.33AS!&
-/3)-)3/
-/3)-)3/
30)
3#+.33AS!&
-/3)-)3/
2848AS!&
5!24
2848AS!&
5!24
32!-+"
-"&LASH
&)&/
,#$4&4
&)&/
0*;=
'0)/0/24*
0+;=
'0)/0/24+
3!)
3$3#+&3-#,+AS!&
&)&/
$IGITALFILTER
.2!3.#!3.!$6
24#?(:
,#$?2;=,#$?';=,#$?";=
,#$?(39.#,#$?639.#,#$?$%
,#$?#,+
#(2/-!24
$-!$
DocID024030 Rev 5 19/226
STM32F427xx STM32F429xx Functional overview
42
3 Functional overview
3.1 ARM® Cortex®-M4 with FPU and embedded Flash and SRAM
The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM® Cortex®-M4 with FPU core is a 32-bit RISC processor that features exceptional
code-efficiency, delivering the high-performance expected from an ARM core in the memory
size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F42x family is compatible with all ARM tools and software.
Figure 4 shows the general block diagram of the STM32F42x family.
Note: Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.
3.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance
advantage of the ARM® Cortex®-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 225 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 180 MHz.
3.3 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
Functional overview STM32F427xx STM32F429xx
20/226 DocID024030 Rev 5
3.4 Embedded Flash memory
The devices embed a Flash memory of up to 2 Mbytes available for storing programs and
data.
3.5 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.6 Embedded SRAM
All devices embed:
Up to 256Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)
data RAM
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
3.7 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, AHB and APB
peripherals) and ensures a seamless and efficient operation even when several high-speed
peripherals work simultaneously.
DocID024030 Rev 5 21/226
STM32F427xx STM32F429xx Functional overview
42
Figure 5. STM32F427xx and STM32F429xx Multi-AHB matrix
3.8 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
$50
&RUWH[0
*3
'0$
*3
'0$
0$&
(WKHUQHW
86%27*
+6
%XVPDWUL[6
,&2'(
'&2'(
$&&(/
)ODVK
PHPRU\
65$0
.E\WH
65$0
.E\WH
$+%
SHULSKHUDOV
$+%
SHULSKHUDOV
)0&H[WHUQDO
0HP&WO
,EXV
'EXV
6EXV
'0$B3,
'0$B0(0
'0$B0(0
'0$B3
(7+(51(7B0
86%B+6B0
-36
&&0GDWD5$0
.E\WH
$3%
$3%
65$0
.E\WH
/&'7)7 &KURP$57$FFHOHUDWRU
'0$'
/&'7)7B0
'0$'
Functional overview STM32F427xx STM32F429xx
22/226 DocID024030 Rev 5
The DMA can be used with the main peripherals:
SPI and I2S
I2C
USART
General-purpose, basic and advanced-control timers TIMx
DAC
SDIO
Camera interface (DCMI)
ADC
SAI1.
3.9 Flexible memory controller (FMC)
All devices embed an FMC. It has four Chip Select outputs supporting the following modes:
PCCard/Compact Flash, SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND
Flash.
Functionality overview:
8-,16-, 32-bit data bus width
Read FIFO for SDRAM controller
Write FIFO
Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz.
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.10 LCD-TFT controller (available only on STM32F429xx)
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to
XGA (1024x768) resolution with the following features:
2 displays layers with dedicated FIFO (64x32-bit)
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
Up to 8 Input color formats selectable per layer
Flexible blending between two layers using alpha value (per pixel or constant)
Flexible programmable parameters for each layer
Color keying (transparency color)
Up to 4 programmable interrupt events.
DocID024030 Rev 5 23/226
STM32F427xx STM32F429xx Functional overview
42
3.11 Chrom-ART Accelerator™ (DMA2D)
The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit
blitting, row data copy and pixel format conversion. It supports the following functions:
Rectangle filling with a fixed color
Rectangle copy
Rectangle copy with pixel format conversion
Rectangle composition with blending and pixel format conversion.
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp
direct color. It embeds dedicated memory to store color lookup tables.
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automatized and are running independently from the CPU or the
DMAs.
3.12 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-
M4 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.13 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected
to the 16 external interrupt lines.
3.14 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full
temperature range. The application can then select as system clock either the RC oscillator
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is
Functional overview STM32F427xx STM32F429xx
24/226 DocID024030 Rev 5
detected, the system automatically switches back to the internal RC oscillator and a
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing
to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL
clock entry is available when necessary (for example if an indirectly used external oscillator
fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 180 MHz while the maximum frequency of the high-speed APB domains is
90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.
The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio
class performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
3.15 Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory
through a serial interface. Refer to application note AN2606 for details.
3.16 Power supply schemes
VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Note: VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply
supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator
configuration mode versus device operating mode to identify the packages supporting this
option.
3.17 Power supply supervisor
3.17.1 Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On the other package, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
DocID024030 Rev 5 25/226
STM32F427xx STM32F429xx Functional overview
42
reached, the option byte loading process starts, either to confirm or modify default BOR
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes. The device remains in reset mode when VDD is below a specified threshold,
VPOR/PDR or VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.17.2 Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
this external power supply supervisor. Refer to Figure 6: Power supply supervisor
interconnection with internal reset OFF.
Figure 6. Power supply supervisor interconnection with internal reset OFF
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V (see Figure 7).
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
The brownout reset (BOR) circuitry must be disabled
The embedded programmable voltage detector (PVD) is disabled
VBAT functionality is no more available and VBAT pin should be connected to VDD.
All packages, except for the LQFP100, allow to disable the internal reset through the
PDR_ON signal.
069
1567
9''
3'5B21
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
9''
$SSOLFDWLRQUHVHW
VLJQDORSWLRQDO
Functional overview STM32F427xx STM32F429xx
26/226 DocID024030 Rev 5
Figure 7. PDR_ON control with internal reset OFF
3.18 Voltage regulator
The regulator has four operating modes:
Regulator ON
Main regulator mode (MR)
Low power regulator (LPR)
Power-down
Regulator OFF
3.18.1 Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
MR mode used in Run/sleep modes or in Stop modes
In Run/Sleep mode
The MR mode is used either in the normal mode (default mode) or the over-drive
mode (enabled by software). Different voltages scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
069
9''
WLPH
3'5 9
WLPH
1567
3'5B21 3'5B21
5HVHWE\RWKHUVRXUFHWKDQ
SRZHUVXSSO\VXSHUYLVRU
DocID024030 Rev 5 27/226
STM32F427xx STM32F429xx Functional overview
42
The over-drive mode allows operating at a higher frequency than the normal mode
for a given voltage scaling.
In Stop modes
The MR can be configured in two ways during stop mode:
MR operates in normal mode (default mode of MR in stop mode)
MR operates in under-drive mode (reduced leakage mode).
LPR is used in the Stop modes:
The LP regulator mode is configured by software when entering Stop mode.
Like the MR mode, the LPR can be configured in two ways during stop mode:
LPR operates in normal mode (default mode when LPR is ON)
LPR operates in under-drive mode (reduced leakage mode).
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin. Refer to
Figure 22: Power supply scheme and Table 19: VCAP1/VCAP2 operating conditions.
All packages have the regulator ON feature.
3.18.2 Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency. Refer to Table 17: General operating
conditions.The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling
capacitors. Refer to Figure 22: Power supply scheme.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
Table 3. Voltage regulator configuration mode versus device operating mode(1)
1. ‘-’ means that the corresponding configuration is not available.
Voltage regulator
configuration Run mode Sleep mode Stop mode Standby mode
Normal mode MR MR MR or LPR -
Over-drive
mode(2)
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.
MR MR - -
Under-drive mode - - MR or LPR -
Power-down
mode ---Yes
Functional overview STM32F427xx STM32F429xx
28/226 DocID024030 Rev 5
In regulator OFF mode, the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
The over-drive and under-drive modes are not available.
The Standby mode is not available.
Figure 8. Regulator OFF
The following conditions must be respected:
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 9).
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 10).
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
Note: The minimum value of V12 depends on the maximum frequency targeted in the application
(see Table 17: General operating conditions).
DL9
%<3$66B5(*
9&$3B
9&$3B
3$
9
9'' 1567
9''
$SSOLFDWLRQUHVHW
VLJQDORSWLRQDO
([WHUQDO9&$3BSRZHU
VXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYH
ZKHQ9&$3B0LQ9
9
DocID024030 Rev 5 29/226
STM32F427xx STM32F429xx Functional overview
42
Figure 9. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 10. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
DLI
9''
WLPH
0LQ9
3'5 9RU9 9&$3B9&$3B
9
1567
WLPH
9''
WLPH
0LQ9
9&$3B9&$3B
9
3$DVVHUWHGH[WHUQDOO\
1567
WLPH DLH
3'5 9RU9
Functional overview STM32F427xx STM32F429xx
30/226 DocID024030 Rev 5
3.18.3 Regulator ON/OFF and internal reset ON/OFF availability
3.19 Real-time clock (RTC), backup SRAM and backup registers
The backup domain includes:
The real-time clock (RTC)
4 Kbytes of backup SRAM
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC provides a programmable alarm and programmable
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is
also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data
which need to be retained in VBAT and standby mode. This memory area is disabled by
default to minimize power consumption (see Section 3.20: Low-power modes). It can be
enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.20: Low-power
modes).
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package Regulator ON Regulator OFF Internal reset ON Internal reset OFF
LQFP100
Yes No
Yes No
LQFP144,
LQFP208
Yes
PDR_ON set to
VDD
Yes
PDR_ON
connected to an
external power
supply supervisor
WLCSP143,
LQFP176,
UFBGA169,
UFBGA176,
TFBGA216
Yes
BYPASS_REG set
to VSS
Yes
BYPASS_REG set
to VDD
DocID024030 Rev 5 31/226
STM32F427xx STM32F429xx Functional overview
42
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or from the VBAT pin.
3.20 Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled.
The voltage regulator can be put either in main regulator mode (MR) or in low-power
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator
modes in stop mode):
Normal mode (default mode when MR or LPR is enabled)
Under-drive mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
The standby mode is not supported when the embedded voltage regulator is bypassed
and the 1.2 V domain is controlled by an external power.
Table 5. Voltage regulator modes in stop mode
Voltage regulator
configuration Main regulator (MR) Low-power regulator (LPR)
Normal mode MR ON LPR ON
Under-drive mode MR in under-drive mode LPR in under-drive mode
Functional overview STM32F427xx STM32F429xx
32/226 DocID024030 Rev 5
3.21 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When PDR_ON pin is not connected to VDD (Internal Reset OFF), the VBAT functionality is
no more available and VBAT pin should be connected to VDD.
3.22 Timers and watchdogs
The devices include two advanced-control timers, eight general-purpose timers, two basic
timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 6 compares the features of the advanced-control, general-purpose and basic timers.
DocID024030 Rev 5 33/226
STM32F427xx STM32F429xx Functional overview
42
Table 6. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
(1)
Advanced
-control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 Yes 90 180
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 45 90/180
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 45 90/180
TIM9 16-bit Up
Any
integer
between 1
and
65536
No 2 No 90 180
TIM10
,
TIM11
16-bit Up
Any
integer
between 1
and
65536
No 1 No 90 180
TIM12 16-bit Up
Any
integer
between 1
and
65536
No 2 No 45 90/180
TIM13
,
TIM14
16-bit Up
Any
integer
between 1
and
65536
No 1 No 45 90/180
Basic TIM6,
TIM7 16-bit Up
Any
integer
between 1
and
65536
Yes 0 No 45 90/180
1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
Functional overview STM32F427xx STM32F429xx
34/226 DocID024030 Rev 5
3.22.1 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
3.22.2 General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F42x devices
(see Table 6 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F42x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-
bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives
up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
3.22.3 Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
DocID024030 Rev 5 35/226
STM32F427xx STM32F429xx Functional overview
42
3.22.4 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.22.5 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.22.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
3.23 Inter-integrated circuit interface ( I2C)
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can
support the standard (up to 100 KHz), and fast (up to 400 KHz) modes. They support the
7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC
generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 7).
3.24 Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed four universal synchronous/asynchronous receiver transmitters
(USART1, USART2, USART3 and USART6) and four universal asynchronous receiver
transmitters (UART4, UART5, UART7, and UART8).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
Table 7. Comparison of I2C analog and digital filters
Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2C peripheral clocks
Functional overview STM32F427xx STM32F429xx
36/226 DocID024030 Rev 5
communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate
at up to 5.62 bit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
3.25 Serial peripheral interface (SPI)
The devices feature up to six SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 45 Mbits/s,
SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master
mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
Table 8. USART feature comparison(1)
USART
name
Standard
features
Modem
(RTS/CTS) LIN SPI
master irDA Smartcard
(ISO 7816)
Max. baud
rate in Mbit/s
(oversampling
by 16)
Max. baud
rate in Mbit/s
(oversampling
by 8)
APB
mapping
USART1 X X X X X X 5.62 11.25
APB2
(max.
90 MHz)
USART2 X X X X X X 2.81 5.62
APB1
(max.
45 MHz)
USART3 X X X X X X 2.81 5.62
APB1
(max.
45 MHz)
UART4 X - X - X - 2.81 5.62
APB1
(max.
45 MHz)
UART5 X - X - X - 2.81 5.62
APB1
(max.
45 MHz)
USART6 X X X X X X 5.62 11.25
APB2
(max.
90 MHz)
UART7 X - X - X - 2.81 5.62
APB1
(max.
45 MHz)
UART8 X - X - X - 2.81 5.62
APB1
(max.
45 MHz)
1. X = feature supported.
DocID024030 Rev 5 37/226
STM32F427xx STM32F429xx Functional overview
42
3.26 Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and simplex communication modes, and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
Note: For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port
B and GPIO Port D.
3.27 Serial Audio interface (SAI1)
The serial audio interface (SAI1) is based on two independent audio sub-blocks which can
operate as transmitter or receiver with their FIFO. Many audio protocols are supported by
each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks
can be configured in master or in slave mode.
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of
the sampling frequency.
The two sub-blocks can be configured in synchronous mode when full-duplex mode is
required.
SAI1 can be served by the DMA controller.
3.28 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows
to achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the
I2S/SAI flow with an external PLL (or Codec output).
3.29 Audio and LCD PLL(PLLSAI)
An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the
PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or
11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.
The PLLSAI is also used to generate the LCD-TFT clock.
Functional overview STM32F427xx STM32F429xx
38/226 DocID024030 Rev 5
3.30 Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
3.31 Ethernet MAC interface with dedicated DMA and IEEE 1588
support
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
The devices include the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F4xx reference manual for details)
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and
group addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
Triggers interrupt when system time becomes greater than target time
3.32 Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
DocID024030 Rev 5 39/226
STM32F427xx STM32F429xx Functional overview
42
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
3.33 Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
4 bidirectional endpoints
8 host channels with periodic OUT support
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
3.34 Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral.
The USB OTG HS supports both full-speed and high-speed operations. It integrates the
transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI)
for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an
external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator.
The major features are:
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
6 bidirectional endpoints
12 host channels with periodic OUT support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Functional overview STM32F427xx STM32F429xx
40/226 DocID024030 Rev 5
3.35 Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
Supports continuous mode or snapshot (a single frame) mode
Capability to automatically crop the image
3.36 Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.37 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 90 MHz.
3.38 Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
DocID024030 Rev 5 41/226
STM32F427xx STM32F429xx Functional overview
42
3.39 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the same input channel as VBAT
, ADC1_IN18, which is used to convert the
sensor output voltage into a digital value. When the temperature sensor and VBAT
conversion are enabled at the same time, only VBAT conversion is performed.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.40 Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 10-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
3.41 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.42 Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F42x through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
Functional overview STM32F427xx STM32F429xx
42/226 DocID024030 Rev 5
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
DocID024030 Rev 5 43/226
STM32F427xx STM32F429xx Pinouts and pin description
83
4 Pinouts and pin description
Figure 11. STM32F42x LQFP100 pinout
1. The above figure shows the package top view.


































































0%
0%
0%
0%
0%
6"!4
0#
0#
633
6$$
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
0!
0!
6$$
633
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!

























AIC
,1&0
0#
0(
Pinouts and pin description STM32F427xx STM32F429xx
44/226 DocID024030 Rev 5
Figure 12. STM32F42x WLCSP143 ballout
1. The above figure shows the package bump view.
9%$7
3'5
B21
069
$
%
&
'
(
)
*
+
-
.
/
0
1

3(
3&
3&
3)
3)
3)
3+
3&
95()
3$
%<3$66B
5(*
3(
3(
3(
3&
9''
3)
3)
3+
3&
966$
9''$
3&
3$
3$
3% 3% 3* 3* 3' 3' 3' 3& 9''
3% 3% 3% 3* 3' 3' 3' 3& 3$
%227
3% 3% 3* 9'' 3' 3& 3$ 9''
3( 3( 9'' 3* 3$ 3$ 3$ 966 9&$3
B
3) 3( 966 9''
3*
3* 3& 3& 3$ 3$
3) 3) 3) 3* 966 3' 3& 3& 3$
3) 3) 9'' 3* 3* 3* 3* 3* 9''
1567 3& 966 3' 3' 3' 966 966 3*
3&
3)
3)
3* 3( 3% 3' 3'3$ 3$ 3%
9''
9'' 9'' 9'' 9'' 3( 3% 3' 3*
3$ 3$ 3% 3( 3( 3( 3' 9''
3$ 3& 3) 3) 3( 3( 3% 3% 3'
3& 3% 3) 3* 3( 3( 3% 9&$3
B 3%
DocID024030 Rev 5 45/226
STM32F427xx STM32F429xx Pinouts and pin description
83
Figure 13. STM32F42x LQFP144 pinout
1. The above figure shows the package top view.
6
$$
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6
$$
6
33
0'
0'
0'
0'
0'
0'
0$
0$
6
$$
6
33
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
0% 6
$$
0% 6
33
0%
0% 0!
0% 0!
6"!4 0!
0# 0!
0# 0!
0# 0!
0& 0#
0& 0#
0& 0#
0& 0#
0& 6
$$
0& 6
33
6
33
0'
6
$$
0'
0& 0'
0& 0'
0& 0'
0& 0'
0& 0'
0( 0$
0( 0$
.234 6
$$
0# 6
33
0# 0$
0# 0$
0# 0$
6
33!
0$
6
$$
0$
6
2%&
0$
6
$$!
0"
0! 0"
0! 0"
0! 0"
0!
6
33
6
$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
6
$$
0&
0&
0&
0'
0'
0%
0%
0%
6
33
6
$$
0%
0%
0%
0%
0%
0%
0"
0"
6
#!0?
6
$$



























































































,1&0












































AIB
6
#!0?
6
33
Pinouts and pin description STM32F427xx STM32F429xx
46/226 DocID024030 Rev 5
Figure 14. STM32F42x LQFP176 pinout
1. The above figure shows the package top view.
-36
0$2?/.
6$$
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0)
0)
0%
6$$
0%
633
0%
0%
0!
0%
0!
6"!4
0!
0)
0!
0#
0!
0#
0!
0&
0#
0&
0#
0&
0#
0&
0#
0&
6$$
0&
633
0'
0'
0&
0'
0&
0'
0&
0'
0&
0'
0&
0'
0(
0$
0(
0$
.234
6$$
0#
633
0#
0$
0#
0$
0#
0$
0$
0$
62%&
0$
0"
0!
0"
0!
0"
0!
0"
0!
"90!33?2%'
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$



























































































,1&0












































6#!0?
0)
0!
0!
6$$
633
0)
0)
0)








0(
0(
0(
0(
0(
0(
0(
0(








0)
0)
0(
0(
0(
6$$
633
0(
















0#
0)
0)
0)
633
0(
0(
6$$
633
6$$
6$$
633!
6$$!
STM32F427xx STM32F429xx Pinouts and pin description
DocID024030 Rev 5 47/226
Figure 15. STM32F42x LQFP208 pinout
1. The above figure shows the package top view.
Pinouts and pin description STM32F427xx STM32F429xx
48/226 DocID024030 Rev 5
Figure 16. STM32F42x UFBGA169 ballout
1. The above figure shows the package top view.
2. The 4 corners balls, A1,A13, N1 and N13, are not bonded internally and should be left not connected on the PCB.
-36
   
*
+
,

"
!
#
$
%
&
'
(
-
.
0%
0% 0%
0% 0%
6"!40#0#
0#
0) 0)
6336$$
0& 0&
0&0&0&
0&
633 6$$
0&
0(0(
.234
0#
0# 0# 0#
633! 62%& 62%& 6$$! 0!
0! 0!
0(
0(
0(
0(
0!
"90!33
?2%'
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
6#!0
?
6$$
0(
0(
0(
0(
0(
0(
0(
633
6$$
0"
0" 0"
0"
0$
0$
0$
0$
0$
0$
6$$
0$
0$
0'
0'
0'
0' 0'
0'
633
6$$
0# 0# 0# 0#
0! 0! 0! 0! 0! 0!
6#!0
?
633
6$$
0(
0(
0(
0)
0)
0)
0)
633
6$$
0!
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0'
0'
0'
633
6$$
6$$
0'
0"
0"
0"
0"
0"
"//4
0"
0"
0%
0%
633
0$2
?/.
0)
0)0)
0)
6$$
0!
DocID024030 Rev 5 49/226
STM32F427xx STM32F429xx Pinouts and pin description
83
Figure 17. STM32F42x UFBGA176 ballout
1. The above figure shows the package top view.
AIC
     
!0%0%
0% 0% 0" 0" 0' 0' 0" 0" 0$ 0# 0! 0! 0!
"0%0%
0% 0" 0" 0" 0' 0' 0' 0' 0$ 0$ 0# 0# 0!
#6"!4 0) 0) 0) 0$2?/.
6$$ 6$$ 6$$ 6$$ 0' 0$ 0$ 0) 0) 0!
$0# 0) 0) 0) "//4 633 633 633 0$ 0$ 0$ 0( 0) 0!
%0# 0& 0) 0) 0( 0( 0) 0!
&0#
633 6$$ 0( 633 633 633 633 633 633 6#!0 0# 0!
'0( 633 6$$ 0( 633 633 633 633 633 633 6$$ 0# 0#
(0( 0& 0& 0( 633 633 633 633 633 633 6$$ 0' 0#
*.234 0& 0( 633 633 633 633 633 6$$ 6$$ 0' 0'
+0& 0&
0&
6$$ 633 633 633 633 633 0( 0' 0' 0'
,0& 0&
0&
"90!33?
2%' 0( 0( 0$ 0'
-633!0#
0&
0# 0# 0# 0" 0' 633 633 6#!0? 0( 0( 0( 0$ 0$
.62%& 0! 0! 0# 0& 0' 6$$ 6$$ 6$$ 0% 0( 0$ 0$ 0$
062%&
0! 0! 0! 0# 0& 0& 0% 0% 0% 0% 0" 0" 0$ 0$
2 6$$! 0! 0! 0" 0" 0& 0& 0% 0% 0% 0% 0" 0" 0" 0"
633

0!
Pinouts and pin description STM32F427xx STM32F429xx
50/226 DocID024030 Rev 5
Figure 18. STM32F42x TFBGA216 ballout
1. The above figure shows the package top view.
-36

!0% 0% 0% 0' 0% 0% 0" 0" 0" 0" 0$ 0# 0! 0! 0!
"0% 0% 0' 0" 0" 0" 0' 0' 0* 0* 0$ 0$ 0# 0# 0!
#6"!4 0) 0) 0+ 0+ 0+ 0' 0' 0* 0$ 0$ 0$ 0) 0) 0!
$0# 0& 0) 0) 0) 0) 0+ 0+ 0' 0* 0$ 0$ 0( 0) 0!
%0# 0& 0) 0) 0$2?
/.
"//4 6$$ 6$$ 6$$ 6$$ 6#!0 0( 0( 0) 0!
&0# 633 0) 6$$ 6$$ 633 633 6$$ 0+ 0+ 0# 0!
'0( 0& 0) 0) 6$$ 633 6$$ 0* 0+ 0# 0#
(0( 0) 0( 6$$ 633 633 6$$ 0* 0* 0' 0#
*.234 0& 0( 0( 6$$ 633 633 6$$ 0* 0* 0' 0'
+0& 0& 0& 0( 6$$ 633 633 633 633 633 6$$ 0* 0$ 0" 0$
,0& 0& 0& 0# "90!33
2%' 633 6$$ 6$$ 6$$ 6$$ 6#!0 0$ 0" 0$ 0$
-633! 0# 0# 0# 0" 0& 0' 0& 0* 0$ 0$ 0' 0' 0* 0(
.62%& 0! 0! 0! 0# 0& 0' 0* 0% 0$ 0' 0' 0( 0( 0(
62%& 0! 0! 0! 0# 0& 0* 0& 0% 0% 0% 0" 0( 0( 0(
0! 0! 0" 0" 0* 0* 0% 0% 0% 0% 0% 0" 0" 0"
633
0&
0
26$$!
633 633 633
DocID024030 Rev 5 51/226
STM32F427xx STM32F429xx Pinouts and pin description
83
Table 9. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
TTa 3.3 V tolerant I/O directly connected to ADC
B Dedicated BOOT0 pin
RST Bidirectional reset pin with weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 10. STM32F427xx and STM32F429xx pin and ball definitions
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
1 1 B2 A2 1 D8 1 A3 PE2 I/O FT
TRACECLK,
SPI4_SCK,
SAI1_MCLK_A,
ETH_MII_TXD3,
FMC_A23, EVENTOUT
2 2 C1 A1 2 C10 2 A2 PE3 I/O FT
TRACED0,
SAI1_SD_B, FMC_A19,
EVENTOUT
3 3 C2 B1 3 B11 3 A1 PE4 I/O FT
TRACED1, SPI4_NSS,
SAI1_FS_A, FMC_A20,
DCMI_D4, LCD_B0,
EVENTOUT
Pinouts and pin description STM32F427xx STM32F429xx
52/226 DocID024030 Rev 5
4 4 D1 B2 4 D9 4 B1 PE5 I/O FT
TRACED2, TIM9_CH1,
SPI4_MISO,
SAI1_SCK_A,
FMC_A21, DCMI_D6,
LCD_G0, EVENTOUT
5 5 D2 B3 5 E8 5 B2 PE6 I/O FT
TRACED3, TIM9_CH2,
SPI4_MOSI,
SAI1_SD_A, FMC_A22,
DCMI_D7, LCD_G1,
EVENTOUT
-- - - ---G6 V
SS S
-- - - ---F5 V
DD S
66E5C16C116C1 V
BAT S
--
NC
(2) D2 7 - 7 C2 PI8 I/O FT
(3)
(4) EVENTOUT TAMP_2
77E4D18D108D1 PC13 I/OFT
(3)
(4) EVENTOUT TAMP_1
8 8 E1 E1 9 D11 9 E1
PC14-
OSC32_IN
(PC14)
I/O FT
(3)
(4) EVENTOUT OSC32_IN
(5)
99F1F110E1110F1
PC15-
OSC32_OUT
(PC15)
I/O FT
(3)
(4) EVENTOUT OSC32_
OUT(5)
-- - - ---G5 V
DD S
- - E2 D3 11 - 11 E4 PI9 I/O FT
CAN1_RX, FMC_D30,
LCD_VSYNC,
EVENTOUT
- - E3 E3 12 - 12 D5 PI10 I/O FT
ETH_MII_RX_ER,
FMC_D31,
LCD_HSYNC,
EVENTOUT
--
NC
(2) E4 13 - 13 F3 PI11 I/O FT OTG_HS_ULPI_DIR,
EVENTOUT
- - F6 F2 14 E7 14 F2 VSS S
--F4F315E1015F4 V
DD S
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
DocID024030 Rev 5 53/226
STM32F427xx STM32F429xx Pinouts and pin description
83
-10F2E216F1116D2 PF0 I/OFT I2C2_SDA, FMC_A0,
EVENTOUT
-11F3H317E917E2 PF1 I/OFT I2C2_SCL, FMC_A1,
EVENTOUT
- 12 G5 H2 18 F10 18 G2 PF2 I/O FT I2C2_SMBA, FMC_A2,
EVENTOUT
- - - - - - 19 E3 PI12 I/O FT LCD_HSYNC,
EVENTOUT
- - - - - - 20 G3 PI13 I/O FT LCD_VSYNC,
EVENTOUT
- - - - - - 21 H3 PI14 I/O FT LCD_CLK, EVENTOUT
-13G4J219G1122H2 PF3 I/OFT
(5) FMC_A3, EVENTOUT ADC3_IN9
-14G3J320F923J2 PF4 I/OFT
(5) FMC_A4, EVENTOUT ADC3_
IN14
-15H3K321F824K3 PF5 I/OFT
(5) FMC_A5, EVENTOUT ADC3_
IN15
10 16 G7 G2 22 H7 25 H6 VSS S
11 17 G8 G3 23 - 26 H5 VDD S
-18
NC
(2) K2 24 G10 27 K2 PF6 I/O FT (5)
TIM10_CH1,
SPI5_NSS,
SAI1_SD_B,
UART7_Rx,
FMC_NIORD,
EVENTOUT
ADC3_IN4
-19
NC
(2) K1 25 F7 28 K1 PF7 I/O FT (5)
TIM11_CH1,
SPI5_SCK,
SAI1_MCLK_B,
UART7_Tx,
FMC_NREG,
EVENTOUT
ADC3_IN5
-20
NC
(2) L3 26 H11 29 L3 PF8 I/O FT (5)
SPI5_MISO,
SAI1_SCK_B,
TIM13_CH1,
FMC_NIOWR,
EVENTOUT
ADC3_IN6
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pinouts and pin description STM32F427xx STM32F429xx
54/226 DocID024030 Rev 5
-21
NC
(2) L2 27 G8 30 L2 PF9 I/O FT (5)
SPI5_MOSI,
SAI1_FS_B,
TIM14_CH1, FMC_CD,
EVENTOUT
ADC3_IN7
-22H1L128G931L1 PF10 I/OFT
(5)
FMC_INTR,
DCMI_D11, LCD_DE,
EVENTOUT
ADC3_IN8
12 23 G2 G1 29 J11 32 G1 PH0-OSC_IN
(PH0) I/O FT EVENTOUT OSC_IN(5)
13 24 G1 H1 30 H10 33 H1
PH1-
OSC_OUT
(PH1)
I/O FT EVENTOUT OSC_OUT
(5)
14 25 H2 J1 31 H9 34 J1 NRST I/O RS
T
15 26 G6 M2 32 H8 35 M2 PC0 I/O FT (5)
OTG_HS_ULPI_STP,
FMC_SDNWE,
EVENTOUT
ADC123_
IN10
16 27 H5 M3 33 K11 36 M3 PC1 I/O FT (5) ETH_MDC,
EVENTOUT
ADC123_
IN11
17 28 H6 M4 34 J10 37 M4 PC2 I/O FT (5)
SPI2_MISO,
I2S2ext_SD,
OTG_HS_ULPI_DIR,
ETH_MII_TXD2,
FMC_SDNE0,
EVENTOUT
ADC123_
IN12
18 29 H7 M5 35 J9 38 L4 PC3 I/O FT (5)
SPI2_MOSI/I2S2_SD,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
FMC_SDCKE0,
EVENTOUT
ADC123_
IN13
19 30 - - 36 G7 39 J5 VDD S
-- - - ---J6 V
SS S
20 31 J1 M1 37 K10 40 M1 VSSA S
--J2N1---N1 V
REF S
21 32 J3 P1 38 L11 41 P1 VREF+ S
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
DocID024030 Rev 5 55/226
STM32F427xx STM32F429xx Pinouts and pin description
83
22 33 J4 R1 39 L10 42 R1 VDDA S
23 34 J5 N3 40 K9 43 N3 PA0-WKUP
(PA0) I/O FT (6)
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
USART2_CTS,
UART4_TX,
ETH_MII_CRS,
EVENTOUT
ADC123_
IN0/WKUP
(5)
24 35 K1 N2 41 K8 44 N2 PA1 I/O FT (5)
TIM2_CH2, TIM5_CH2,
USART2_RTS,
UART4_RX,
ETH_MII_RX_CLK/ETH
_RMII_REF_CLK,
EVENTOUT
ADC123_
IN1
25 36 K2 P2 42 L9 45 P2 PA2 I/O FT (5)
TIM2_CH3, TIM5_CH3,
TIM9_CH1,
USART2_TX,
ETH_MDIO,
EVENTOUT
ADC123_
IN2
- - L2 F4 43 - 46 K4 PH2 I/O FT
ETH_MII_CRS,
FMC_SDCKE0,
LCD_R0, EVENTOUT
- - L1 G4 44 - 47 J4 PH3 I/O FT
ETH_MII_COL,
FMC_SDNE0, LCD_R1,
EVENTOUT
- - M2 H4 45 - 48 H4 PH4 I/O FT
I2C2_SCL,
OTG_HS_ULPI_NXT,
EVENTOUT
- - L3 J4 46 - 49 J3 PH5 I/O FT
I2C2_SDA, SPI5_NSS,
FMC_SDNWE,
EVENTOUT
26 37 K3 R2 47 M11 50 R2 PA3 I/O FT (5)
TIM2_CH4, TIM5_CH4,
TIM9_CH2,
USART2_RX,
OTG_HS_ULPI_D0,
ETH_MII_COL,
LCD_B5, EVENTOUT
ADC123_
IN3
27 38 - - - 51 K6 VSS S
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pinouts and pin description STM32F427xx STM32F429xx
56/226 DocID024030 Rev 5
- - M1 L4 48 N11 - L5 BYPASS_
REG IFT
28 39 J11 K4 49 J8 52 K5 VDD S
29 40 N2 N4 50 M10 53 N4 PA4 I/O TTa (5)
SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_CK,
OTG_HS_SOF,
DCMI_HSYNC,
LCD_VSYNC,
EVENTOUT
ADC12_
IN4 /DAC_
OUT1
30 41 M3 P4 51 M9 54 P4 PA5 I/O TTa (5)
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK,
OTG_HS_ULPI_CK,
EVENTOUT
ADC12_
IN5/DAC_
OUT2
31 42 N3 P3 52 N10 55 P3 PA6 I/O FT (5)
TIM1_BKIN,
TIM3_CH1,
TIM8_BKIN,
SPI1_MISO,
TIM13_CH1,
DCMI_PIXCLK,
LCD_G2, EVENTOUT
ADC12_
IN6
32 43 K4 R3 53 L8 56 R3 PA7 I/O FT (5)
TIM1_CH1N,
TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI,
TIM14_CH1,
ETH_MII_RX_DV/ETH_
RMII_CRS_DV,
EVENTOUT
ADC12_
IN7
33 44 L4 N5 54 M8 57 N5 PC4 I/O FT (5)
ETH_MII_RXD0/ETH_
RMII_RXD0,
EVENTOUT
ADC12_
IN14
34 45 M4 P5 55 N9 58 P5 PC5 I/O FT (5)
ETH_MII_RXD1/ETH_
RMII_RXD1,
EVENTOUT
ADC12_
IN15
-- - - -J759L7 V
DD S
- - - - - - 60 L6 VSS S
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
DocID024030 Rev 5 57/226
STM32F427xx STM32F429xx Pinouts and pin description
83
35 46 N4 R5 56 N8 61 R5 PB0 I/O FT (5)
TIM1_CH2N,
TIM3_CH3,
TIM8_CH2N, LCD_R3,
OTG_HS_ULPI_D1,
ETH_MII_RXD2,
EVENTOUT
ADC12_
IN8
36 47 K5 R4 57 K7 62 R4 PB1 I/O FT (5)
TIM1_CH3N,
TIM3_CH4,
TIM8_CH3N, LCD_R6,
OTG_HS_ULPI_D2,
ETH_MII_RXD3,
EVENTOUT
ADC12_
IN9
37 48 L5 M6 58 L7 63 M5 PB2-BOOT1
(PB2) I/O FT EVENTOUT
- - - - - - 64 G4 PI15 I/O FT LCD_R0, EVENTOUT
- - - - - - 65 R6 PJ0 I/O FT LCD_R1, EVENTOUT
- - - - - - 66 R7 PJ1 I/O FT LCD_R2, EVENTOUT
- - - - - - 67 P7 PJ2 I/O FT LCD_R3, EVENTOUT
- - - - - - 68 N8 PJ3 I/O FT LCD_R4, EVENTOUT
- - - - - - 69 M9 PJ4 I/O FT LCD_R5, EVENTOUT
- 49 M5 R6 59 M7 70 P8 PF11 I/O FT
SPI5_MOSI,
FMC_SDNRAS,
DCMI_D12,
EVENTOUT
- 50 N5 P6 60 N7 71 M6 PF12 I/O FT FMC_A6, EVENTOUT
- 51G9M861 - 72K7 V
SS S
- 52 D10 N8 62 - 73 L8 VDD S
- 53 M6 N6 63 K6 74 N6 PF13 I/O FT FMC_A7, EVENTOUT
- 54 K7 R7 64 L6 75 P6 PF14 I/O FT FMC_A8, EVENTOUT
- 55 L7 P7 65 M6 76 M8 PF15 I/O FT FMC_A9, EVENTOUT
- 56 N6 N7 66 N6 77 N7 PG0 I/O FT FMC_A10, EVENTOUT
- 57 M7 M7 67 K5 78 M7 PG1 I/O FT FMC_A11, EVENTOUT
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pinouts and pin description STM32F427xx STM32F429xx
58/226 DocID024030 Rev 5
38 58 N7 R8 68 L5 79 R8 PE7 I/O FT TIM1_ETR, UART7_Rx,
FMC_D4, EVENTOUT
39 59 J8 P8 69 M5 80 N9 PE8 I/O FT
TIM1_CH1N,
UART7_Tx, FMC_D5,
EVENTOUT
40 60 K8 P9 70 N5 81 P9 PE9 I/O FT TIM1_CH1, FMC_D6,
EVENTOUT
-61J6M971H382K8 V
SS S
- 62 G10 N9 72 J5 83 L9 VDD S
41 63 L8 R9 73 J4 84 R9 PE10 I/O FT TIM1_CH2N, FMC_D7,
EVENTOUT
42 64 M8 P10 74 K4 85 P10 PE11 I/O FT
TIM1_CH2, SPI4_NSS,
FMC_D8, LCD_G3,
EVENTOUT
43 65 N8 R10 75 L4 86 R10 PE12 I/O FT
TIM1_CH3N,
SPI4_SCK, FMC_D9,
LCD_B4, EVENTOUT
44 66 H9 N11 76 N4 87 R12 PE13 I/O FT
TIM1_CH3,
SPI4_MISO, FMC_D10,
LCD_DE, EVENTOUT
45 67 J9 P11 77 M4 88 P11 PE14 I/O FT
TIM1_CH4,
SPI4_MOSI, FMC_D11,
LCD_CLK, EVENTOUT
46 68 K9 R11 78 L3 89 R11 PE15 I/O FT TIM1_BKIN, FMC_D12,
LCD_R7, EVENTOUT
47 69 L9 R12 79 M3 90 P12 PB10 I/O FT
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
USART3_TX,
OTG_HS_ULPI_D3,
ETH_MII_RX_ER,
LCD_G4, EVENTOUT
48 70 M9 R13 80 N3 91 R13 PB11 I/O FT
TIM2_CH4, I2C2_SDA,
USART3_RX,
OTG_HS_ULPI_D4,
ETH_MII_TX_EN/ETH_
RMII_TX_EN, LCD_G5,
EVENTOUT
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
DocID024030 Rev 5 59/226
STM32F427xx STM32F429xx Pinouts and pin description
83
49 71 N9 M10 81 N2 92 L11 VCAP_1 S
-- - - -H293K9 V
SS S
50 72 F8 N10 82 J6 94 L10 VDD S
- - - - - - 95 M14 PJ5 I/O LCD_R6, EVENTOUT
- - N10 M11 83 - 96 P13 PH6 I/O FT
I2C2_SMBA,
SPI5_SCK,
TIM12_CH1,
ETH_MII_RXD2,
FMC_SDNE1,
DCMI_D8, EVENTOUT
- - M10 N12 84 - 97 N13 PH7 I/O FT
I2C3_SCL, SPI5_MISO,
ETH_MII_RXD3,
FMC_SDCKE1,
DCMI_D9, EVENTOUT
- - L10 M12 85 - 98 P14 PH8 I/O FT
I2C3_SDA, FMC_D16,
DCMI_HSYNC,
LCD_R2, EVENTOUT
- - K10 M13 86 - 99 N14 PH9 I/O FT
I2C3_SMBA,
TIM12_CH2,
FMC_D17, DCMI_D0,
LCD_R3, EVENTOUT
- - N11 L13 87 - 100 P15 PH10 I/O FT
TIM5_CH1, FMC_D18,
DCMI_D1, LCD_R4,
EVENTOUT
- - M11 L12 88 - 101 N15 PH11 I/O FT
TIM5_CH2, FMC_D19,
DCMI_D2, LCD_R5,
EVENTOUT
- - L11 K12 89 - 102 M15 PH12 I/O FT
TIM5_CH3, FMC_D20,
DCMI_D3, LCD_R6,
EVENTOUT
--E7H1290--K10 V
SS S
- - H8 J12 91 - 103 K11 VDD S
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pinouts and pin description STM32F427xx STM32F429xx
60/226 DocID024030 Rev 5
51 73 N12 P12 92 M2 104 L13 PB12 I/O FT
TIM1_BKIN,
I2C2_SMBA,
SPI2_NSS/I2S2_WS,
USART3_CK,
CAN2_RX,
OTG_HS_ULPI_D5,
ETH_MII_TXD0/ETH_R
MII_TXD0,
OTG_HS_ID,
EVENTOUT
52 74 M12 P13 93 N1 105 K14 PB13 I/O FT
TIM1_CH1N,
SPI2_SCK/I2S2_CK,
USART3_CTS,
CAN2_TX,
OTG_HS_ULPI_D6,
ETH_MII_TXD1/ETH_R
MII_TXD1, EVENTOUT
OTG_HS_
VBUS
53 75 M13 R14 94 K3 106 R14 PB14 I/O FT
TIM1_CH2N,
TIM8_CH2N,
SPI2_MISO,
I2S2ext_SD,
USART3_RTS,
TIM12_CH1,
OTG_HS_DM,
EVENTOUT
54 76 L13 R15 95 J3 107 R15 PB15 I/O FT
RTC_REFIN,
TIM1_CH3N,
TIM8_CH3N,
SPI2_MOSI/I2S2_SD,
TIM12_CH2,
OTG_HS_DP,
EVENTOUT
55 77 L12 P15 96 L2 108 L15 PD8 I/O FT USART3_TX,
FMC_D13, EVENTOUT
56 78 K13 P14 97 M1 109 L14 PD9 I/O FT USART3_RX,
FMC_D14, EVENTOUT
57 79 K11 N15 98 H4 110 K15 PD10 I/O FT
USART3_CK,
FMC_D15, LCD_B3,
EVENTOUT
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
DocID024030 Rev 5 61/226
STM32F427xx STM32F429xx Pinouts and pin description
83
58 80 H10 N14 99 K2 111 N10 PD11 I/O FT USART3_CTS,
FMC_A16, EVENTOUT
59 81 J13 N13 100 H6 112 M10 PD12 I/O FT
TIM4_CH1,
USART3_RTS,
FMC_A17, EVENTOUT
60 82 K12 M15 101 H5 113 M11 PD13 I/O FT TIM4_CH2, FMC_A18,
EVENTOUT
-83 - -102-114J10 V
SS S
- 84 F7 J13 103 L1 115 J11 VDD S
61 85 H11 M14 104 J2 116 L12 PD14 I/O FT TIM4_CH3, FMC_D0,
EVENTOUT
62 86 J12 L14 105 K1 117 K13 PD15 I/O FT TIM4_CH4, FMC_D1,
EVENTOUT
- - - - - - 118 K12 PJ6 I/O FT LCD_R7, EVENTOUT
- - - - - - 119 J12 PJ7 I/O FT LCD_G0, EVENTOUT
- - - - - - 120 H12 PJ8 I/O FT LCD_G1, EVENTOUT
- - - - - - 121 J13 PJ9 I/O FT LCD_G2, EVENTOUT
- - - - - - 122 H13 PJ10 I/O FT LCD_G3, EVENTOUT
- - - - - - 123 G12 PJ11 I/O FT LCD_G4, EVENTOUT
-- - - --124H11 VDD I/OFT
- - - - - - 125 H10 VSS I/O FT
- - - - - - 126 G13 PK0 I/O FT LCD_G5, EVENTOUT
- - - - - - 127 F12 PK1 I/O FT LCD_G6, EVENTOUT
- - - - - - 128 F13 PK2 I/O FT LCD_G7, EVENTOUT
- 87 H13 L15 106 J1 129 M13 PG2 I/O FT FMC_A12, EVENTOUT
-88
NC
(2) K15 107 G3 130 M12 PG3 I/O FT FMC_A13, EVENTOUT
- 89 H12 K14 108 G5 131 N12 PG4 I/O FT FMC_A14/FMC_BA0,
EVENTOUT
- 90 G13 K13 109 G6 132 N11 PG5 I/O FT FMC_A15/FMC_BA1,
EVENTOUT
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pinouts and pin description STM32F427xx STM32F429xx
62/226 DocID024030 Rev 5
- 91 G11 J15 110 G4 133 J15 PG6 I/O FT FMC_INT2, DCMI_D12,
LCD_R7, EVENTOUT
- 92 G12 J14 111 H1 134 J14 PG7 I/O FT
USART6_CK,
FMC_INT3, DCMI_D13,
LCD_CLK, EVENTOUT
- 93 F13 H14 112 G2 135 H14 PG8 I/O FT
SPI6_NSS,
USART6_RTS,
ETH_PPS_OUT,
FMC_SDCLK,
EVENTOUT
-94J7G12113D2136G10 V
SS S
-95E6H13114G1137G11 V
DD S
63 96 F9 H15 115 F2 138 H15 PC6 I/O FT
TIM3_CH1, TIM8_CH1,
I2S2_MCK,
USART6_TX,
SDIO_D6, DCMI_D0,
LCD_HSYNC,
EVENTOUT
64 97 F10 G15 116 F3 139 G15 PC7 I/O FT
TIM3_CH2, TIM8_CH2,
I2S3_MCK,
USART6_RX,
SDIO_D7, DCMI_D1,
LCD_G6, EVENTOUT
65 98 F11 G14 117 E4 140 G14 PC8 I/O FT
TIM3_CH3, TIM8_CH3,
USART6_CK,
SDIO_D0, DCMI_D2,
EVENTOUT
66 99 F12 F14 118 E3 141 F14 PC9 I/O FT
MCO2, TIM3_CH4,
TIM8_CH4, I2C3_SDA,
I2S_CKIN, SDIO_D1,
DCMI_D3, EVENTOUT
67 100 E13 F15 119 F1 142 F15 PA8 I/O FT
MCO1, TIM1_CH1,
I2C3_SCL,
USART1_CK,
OTG_FS_SOF,
LCD_R6, EVENTOUT
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
DocID024030 Rev 5 63/226
STM32F427xx STM32F429xx Pinouts and pin description
83
68 101 E8 E15 120 E2 143 E15 PA9 I/O FT
TIM1_CH2,
I2C3_SMBA,
USART1_TX,
DCMI_D0, EVENTOUT
OTG_FS_
VBUS
69 102 E9 D15 121 D5 144 D15 PA10 I/O FT
TIM1_CH3,
USART1_RX,
OTG_FS_ID,
DCMI_D1, EVENTOUT
70 103 E10 C15 122 D4 145 C15 PA11 I/O FT
TIM1_CH4,
USART1_CTS,
CAN1_RX, LCD_R4,
OTG_FS_DM,
EVENTOUT
71 104 E11 B15 123 E1 146 B15 PA12 I/O FT
TIM1_ETR,
USART1_RTS,
CAN1_TX, LCD_R5,
OTG_FS_DP,
EVENTOUT
72 105 E12 A15 124 D3 147 A15
PA13
(JTMS-
SWDIO)
I/O FT JTMS-SWDIO,
EVENTOUT
73 106 D12 F13 125 D1 148 E11 VCAP_2 S
74 107 J10 F12 126 D2 149 F10 VSS S
75 108 H4 G13 127 C1 150 F11 VDD S
- - D13 E12 128 - 151 E12 PH13 I/O FT
TIM8_CH1N,
CAN1_TX, FMC_D21,
LCD_G2, EVENTOUT
- - C13 E13 129 - 152 E13 PH14 I/O FT
TIM8_CH2N,
FMC_D22, DCMI_D4,
LCD_G3, EVENTOUT
- - C12 D13 130 - 153 D13 PH15 I/O FT
TIM8_CH3N,
FMC_D23, DCMI_D11,
LCD_G4, EVENTOUT
- - B13 E14 131 - 154 E14 PI0 I/O FT
TIM5_CH4,
SPI2_NSS/I2S2_WS(7),
FMC_D24, DCMI_D13,
LCD_G5, EVENTOUT
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pinouts and pin description STM32F427xx STM32F429xx
64/226 DocID024030 Rev 5
- - C11 D14 132 - 155 D14 PI1 I/O FT
SPI2_SCK/I2S2_CK(7),
FMC_D25, DCMI_D8,
LCD_G6, EVENTOUT
- - B12 C14 133 - 156 C14 PI2 I/O FT
TIM8_CH4,
SPI2_MISO,
I2S2ext_SD, FMC_D26,
DCMI_D9, LCD_G7,
EVENTOUT
- - A12 C13 134 - 157 C13 PI3 I/O FT
TIM8_ETR,
SPI2_MOSI/I2S2_SD,
FMC_D27, DCMI_D10,
EVENTOUT
--D11D9135F5-F9 V
SS S
- - D3 C9 136 A1 158 E10 VDD S
76 109 A11 A14 137 B1 159 A14
PA14
(JTCK-
SWCLK)
I/O FT JTCK-SWCLK/
EVENTOUT
77 110 B11 A13 138 C2 160 A13 PA15
(JTDI) I/O FT
JTDI,
TIM2_CH1/TIM2_ETR,
SPI1_NSS,
SPI3_NSS/I2S3_WS,
EVENTOUT
78 111 C10 B14 139 A2 161 B14 PC10 I/O FT
SPI3_SCK/I2S3_CK,
USART3_TX,
UART4_TX, SDIO_D2,
DCMI_D8, LCD_R2,
EVENTOUT
79 112 B10 B13 140 B2 162 B13 PC11 I/O FT
I2S3ext_SD,
SPI3_MISO,
USART3_RX,
UART4_RX, SDIO_D3,
DCMI_D4, EVENTOUT
80 113 A10 A12 141 C3 163 A12 PC12 I/O FT
SPI3_MOSI/I2S3_SD,
USART3_CK,
UART5_TX, SDIO_CK,
DCMI_D9, EVENTOUT
81 114 D9 B12 142 B3 164 B12 PD0 I/O FT CAN1_RX, FMC_D2,
EVENTOUT
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
DocID024030 Rev 5 65/226
STM32F427xx STM32F429xx Pinouts and pin description
83
82 115 C9 C12 143 C4 165 C12 PD1 I/O FT CAN1_TX, FMC_D3,
EVENTOUT
83 116 B9 D12 144 A3 166 D12 PD2 I/O FT
TIM3_ETR,
UART5_RX,
SDIO_CMD,
DCMI_D11,
EVENTOUT
84 117 A9 D11 145 B4 167 C11 PD3 I/O FT
SPI2_SCK/I2S2_CK,
USART2_CTS,
FMC_CLK, DCMI_D5,
LCD_G7, EVENTOUT
85 118 D8 D10 146 B5 168 D11 PD4 I/O FT
USART2_RTS,
FMC_NOE,
EVENTOUT
86 119 C8 C11 147 A4 169 C10 PD5 I/O FT
USART2_TX,
FMC_NWE,
EVENTOUT
- 120 - D8 148 - 170 F8 VSS S
- 121 D6 C8 149 C5 171 E9 VDD S
87 122 B8 B11 150 F4 172 B11 PD6 I/O FT
SPI3_MOSI/I2S3_SD,
SAI1_SD_A,
USART2_RX,
FMC_NWAIT,
DCMI_D10, LCD_B2,
EVENTOUT
88 123 A8 A11 151 A5 173 A11 PD7 I/O FT
USART2_CK,
FMC_NE1/FMC_NCE2,
EVENTOUT
- - - - - - 174 B10 PJ12 I/O FT LCD_B0, EVENTOUT
- - - - - - 175 B9 PJ13 I/O FT LCD_B1, EVENTOUT
- - - - - - 176 C9 PJ14 I/O FT LCD_B2, EVENTOUT
- - - - - - 177 D10 PJ15 I/O FT LCD_B3, EVENTOUT
-124
NC
(2) C10 152 E5 178 D9 PG9 I/O FT
USART6_RX,
FMC_NE2/FMC_NCE3,
DCMI_VSYNC(8),
EVENTOUT
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pinouts and pin description STM32F427xx STM32F429xx
66/226 DocID024030 Rev 5
- 125 C7 B10 153 C6 179 C8 PG10 I/O FT
LCD_G3,
FMC_NCE4_1/FMC_N
E3, DCMI_D2,
LCD_B2, EVENTOUT
- 126 B7 B9 154 B6 180 B8 PG11 I/O FT
ETH_MII_TX_EN/ETH_
RMII_TX_EN,
FMC_NCE4_2,
DCMI_D3, LCD_B3,
EVENTOUT
- 127 A7 B8 155 A6 181 C7 PG12 I/O FT
SPI6_MISO,
USART6_RTS,
LCD_B4, FMC_NE4,
LCD_B1, EVENTOUT
-128
NC
(2) A8 156 D6 182 B3 PG13 I/O FT
SPI6_SCK,
USART6_CTS,
ETH_MII_TXD0/ETH_R
MII_TXD0, FMC_A24,
EVENTOUT
-129
NC
(2) A7 157 F6 183 A4 PG14 I/O FT
SPI6_MOSI,
USART6_TX,
ETH_MII_TXD1/ETH_R
MII_TXD1, FMC_A25,
EVENTOUT
- 130 D7 D7 158 - 184 F7 VSS S
- 131 L6 C7 159 E6 185 E8 VDD S
- - - - - - 186 D8 PK3 I/O FT LCD_B4, EVENTOUT
- - - - - - 187 D7 PK4 I/O FT LCD_B5, EVENTOUT
- - - - - - 188 C6 PK5 I/O FT LCD_B6, EVENTOUT
- - - - - - 189 C5 PK6 I/O FT LCD_B7, EVENTOUT
- - - - - - 190 C4 PK7 I/O FT LCD_DE, EVENTOUT
- 132 C6 B7 160 A7 191 B7 PG15 I/O FT
USART6_CTS,
FMC_SDNCAS,
DCMI_D13,
EVENTOUT
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
DocID024030 Rev 5 67/226
STM32F427xx STM32F429xx Pinouts and pin description
83
89 133 B6 A10 161 B7 192 A10
PB3
(JTDO/TRACE
SWO)
I/O FT
JTDO/TRACESWO,
TIM2_CH2, SPI1_SCK,
SPI3_SCK/I2S3_CK,
EVENTOUT
90 134 A6 A9 162 C7 193 A9 PB4
(NJTRST) I/O FT
NJTRST, TIM3_CH1,
SPI1_MISO,
SPI3_MISO,
I2S3ext_SD,
EVENTOUT
91 135 D5 A6 163 C8 194 A8 PB5 I/O FT
TIM3_CH2,
I2C1_SMBA,
SPI1_MOSI,
SPI3_MOSI/I2S3_SD,
CAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
FMC_SDCKE1,
DCMI_D10,
EVENTOUT
92 136 C5 B6 164 A8 195 B6 PB6 I/O FT
TIM4_CH1, I2C1_SCL,
USART1_TX,
CAN2_TX,
FMC_SDNE1,
DCMI_D5, EVENTOUT
93 137 B5 B5 165 B8 196 B5 PB7 I/O FT
TIM4_CH2, I2C1_SDA,
USART1_RX, FMC_NL,
DCMI_VSYNC,
EVENTOUT
94 138 A5 D6 166 C9 197 E6 BOOT0 I B VPP
95 139 D4 A5 167 A9 198 A7 PB8 I/O FT
TIM4_CH3,
TIM10_CH1,
I2C1_SCL, CAN1_RX,
ETH_MII_TXD3,
SDIO_D4, DCMI_D6,
LCD_B6, EVENTOUT
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
Pinouts and pin description STM32F427xx STM32F429xx
68/226 DocID024030 Rev 5
96 140 C4 B4 168 B9 199 B4 PB9 I/O FT
TIM4_CH4,
TIM11_CH1,
I2C1_SDA,
SPI2_NSS/I2S2_WS,
CAN1_TX, SDIO_D5,
DCMI_D7, LCD_B7,
EVENTOUT
97 141 B4 A4 169 B10 200 A6 PE0 I/O FT
TIM4_ETR,
UART8_RX,
FMC_NBL0, DCMI_D2,
EVENTOUT
98 142 A4 A3 170 A10 201 A5 PE1 I/O FT
UART8_Tx,
FMC_NBL1, DCMI_D3,
EVENTOUT
99 - F5 D5 - - 202 F6 VSS S
- 143 C3 C6 171 A11 203 E5 PDR_ON S
100 144 K6 C5 172 D7 204 E7 VDD S
- - B3 D4 173 - 205 C3 PI4 I/O FT
TIM8_BKIN,
FMC_NBL2, DCMI_D5,
LCD_B4, EVENTOUT
- - A3 C4 174 - 206 D3 PI5 I/O FT
TIM8_CH1,
FMC_NBL3,
DCMI_VSYNC,
LCD_B5, EVENTOUT
- - A2 C3 175 - 207 D6 PI6 I/O FT
TIM8_CH2, FMC_D28,
DCMI_D6, LCD_B6,
EVENTOUT
- - B1 C2 176 - 208 D4 PI7 I/O FT
TIM8_CH3, FMC_D29,
DCMI_D7, LCD_B7,
EVENTOUT
1. Function availability depends on the chosen device.
2. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the
output data register to avoid extra current consumption in low power modes.
3. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP100
LQFP144
UFBGA169
UFBGA176
LQFP176
WLCSP143
LQFP208
TFBGA216
DocID024030 Rev 5 69/226
STM32F427xx STM32F429xx Pinouts and pin description
83
4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:
www.st.com.
5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
6. If the device is delivered in an WLCSP143, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the
BYPASS_REG pin is set to VDD (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).
7. PI0 and PI1 cannot be used for I2S2 full-duplex mode.
8. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.
Pinouts and pin description STM32F427xx STM32F429xx
70/226 DocID024030 Rev 5
Table 11. FMC pin definition
Pin name CF NOR/PSRAM/
SRAM
NOR/PSRAM
Mux NAND16 SDRAM
PF0 A0 A0 A0
PF1 A1 A1 A1
PF2 A2 A2 A2
PF3 A3 A3 A3
PF4 A4 A4 A4
PF5 A5 A5 A5
PF12 A6 A6 A6
PF13 A7 A7 A7
PF14 A8 A8 A8
PF15 A9 A9 A9
PG0 A10 A10 A10
PG1 A11 A11
PG2 A12 A12
PG3 A13
PG4 A14 BA0
PG5 A15 BA1
PD11 A16 A16 CLE
PD12 A17 A17 ALE
PD13 A18 A18
PE3 A19 A19
PE4 A20 A20
PE5 A21 A21
PE6 A22 A22
PE2 A23 A23
PG13 A24 A24
PG14 A25 A25
PD14 D0 D0 DA0 D0 D0
PD15 D1 D1 DA1 D1 D1
PD0D2 D2DA2D2 D2
PD1D3 D3DA3D3 D3
PE7 D4 D4 DA4 D4 D4
PE8 D5 D5 DA5 D5 D5
PE9 D6 D6 DA6 D6 D6
PE10 D7 D7 DA7 D7 D7
DocID024030 Rev 5 71/226
STM32F427xx STM32F429xx Pinouts and pin description
83
PE11 D8 D8 DA8 D8 D8
PE12 D9 D9 DA9 D9 D9
PE13 D10 D10 DA10 D10 D10
PE14 D11 D11 DA11 D11 D11
PE15 D12 D12 DA12 D12 D12
PD8 D13 D13 DA13 D13 D13
PD9 D14 D14 DA14 D14 D14
PD10 D15 D15 DA15 D15 D15
PH8 D16 D16
PH9 D17 D17
PH10 D18 D18
PH11 D19 D19
PH12 D20 D20
PH13 D21 D21
PH14 D22 D22
PH15 D23 D23
PI0 D24 D24
PI1 D25 D25
PI2 D26 D26
PI3 D27 D27
PI6 D28 D28
PI7 D29 D29
PI9 D30 D30
PI10 D31 D31
PD7 NE1 NE1 NCE2
PG9 NE2 NE2 NCE3
PG10 NCE4_1 NE3 NE3
PG11 NCE4_2
PG12 NE4 NE4
PD3 CLK CLK
PD4 NOE NOE NOE NOE
PD5 NWE NWE NWE NWE
PD6 NWAIT NWAIT NWAIT NWAIT
PB7 NL(NADV) NL(NADV)
Table 11. FMC pin definition (continued)
Pin name CF NOR/PSRAM/
SRAM
NOR/PSRAM
Mux NAND16 SDRAM
Pinouts and pin description STM32F427xx STM32F429xx
72/226 DocID024030 Rev 5
PF6 NIORD
PF7 NREG
PF8 NIOWR
PF9 CD
PF10 INTR
PG6 INT2
PG7 INT3
PE0 NBL0 NBL0 NBL0
PE1 NBL1 NBL1 NBL1
PI4 NBL2 NBL2
PI5 NBL3 NBL3
PG8 SDCLK
PC0 SDNWE
PF11 SDNRAS
PG15 SDNCAS
PH2 SDCKE0
PH3 SDNE0
PH6 SDNE1
PH7 SDCKE1
PH5 SDNWE
PC2 SDNE0
PC3 SDCKE0
PB5 SDCKE1
PB6 SDNE1
Table 11. FMC pin definition (continued)
Pin name CF NOR/PSRAM/
SRAM
NOR/PSRAM
Mux NAND16 SDRAM
STM32F427xx STM32F429xx Pinouts and pin description
DocID024030 Rev 5 73/226
Table 12. STM32F427xx and STM32F429xx alternate function mapping
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
Port A
PA0 -
TIM2_
CH1/TIM2
_ETR
TIM5_
CH1
TIM8_
ETR -- -
USART2_
CTS UART4_TX - - ETH_MII_
CRS ---
EVEN
TOUT
PA1 - TIM2_
CH2
TIM5_
CH2 --- -
USART2_
RTS UART4_RX - -
ETH_MII_
RX_CLK/E
TH_RMII_
REF_CLK
---
EVEN
TOUT
PA2 - TIM2_
CH3
TIM5_
CH3
TIM9_
CH1 -- -
USART2_
TX ---
ETH_
MDIO ---
EVEN
TOUT
PA3 - TIM2_
CH4
TIM5_
CH4
TIM9_
CH2 -- -
USART2_
RX --
OTG_HS_
ULPI_D0
ETH_MII_
COL - - LCD_B5 EVEN
TOUT
PA4 - - - - - SPI1_
NSS
SPI3_
NSS/
I2S3_WS
USART2_
CK --
--
OTG_HS_
SOF
DCMI_
HSYNC
LCD_
VSYNC
EVEN
TOUT
PA5 -
TIM2_
CH1/TIM2
_ETR
-TIM8_
CH1N -SPI1_
SCK -- - -
OTG_HS_
ULPI_CK ----
EVEN
TOUT
PA6 - TIM1_
BKIN
TIM3_
CH1
TIM8_
BKIN -SPI1_
MISO - - - TIM13_CH1 - - - DCMI_
PIXCLK LCD_G2 EVEN
TOUT
PA7 - TIM1_
CH1N
TIM3_
CH2
TIM8_
CH1N -SPI1_
MOSI - - - TIM14_CH1 -
ETH_MII_
RX_DV/
ETH_RMII
_CRS_DV
---
EVEN
TOUT
PA8 MCO1 TIM1_
CH1 --
I2C3_
SCL --
USART1_
CK --
OTG_FS_
SOF - - - LCD_R6 EVEN
TOUT
PA9 - TIM1_
CH2 --
I2C3_
SMBA --
USART1_
TX -----
DCMI_
D0 -EVEN
TOUT
PA10 - TIM1_
CH3 -----
USART1_
RX --
OTG_FS_
ID --
DCMI_
D1 -EVEN
TOUT
PA11 - TIM1_
CH4 -----
USART1_
CTS - CAN1_RX OTG_FS_
DM - - - LCD_R4 EVEN
TOUT
PA12 - TIM1_
ETR -----
USART1_
RTS -CAN1_TX
OTG_FS_
DP - - - LCD_R5 EVEN
TOUT
Pinouts and pin description STM32F427xx STM32F429xx
74/226 DocID024030 Rev 5
Port A
PA13
JTMS-
SWDI
O
------- - - - - ---
EVEN
TOUT
PA14
JTCK-
SWCL
K
------- - - - - ---
EVEN
TOUT
PA15 JTDI
TIM2_
CH1/TIM2
_ETR
---
SPI1_
NSS
SPI3_
NSS/
I2S3_WS
-- - -- ---
EVEN
TOUT
Port B
PB0 - TIM1_
CH2N
TIM3_
CH3
TIM8_
CH2N - - - - - LCD_R3 OTG_HS_
ULPI_D1
ETH_MII_
RXD2 ---
EVEN
TOUT
PB1 - TIM1_
CH3N
TIM3_
CH4
TIM8_
CH3N - - - - - LCD_R6 OTG_HS_
ULPI_D2
ETH_MII_
RXD3 ---
EVEN
TOUT
PB2 - - - - - - - - - - - - - - - EVEN
TOUT
PB3
JTDO/
TRAC
ESWO
TIM2_
CH2 ---
SPI1_
SCK
SPI3_
SCK/
I2S3_CK
-- - -- ---
EVEN
TOUT
PB4 NJTR
ST -TIM3_
CH1 --
SPI1_
MISO
SPI3_
MISO
I2S3ext_
SD -------
EVEN
TOUT
PB5 - - TIM3_
CH2 -I2C1_
SMBA
SPI1_
MOSI
SPI3_
MOSI/
I2S3_SD
- - CAN2_RX OTG_HS_
ULPI_D7
ETH_PPS
_OUT
FMC_
SDCKE1
DCMI_
D10 -EVEN
TOUT
PB6 - - TIM4_
CH1 -I2C1_
SCL --
USART1_
TX -CAN2_TX- - FMC_
SDNE1
DCMI_
D5 -EVEN
TOUT
PB7 - - TIM4_
CH2 -I2C1_
SDA --
USART1_
RX - - - - FMC_NL DCMI_
VSYNC -EVEN
TOUT
PB8 - - TIM4_
CH3
TIM10_
CH1
I2C1_
SCL - - - - CAN1_RX - ETH_MII_
TXD3 SDIO_D4 DCMI_
D6 LCD_B6 EVEN
TOUT
PB9 - - TIM4_
CH4
TIM11_
CH1
I2C1_
SDA
SPI2_
NSS/I2
S2_WS
- - - CAN1_TX - - SDIO_D5 DCMI_
D7 LCD_B7 EVEN
TOUT
PB10 - TIM2_
CH3 --
I2C2_
SCL
SPI2_
SCK/I2
S2_CK
-USART3_
TX --
OTG_HS_
ULPI_D3
ETH_MII_
RX_ER - - LCD_G4 EVEN
TOUT
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
STM32F427xx STM32F429xx Pinouts and pin description
DocID024030 Rev 5 75/226
Port B
PB11 - TIM2_
CH4 --
I2C2_
SDA --
USART3_
RX --
OTG_HS_
ULPI_D4
ETH_MII_
TX_EN/
ETH_RMII
_TX_EN
- - LCD_G5 EVEN
TOUT
PB12 - TIM1_
BKIN --
I2C2_
SMBA
SPI2_
NSS/I2
S2_WS
-USART3_
CK - CAN2_RX OTG_HS_
ULPI_D5
ETH_MII_
TXD0/ETH
_RMII_
TXD0
OTG_HS_
ID --
EVEN
TOUT
PB13 - TIM1_
CH1N ---
SPI2_
SCK/I2
S2_CK
-USART3_
CTS -CAN2_TX
OTG_HS_
ULPI_D6
ETH_MII_
TXD1/ETH
_RMII_TX
D1
---
EVEN
TOUT
PB14 - TIM1_
CH2N -TIM8_
CH2N -SPI2_
MISO
I2S2ext_
SD
USART3_
RTS - TIM12_CH1 - - OTG_HS_
DM --
EVEN
TOUT
PB15 RTC_
REFIN
TIM1_
CH3N -TIM8_
CH3N -
SPI2_
MOSI/I2
S2_SD
- - - TIM12_CH2 - - OTG_HS_
DP --
EVEN
TOUT
Port
C
PC0 - - - - - - - - - - OTG_HS_
ULPI_STP -FMC_SDN
WE --
EVEN
TOUT
PC1 - - - - - - - - - - - ETH_MDC - - - EVEN
TOUT
PC2 - - - - - SPI2_
MISO
I2S2ext_
SD -- -
OTG_HS_
ULPI_DIR
ETH_MII_
TXD2
FMC_
SDNE0 --
EVEN
TOUT
PC3 - - - - -
SPI2_
MOSI/I2
S2_SD
-- - -
OTG_HS_
ULPI_NXT
ETH_MII_
TX_CLK
FMC_
SDCKE0 --
EVEN
TOUT
PC4 - - - - - - - - - - -
ETH_MII_
RXD0/ETH
_RMII_
RXD0
---
EVEN
TOUT
PC5 - - - - - - - - - - -
ETH_MII_
RXD1/ETH
_RMII_
RXD1
---
EVEN
TOUT
PC6 - - TIM3_
CH1
TIM8_
CH1 -I2S2_
MCK --
USART6_
TX - - - SDIO_D6 DCMI_
D0
LCD_
HSYNC
EVEN
TOUT
PC7 - - TIM3_
CH2
TIM8_
CH2 --
I2S3_
MCK -USART6_
RX - - - SDIO_D7 DCMI_
D1 LCD_G6 EVEN
TOUT
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
Pinouts and pin description STM32F427xx STM32F429xx
76/226 DocID024030 Rev 5
Port
C
PC8 - - TIM3_
CH3
TIM8_
CH3 -- - -
USART6_
CK - - - SDIO_D0 DCMI_
D2 -EVEN
TOUT
PC9 MCO2 - TIM3_
CH4
TIM8_
CH4
I2C3_
SDA
I2S_
CKIN -- - - - -SDIO_D1
DCMI_
D3 -EVEN
TOUT
PC10 - - - - - -
SPI3_
SCK/I2S
3_CK
USART3_
TX UART4_TX - - - SDIO_D2 DCMI_
D8 LCD_R2 EVEN
TOUT
PC11 - - - - - I2S3ext
_SD
SPI3_
MISO
USART3_
RX UART4_RX - - - SDIO_D3 DCMI_
D4 -EVEN
TOUT
PC12 - - - - - -
SPI3_
MOSI/I2
S3_SD
USART3_
CK UART5_TX - - - SDIO_CK DCMI_
D9 -EVEN
TOUT
PC13 - - - - - - - - - - - - - - - EVEN
TOUT
PC14 - - - - - - - - - - - - - - - EVEN
TOUT
PC15 - - - - - - - - - - - - - - - EVEN
TOUT
Port
D
PD0 - - - - - - - - - CAN1_RX - - FMC_D2 - - EVEN
TOUT
PD1 - - - - - - - - - CAN1_TX - - FMC_D3 - - EVEN
TOUT
PD2 - - TIM3_
ETR --- - -UART5_RX- - - SDIO_
CMD
DCMI_
D11 -EVEN
TOUT
PD3 - - - - -
SPI2_S
CK/I
2S2_CK
-USART2_
CTS -- - - FMC_CLK DCMI_
D5 LCD_G7 EVEN
TOUT
PD4 - - - - - - - USART2_
RTS - - - - FMC_NOE - - EVEN
TOUT
PD5 - - - - - - - USART2_
TX ----FMC_NWE--
EVEN
TOUT
PD6 - - - - -
SPI3_
MOSI/I2
S3_SD
SAI1_
SD_A
USART2_
RX ----
FMC_
NWAIT
DCMI_
D10 LCD_B2 EVEN
TOUT
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
STM32F427xx STM32F429xx Pinouts and pin description
DocID024030 Rev 5 77/226
Port
D
PD7 - - - - - - - USART2_
CK ----
FMC_NE1/
FMC_
NCE2
--
EVEN
TOUT
PD8 - - - - - - - USART3_
TX - - - - FMC_D13 - - EVEN
TOUT
PD9 - - - - - - - USART3_
RX - - - - FMC_D14 - - EVEN
TOUT
PD10 - - - - - - - USART3_
CK - - - - FMC_D15 - LCD_B3 EVEN
TOUT
PD11 - - - - - - - USART3_
CTS ----FMC_A16--
EVEN
TOUT
PD12 - - TIM4_
CH1 --- -
USART3_
RTS ----FMC_A17--
EVEN
TOUT
PD13 - - TIM4_
CH2 - - - - - - - - - FMC_A18 - - EVEN
TOUT
PD14 - - TIM4_
CH3 --- - - - - - -FMC_D0- -
EVEN
TOUT
PD15 - - TIM4_
CH4 --- - - - - - -FMC_D1- -
EVEN
TOUT
Port E
PE0 - - TIM4_
ETR - - - - - UART8_Rx - - - FMC_
NBL0
DCMI_
D2 -EVEN
TOUT
PE1 - - - - - - - - UART8_Tx - - - FMC_
NBL1
DCMI_
D3 -EVEN
TOUT
PE2 TRAC
ECLK ----
SPI4_
SCK
SAI1_
MCLK_A -- - -
ETH_MII_
TXD3 FMC_A23 - - EVEN
TOUT
PE3 TRAC
ED0 -----
SAI1_
SD_B - - - - - FMC_A19 - - EVEN
TOUT
PE4 TRAC
ED1 ----
SPI4_
NSS
SAI1_
FS_A - - - - - FMC_A20 DCMI_
D4 LCD_B0 EVEN
TOUT
PE5 TRAC
ED2 --
TIM9_
CH1 -SPI4_M
ISO
SAI1_
SCK_A - - - - - FMC_A21 DCMI_
D6 LCD_G0 EVEN
TOUT
PE6 TRAC
ED3 --
TIM9_
CH2 -SPI4_
MOSI
SAI1_
SD_A - - - - - FMC_A22 DCMI_
D7 LCD_G1 EVEN
TOUT
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
Pinouts and pin description STM32F427xx STM32F429xx
78/226 DocID024030 Rev 5
Port E
PE7 - TIM1_
ETR - - - - - - UART7_Rx - - - FMC_D4 - - EVEN
TOUT
PE8 - TIM1_
CH1N - - - - - - UART7_Tx - - - FMC_D5 - - EVEN
TOUT
PE9 - TIM1_
CH1 - - - - - - - - - - FMC_D6 - - EVEN
TOUT
PE10 - TIM1_
CH2N - - - - - - - - - - FMC_D7 - - EVEN
TOUT
PE11 - TIM1_
CH2 ---
SPI4_
NSS - - - - - - FMC_D8 - LCD_G3 EVEN
TOUT
PE12 - TIM1_
CH3N ---
SPI4_
SCK - - - - - - FMC_D9 - LCD_B4 EVEN
TOUT
PE13 - TIM1_
CH3 ---
SPI4_
MISO - - - - - - FMC_D10 - LCD_DE EVEN
TOUT
PE14 - TIM1_
CH4 ---
SPI4_
MOSI - - - - - - FMC_D11 - LCD_
CLK
EVEN
TOUT
PE15 - TIM1_
BKIN - - - - - - - - - FMC_D12 - LCD_R7 EVEN
TOUT
Port F
PF0 - - - - I2C2_
SDA -- - - - - -FMC_A0- -
EVEN
TOUT
PF1 - I2C2_
SCL -- - - - - -FMC_A1- -
EVEN
TOUT
PF2 - - - - I2C2_
SMBA -- - - - - -FMC_A2- -
EVEN
TOUT
PF3 - - - - - - - - - - - FMC_A3 - - EVEN
TOUT
PF4 - - - - - - - - - - - FMC_A4 - - EVEN
TOUT
PF5 - - - - - - - - - - - FMC_A5 - - EVEN
TOUT
PF6 - - - TIM10_
CH1 -SPI5_
NSS
SAI1_
SD_B - UART7_Rx - - - FMC_
NIORD --
EVEN
TOUT
PF7 - - - TIM11_
CH1 -SPI5_
SCK
SAI1_
MCLK_B -UART7_Tx - - - FMC_
NREG --
EVEN
TOUT
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
STM32F427xx STM32F429xx Pinouts and pin description
DocID024030 Rev 5 79/226
Port F
PF8 - - - - - SPI5_
MISO
SAI1_
SCK_B - - TIM13_CH1 - - FMC_
NIOWR --
EVEN
TOUT
PF9 - - - - - SPI5_
MOSI
SAI1_
FS_B - - TIM14_CH1 - - FMC_CD - - EVEN
TOUT
PF10 - - - - - - - - - - - - FMC_INTR DCMI_
D11 LCD_DE EVEN
TOUT
PF11 - - - - - SPI5_
MOSI -- - - - -
FMC_
SDNRAS
DCMI_
D12 -EVEN
TOUT
PF12 - - - - - - - - - - - - FMC_A6 - - EVEN
TOUT
PF13 - - - - - - - - - - - - FMC_A7 - - EVEN
TOUT
PF14 - - - - - - - - - - - - FMC_A8 - - EVEN
TOUT
PF15 - - - - - - - - - - - - FMC_A9 - - EVEN
TOUT
Port
G
PG0 - - - - - - - - - - - - FMC_A10 - - EVEN
TOUT
PG1 - - - - - - - - - - - - FMC_A11 - - EVEN
TOUT
PG2 - - - - - - - - - - - - FMC_A12 - - EVEN
TOUT
PG3 - - - - - - - - - - - - FMC_A13 - - EVEN
TOUT
PG4 - - - - - - - - - - - - FMC_A14/
FMC_BA0 --
EVEN
TOUT
PG5 - - - - - - - - - - - - FMC_A15/
FMC_BA1 --
EVEN
TOUT
PG6 - - - - - - - - - - - - FMC_INT2 DCMI_
D12 LCD_R7 EVEN
TOUT
PG7 - - - - - - - - USART6_
CK ---FMC_INT3
DCMI_
D13
LCD_
CLK
EVEN
TOUT
PG8 - - - - - SPI6_
NSS --
USART6_
RTS --
ETH_PPS
_OUT
FMC_SDC
LK --
EVEN
TOUT
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
Pinouts and pin description STM32F427xx STM32F429xx
80/226 DocID024030 Rev 5
Port
G
PG9 - - - - - - - - USART6_
RX ---
FMC_NE2/
FMC_
NCE3
DCMI_
VSYNC
(1) -EVEN
TOUT
PG10 - - - - - - - - - LCD_G3 - -
FMC_
NCE4_1/
FMC_NE3
DCMI_
D2 LCD_B2 EVEN
TOUT
PG11 - - - - - - - - - - -
ETH_MII_
TX_EN/
ETH_RMII
_TX_EN
FMC_
NCE4_2
DCMI_
D3 LCD_B3 EVEN
TOUT
PG12 - - - - - SPI6_
MISO --
USART6_
RTS LCD_B4 - - FMC_NE4 - LCD_B1 EVEN
TOUT
PG13 - - - - - SPI6_
SCK --
USART6_
CTS --
ETH_MII_
TXD0/
ETH_RMII
_TXD0
FMC_A24 - - EVEN
TOUT
PG14 - - - - - SPI6_
MOSI --
USART6_
TX --
ETH_MII_
TXD1/
ETH_RMII
_TXD1
FMC_A25 - - EVEN
TOUT
PG15 - - - - - - - - USART6_
CTS ---
FMC_
SDNCAS
DCMI_
D13 -EVEN
TOUT
Port
H
PH0 - - - - - - - - - - - - - - - EVEN
TOUT
PH1 - - - - - - - - - - - - - - - EVEN
TOUT
PH2 - - - - - - - - - - - ETH_MII_
CRS
FMC_
SDCKE0 - LCD_R0 EVEN
TOUT
PH3 - - - - - - - - - - - ETH_MII_
COL
FMC_SDN
E0 - LCD_R1 EVEN
TOUT
PH4 - - - - I2C2_
SCL -- - - -
OTG_HS_
ULPI_NXT --
--
EVEN
TOUT
PH5 - - - - I2C2_
SDA
SPI5_N
SS -- - - - -
FMC_SDN
WE --
EVEN
TOUT
PH6 - - - - I2C2_
SMBA
SPI5_
SCK - - - TIM12_CH1 - - FMC_
SDNE1
DCMI_
D8 --
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
STM32F427xx STM32F429xx Pinouts and pin description
DocID024030 Rev 5 81/226
Port
H
PH7 - - - - I2C3_
SCL
SPI5_
MISO -- - - -
ETH_MII_
RXD3
FMC_
SDCKE1
DCMI_
D9 --
PH8 - - - - I2C3_
SDA -- - - - - -FMC_D16
DCMI_
HSYNC LCD_R2 EVEN
TOUT
PH9 - - - - I2C3_
SMBA - - - - TIM12_CH2 - - FMC_D17 DCMI_
D0 LCD_R3 EVEN
TOUT
PH10 - - TIM5_
CH1 --- - - - - - -FMC_D18
DCMI_
D1 LCD_R4 EVEN
TOUT
PH11 - - TIM5_
CH2 --- - - - - - -FMC_D19
DCMI_
D2 LCD_R5 EVEN
TOUT
PH12 - - TIM5_
CH3 --- - - - - - -FMC_D20
DCMI_
D3 LCD_R6 EVEN
TOUT
PH13 - - - TIM8_
CH1N - - - - - CAN1_TX - - FMC_D21 - LCD_G2 EVEN
TOUT
PH14 - - - TIM8_
CH2N - - - - - - - - FMC_D22 DCMI_
D4 LCD_G3 EVEN
TOUT
PH15 - - - TIM8_
CH3N - - - - - - - - FMC_D23 DCMI_
D11 LCD_G4 EVEN
TOUT
Port I
PI0 - - TIM5_
CH4 --
SPI2_
NSS/I2
S2_WS
- - - - - - FMC_D24 DCMI_
D13 LCD_G5 EVEN
TOUT
PI1 - - - - -
SPI2_
SCK/I2
S2_CK
-- - - - - FMC_D25 DCMI_
D8 LCD_G6 EVEN
TOUT
PI2 - - - TIM8_
CH4 -SPI2_
MISO
I2S2ext_
SD -- - --FMC_D26
DCMI_
D9 LCD_G7 EVEN
TOUT
PI3 - - - TIM8_
ETR -
SPI2_M
OSI/I2S
2_SD
FMC_D27 DCMI_D
10
EVEN
TOUT
PI4 - - - TIM8_
BKIN -- - - - - - - FMC_
NBL2
DCMI_D
5LCD_B4 EVEN
TOUT
PI5 - - - TIM8_
CH1 -- - - - - - - FMC_
NBL3
DCMI_
VSYNC LCD_B5 EVEN
TOUT
PI6 - - - TIM8_
CH2 - - - - - - - - FMC_D28 DCMI_
D6 LCD_B6 EVEN
TOUT
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
Pinouts and pin description STM32F427xx STM32F429xx
82/226 DocID024030 Rev 5
Port I
PI7 - - - TIM8_
CH3 - - - - - - - - FMC_D29 DCMI_
D7 LCD_B7 EVEN
TOUT
PI8 - - - - - - - - - - - - - - - EVEN
TOUT
PI9 - - - - - - - - - CAN1_RX - - FMC_D30 - LCD_
VSYNC
EVEN
TOUT
PI10 - - - - - - - - - - - ETH_MII_
RX_ER FMC_D31 - LCD_
HSYNC
EVEN
TOUT
PI11 - - - - - - - - - - OTG_HS_
ULPI_DIR ----
EVEN
TOUT
PI12 - - - - - - - - - - - - - - LCD_
HSYNC
EVEN
TOUT
PI13 - - - - - - - - - - - - - - LCD_
VSYNC
EVEN
TOUT
PI14 - - - - - - - - - - - - - - LCD_
CLK
EVEN
TOUT
PI15 - - - - - - - - - - - - - - LCD_R0 EVEN
TOUT
Port J
PJ0 - - - - - - - - - - - - - - LCD_R1 EVEN
TOUT
PJ1 - - - - - - - - - - - - - - LCD_R2 EVEN
TOUT
PJ2 - - - - - - - - - - - - - - LCD_R3 EVEN
TOUT
PJ3 - - - - - - - - - - - - - - LCD_R4 EVEN
TOUT
PJ4 - - - - - - - - - - - - - - LCD_R5 EVEN
TOUT
PJ5 - - - - - - - - - - - - - - LCD_R6 EVEN
TOUT
PJ6 - - - - - - - - - - - - - - LCD_R7 EVEN
TOUT
PJ7 - - - - - - - - - - - - - - LCD_G0 EVEN
TOUT
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
STM32F427xx STM32F429xx Pinouts and pin description
DocID024030 Rev 5 83/226
Port J
PJ8 - - - - - - - - - - - - - - LCD_G1 EVEN
TOUT
PJ9 - - - - - - - - - - - - - - LCD_G2 EVEN
TOUT
PJ10 - - - - - - - - - - - - - - LCD_G3 EVEN
TOUT
PJ11 - - - - - - - - - - - - - - LCD_G4 EVEN
TOUT
PJ12 - - - - - - - - - - - - - - LCD_B0 EVEN
TOUT
PJ13 - - - - - - - - - - - - - - LCD_B1 EVEN
TOUT
PJ14 - - - - - - - - - - - - - - LCD_B2 EVEN
TOUT
PJ15 - - - - - - - - - - - - - - LCD_B3 EVEN
TOUT
Port K
PK0 - - - - - - - - - - - - - - LCD_G5 EVEN
TOUT
PK1 - - - - - - - - - - - - - - LCD_G6 EVEN
TOUT
PK2 - - - - - - - - - - - - - - LCD_G7 EVEN
TOUT
PK3 - - - - - - - - - - - - - - LCD_B4 EVEN
TOUT
PK4 - - - - - - - - - - - - - - LCD_B5 EVEN
TOUT
PK5 - - - - - - - - - - - - - - LCD_B6 EVEN
TOUT
PK6 - - - - - - - - - - - - - - LCD_B7 EVEN
TOUT
PK7 - - - - - - - - - - - - - - LCD_DE EVEN
TOUT
1. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/
10/11
I2C1/
2/3
SPI1/2/
3/4/5/6
SPI2/3/
SAI1
SPI3/
USART1/
2/3
USART6/
UART4/5/7
/8
CAN1/2/
TIM12/13/14
/LCD
OTG2_HS
/OTG1_
FS
ETH FMC/SDIO
/OTG2_FS DCMI LCD SYS
Memory mapping STM32F427xx STM32F429xx
84/226 DocID024030 Rev 5
5 Memory mapping
The memory map is shown in Figure 19.
Figure 19. Memory map
069
0E\WH
%ORFN
&RUWH[0
,QWHUQDO
SHULSKHUDOV
0E\WH
%ORFN
)0&
0E\WH
%ORFN
)0&EDQNWR
EDQN
[
[)))))))
[
[)))))))
[
[)))))))
[
[)))))))
[
[)))))))
[$
[&)))))))
['
[')))))))
[(
[))))))))
65$0.%DOLDVHG
%\ELWEDQGLQJ
5HVHUYHG
[[%)))
[&[))))
[[)))))))
[
5HVHUYHG
[)))
[[))))
[
5HVHUYHG [&[)))))))
$+% [[')))))))
$+%
65$0.%DOLDVHG
%\ELWEDQGLQJ
[%))
[
65$0.%DOLDVHG
%\ELWEDQGLQJ [[))))
$3%
$3%
[%))
[&[))))
5HVHUYHG
[[)))))))
[))))
$+%
5HVHUYHG
)ODVKPHPRU\
[[)))))))
[)))[)))$)
[)))&[)))&
[[)))))
[[))))))
[[)))))
6\VWHPPHPRU\
5HVHUYHG
5HVHUYHG
$OLDVHGWR)ODVKV\VWHP
PHPRU\RU65$0GHSHQGLQJ
RQWKH%227SLQV
2SWLRQ%\WHV
5HVHUYHG [)))&)[)))))))
[)))$[))))))
5HVHUYHG
&&0GDWD5$0
.%GDWD65$0 [[))))
5HVHUYHG [[))(%)))
[))(&[))(&
2SWLRQE\WHV
5HVHUYHG [))(&)[))())))
[
&RUWH[0LQWHUQDO
SHULSKHUDOV [([()))))
5HVHUYHG [([))))))))
0E\WH
%ORFN
)0&
0E\WH
%ORFN
)0&EDQNWR
EDQN
0E\WH
%ORFN
3HULSKHUDOV
0E\WH
%ORFN
65$0
0E\WH
%ORFN
65$0
DocID024030 Rev 5 85/226
STM32F427xx STM32F429xx Memory mapping
88
Table 13. STM32F427xx and STM32F429xx register boundary addresses
Bus Boundary address Peripheral
0xE00F FFFF - 0xFFFF FFFF Reserved
Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals
AHB3
0xD000 0000 - 0xDFFF FFFF FMC bank 6
0xC000 0000 - 0xCFFF FFFF FMC bank 5
0xA000 1000 - 0xBFFF FFFF Reserved
0xA000 0000- 0xA000 0FFF FMC control register
0x9000 0000 - 0x9FFF FFFF FMC bank 4
0x8000 0000 - 0x8FFF FFFF FMC bank 3
0x7000 0000 - 0x7FFF FFFF FMC bank 2
0x6000 0000 - 0x6FFF FFFF FMC bank 1
0x5006 0C00- 0x5FFF FFFF Reserved
AHB2
0x5006 0800 - 0X5006 0BFF RNG
0x5005 0400 - X5006 07FF Reserved
0x5005 0000 - 0X5005 03FF DCMI
0x5004 0000- 0x5004 FFFF Reserved
0x5000 0000 - 0X5003 FFFF USB OTG FS
Memory mapping STM32F427xx STM32F429xx
86/226 DocID024030 Rev 5
0x4008 0000- 0x4FFF FFFF Reserved
AHB1
0x4004 0000 - 0x4007 FFFF USB OTG HS
0x4002 BC00- 0x4003 FFFF Reserved
0x4002 B000 - 0x4002 BBFF DMA2D
0x4002 9400 - 0x4002 AFFF Reserved
0x4002 9000 - 0x4002 93FF
ETHERNET MAC
0x4002 8C00 - 0x4002 8FFF
0x4002 8800 - 0x4002 8BFF
0x4002 8400 - 0x4002 87FF
0x4002 8000 - 0x4002 83FF
0x4002 6800 - 0x4002 7FFF Reserved
0x4002 6400 - 0x4002 67FF DMA2
0x4002 6000 - 0x4002 63FF DMA1
0X4002 5000 - 0X4002 5FFF Reserved
0x4002 4000 - 0x4002 4FFF BKPSRAM
0x4002 3C00 - 0x4002 3FFF Flash interface register
0x4002 3800 - 0x4002 3BFF RCC
0X4002 3400 - 0X4002 37FF Reserved
0x4002 3000 - 0x4002 33FF CRC
0x4002 2C00 - 0x4002 2FFF Reserved
0x4002 2800 - 0x4002 2BFF GPIOK
0x4002 2400 - 0x4002 27FF GPIOJ
0x4002 2000 - 0x4002 23FF GPIOI
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1800 - 0x4002 1BFF GPIOG
0x4002 1400 - 0x4002 17FF GPIOF
0x4002 1000 - 0x4002 13FF GPIOE
0X4002 0C00 - 0x4002 0FFF GPIOD
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA
Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)
Bus Boundary address Peripheral
DocID024030 Rev 5 87/226
STM32F427xx STM32F429xx Memory mapping
88
0x4001 6C00- 0x4001 FFFF Reserved
APB2
0x4001 6800 - 0x4001 6BFF LCD-TFT
0x4001 5C00 - 0x4001 67FF Reserved
0x4001 5800 - 0x4001 5BFF SAI1
0x4001 5400 - 0x4001 57FF SPI6
0x4001 5000 - 0x4001 53FF SPI5
0x4001 5400 - 0x4001 57FF SPI6
0x4001 5000 - 0x4001 53FF SPI5
0x4001 4C00 - 0x4001 4FFF Reserved
0x4001 4800 - 0x4001 4BFF TIM11
0x4001 4400 - 0x4001 47FF TIM10
0x4001 4000 - 0x4001 43FF TIM9
0x4001 3C00 - 0x4001 3FFF EXTI
0x4001 3800 - 0x4001 3BFF SYSCFG
0x4001 3400 - 0x4001 37FF SPI4
0x4001 3000 - 0x4001 33FF SPI1
0x4001 2C00 - 0x4001 2FFF SDIO
0x4001 2400 - 0x4001 2BFF Reserved
0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3
0x4001 1800 - 0x4001 1FFF Reserved
0x4001 1400 - 0x4001 17FF USART6
0x4001 1000 - 0x4001 13FF USART1
0x4001 0800 - 0x4001 0FFF Reserved
0x4001 0400 - 0x4001 07FF TIM8
0x4001 0000 - 0x4001 03FF TIM1
Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)
Bus Boundary address Peripheral
Memory mapping STM32F427xx STM32F429xx
88/226 DocID024030 Rev 5
0x4000 8000- 0x4000 FFFF Reserved
APB1
0x4000 7C00 - 0x4000 7FFF UART8
0x4000 7800 - 0x4000 7BFF UART7
0x4000 7400 - 0x4000 77FF DAC
0x4000 7000 - 0x4000 73FF PWR
0x4000 6C00 - 0x4000 6FFF Reserved
0x4000 6800 - 0x4000 6BFF CAN2
0x4000 6400 - 0x4000 67FF CAN1
0x4000 6000 - 0x4000 63FF Reserved
0x4000 5C00 - 0x4000 5FFF I2C3
0x4000 5800 - 0x4000 5BFF I2C2
0x4000 5400 - 0x4000 57FF I2C1
0x4000 5000 - 0x4000 53FF UART5
0x4000 4C00 - 0x4000 4FFF UART4
0x4000 4800 - 0x4000 4BFF USART3
0x4000 4400 - 0x4000 47FF USART2
0x4000 4000 - 0x4000 43FF I2S3ext
0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF SPI2 / I2S2
0x4000 3400 - 0x4000 37FF I2S2ext
0x4000 3000 - 0x4000 33FF IWDG
0x4000 2C00 - 0x4000 2FFF WWDG
0x4000 2800 - 0x4000 2BFF RTC & BKP Registers
0x4000 2400 - 0x4000 27FF Reserved
0x4000 2000 - 0x4000 23FF TIM14
0x4000 1C00 - 0x4000 1FFF TIM13
0x4000 1800 - 0x4000 1BFF TIM12
0x4000 1400 - 0x4000 17FF TIM7
0x4000 1000 - 0x4000 13FF TIM6
0x4000 0C00 - 0x4000 0FFF TIM5
0x4000 0800 - 0x4000 0BFF TIM4
0x4000 0400 - 0x4000 07FF TIM3
0x4000 0000 - 0x4000 03FF TIM2
Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)
Bus Boundary address Peripheral
DocID024030 Rev 5 89/226
STM32F427xx STM32F429xx Electrical characteristics
191
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 20.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 21.
Figure 20. Pin loading conditions Figure 21. Pin input voltage
-36
#P&
-#5PIN
-36
-#5PIN
6).
Electrical characteristics STM32F427xx STM32F429xx
90/226 DocID024030 Rev 5
6.1.6 Power supply scheme
Figure 22. Power supply scheme
1. To connect BYPASS_REG and PDR_ON pins, refer to Section 3.17: Power supply supervisor and Section 3.18: Voltage
regulator
2. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is
OFF.
3. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
4. VDDA=VDD and VSSA=VSS.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
069
%DFNXSFLUFXLWU\
26&.57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
EDFNXS5$0
.HUQHOORJLF
&38GLJLWDO
5$0
$QDORJ
5&V
3//
3RZHU
VZLWFK
9%$7
*3,2V
287
,1
îQ)
î)
9%$7
WR9
9ROWDJH
UHJXODWRU
9''$
$'&
/HYHOVKLIWHU
,2
/RJLF
9''
Q)
)
)ODVKPHPRU\
9&$3B
9&$3B
î)
%<3$66B5(*
3'5B21 5HVHW
FRQWUROOHU
9''

966

9''
95()
95()
966$
95()
Q)
)
DocID024030 Rev 5 91/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.1.7 Current consumption measurement
Figure 23. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,
Table 15: Current characteristics, and Table 16: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
AI
6"!4
6$$
6$$!
)$$?6"!4
)$$
Table 14. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VDD and
VBAT)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
0.3 4.0
V
VIN
Input voltage on FT pins(2)
2. VIN maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed
injected current.
VSS 0.3 VDD+4.0
Input voltage on TTa pins VSS 0.3 4.0
Input voltage on any other pin VSS 0.3 4.0
Input voltage on BOOT0 pin VSS 9.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS| Variations between all the different ground pins - 50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 6.3.15:
Absolute maximum
ratings (electrical
sensitivity)
Electrical characteristics STM32F427xx STM32F429xx
92/226 DocID024030 Rev 5
Table 15. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD_x power lines (source)(1) 270
mA
Σ IVSS Total current out of sum of all VSS_x ground lines (sink)(1) 270
IVDD Maximum current into each VDD_x power line (source)(1) 100
IVSS Maximum current out of each VSS_x ground line (sink)(1) 100
IIO
Output current sunk by any I/O and control pin 25
Output current sourced by any I/Os and control pin 25
ΣIIO
Total output current sunk by sum of all I/O and control pins (2) 120
Total output current sourced by sum of all I/Os and control pins(2) 120
IINJ(PIN) (3)
Injected current on FT pins (4)
5/+0
Injected current on NRST and BOOT0 pins (4)
Injected current on TTa pins(5) ±5
ΣIINJ(PIN)(5) Total injected current (sum of all I/O and control pins)(6) ±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.21: 12-bit ADC characteristics.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be
exceeded. Refer to Table 14 for the values of the maximum allowed input voltage.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 16. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range 65 to +150 °C
TJMaximum junction temperature 125 °C
DocID024030 Rev 5 93/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.3 Operating conditions
6.3.1 General operating conditions
Table 17. General operating conditions
Symbol Parameter Conditions(1) Min Typ Max Unit
fHCLK Internal AHB clock frequency
Power Scale 3 (VOS[1:0] bits in
PWR_CR register = 0x01), Regulator
ON, over-drive OFF
0 - 120
MHz
Power Scale 2 (VOS[1:0] bits in
PWR_CR register = 0x10),
Regulator ON
Over-
drive
OFF
0
- 144
Over-
drive
ON
- 168
Power Scale 1 (VOS[1:0] bits in
PWR_CR register= 0x11),
Regulator ON
Over-
drive
OFF
0
- 168
Over-
drive
ON
- 180
fPCLK1 Internal APB1 clock frequency
Over-drive OFF 0 - 42
Over-drive ON 0 - 45
fPCLK2 Internal APB2 clock frequency
Over-drive OFF 0 - 84
Over-drive ON 0 - 90
Electrical characteristics STM32F427xx STM32F429xx
94/226 DocID024030 Rev 5
VDD Standard operating voltage 1.7(2) -3.6
V
VDDA(3)
(4)
Analog operating voltage
(ADC limited to 1.2 M samples)
Must be the same potential as VDD(5)
1.7(2) -2.4
Analog operating voltage
(ADC limited to 2.4 M samples) 2.4 - 3.6
VBAT Backup operating voltage 1.65 - 3.6
V12
Regulator ON: 1.2 V internal
voltage on VCAP_1/VCAP_2 pins
Power Scale 3 ((VOS[1:0] bits in
PWR_CR register = 0x01), 120 MHz
HCLK max frequency
1.08 1.14 1.20
Power Scale 2 ((VOS[1:0] bits in
PWR_CR register = 0x10), 144 MHz
HCLK max frequency with over-drive
OFF or 168 MHz with over-drive ON
1.20 1.26 1.32
Power Scale 1 ((VOS[1:0] bits in
PWR_CR register = 0x11), 168 MHz
HCLK max frequency with over-drive
OFF or 180 MHz with over-drive ON
1.26 1.32 1.40
Regulator OFF: 1.2 V external
voltage must be supplied from
external regulator on
VCAP_1/VCAP_2 pins(6)
Max frequency 120 MHz 1.10 1.14 1.20
Max frequency 144 MHz 1.20 1.26 1.32
Max frequency 168 MHz 1.26 1.32 1.38
VIN
Input voltage on RST and FT
pins(7)
2V VDD 3.6 V 0.3 - 5.5
V
VDD 2V 0.3 - 5.2
Input voltage on TTa pins 0.3 - VDDA+
0.3
Input voltage on BOOT0 pin 0 - 9
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(8)
LQFP100 - - 465
mW
WLCSP143 - - 641
LQFP144 - - 500
UFBGA169 - - 385
LQFP176 - - 526
UFBGA176 - - 513
LQFP208 - - 1053
TFBGA216 - - 690
TA
Ambient temperature for 6 suffix
version
Maximum power dissipation 40 85
°C
Low power dissipation(9) 40 105
Ambient temperature for 7 suffix
version
Maximum power dissipation 40 105
°C
Low power dissipation(9) 40 125
Table 17. General operating conditions (continued)
Symbol Parameter Conditions(1) Min Typ Max Unit
DocID024030 Rev 5 95/226
STM32F427xx STM32F429xx Electrical characteristics
191
TJ Junction temperature range
6 suffix version 40 105
°C
7 suffix version 40 125
1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.
2. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:
Internal reset OFF).
3. When the ADC is used, refer to Table 75: ADC characteristics.
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
6. The over-drive mode is not supported when the internal regulator is OFF.
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 17. General operating conditions (continued)
Symbol Parameter Conditions(1) Min Typ Max Unit
Table 18. Limitations depending on the operating power supply range
Operating
power supply
range
ADC operation
Maximum Flash
memory access
frequency with
no wait states
(fFlashmax)
Maximum HCLK
frequency vs Flash
memory wait states
(1)(2)
I/O operation
Possible Flash
memory
operations
VDD =1.7 to
2.1 V(3)
Conversion time
up to 1.2 Msps 20 MHz(4)
168 MHz with 8 wait
states and over-drive
OFF
No I/O
compensation
8-bit erase and
program
operations only
VDD = 2.1 to
2.4 V
Conversion time
up to 1.2 Msps 22 MHz
180 MHz with 8 wait
states and over-drive
ON
No I/O
compensation
16-bit erase and
program
operations
VDD = 2.4 to
2.7 V
Conversion time
up to 2.4 Msps 24 MHz
180 MHz with 7 wait
states and over-drive
ON
I/O compensation
works
16-bit erase and
program
operations
VDD = 2.7 to
3.6 V(5)
Conversion time
up to 2.4 Msps 30 MHz
180 MHz with 5 wait
states and over-drive
ON
I/O compensation
works
32-bit erase and
program
operations
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:
Internal reset OFF).
4. Prefetch is not available.
5. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+
pins will be degraded between 2.7 and 3 V.
Electrical characteristics STM32F427xx STM32F429xx
96/226 DocID024030 Rev 5
6.3.2 VCAP1/VCAP2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to
the VCAP1/VCAP2 pins. CEXT is specified in Table 19.
Figure 24. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
6.3.3 Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 20. Operating conditions at power-up / power-down (regulator ON)
6.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 19. VCAP1/VCAP2 operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 2.2 µF
ESR ESR of external capacitor < 2 Ω
069
(65
5/HDN
&
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
Table 21. Operating conditions at power-up / power-down (regulator OFF)(1)
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise time rate Power-up 20
VCAP_1 and VCAP_2 fall time rate Power-down 20
DocID024030 Rev 5 97/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.3.5 reset and power control block characteristics
The parameters given in Table 22 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 17.
Table 22. reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.09 2.14 2.19 V
PLS[2:0]=000 (falling edge) 1.98 2.04 2.08 V
PLS[2:0]=001 (rising edge) 2.23 2.30 2.37 V
PLS[2:0]=001 (falling edge) 2.13 2.19 2.25 V
PLS[2:0]=010 (rising edge) 2.39 2.45 2.51 V
PLS[2:0]=010 (falling edge) 2.29 2.35 2.39 V
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65 V
PLS[2:0]=011 (falling edge) 2.44 2.51 2.56 V
PLS[2:0]=100 (rising edge) 2.70 2.76 2.82 V
PLS[2:0]=100 (falling edge) 2.59 2.66 2.71 V
PLS[2:0]=101 (rising edge) 2.86 2.93 2.99 V
PLS[2:0]=101 (falling edge) 2.65 2.84 2.92 V
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10 V
PLS[2:0]=110 (falling edge) 2.85 2.93 2.99 V
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21 V
PLS[2:0]=111 (falling edge) 2.95 3.03 3.09 V
VPVDhyst(1) PVD hysteresis - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60 1.68 1.76 V
Rising edge 1.64 1.72 1.80 V
VPDRhyst(1) PDR hysteresis - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24 V
Rising edge 2.23 2.29 2.33 V
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56 V
Rising edge 2.53 2.59 2.63 V
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88 V
Rising edge 2.85 2.92 2.97 V
VBORhyst(1) BOR hysteresis - 100 - mV
TRSTTEMPO
(1)(2) POR reset temporization 0.5 1.5 3.0 ms
Electrical characteristics STM32F427xx STM32F429xx
98/226 DocID024030 Rev 5
6.3.6 Over-drive switching characteristics
When the over-drive mode switches from enabled to disabled or disabled to enabled, the
system clock is stalled during the internal voltage set-up.
The over-drive switching characteristics are given in Table 23. They are sbject to general
operating conditions for TA.
6.3.7 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 23: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
IRUSH(1)
InRush current on
voltage regulator power-
on (POR or wakeup
from Standby)
- 160 200 mA
ERUSH(1)
InRush energy on
voltage regulator power-
on (POR or wakeup
from Standby)
VDD = 1.7 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs --5.4µC
1. Guaranteed by design, not tested in production.
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
Table 22. reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 23. Over-drive switching characteristics(1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
Tod_swen Over_drive switch
enable time
HSI -45 -
µs
HSE max for 4 MHz
and min for 26 MHz 45 -100
External HSE
50 MHz -40 -
Tod_swdis Over_drive switch
disable time
HSI -20 -
HSE max for 4 MHz
and min for 26 MHz. 20 -80
External HSE
50 MHz -15 -
DocID024030 Rev 5 99/226
STM32F427xx STM32F429xx Electrical characteristics
191
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load).
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted both to fHCLK frequency and VDD range
(see Table 18: Limitations depending on the operating power supply range).
Regulator ON
The voltage scaling and over-drive mode are adjusted to fHCLK frequency as follows:
Scale 3 for fHCLK 120 MHz
Scale 2 for 120 MHz < fHCLK 144 MHz
Scale 1 for 144 MHz < fHCLK 180 MHz. The over-drive is only ON at 180 MHz.
The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
External clock frequency is 4 MHz and PLL is ON when fHCLK is higher than 25 MHz.
The maximum values are obtained for VDD = 3.6 V and a maximum ambient
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless
otherwise specified.
Electrical characteristics STM32F427xx STM32F429xx
100/226 DocID024030 Rev 5
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM(1)
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(2)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply
current in
RUN mode
All
Peripherals
enabled(3)(4)
180 98 104(5) 123(5) 141(5)
mA
168 89 98(5) 116(5) 133(5)
150 75 84 100 115
144 72 81 96 112
120 54 58 72 85
90 43 45 56 66
60 29 30 38 45
30 16 20 34 46
25 13 16 30 43
16 11 13 27 39
8592336
4482134
2272033
All
Peripherals
disabled(3)
180 44 47(5) 69(5) 87(5)
168 41 45(5) 66(5) 83(5)
150 36 39 57 73
144 33 37 56 72
120 25 29 43 56
90 20 21 32 41
60 14 15 22 28
30 8 8 12 26
25 7 7 10 24
16 7 9 22 35
8372134
4362033
2262033
1. Code and data processing running from SRAM1 using boot pins.
2. Guaranteed by characterization, not tested in production.
3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC
for the analog part.
5. Guaranteed by test in production.
DocID024030 Rev 5 101/226
STM32F427xx STM32F429xx Electrical characteristics
191
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA=
25 °C TA=85 °C TA=105 °C
IDD
Supply
current in
RUN mode
All Peripherals
enabled(2)(3)
180 103 112 140 151
mA
168 98 107 126 144
150 87 95 112 128
144 85 92 108 124
120 66 71 85 99
90 54 58 69 80
60 37 39 47 55
30 20 24 39 51
25 17 21 35 48
16 12 16 30 42
87112437
4582235
2372134
All Peripherals
disabled(3)
180 57 62 87 106
168 50 54 76 93
150 46 50 70 86
144 45 49 68 84
120 36 41 56 69
90 29 34 46 57
60 21 24 33 41
30 13 17 31 44
25 11 15 28 41
16 8 12 25 38
8592335
4472134
236.52033
1. Guaranteed by characterization, not tested in production unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
Electrical characteristics STM32F427xx STM32F429xx
102/226 DocID024030 Rev 5
Table 26. Typical and maximum current consumption in Sleep mode
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply
current in
Sleep mode
All
Peripherals
enabled(2)
180 78 89(3) 110(3) 130(3)
mA
168 66 75(3) 93(3) 110(3)
150 56 618096
144 54 587894
120 40 445972
90 32 34 46 56
60 22 23 31 38
30 10 16 30 43
25 9 142840
16 5 122540
8382235
4372134
226.52033
All
Peripherals
disabled
180 21 26(3) 54(3) 76(3)
168 16 20(3) 41(3) 58(3)
150 14 173652
144 13 16.5 35 51
120 10 142841
90 8 13 26 37
60 6 9 17 25
30 5 8 22 35
25 3 7 21 34
16 3 7 21 34
8262033
4262033
2262033
1. Guaranteed by characterization, not tested in production unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. Based on characterization, tested in production.
DocID024030 Rev 5 103/226
STM32F427xx STM32F429xx Electrical characteristics
191
Table 27. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions
Typ
Max(1)
Unit
VDD = 3.6 V
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STOP_NM
(normal mode)
Supply current in Stop
mode with voltage
regulator in main
regulator mode
Flash memory in Stop mode, all
oscillators OFF, no independent
watchdog
0.40 1.50 14.00 25.00
mA
Flash memory in Deep power
down mode, all oscillators OFF, no
independent watchdog
0.35 1.50 14.00 25.00
Supply current in Stop
mode with voltage
regulator in Low Power
regulator mode
Flash memory in Stop mode, all
oscillators OFF, no independent
watchdog
0.29 1.10 10.00 18.00
Flash memory in Deep power
down mode, all oscillators OFF, no
independent watchdog
0.23 1.10 10.00 18.00
IDD_STOP_UDM
(under-drive
mode)
Supply current in Stop
mode with voltage
regulator in main
regulator and under-
drive mode
Flash memory in Deep power
down mode, main regulator in
under-drive mode, all oscillators
OFF, no independent watchdog
0.19 0.50 6.00 9.00
Supply current in Stop
mode with voltage
regulator in Low Power
regulator and under-
drive mode
Flash memory in Deep power
down mode, Low Power regulator
in under-drive mode, all oscillators
OFF, no independent watchdog
0.12 0.40 4.00 7.00
1. Data based on characterization, tested in production.
Table 28. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions
Typ(1) Max(2)
Unit
TA = 25 °C TA =
25 °C
TA =
85 °C
TA =
105 °C
VDD =
1.7 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.6 V
IDD_STBY
Supply current
in Standby
mode
Backup SRAM ON, low-speed
oscillator (LSE) and RTC ON 2.80 3.00 3.60 7.00 19.00 36.00
µA
Backup SRAM OFF, low-
speed oscillator (LSE) and
RTC ON
2.30 2.60 3.10 6.00 16.00 31.00
Backup SRAM ON, RTC and
LSE OFF 2.30 2.50 2.90 6.00(3) 18.00(3) 35.00(3)
Backup SRAM OFF, RTC and
LSE OFF 1.70 1.90 2.20 5.00(3) 15.00(3) 30.00(3)
Electrical characteristics STM32F427xx STM32F429xx
104/226 DocID024030 Rev 5
Figure 25. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF)
1. The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset
OFF), the typical current consumption is reduced by additional 1.2 µA.
2. Based on characterization, not tested in production unless otherwise specified.
3. Based on characterization, tested in production.
Table 29. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions(1)
Typ Max(2)
Unit
TA = 25 °C TA = 85 °C TA =
105 °C
VBAT =
1.7 V
VBAT=
2.4 V
VBAT =
3.3 V VBAT = 3.6 V
IDD_VBAT
Backup
domain supply
current
Backup SRAM ON, low-speed
oscillator (LSE) and RTC ON 1.28 1.40 1.62 6 11
µA
Backup SRAM OFF, low-speed
oscillator (LSE) and RTC ON 0.66 0.76 0.97 3 5
Backup SRAM ON, RTC and
LSE OFF 0.70 0.72 0.74 5 10
Backup SRAM OFF, RTC and
LSE OFF 0.10 0.10 0.10 2 4
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Based on characterization, not tested in production.
-36



# ####
)$$?6"!4!
4EMPERATURE
6
6
6
6
6
6
6
6
6
DocID024030 Rev 5 105/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 26. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON)
Additional current consumption
The MCU is placed under the following conditions:
All I/O pins are configured in analog mode.
The Flash memory access time is adjusted to fHCLK frequency.
The voltage scaling is adjusted to fHCLK frequency as follows:
Scale 3 for fHCLK 120 MHz,
Scale 2 for 120 MHz < fHCLK 144 MHz
Scale 1 for 144 MHz < fHCLK 180 MHz. The over-drive is only ON at 180 MHz.
The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
HSE crystal clock frequency is 25 MHz.
When the regulator is OFF, V12 is provided externally as described in Table 17:
General operating conditions
TA= 25 °C .
-36
)$$?6"!4!
4EMPERATURE
# # # # #
6
6
6
6
6
6
6
6
6
Electrical characteristics STM32F427xx STM32F429xx
106/226 DocID024030 Rev 5
Table 30. Typical current consumption in Run mode, code with data processing running from
Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch),
VDD=1.7 V(1)
Symbol Parameter Conditions fHCLK (MHz) Typ Unit
IDD
Supply current in
RUN mode from
VDD supply
All Peripheral
enabled
168 88.2
mA
150 74.3
144 71.3
120 52.9
90 42.6
60 28.6
30 15.7
25 12.3
All Peripheral
disabled
168 40.6
150 30.6
144 32.6
120 24.7
90 19.7
60 13.6
30 7.7
25 6.7
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherls (such as ADC, or
DAC) is not included.
DocID024030 Rev 5 107/226
STM32F427xx STM32F429xx Electrical characteristics
191
Table 31. Typical current consumption in Run mode, code with data processing running
from Flash memory, regulator OFF (ART accelerator enabled except prefetch)(1)
Symbol Parameter Conditions fHCLK
(MHz)
VDD=3.3V VDD=1.7V
Unit
IDD12 IDD IDD12 IDD
IDD12 / IDD
Supply current in
RUN mode from
V12 and VDD
supply
All Peripherals
enabled
168 77.8 1.3 76.8 1.0
mA
150 70.8 1.3 69.8 1.0
144 64.5 1.3 63.6 1.0
120 49.9 1.2 49.3 0.9
90 39.2 1.3 38.7 1.0
60 27.2 1.2 26.8 0.9
30 15.6 1.2 15.4 0.9
25 13.6 1.2 13.5 0.9
All Peripherals
disabled
168 38.2 1.3 37.0 1.0
150 34.6 1.3 33.4 1.0
144 31.3 1.3 30.3 1.0
120 24.0 1.2 23.2 0.9
90 18.1 1.4 18.0 1.0
60 12.9 1.2 12.5 0.9
30 7.2 1.2 6.9 0.9
25 6.3 1.2 6.1 0.9
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,
or DAC) is not included.
Electrical characteristics STM32F427xx STM32F429xx
108/226 DocID024030 Rev 5
Table 32. Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V(1)
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals
(such as ADC, or DAC) is not included.
Symbol Parameter Conditions fHCLK (MHz) Typ Unit
IDD
Supply current in
Sleep mode from
VDD supply
All Peripherals
enabled
168 65.5
mA
150 55.5
144 53.5
120 39.0
90 31.6
60 21.7
30 9.8
25 8.8
All Peripherals
disabled
168 15.7
150 13.7
144 12.7
120 9.7
90 7.7
60 5.7
30 4.7
25 2.8
DocID024030 Rev 5 109/226
STM32F427xx STM32F429xx Electrical characteristics
191
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 56: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Table 33. Tyical current consumption in Sleep mode, regulator OFF(1)
Symbol Parameter Conditions fHCLK (MHz)
VDD=3.3 V VDD=1.7 V Unit
IDD12 IDD IDD12 IDD
IDD12/IDD
Supply current
in Sleep mode
from V12 and
VDD supply
All Peripherals
enabled
180 61.5 1.4 - -
mA
168 59.4 1.3 59.4 1.0
150 53.9 1.3 53.9 1.0
144 49.0 1.3 49.0 1.0
120 38.0 1.2 38.0 0.9
90 29.3 1.4 29.3 1.1
60 20.2 1.2 20.2 0.9
30 11.9 1.2 11.9 0.9
25 10.4 1.2 10.4 0.9
All Peripherals
disabled
180 14.9 1.4 - -
168 14.0 1.3 14.0 1.0
150 12.6 1.3 12.6 1.0
144 11.5 1.3 11.5 1.0
120 8.7 1.2 8.7 0.9
90 7.1 1.4 7.1 1.1
60 5.0 1.2 5.0 0.9
30 3.1 1.2 3.1 0.9
25 2.8 1.2 2.8 0.9
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,
or DAC) is not included.
Electrical characteristics STM32F427xx STM32F429xx
110/226 DocID024030 Rev 5
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 35: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
Table 34. Switching output I/O current consumption(1)
Symbol Parameter Conditions
I/O toggling
frequency
(fsw)
Typ Unit
IDDIO
I/O switching
Current
VDD = 3.3 V
C= CINT(2)
2 MHz 0.0
mA
8 MHz 0.2
25 MHz 0.6
50 MHz 1.1
60 MHz 1.3
84 MHz 1.8
90 MHz 1.9
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT
+ CS
2 MHz 0.1
8 MHz 0.4
25 MHz 1.23
50 MHz 2.43
60 MHz 2.93
84 MHz 3.86
90 MHz 4.07
ISW VDD fSW C××=
DocID024030 Rev 5 111/226
STM32F427xx STM32F429xx Electrical characteristics
191
On-chip peripheral current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are in analog input configuration.
All peripherals are disabled unless otherwise mentioned.
I/O compensation cell enabled.
The ART accelerator is ON.
Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
HCLK is the system clock. fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off
with only one peripheral clocked on
–f
HCLK = 180 MHz (Scale1 + over-drive ON), fHCLK = 144 MHz (Scale 2),
fHCLK = 120 MHz (Scale 3)"
Ambient operating temperature is 25 °C and VDD=3.3 V.
IDDIO
I/O switching
Current
VDD = 3.3 V
CEXT = 10 pF
C = CINT + CEXT
+ CS
2 MHz 0.18
mA
8 MHz 0.67
25 MHz 2.09
50 MHz 3.6
60 MHz 4.5
84 MHz 7.8
90 MHz 9.8
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT
+ CS
2 MHz 0.26
8 MHz 1.01
25 MHz 3.14
50 MHz 6.39
60 MHz 10.68
VDD = 3.3 V
CEXT = 33 pF
C = CINT + Cext
+ CS
2 MHz 0.33
8 MHz 1.29
25 MHz 4.23
50 MHz 11.02
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
2. This test is performed by cutting the LQFP176 package pin (pad removal).
Table 34. Switching output I/O current consumption(1) (continued)
Symbol Parameter Conditions
I/O toggling
frequency
(fsw)
Typ Unit
Electrical characteristics STM32F427xx STM32F429xx
112/226 DocID024030 Rev 5
Table 35. Peripheral current consumption
Peripheral
IDD( Typ)(1)
Unit
Scale 1 Scale 2 Scale 3
AHB1
(up to
180 MHz)
GPIOA 2.50 2.36 2.08
µA/MHz
GPIOB 2.56 2.36 2.08
GPIOC 2.44 2.29 2.00
GPIOD 2.50 2.36 2.08
GPIOE 2.44 2.29 2.00
GPIOF 2.44 2.29 2.00
GPIOG 2.39 2.22 2.00
GPIOH 2.33 2.15 1.92
GPIOI 2.39 2.22 2.00
GPIOJ 2.33 2.15 1.92
GPIOK 2.33 2.15 1.92
OTG_HS+ULPI 27.00 24.86 21.92
CRC 0.44 0.42 0.33
BKPSRAM 0.78 0.69 0.58
DMA1 25.33 23.26 20.50
DMA2 24.72 22.71 20.00
DMA2D 28.50 26.32 23.33
ETH_MAC
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
21.56 20.07 17.75
AHB2
(up to
180 MHz)
OTG_FS 25.67 26.67 23.58
µA/MHzDCMI 3.72 3.40 3.00
RNG 2.28 2.36 2.17
AHB3
(up to
180 MHz)
FMC 21.39 19.79 17.50 µA/MHz
Bus matrix(2) 14.06 13.19 11.75 µA/MHz
DocID024030 Rev 5 113/226
STM32F427xx STM32F429xx Electrical characteristics
191
APB1
(up to
45 MHz)
TIM2 17.56 16.42 14.47
µA/MHz
TIM3 14.22 13.36 11.80
TIM4 14.89 13.64 12.13
TIM5 17.33 16.42 14.47
TIM6 2.89 2.53 2.47
TIM7 3.11 2.81 2.47
TIM12 7.33 6.97 6.13
TIM13 4.89 4.47 4.13
TIM14 5.56 5.31 4.80
PWR 11.11 10.31 9.13
USART2 4.22 3.92 3.47
USART3 4.44 4.19 3.80
UART4 4.00 3.92 3.47
UART5 4.00 3.92 3.47
UART7 4.00 3.92 3.47
UART8 3.78 3.92 3.47
I2C1 4.00 3.92 3.47
I2C2 4.00 3.92 3.47
I2C3 4.00 3.92 3.47
SPI2(3) 3.11 3.08 2.80
SPI3(3) 3.56 3.36 3.13
I2S2 2.89 2.81 2.47
I2S3 3.33 3.08 2.80
CAN1 6.89 6.42 5.80
CAN2 6.67 6.14 5.47
DAC(4) 2.89 2.25 2.13
WWDG 0.89 0.86 0.80
Table 35. Peripheral current consumption (continued)
Peripheral
IDD( Typ)(1)
Unit
Scale 1 Scale 2 Scale 3
Electrical characteristics STM32F427xx STM32F429xx
114/226 DocID024030 Rev 5
APB2
(up to
90 MHz)
SDIO 8.11 8.75 7.83
µA/MHz
TIM1 17.11 15.97 14.17
TIM8 17.33 16.11 14.33
TIM9 7.22 6.67 6.00
TIM10 4.56 4.31 3.83
TIM11 4.78 4.44 4.00
ADC1(5) 4.67 4.31 3.83
ADC2(5) 4.78 4.44 4.00
ADC3(5) 4.56 4.17 3.67
SPI1 1.44 1.39 1.17
USART1 4.00 3.75 3.33
USART6 4.00 3.75 3.33
SPI4 1.44 1.39 1.17
SPI5 1.44 1.39 1.17
SPI6 1.44 1.39 1.17
SYSCFG 0.78 0.69 0.67
LCD_TFT 39.89 37.22 33.17
SAI1 3.78 3.47 3.17
1. When the I/O compensation cell is ON, IDD typical value increases by 0.22 mA.
2. The BusMatrix is automatically active when at least one master is ON.
3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.
4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of
0.8 mA per DAC channel for the analog part.
5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of
1.6 mA per ADC for the analog part.
Table 35. Peripheral current consumption (continued)
Peripheral
IDD( Typ)(1)
Unit
Scale 1 Scale 2 Scale 3
DocID024030 Rev 5 115/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.3.8 Wakeup time from low-power modes
The wakeup times given in Table 36 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
Table 36. Low-power mode wakeup timings
Symbol Parameter Conditions Typ(1) Max(1) Unit
tWUSLEEP(2) Wakeup from Sleep - 6 -
CPU
clock
cycle
tWUSTOP(2)
Wakeup from Stop mode
with MR/LP regulator in
normal mode
Main regulator is ON 13.6 -
µs
Main regulator is ON and Flash
memory in Deep power down mode 93 111
Low power regulator is ON 22 32
Low power regulator is ON and Flash
memory in Deep power down mode 103 126
tWUSTOP(2)
Wakeup from Stop mode
with MR/LP regulator in
Under-drive mode
Main regulator in under-drive mode
(Flash memory in Deep power-down
mode)
105 128
Low power regulator in under-drive
mode
(Flash memory in Deep power-down
mode )
125 155
tWUSTDBY
(2)(3)
Wakeup from Standby
mode 318 412
1. Based on characterization, not tested in production.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first
3. tWUSTDBY maximum value is given at –40 °C.
Electrical characteristics STM32F427xx STM32F429xx
116/226 DocID024030 Rev 5
6.3.9 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 56: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 27.
The characteristics given in Table 37 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 17.
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 56: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 28.
The characteristics given in Table 38 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 17.
Table 37. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1) 1-50MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design, not tested in production.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --10
Cin(HSE) OSC_IN input capacitance(1) -5-pF
DuCy(HSE) Duty cycle 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
DocID024030 Rev 5 117/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 27. High-speed external clock source AC timing diagram
Table 38. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1) - 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) -5-pF
DuCy(LSE) Duty cycle 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
1. Guaranteed by design, not tested in production.
AI
/3# ?) .
%XTERNAL
34-&
CLOCKSOURCE
6(3%(
TF(3% T7(3%
),


4(3%
T
TR(3% T7(3%
F(3%?EXT
6(3%,
Electrical characteristics STM32F427xx STM32F429xx
118/226 DocID024030 Rev 5
Figure 28. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 39. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 39. HSE 4-26 MHz oscillator characteristics (1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency 4 - 26 MHz
RFFeedback resistor - 200 - kΩ
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 ,
CL=5 pF@25 MHz
- 450 -
µA
VDD=3.3 V,
ESR= 30 ,
CL=10 pF@25 MHz
- 530 -
ACCHSE(2)
2. This parameter depends on the crystal used in the application. The minimum and maximum values must
be respected to comply with USB standard specifications.
HSE accuracy 500 - 500 ppm
Gm_crit_max Maximum critical crystal gmStartup - - 1 mA/V
tSU(HSE(3)
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is based on characterization and not tested in production. It is measured
for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Startup time VDD is stabilized - 2 - ms
AI
/3#?).
%XTERNAL
34-&
CLOCKSOURCE
6,3%(
TF,3% T7,3%
),


4,3%
T
TR,3% T7,3%
F,3%?EXT
6,3%,
DocID024030 Rev 5 119/226
STM32F427xx STM32F429xx Electrical characteristics
191
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 29). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 29. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 40. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor - 18.4 - MΩ
IDD LSE current consumption - - 1 µA
ACCLSE(2)
2. This parameter depends on the crystal used in the application. Refer to application note AN2867.
LSE accuracy 500 - 500 ppm
Gm_crit_max Maximum critical crystal gmStartup - - 0.56 µA/V
tSU(LSE)(3)
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is
measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
startup time VDD is stabilized - 2 - s
DL
26&B28 7
26&B,1 I+6(
&/
5)
670)
0+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
5(;7
&/
Electrical characteristics STM32F427xx STM32F429xx
120/226 DocID024030 Rev 5
Figure 30. Typical application with a 32.768 kHz crystal
6.3.10 Internal clock source characteristics
The parameters given in Table 41 and Table 42 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 17.
High-speed internal (HSI) RC oscillator
DL
26&B28 7
26&B,1 I/6(
&/
5)
670)
N+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
Table 41. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - 16 - MHz
ACCHSI
Accuracy of the HSI
oscillator
User-trimmed with the RCC_CR
register(2)
2. Guaranteed by design, not tested in production
--1%
Factory-
calibrated
TA = –40 to 105 °C(3)
3. Based on characterization, not tested in production.
8-4.5%
TA = –10 to 85 °C(3) 4- 4 %
TA = 25 °C 1- 1 %
tsu(HSI)(2) HSI oscillator
startup time -2.24 µs
IDD(HSI)(2) HSI oscillator
power consumption - 608A
DocID024030 Rev 5 121/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 31. LACCHSI versus temperature
1. Based on characterization results, not tested in production.
Low-speed internal (LSI) RC oscillator
Table 42. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Based on characterization, not tested in production.
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design, not tested in production.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
-36








-IN
-AX
4YPICAL
4!#
!##(3)
Electrical characteristics STM32F427xx STM32F429xx
122/226 DocID024030 Rev 5
Figure 32. ACCLSI versus temperature
6.3.11 PLL characteristics
The parameters given in Table 43 and Table 44 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 17.
-36










.ORMALIZEDDEVIATI ON

4EMPERAT URE#
MAX
AVG
MIN
Table 43. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) 0.95(2) 12.10MHz
fPLL_OUT PLL multiplier output clock 24 - 180 MHz
fPLL48_OUT
48 MHz PLL multiplier output
clock -4875MHz
fVCO_OUT PLL VCO output 192 - 432 MHz
tLOCK PLL lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
DocID024030 Rev 5 123/226
STM32F427xx STM32F429xx Electrical characteristics
191
Jitter(3)
Cycle-to-cycle jitter
System clock
120 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter
RMS - 15 -
peak
to
peak
-±200 -
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples -32 -
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples -40 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples -330 -
IDD(PLL)(4) PLL power consumption on VDD VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLL)(4) PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Based on characterization, not tested in production.
Table 43. Main PLL characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 44. PLLI2S (audio PLL) characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(1) 0.95(2) 12.10MHz
fPLLI2S_OUT PLLI2S multiplier output clock - - 216 MHz
fVCO_OUT PLLI2S VCO output 192 - 432 MHz
tLOCK PLLI2S lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -ps
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
Electrical characteristics STM32F427xx STM32F429xx
124/226 DocID024030 Rev 5
IDD(PLLI2S)(4) PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLI2S)(4) PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design, not tested in production.
3. Value given with main PLL running.
4. Based on characterization, not tested in production.
Table 44. PLLI2S (audio PLL) characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 45. PLLISAI (audio and LCD-TFT PLL) characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLSAI_IN PLLSAI input clock(1) 0.95(2) 12.10MHz
fPLLSAI_OUT PLLSAI multiplier output clock - - 216 MHz
fVCO_OUT PLLSAI VCO output 192 - 432 MHz
tLOCK PLLSAI lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Main SAI clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -ps
FS clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
IDD(PLLSAI)(4) PLLSAI power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLSAI)(4) PLLSAI power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design, not tested in production.
3. Value given with main PLL running.
4. Based on characterization, not tested in production.
DocID024030 Rev 5 125/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.3.12 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 52: EMI characteristics). It is available only on the main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
Table 46. SSCG parameters constraint
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 KHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP - - 215 1-
1. Guaranteed by design, not tested in production.
MODEPER round fPLL_IN 4f
Mod
×()[]=
MODEPER round 106410
3
×()[]250==
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
INCSTEP round 215 1()2 240××()100 5×250×()[]126md(quantitazed)%==
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
mdquantized%250126×100×5×()215 1()240×()2,002%(peak)==
Electrical characteristics STM32F427xx STM32F429xx
126/226 DocID024030 Rev 5
Figure 33 and Figure 34 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 33. PLL output clock waveforms in center spread mode
Figure 34. PLL output clock waveforms in down spread mode
&REQUENCY0,,?/54
4IME
&
TMODE XTMODE
MD
AI
MD
&REQUENCY0,,?/54
4IME
&
TMODE XTMODE
XMD
AI
DocID024030 Rev 5 127/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.3.13 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 47. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode, VDD = 1.7 V - 5 -
mAWrite / Erase 16-bit mode, VDD = 2.1 V - 8 -
Write / Erase 32-bit mode, VDD = 3.3 V - 12 -
Table 48. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2) µs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 -24
s
Program/erase parallelism
(PSIZE) = x 16 -1.32.6
Program/erase parallelism
(PSIZE) = x 32 -12
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -1632
s
Program/erase parallelism
(PSIZE) = x 16 -1122
Program/erase parallelism
(PSIZE) = x 32 -816
Electrical characteristics STM32F427xx STM32F429xx
128/226 DocID024030 Rev 5
tBE Bank erase time
Program/erase parallelism
(PSIZE) = x 8 -1632
s
Program/erase parallelism
(PSIZE) = x 16 -1122
Program/erase parallelism
(PSIZE) = x 32 -816
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.7 - 3.6 V
1. Based on characterization, not tested in production.
2. The maximum programming time is measured after 100K erase operations.
Table 49. Flash memory programming with VPP
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
-16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time - 230 -
mstERASE64KB Sector (64 KB) erase time - 490 -
tERASE128KB Sector (128 KB) erase time - 875 -
tME Mass erase time - 6.9 - s
tBE Bank erase time - 6.9 - s
Vprog Programming voltage 2.7 - 3.6 V
VPP VPP voltage range 7 - 9 V
IPP
Minimum current sunk on
the VPP pin 10 - - mA
tVPP(3)
3. VPP should only be connected during programming/erasing.
Cumulative time during
which VPP is applied --1hour
Table 48. Flash memory programming (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
DocID024030 Rev 5 129/226
STM32F427xx STM32F429xx Electrical characteristics
191
Table 50. Flash memory endurance and data retention
6.3.14 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 51. They are based on the EMS levels and classes
defined in application note AN1709.
When the application is exposed to a noisy environment, it is recommended to avoid pin
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,
PA2, PH2, PH3, PH4, PH5, PA3, PA4, PA5, PA6, PA7, PC4, and PC5.
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as
possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm
on PCB).
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Based on characterization, not tested in production.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
Table 51. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP176, TA = +25 °C,
fHCLK = 168 MHz, conforms to
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP176, TA =+25 °C,
fHCLK = 168 MHz, conforms to
IEC 61000-4-2
4A
Electrical characteristics STM32F427xx STM32F429xx
130/226 DocID024030 Rev 5
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC? code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 52. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]
Max vs.
[fHSE/fCPU]Unit
25/168 MHz 25/180 MHz
SEMI Peak level
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, ART ON, all peripheral
clocks enabled, clock dithering
disabled.
0.1 to 30 MHz 16 19
dBµV
30 to 130 MHz 23 23
130 MHz to
1GHz 25 22
SAE EMI Level 4 4 -
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, ART ON, all peripheral
clocks enabled, clock dithering
enabled
0.1 to 30 MHz 17 16
dBµV
30 to 130 MHz 8 10
130 MHz to
1GHz 11 16
SAE EMI level 3.5 3.5 -
DocID024030 Rev 5 131/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.3.15 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
6.3.16 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Table 53. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to
ANSI/ESDA/JEDEC JS-001 2 2000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to ANSI/ESD S5.3.1,
LQFP100/144/176, UFBGA169/176,
TFBGA176 and WLCSP143 packages
C3 250
TA = +25 °C conforming to ANSI/ESD S5.3.1,
LQFP208 package C3 250
1. Guaranteed by characterization results, not tested in production.
Table 54. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Electrical characteristics STM32F427xx STM32F429xx
132/226 DocID024030 Rev 5
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –
5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency
deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 55.
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
6.3.17 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 56: I/O static characteristics are
derived from tests performed under the conditions summarized in Table 1 7. All I/Os are
CMOS and TTL compliant.
Table 55. I/O current injection susceptibility(1)
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 pin 0NA
mA
Injected current on NRST pin 0NA
Injected current on PA0, PA1, PA2, PA3, PA6, PA7, PB0,
PC0, PC1, PC2, PC3, PC4, PC5, PH1, PH2, PH3, PH4, PH5 0NA
Injected current on TTa pins: PA4 and PA5 0+5
Injected current on any other FT pin 5NA
1. NA = not applicable.
Table 56. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, TTa and NRST I/O input
low level voltage 1.7 VVDD3.6 V - -
0.35VDD 0.04
(1)
V
0.3VDD(2)
BOOT0 I/O input low level
voltage
1.75 VVDD 3.6 V,
–40 °CTA105 °C --
0.1VDD+0.1(1)
1.7 VVDD 3.6 V,
C
TA105 °C --
DocID024030 Rev 5 133/226
STM32F427xx STM32F429xx Electrical characteristics
191
VIH
FT, TTa and NRST I/O input
high level voltage(5) 1.7 VVDD3.6 V
0.45VDD+0.3(1)
--
V
0.7VDD(2)
BOOT0 I/O input high level
voltage
1.75 VVDD 3.6 V,
–40 °CTA105 °C
0.17VDD+0.7(1) --
1.7 VVDD 3.6 V,
CTA105 °C
VHYS
FT, TTa and NRST I/O input
hysteresis 1.7 VVDD3.6 V 10%VDD(3) --
V
BOOT0 I/O input hysteresis
1.75 VVDD 3.6 V,
–40 °CTA105 °C
0.1 - -
1.7 VVDD 3.6 V,
CTA105 °C
Ilkg
I/O input leakage current (4) VSS VIN VDD --±1
µA
I/O FT input leakage current
(5) VIN = 5V - - 3
RPU
Weak pull-up
equivalent
resistor(6)
All pins
except for
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)VIN = VSS
30 40 50
kΩ
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)
71014
RPD
Weak pull-
down
equivalent
resistor(7)
All pins
except for
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)VIN = VDD
30 40 50
PA10/PB12
(OTG_FS_ID
,OTG_HS_ID
)
71014
CIO(8) I/O pin capacitance - - 5 - pF
1. Guaranteed by design, not tested in production.
2. Tested in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
Table 56. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F427xx STM32F429xx
134/226 DocID024030 Rev 5
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 35.
Figure 35. FT I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14, PC15 and PI8 which
can sink or source up to ±3mA. When using the PC13 to PC15 and PI8 GPIOs in output
mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 15).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 15).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
069



     



9''9
9,/9,+9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,+PLQ 9''
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
%DVHGRQ'HVLJQVLPXODWLRQV9,/PD[ 9''
77/UHTXLUHPHQW
9,+PLQ 9
77/UHTXLUHPHQW9,/PD[
9


$UHDQRW
GHWHUPLQHG


%DVHGRQ'HVLJQVLPXODWLRQV9,+PLQ 9''
DocID024030 Rev 5 135/226
STM32F427xx STM32F429xx Electrical characteristics
191
Output voltage levels
Unless otherwise specified, the parameters given in Table 5 7 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 17. All I/Os are CMOS and TTL compliant.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 36 and
Table 58, respectively.
Unless otherwise specified, the parameters given in Table 5 8 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 1 7.
Table 57. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 15.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin CMOS port(2)
IIO = +8 mA
2.7 V VDD 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin VDD 0.4 -
VOL (1) Output low level voltage for an I/O pin TTL port(2)
IIO =+ 8mA
2.7 V VDD 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin 2.4 -
VOL(1) Output low level voltage for an I/O pin IIO = +20 mA
2.7 V VDD 3.6 V
-1.3
(4)
4. Based on characterization data.
V
VOH(3) Output high level voltage for an I/O pin VDD 1.3(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +6 mA
1.8 V VDD 3.6 V
-0.4
(4)
V
VOH(3) Output high level voltage for an I/O pin VDD 0.4(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +4 mA
1.7 V VDD 3.6V
-0.4
(5)
5. Guaranteed by design, not tested in production.
V
VOH(3) Output high level voltage for an I/O pin VDD 0.4(5) -
Electrical characteristics STM32F427xx STM32F429xx
136/226 DocID024030 Rev 5
Table 58. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.7 V - - 4
MHz
CL = 50 pF, VDD 1.7 V - - 2
CL = 10 pF, VDD 2.7 V - - 8
CL = 10 pF, VDD 1.8 V - - 4
CL = 10 pF, VDD 1.7 V - - 3
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD = 1.7 V to
3.6 V --100ns
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.7 V - - 25
MHz
CL = 50 pF, VDD 1.8 V - - 12.5
CL = 50 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 2.7 V - - 50
CL = 10 pF, VDD 1.8 V - - 20
CL = 10 pF, VDD 1.7 V - - 12.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD 2.7 V - - 10
ns
CL = 10 pF, VDD 2.7 V - - 6
CL = 50 pF, VDD 1.7 V - - 20
CL = 10 pF, VDD 1.7 V - - 10
10
fmax(IO)out Maximum frequency(3)
CL = 40 pF, VDD 2.7 V - - 50(4)
MHz
CL = 10 pF, VDD 2.7 V - - 100(4)
CL = 40 pF, VDD 1.7 V - - 25
CL = 10 pF, VDD 1.8 V - - 50
CL = 10 pF, VDD 1.7 V - - 42.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 40 pF, VDD 2.7 V - - 6
ns
CL = 10 pF, VDD 2.7 V - - 4
CL = 40 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 1.7 V - - 6
DocID024030 Rev 5 137/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 36. I/O AC characteristics definition
11
fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDD 2.7 V - - 100(4)
MHz
CL = 30 pF, VDD 1.8 V - - 50
CL = 30 pF, VDD 1.7 V - - 42.5
CL = 10 pF, VDD 2.7 V - - 180(4)
CL = 10 pF, VDD 1.8 V - - 100
CL = 10 pF, VDD 1.7 V - - 72.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 30 pF, VDD 2.7 V - - 4
ns
CL = 30 pF, VDD 1.8 V - - 6
CL = 30 pF, VDD 1.7 V - - 7
CL = 10 pF, VDD 2.7 V - - 2.5
CL = 10 pF, VDD 1.8 V - - 3.5
CL = 10 pF, VDD 1.7 V - - 4
- tEXTIpw
Pulse width of external signals
detected by the EXTI
controller
10 - - ns
1. Guaranteed by design, not tested in production.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 36.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
Table 58. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
DLG



WU,2RXW
287387
(;7(51$/
21&/
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´



7
WI,2RXW
Electrical characteristics STM32F427xx STM32F429xx
138/226 DocID024030 Rev 5
6.3.18 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 56: I/O static characteristics).
Unless otherwise specified, the parameters given in Table 5 9 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 1 7.
Figure 37. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 59. Otherwise the reset is not taken into account by the device.
Table 59. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 kΩ
VF(NRST)(2) NRST Input filtered pulse - - 100 ns
VNF(NRST)(2) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design, not tested in production.
DLF
670)
538
1567

9''
)LOWHU
,QWHUQDO5HVHW
)
([WHUQDO
UHVHWFLUFXLW 
DocID024030 Rev 5 139/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.3.19 TIM timer characteristics
The parameters given in Table 60 are guaranteed by design.
Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
6.3.20 Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0090 reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present. Refer to
Section 6.3.17: I/O port characteristics for more details on the I2C I/O characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 60. TIMx characteristics(1)(2)
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.
2. Guaranteed by design, not tested in production.
Symbol Parameter Conditions(3)
3. The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the
RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK =
4x PCLKx.
Min Max Unit
tres(TIM) Timer resolution time
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
180 MHz
1-
tTIMxCLK
AHB/APBx prescaler>4,
fTIMxCLK = 90 MHz 1-
tTIMxCLK
fEXT Timer external clock
frequency on CH1 to CH4 fTIMxCLK = 180 MHz
0fTIMxCLK/2 MHz
ResTIM Timer resolution - 16/32 bit
tMAX_COUNT Maximum possible count
with 32-bit counter -65536 ×
65536 tTIMxCLK
Table 61. I2C analog filter characteristics(1)
Symbol Parameter Min Max Unit
tAF
Maximum pulse width of spikes
that are suppressed by the analog
filter
50(2) 260(3) ns
Electrical characteristics STM32F427xx STM32F429xx
140/226 DocID024030 Rev 5
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 6 2 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
1. Guaranteed by design, not tested in production.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
Table 62. SPI dynamic characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode, SPI1/4/5/6,
2.7 VVDD3.6 V
--
45
MHz
Slave mode,
SPI1/4/5/6,
2.7 VVDD3.6 V
Receiver 45
Transmitter/
full-duplex 38(2)
Master mode, SPI1/2/3/4/5/6,
1.7 VVDD3.6 V
--
22.5
Slave mode, SPI1/2/3/4/5/6,
1.7 VVDD3.6 V 22.5
Duty(SCK) Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
tw(SCKH)
SCK high and low time
Master mode, SPI presc = 2,
2.7 VVDD3.6 V TPCLK 0.5 TPCLK TPCLK+0.5
ns
tw(SCKL)
Master mode, SPI presc = 2,
1.7 VVDD3.6 V TPCLK 2TPCLK TPCLK+2
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4TPCLK --
th(NSS) NSS hold time Slave mode, SPI presc = 2 2TPCLK
tsu(MI) Data input setup time
Master mode 3 - -
tsu(SI) Slave mode 0 - -
th(MI) Data input hold time
Master mode 0.5 - -
th(SI) Slave mode 2 - -
ta(SO) Data output access time Slave mode, SPI presc = 2 0 - 4TPCLK
tdis(SO) Data output disable time
Slave mode, SPI1/4/5/6,
2.7 VVDD3.6 V 0-8.5
Slave mode, SPI1/2/3/4/5/6 and
1.7 VVDD3.6 V 0-16.5
DocID024030 Rev 5 141/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 38. SPI timing diagram - slave mode and CPHA = 0
tv(SO)
th(SO)
Data output valid/hold
time
Slave mode (after enable edge),
SPI1/4/5/6 and 2.7V VDD 3.6V -1113
ns
Slave mode (after enable edge),
SPI2/3, 2.7 VVDD3.6 V -1415
Slave mode (after enable edge),
SPI1/4/5/6, 1.7 VVDD3.6 V -15.519
Slave mode (after enable edge),
SPI2/3, 1.7 VVDD3.6 V - 15.5 17.5
tv(MO) Data output valid time
Master mode (after enable edge),
SPI1/4/5/6, 2.7 VVDD3.6 V --2.5
Master mode (after enable edge),
SPI1/2/3/4/5/6, 1.7 VVDD3.6 V --4.5
th(MO) Data output hold time Master mode (after enable edge) 0 - -
1. Guaranteed by characterization results, not tested in production.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50%
Table 62. SPI dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
ai14134c
SCK Input
CPHA= 0
MOSI
INPUT
MISO
OUT P UT
CPHA= 0
MS B O UT
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
tSU(NSS)
tc(SCK)
th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI)
th(SI)
Electrical characteristics STM32F427xx STM32F429xx
142/226 DocID024030 Rev 5
Figure 39. SPI timing diagram - slave mode and CPHA = 1(1)
Figure 40. SPI timing diagram - master mode(1)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT P UT
CPHA=1
MS B O UT
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
tSU(NSS) tc(SCK) th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI) th(SI)
NSS input
ai14136
SCK Input
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
MS BIN
M SB OUT
BI T6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
DocID024030 Rev 5 143/226
STM32F427xx STM32F429xx Electrical characteristics
191
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 6 3 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Note: Refer to the I2S section of RM0090 reference manual for more details on the sampling
frequency (FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
Table 63. I2S dynamic characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main clock output - 256x8K 256xFs(2) MHz
fCK I2S clock frequency
Master data: 32 bits - 64xFs
MHz
Slave data: 32 bits - 64xFs
DCK I2S clock frequency duty cycle Slave receiver 30 70 %
tv(WS) WS valid time Master mode 0 6
ns
th(WS) WS hold time Master mode 0 -
tsu(WS) WS setup time Slave mode 1 -
th(WS) WS hold time Slave mode 0 -
tsu(SD_MR) Data input setup time
Master receiver 7.5 -
tsu(SD_SR) Slave receiver 2 -
th(SD_MR) Data input hold time
Master receiver 0 -
th(SD_SR) Slave receiver 0 -
tv(SD_ST)
th(SD_ST) Data output valid time
Slave transmitter (after enable edge) - 27
tv(SD_MT) Master transmitter (after enable edge) - 20
th(SD_MT) Data output hold time Master transmitter (after enable edge) 2.5 -
1. Guaranteed by characterization results, not tested in production.
2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).
Electrical characteristics STM32F427xx STM32F429xx
144/226 DocID024030 Rev 5
Figure 41. I2S slave timing diagram (Philips protocol)(1)
1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 42. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
CK Input
CPOL = 0
CPOL = 1
tc(CK)
WS input
SDtransmit
SDreceive
tw(CKH) tw(CKL)
tsu(WS)tv(SD_ST) th(SD_ST)
th(WS)
tsu(SD_SR) th(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881b
LSB receive(2)
LSB transmit(2)
CK output
CPOL = 0
CPOL = 1
tc(CK)
WS output
SDreceive
SDtransmit
tw(CKH)
tw(CKL)
tsu(SD_MR)
tv(SD_MT) th(SD_MT)
th(WS)
th(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14884b
tf(CK) tr(CK)
tv(WS)
LSB receive
(2)
LSB transmit
(2)
DocID024030 Rev 5 145/226
STM32F427xx STM32F429xx Electrical characteristics
191
SAI characteristics
Unless otherwise specified, the parameters given in Table 64 for SAI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C=30 pF
Measurement points are performed at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (SCK,SD,WS).
Table 64. SAI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCKL SAI Main clock output - 256 x 8K 256xFs(2) MHz
FSCK SAI clock frequency
Master data: 32 bits - 64xFs
MHz
Slave data: 32 bits - 64xFs
DSCK
SAI clock frequency duty
cycle Slave receiver 30 70 %
tv(FS) FS valid time Master mode 8 22
ns
tsu(FS) FS setup time Slave mode 2 -
th(FS) FS hold time
Master mode 8 -
Slave mode 0 -
tsu(SD_MR) Data input setup time
Master receiver 5 -
tsu(SD_SR) Slave receiver 3 -
th(SD_MR) Data input hold time
Master receiver 0 -
th(SD_SR) Slave receiver 0 -
tv(SD_ST)
th(SD_ST) Data output valid time
Slave transmitter (after enable
edge) -22
tv(SD_MT)
Master transmitter (after enable
edge) -20
th(SD_MT) Data output hold time Master transmitter (after enable
edge) 8-
1. Guaranteed by characterization results, not tested in production.
2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency)
Electrical characteristics STM32F427xx STM32F429xx
146/226 DocID024030 Rev 5
Figure 43. SAI master timing waveforms
Figure 44. SAI slave timing waveforms
-36
3!)?3#+?8
3!)?&3?8
OUTPUT
F3#+
3!)?3$?8
TRANSMIT
TV&3
3LOTN
3!)?3$?8
RECEIVE
TH&3
3LOTN
TV3$?-4 TH3$?-4
3LOTN
TSU3$?-2 TH3$?-2
-36
3!)?3#+?8
3!)?&3?8
INPUT
3!)?3$?8
TRANSMIT
TSU&3
3LOTN
3!)?3$?8
RECEIVE
TW#+(?8 TH&3
3LOTN
TV3$?34 TH3$?34
3LOTN
TSU3$?32
TW#+,?8
TH3$?32
F3#+
DocID024030 Rev 5 147/226
STM32F427xx STM32F429xx Electrical characteristics
191
USB OTG full speed (FS) characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers.
Note: When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state
(floating input), not as alternate function. A typical 200 µA current consumption of the
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 and PB13 when the feature is enabled.
Table 65. USB OTG full speed startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design, not tested in production.
USB OTG full speed transceiver startup time 1 µs
Table 66. USB OTG full speed DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.(1) Unit
Input
levels
VDD
USB OTG full speed
transceiver operating
voltage
3.0(2)
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed
electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
-3.6V
VDI(3)
3. Guaranteed by design, not tested in production.
Differential input sensitivity I(USB_FS_DP/DM,
USB_HS_DP/DM) 0.2 - -
VVCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold 1.3 - 2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4)
4. RL is the load connected on the USB OTG full speed drivers.
--0.3
V
VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6
RPD
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
VIN = VDD
17 21 24
kΩ
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
0.65 1.1 2.0
RPU
PA12, PB15 (USB_FS_DP,
USB_HS_DP) VIN = VSS 1.5 1.8 2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS 0.25 0.37 0.55
Electrical characteristics STM32F427xx STM32F429xx
148/226 DocID024030 Rev 5
Figure 45. USB OTG full speed timings: definition of data signal rise and fall time
USB high speed (HS) characteristics
Unless otherwise specified, the parameters given in Table 7 0 for ULPI are derived from
tests performed under the ambient temperature, fHCLK frequency summarized in Table 69
and VDD supply voltage conditions summarized in Table 68, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10, unless otherwise specified
Capacitive load C = 30 pF, unless otherwise specified
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Table 67. USB OTG full speed electrical characteristics(1)
1. Guaranteed by design, not tested in production.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
ZDRV Output driver impedance(3)
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching
impedance is included in the embedded driver.
Driving high or
low 28 44 Ω
Table 68. USB HS DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD USB OTG HS operating voltage 1.7 3.6 V
ai14137
tf
Differen tial
Data L ines
VSS
V
CR S
tr
Crossover
points
DocID024030 Rev 5 149/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 46. ULPI timing diagram
Table 69. USB HS clock timing parameters(1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Min Typ Max Unit
fHCLK value to guarantee proper operation of
USB HS interface 30 - - MHz
FSTART_8BIT Frequency (first transition) 8-bit ±10% 54 60 66 MHz
FSTEADY Frequency (steady state) ±500 ppm 59.97 60 60.03 MHz
DSTART_8BIT Duty cycle (first transition) 8-bit ±10% 40 50 60 %
DSTEADY Duty cycle (steady state) ±500 ppm 49.975 50 50.025 %
tSTEADY
Time to reach the steady state frequency and
duty cycle after the first transition --1.4ms
tSTART_DEV Clock startup time after the
de-assertion of SuspendM
Peripheral - - 5.6
ms
tSTART_HOST Host - - -
tPREP
PHY preparation time after the first transition
of the input clock ---µs
#LOCK
#ONTROL)N
5,0)?$)2
5,0)?.84
DATA)N
BIT
#ONTROLOUT
5,0)?340
DATAOUT
BIT
T$$
T$#
T($
T3$
T(#
T3#
AIC
T$#
Electrical characteristics STM32F427xx STM32F429xx
150/226 DocID024030 Rev 5
Table 70. Dynamic characteristics: USB ULPI(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
tSC Control in (ULPI_DIR, ULPI_NXT) setup time 2 - -
ns
tHC Control in (ULPI_DIR, ULPI_NXT) hold time 0.5 - -
tSD Data in setup time 1.5 - -
tHD Data in hold time 2 - -
tDC/tDD Data/control output delay
2.7 V < VDD < 3.6 V,
CL = 15 pF and
OSPEEDRy[1:0] = 11
-99.5
2.7 V < VDD < 3.6 V,
CL = 20 pF and
OSPEEDRy[1:0] = 10
-
12 15
1.7 V < VDD < 3.6 V,
CL = 15 pF and
OSPEEDRy[1:0] = 11
-
1. Guaranteed by characterization results, not tested in production.
DocID024030 Rev 5 151/226
STM32F427xx STM32F429xx Electrical characteristics
191
Ethernet characteristics
Unless otherwise specified, the parameters given in Table 7 2, Table 73 and Table 74 for
SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK
frequency summarized in Table 17 and VDD supply voltage conditions summarized in
Table 71, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Table 72 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 47 shows the corresponding timing diagram.
Figure 47. Ethernet SMI timing diagram
Table 73 gives the list of Ethernet MAC signals for the RMII and Figure 48 shows the
corresponding timing diagram.
Table 71. Ethernet DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD Ethernet operating voltage 2.7 3.6 V
Table 72. Dynamics characteristics: Ethernet MAC signals for SMI(1)
1. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Typ Max Unit
tMDC MDC cycle time(2.38 MHz) 411 420 425
ns
Td(MDIO) Write data valid time 6 10 13
tsu(MDIO) Read data setup time 12 - -
th(MDIO) Read data hold time 0 - -
069
(7+B0'&
(7+B0',22
(7+B0',2,
W0'&
WG0',2
WVX0',2 WK0',2
Electrical characteristics STM32F427xx STM32F429xx
152/226 DocID024030 Rev 5
Figure 48. Ethernet RMII timing diagram
Table 74 gives the list of Ethernet MAC signals for MII and Figure 48 shows the
corresponding timing diagram.
Figure 49. Ethernet MII timing diagram
Table 73. Dynamics characteristics: Ethernet MAC signals for RMII(1)
1. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 1.5 - -
ns
tih(RXD) Receive data hold time 0 - -
tsu(CRS) Carrier sense setup time 1 - -
tih(CRS) Carrier sense hold time 1 - -
td(TXEN) Transmit enable valid delay time 0 10.5 12
td(TXD) Transmit data valid delay time 0 11 12.5
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
td(TXEN)
td(TXD)
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
ai15667
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
t
d(TXEN)
t
d(TXD)
t
su(RXD)
t
su(ER)
t
su(DV)
t
ih(RXD)
t
ih(ER)
t
ih(DV)
ai15668
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
DocID024030 Rev 5 153/226
STM32F427xx STM32F429xx Electrical characteristics
191
CAN (controller area network) interface
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (CANx_TX and CANx_RX).
6.3.21 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 7 5 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 17.
Table 74. Dynamics characteristics: Ethernet MAC signals for MII(1)
1. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 9 -
ns
tih(RXD) Receive data hold time 10 -
tsu(DV) Data valid setup time 9 -
tih(DV) Data valid hold time 8 -
tsu(ER) Error setup time 6 -
tih(ER) Error hold time 8 -
td(TXEN) Transmit enable valid delay time 0 10 14
td(TXD) Transmit data valid delay time 0 10 15
Table 75. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply VDDA VREF+ < 1.2 V 1.7(1) -3.6V
VREF+ Positive reference voltage 1.7(1) -V
DDA V
fADC ADC clock frequency VDDA = 1.7(1) to 2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V 0.6 30 36 MHz
fTRIG(2) External trigger frequency
fADC = 30 MHz,
12-bit resolution - - 1764 kHz
- - 17 1/fADC
VAIN Conversion voltage range(3)
0
(VSSA or VREF-
tied to ground)
-V
REF+ V
RAIN(2) External input impedance See Equation 1 for
details --50kΩ
RADC(2)(4) Sampling switch resistance - - 6 kΩ
CADC(2) Internal sample and hold
capacitor -47pF
tlat(2) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
--3
(5) 1/fADC
Electrical characteristics STM32F427xx STM32F429xx
154/226 DocID024030 Rev 5
Equation 1: RAIN max formula
tlatr(2) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 µs
--2
(5) 1/fADC
tS(2) Sampling time fADC = 30 MHz 0.100 - 16 µs
3-4801/f
ADC
tSTAB(2) Power-up time - 2 3 µs
tCONV(2) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.50 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.30 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
fS(2)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC - - 2 Msps
12-bit resolution
Interleave Dual ADC
mode
- - 3.75 Msps
12-bit resolution
Interleave Triple ADC
mode
- - 6 Msps
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
-300500µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
-1.61.8mA
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:
Internal reset OFF).
2. Based on characterization, not tested in production.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 75.
Table 75. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
RAIN
k0,5()
fADC CADC 2N2+
()ln××
-------------------------------------------------------------- RADC
=
DocID024030 Rev 5 155/226
STM32F427xx STM32F429xx Electrical characteristics
191
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
a
Table 76. ADC static accuracy at fADC = 18 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Based on characterization, not tested in production.
Unit
ET Total unadjusted error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±3 ±4
LSB
EO Offset error ±2 ±3
EG Gain error ±1 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±2 ±3
Table 77. ADC static accuracy at fADC = 30 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Based on characterization, not tested in production.
Unit
ET Total unadjusted error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA VREF < 1.2 V
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
Table 78. ADC static accuracy at fADC = 36 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Based on characterization, not tested in production.
Unit
ET Total unadjusted error
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±4 ±7
LSB
EO Offset error ±2 ±3
EG Gain error ±3 ±6
ED Differential linearity error ±2 ±3
EL Integral linearity error ±3 ±6
Electrical characteristics STM32F427xx STM32F429xx
156/226 DocID024030 Rev 5
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.17 does not affect the ADC accuracy.
Table 79. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.3 10.4 - bits
SINAD Signal-to-noise and distortion ratio 64 64.2 -
dBSNR Signal-to-noise ratio 64 65 -
THD Total harmonic distortion 67 72 -
1. Guaranteed by characterization results, not tested in production.
Table 80. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.6 10.8 - bits
SINAD Signal-to noise and distortion ratio 66 67 -
dBSNR Signal-to noise ratio 64 68 -
THD Total harmonic distortion 70 72 -
1. Guaranteed by characterization results, not tested in production.
DocID024030 Rev 5 157/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 50. ADC accuracy characteristics
1. See also Table 77.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 51. Typical connection diagram using the ADC
1. Refer to Table 75 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
AIC
%/
%'
, 3")$%!,



    


%4
%$
%,

6$$!
633!
62%&
 ORDEPENDINGONPACKAGE=
6$$!

;,3" )$%!,

DL
670)
9''
$,1[
,/$
9
97
5$,1
&SDUDVLWLF
9$,1
9
97
5$'&
&$'&
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
Electrical characteristics STM32F427xx STM32F429xx
158/226 DocID024030 Rev 5
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 52 or Figure 53,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
VREF+
STM32F
VDDA
VSSA/V REF-
1 µF // 10 nF
1 µF // 10 nF
ai17535
(See note 1)
(See note 1)
VREF+/VDDA
STM32F
1 µF // 10 nF
VREF–/VSSA
ai17536
(See note 1)
(See note 1)
DocID024030 Rev 5 159/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.3.22 Temperature sensor characteristics
6.3.23 VBAT monitoring characteristics
6.3.24 Reference voltage
The parameters given in Table 84 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 17.
Table 81. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 mV/°C
V25(1) Voltage at 25 °C - 0.76 V
tSTART(2) Startup time - 6 10 µs
TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
Table 82. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F
Table 83. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-KΩ
QRatio on VBAT measurement - 4 -
Er(1) Error on Q 1 - +1 %
TS_vbat(2)(2) ADC sampling time when reading the VBAT
1 mV accuracy 5--µs
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 84. internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
TS_vrefint(1) ADC sampling time when reading the
internal reference voltage 10 - - µs
VRERINT_s(2) Internal reference voltage spread over the
temperature range VDD = 3V ± 10mV - 3 5 mV
Electrical characteristics STM32F427xx STM32F429xx
160/226 DocID024030 Rev 5
6.3.25 DAC electrical characteristics
TCoeff(2) Temperature coefficient - 30 50 ppm/°C
tSTART(2) Startup time - 6 10 µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production
Table 84. internal reference voltage (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 85. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL Raw data acquired at temperature of 30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B
Table 86. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA Analog supply voltage 1.7(1) -3.6 V
VREF+ Reference supply voltage 1.7(1) -3.6VV
REF+ VDDA
VSSA Ground 0- 0V
RLOAD(2) Resistive load with buffer ON 5 - - kΩ
RO(2) Impedance output with buffer
OFF --15kΩ
When the buffer is OFF, the Minimum
resistive load between DAC_OUT and
VSS to have a 1% accuracy is 1.5 MΩ
CLOAD(2) Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT
pin (when the buffer is ON).
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer ON 0.2 - - V
It gives the maximum output excursion of
the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V and
(0x1C7) to (0xE38) at VREF+ = 1.7 V
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer ON --
VDDA
0.2 V
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer OFF -0.5 - mV
It gives the maximum output excursion of
the DAC.
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer OFF --
VREF+
1LSB V
IVREF+(4)
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
-170240
µA
With no load, worst code (0x800) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
-5075
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
DocID024030 Rev 5 161/226
STM32F427xx STM32F429xx Electrical characteristics
191
IDDA(4)
DAC DC VDDA current
consumption in quiescent
mode(3)
-280380µA
With no load, middle code (0x800) on the
inputs
-475625µA
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
DNL(4)
Differential non linearity
Difference between two
consecutive code-1LSB)
- - ±0.5 LSB Given for the DAC in 10-bit configuration.
- - ±2 LSB Given for the DAC in 12-bit configuration.
INL(4)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
- - ±1 LSB Given for the DAC in 10-bit configuration.
- - ±4 LSB Given for the DAC in 12-bit configuration.
Offset(4)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
- - ±10 mV Given for the DAC in 12-bit configuration
--±3LSB
Given for the DAC in 10-bit at VREF+ =
3.6 V
--±12LSB
Given for the DAC in 12-bit at VREF+ =
3.6 V
Gain
error(4) Gain error - - ±0.5 % Given for the DAC in 12-bit configuration
tSETTLING(4)
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±4LSB
-3 6µs
CLOAD 50 pF,
RLOAD 5 kΩ
THD(4) Total Harmonic Distortion
Buffer ON -- -dB
CLOAD 50 pF,
RLOAD 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-- 1MS/s
CLOAD 50 pF,
RLOAD 5 kΩ
tWAKEUP(4)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
-6.510µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest and highest
possible ones.
PSRR+ (2)
Power supply rejection ratio
(to VDDA) (static DC
measurement)
- –67 –40 dB No RLOAD, CLOAD = 50 pF
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:
Internal reset OFF).
2. Guaranteed by design, not tested in production.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization, not tested in production.
Table 86. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
Electrical characteristics STM32F427xx STM32F429xx
162/226 DocID024030 Rev 5
Figure 54. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
6.3.26 FMC characteristics
Unless otherwise specified, the parameters given in Table 8 7 to Table 102 for the FMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10 except at VDD range 1.7 to 2.1V where
OSPEEDRy[1:0] = 11
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Asynchronous waveforms and timings
Figure 55 through Figure 58 represent asynchronous waveforms and Table 87 through
Table 94 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
AddressSetupTime = 0x1
AddressHoldTime = 0x1
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
BusTurnAroundDuration = 0x0
For SDRAM memories, VDD ranges from 2.7 to 3.6 V and maximum frequency
FMC_SDCLK = 90 MHz
For Mobile LPSDR SDRAM memories, VDD ranges from 1.7 to 1.95 V and maximum
frequency FMC_SDCLK = 84 MHz
5/2$'
&/2$'
%XIIHUHG1RQEXIIHUHG'$&
'$&[B287
%XIIHU
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
DL
DocID024030 Rev 5 163/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 2THCLK 0.5 2 THCLK+0.5 ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 0 1 ns
tw(NOE) FMC_NOE low time 2THCLK 2THCLK+ 0.5 ns
th(NE_NOE) FMC_NOE high to FMC_NE high hold time 0 - ns
tv(A_NE) FMC_NEx low to FMC_A valid - 2 ns
th(A_NOE) Address hold time after FMC_NOE high 0 - ns
tv(BL_NE) FMC_NEx low to FMC_BL valid - 2 ns
th(BL_NOE) FMC_BL hold time after FMC_NOE high 0 - ns
tsu(Data_NE) Data to FMC_NEx high setup time THCLK + 2.5 - ns
tsu(Data_NOE) Data to FMC_NOEx high setup time THCLK +2 - ns
$ATA
&-#?.%
&-#?.",;=
&-#?$;=
T
V",?.%
TH$ATA?.%
&-#?./%
!DDRESS
&-#?!;=
T
V!?.%
&-#?.7%
TSU$ATA?.%
TW.%
-36
W./%
TTV./%?.% TH.%?./%
TH$ATA?./%
TH!?./%
TH",?./%
TSU$ATA?./%
&-#?.!$6 
TV.!$6?.%
TW.!$6
&-#?.7!)4
TSU.7!)4?.%
TH.%?.7!)4
Electrical characteristics STM32F427xx STM32F429xx
164/226 DocID024030 Rev 5
th(Data_NOE) Data hold time after FMC_NOE high 0 - ns
th(Data_NE) Data hold time after FMC_NEx high 0 - ns
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0 ns
tw(NADV) FMC_NADV low time - THCLK +1 ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 7THCLK+0.5 7THCLK+1
ns
tw(NOE) FMC_NWE low time 5THCLK 1.5 5THCLK +2
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK+1.5 -
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK+1 -
Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings(1)(2) (continued)
Symbol Parameter Min Max Unit
DocID024030 Rev 5 165/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3THCLK 3THCLK+1 ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low THCLK 0.5 THCLK+ 0.5 ns
tw(NWE) FMC_NWE low time THCLK THCLK+ 0.5 ns
th(NE_NWE) FMC_NWE high to FMC_NE high hold time THCLK +1.5 - ns
tv(A_NE) FMC_NEx low to FMC_A valid - 0 ns
th(A_NWE) Address hold time after FMC_NWE high THCLK+0.5 - ns
tv(BL_NE) FMC_NEx low to FMC_BL valid - 1.5 ns
th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK+0.5 - ns
tv(Data_NE) Data to FMC_NEx low to Data valid - THCLK+ 2 ns
th(Data_NWE) Data hold time after FMC_NWE high THCLK+0.5 - ns
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0.5 ns
tw(NADV) FMC_NADV low time - THCLK+ 0.5 ns
.",
$ATA
&-#?.%X
&-#?.",;=
&-#?$;=
T
V",?.%
TH$ATA?.7%
&-#?./%
!DDRESS
&-#?!;=
T
V!?.%
TW.7%
&-#?.7%
TV.7%?.% TH.%?.7%
TH!?.7%
TH",?.7%
TV$ATA?.%
TW.%
-36
&-#?.!$6 
TV.!$6?.%
TW.!$6
&-#?.7!)4
TSU.7!)4?.%
TH.%?.7!)4
Electrical characteristics STM32F427xx STM32F429xx
166/226 DocID024030 Rev 5
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms
Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -
NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8THCLK+1 8THCLK+2 ns
tw(NWE) FMC_NWE low time 6THCLK 16T
HCLK+2 ns
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK+1.5 - ns
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK+1 ns
.",
$ATA
&-#? .",;=
&-#? !$;=
T
V",?.%
TH$ATA?.%
!DDRESS
&-#? !;=
T
V!?.%
&-#?.7%
TV!?.%
-36
!DDRESS
&-#?.!$6
TV.!$6?.%
TW.!$6
TSU$ATA?.%
T
H!$?.!$6
&-#? .%
&-#?./%
TW.%
TW./%
TV./%?.% TH.%?./%
TH!?./%
TH",?./%
TSU$ATA?./% TH$ATA?./%
&-#?.7!)4
TSU.7!)4?.%
TH.%?.7!)4
DocID024030 Rev 5 167/226
STM32F427xx STM32F429xx Electrical characteristics
191
Table 91. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3THCLK 13T
HCLK+0.5 ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 2THCLK 0.5 2THCLK ns
ttw(NOE) FMC_NOE low time THCLK 1T
HCLK+1 ns
th(NE_NOE) FMC_NOE high to FMC_NE high hold time 1 - ns
tv(A_NE) FMC_NEx low to FMC_A valid - 2 ns
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 2 ns
tw(NADV) FMC_NADV low time THCLK 0.5 THCLK+0.5 ns
th(AD_NADV)
FMC_AD(address) valid hold time after
FMC_NADV high) 0 -ns
th(A_NOE) Address hold time after FMC_NOE high THCLK 0.5 - ns
th(BL_NOE) FMC_BL time after FMC_NOE high 0 - ns
tv(BL_NE) FMC_NEx low to FMC_BL valid - 2 ns
tsu(Data_NE) Data to FMC_NEx high setup time THCLK+1.5 - ns
tsu(Data_NOE) Data to FMC_NOE high setup time THCLK+1 - ns
th(Data_NE) Data hold time after FMC_NEx high 0 - ns
th(Data_NOE) Data hold time after FMC_NOE high 0 - ns
Table 92. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8THCLK+0.5 8THCLK+2 ns
tw(NOE) FMC_NWE low time 5THCLK 15T
HCLK +1.5 ns
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK +1.5 - ns
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK+1 ns
Electrical characteristics STM32F427xx STM32F429xx
168/226 DocID024030 Rev 5
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms
Table 93. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 4THCLK 4THCLK+0.5 ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low THCLK 1T
HCLK+0.5 ns
tw(NWE) FMC_NWE low time 2THCLK 2THCLK+0.5 ns
th(NE_NWE) FMC_NWE high to FMC_NE high hold time THCLK -ns
tv(A_NE) FMC_NEx low to FMC_A valid - 0 ns
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0.5 1 ns
tw(NADV) FMC_NADV low time THCLK 0.5 THCLK+ 0.5 ns
th(AD_NADV)
FMC_AD(adress) valid hold time after
FMC_NADV high) THCLK 2-ns
th(A_NWE) Address hold time after FMC_NWE high THCLK -ns
th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK 2-ns
tv(BL_NE) FMC_NEx low to FMC_BL valid - 2 ns
tv(Data_NADV) FMC_NADV high to Data valid - THCLK +1.5 ns
th(Data_NWE) Data hold time after FMC_NWE high THCLK +0.5 - ns
.",
$ATA
&-#? .%X
&-#? .",;=
&-#? !$;=
T
V",?.%
TH$ATA?.7%
&-#?./%
!DDRESS
&-#? !;=
T
V!?.%
TW.7%
&-#?.7%
TV.7%?.% TH.%?.7%
TH!?.7%
TH",?.7%
TV!?.%
TW.%
-36
!DDRESS
&-#?.!$6
TV.!$6?.%
TW.!$6
TV$ATA?.!$6
T
H!$?.!$6
&-#?.7!)4
TSU.7!)4?.%
TH.%?.7!)4
DocID024030 Rev 5 169/226
STM32F427xx STM32F429xx Electrical characteristics
191
Synchronous waveforms and timings
Figure 59 through Figure 62 represent synchronous waveforms and Table 95 through
Table 98 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
BurstAccessMode = FMC_BurstAccessMode_Enable;
MemoryType = FMC_MemoryType_CRAM;
WriteBurst = FMC_WriteBurst_Enable;
CLKDivision = 1; (0 is not supported, see the STM32F4xx reference manual : RM0090)
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, the THCLK is the HCLK clock period (with maximum
FMC_CLK = 90 MHz).
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 94. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 9THCLK 9THCLK+0.5 ns
tw(NWE) FMC_NWE low time 7THCLK 7THCLK+2 ns
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK+1.5 - ns
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK–1 - ns
Electrical characteristics STM32F427xx STM32F429xx
170/226 DocID024030 Rev 5
Figure 59. Synchronous multiplexed NOR/PSRAM read timings
Table 95. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK 1 - ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 0 ns
td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK -ns
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0 ns
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - ns
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 0 ns
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) 0 - ns
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - THCLK+0.5 ns
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high THCLK 0.5 - ns
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 0.5 ns
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - ns
&-#?#,+
&-#?.%X
&-#?.!$6
&-#?!;=
&-#?./%
&-#?!$;= !$;= $ $
&-#?.7!)4
7!)4#&'B
7!)40/,B
&-#?.7!)4
7!)4#&'B
7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+(.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+(!)6
TD#,+,./%, TD#,+(./%(
TD#,+,!$6
TD#,+,!$)6
TSU!$6#,+(
TH#,+(!$6
TSU!$6#,+( TH#,+(!$6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
-36
DocID024030 Rev 5 171/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 60. Synchronous multiplexed PSRAM write timings
tsu(ADV-CLKH)
FMC_A/D[15:0] valid data before FMC_CLK
high 5 -ns
th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high 0 - ns
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 4 - ns
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 0 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 95. Synchronous multiplexed NOR/PSRAM read timings(1)(2) (continued)
Symbol Parameter Min Max Unit
&-#?#,+
&-#?.%X
&-#?.!$6
&-#?!;=
&-#?.7%
&-#?!$;= !$;= $ $
&-#?.7!)4
7!)4#&'B
7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+(.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+(!)6
TD#,+(.7%(
TD#,+,.7%,
TD#,+(.",(
TD#,+,!$6
TD#,+,!$)6 TD#,+,$ATA
TSU.7!)46#,+( TH#,+(.7!)46
-36
TD#,+,$ATA
&-#?.",
Electrical characteristics STM32F427xx STM32F429xx
172/226 DocID024030 Rev 5
Table 96. Synchronous multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period, VDD range= 2.7 to 3.6 V 2THCLK 1 - ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 1.5 ns
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK -ns
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0 ns
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - ns
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 0 ns
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -ns
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 0 ns
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high THCLK 0.5 - ns
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3 ns
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - ns
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 3 ns
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 0 - ns
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK0.5 - ns
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 4 - ns
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 0 - ns
DocID024030 Rev 5 173/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings
Table 97. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK 1 - ns
t(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 0.5 ns
td(CLKH-
NExH)
FMC_CLK high to FMC_NEx high (x= 0…2) THCLK -ns
td(CLKL-
NADVL)
FMC_CLK low to FMC_NADV low - 0 ns
td(CLKL-
NADVH)
FMC_CLK low to FMC_NADV high 0 - ns
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 0 ns
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK 0.5 - ns
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - THCLK+2 ns
td(CLKH-
NOEH)
FMC_CLK high to FMC_NOE high THCLK 0.5 - ns
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high 5 - ns
&-#?#,+
&-#?.%X
&-#?!;=
&-#?./%
&-#?$;= $ $
&-#?.7!)4
7!)4#&'B
7!)40/,B
&-#?.7!)4
7!)4#&'B
7!)40/,B
TW#,+ TW#,+
$ATALATENCY
TD#,+,.%X, TD#,+(.%X(
TD#,+,!6 TD#,+(!)6
TD#,+,./%, TD#,+(./%(
TSU$6#,+( TH#,+($6
TSU$6#,+( TH#,+($6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
-36
&-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
Electrical characteristics STM32F427xx STM32F429xx
174/226 DocID024030 Rev 5
Figure 62. Synchronous non-multiplexed PSRAM write timings
th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high 0 - ns
t(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 4
th(CLKH-
NWAIT)
FMC_NWAIT valid after FMC_CLK high 0
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 98. Synchronous non-multiplexed PSRAM write timings(1)(2)
Symbol Parameter Min Max Unit
t(CLK) FMC_CLK period 2THCLK 1 - ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 0.5 ns
t(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK -ns
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0 ns
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 - ns
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 0 ns
Table 97. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) (continued)
Symbol Parameter Min Max Unit
-36
&-#?#,+
&-#?.%X
&-#?!;=
&-#?.7%
&-#?$;= $ $
&-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
TD#,+,.%X, TD#,+(.%X(
TD#,+,!6 TD#,+(!)6
TD#,+(.7%(
TD#,+,.7%,
TD#,+,$ATA
TSU.7!)46#,+(
TH#,+(.7!)46
&-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
TD#,+,$ATA
&-#?.",
TD#,+(.",(
DocID024030 Rev 5 175/226
STM32F427xx STM32F429xx Electrical characteristics
191
PC Card/CompactFlash controller waveforms and timings
Figure 63 through Figure 68 represent synchronous waveforms, and Table 9 9 and
Table 100 provide the corresponding timings. The results shown in this table are obtained
with the following FMC configuration:
COM.FMC_SetupTime = 0x04;
COM.FMC_WaitSetupTime = 0x07;
COM.FMC_HoldSetupTime = 0x04;
COM.FMC_HiZSetupTime = 0x00;
ATT.FMC_SetupTime = 0x04;
ATT.FMC_WaitSetupTime = 0x07;
ATT.FMC_HoldSetupTime = 0x04;
ATT.FMC_HiZSetupTime = 0x00;
IO.FMC_SetupTime = 0x04;
IO.FMC_WaitSetupTime = 0x07;
IO.FMC_HoldSetupTime = 0x04;
IO.FMC_HiZSetupTime = 0x00;
TCLRSetupTime = 0;
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) 0 - ns
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 0 ns
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high THCLK0.5 - ns
td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low - 2.5 ns
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 0 - ns
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK0.5 - ns
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 4
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 0
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 98. Synchronous non-multiplexed PSRAM write timings(1)(2) (continued)
Symbol Parameter Min Max Unit
Electrical characteristics STM32F427xx STM32F429xx
176/226 DocID024030 Rev 5
Figure 63. PC Card/CompactFlash controller waveforms for common memory read
access
1. FMC_NCE4_2 remains high (inactive during 8-bit access.
Figure 64. PC Card/CompactFlash controller waveforms for common memory write
access
&-#?.7%
TW./%
&-#?.
/%
&-#?$;=
&-#?!;=
&-#?.#%?
&-#?.#%?
&-#?.2%'
&-#?.)/72
&-#?.)/2$
TD.#%?./%
TSU$./% TH./%$
TV.#%X!
TD.2%'.#%X
TD.)/2$.#%X
TH.#%X!)
TH.#%X.2%'
TH.#%X.)/2$
TH.#%X
.)/72
-36
-36
TD.#%?.7% TW.7%
TH.7%$
TV.#%?!
TD.2%'.#%?
TD.)/2$.#%?
TH.#%?!)
-%-X():
TV.7%$
TH.#%?.2%'
TH.#%?.)/2$
TH.#%?.)/72
&-#?.7%
&-#?.
/%
&-#?$;=
&-#?!;=
&-#?.#%?
&-#?.2%'
&-#?.)/72
&-#?.)/2$
TD.7%.#%?
TD$.7%
&-#?.#%? (IGH
DocID024030 Rev 5 177/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory
read access
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
-36
TD.#%?./% TW./%
TSU$./% TH./%$
TV.#%?! TH.#%?!)
TD.2%'.#%? TH.#%?.2%'
&-#?.7%
&-#?./%
&-#?$;=
&-#?!;=
&-#?.#%?
&-#?.#%?
&-#?.2%'
&-#?.)/72
&-#?.)/2$
TD./%.#%?
(IGH
Electrical characteristics STM32F427xx STM32F429xx
178/226 DocID024030 Rev 5
Figure 66. PC Card/CompactFlash controller waveforms for attribute memory
write access
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).
Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access
-36
TW.7%
TV.#%?!
TD.2%'.#%?
TH.#%?!)
TH.#%?.2%'
TV.7%$
&-#?.7%
&-#?./%
&-#?$;=
&-#?!;=
&-#?.#%?
&-#?.#%?
&-#?.2%'
&-#?.)/72
&-#?.)/2$
TD.7%.#%?
(IGH
TD.#%?.7%
-36
TD.)/2$.#%? TW.)/2$
TSU$.)/2$ TD.)/2$$
TV.#%X! TH.#%?!)
&-#?.7%
&-#?./%
&-#?$;=
&-#?!;=
&-#?.#%?
&-#?.#%?
&-#?.2%'
&-#?.)/72
&-#?.)/2$
DocID024030 Rev 5 179/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access
TD.#%?.)/72 TW.)/72
TV.#%X! TH.#%?!)
TH.)/72$
!44X():
TV.)/72$
-36
&-#?.7%
&-#?./%
&-#?$;=
&-#?!;=
&-#?.#%?
&-#?.#%?
&-#?.2%'
&-#?.)/72
&-#?.)/2$
Table 99. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space(1)(2)
Symbol Parameter Min Max Unit
tv(NCEx-A) FMC_Ncex low to FMC_Ay valid - 0 ns
th(NCEx_AI) FMC_NCEx high to FMC_Ax invalid 0 - ns
td(NREG-NCEx) FMC_NCEx low to FMC_NREG valid - 1 ns
th(NCEx-NREG) FMC_NCEx high to FMC_NREG invalid THCLK 2-ns
td(NCEx-NWE) FMC_NCEx low to FMC_NWE low - 5THCLK ns
tw(NWE) FMC_NWE low width 8THCLK 0.5 8THCLK+0.5 ns
td(NWE_NCEx) FMC_NWE high to FMC_NCEx high 5THCLK+1 - ns
tV(NWE-D) FMC_NWE low to FMC_D[15:0] valid - 0 ns
th(NWE-D) FMC_NWE high to FMC_D[15:0] invalid 9THCLK 0.5 - ns
td(D-NWE) FMC_D[15:0] valid before FMC_NWE high 13THCLK 3ns
td(NCEx-NOE) FMC_NCEx low to FMC_NOE low - 5THCLK ns
tw(NOE) FMC_NOE low width 8 THCLK 0.5 8 THCLK+0.5 ns
td(NOE_NCEx) FMC_NOE high to FMC_NCEx high 5THCLK 1-ns
tsu (D-NOE) FMC_D[15:0] valid data before FMC_NOE high THCLK -ns
th(NOE-D) FMC_NOE high to FMC_D[15:0] invalid 0 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Electrical characteristics STM32F427xx STM32F429xx
180/226 DocID024030 Rev 5
NAND controller waveforms and timings
Figure 69 through Figure 72 represent synchronous waveforms, and Table 101 and
Table 102 provide the corresponding timings. The results shown in this table are obtained
with the following FMC configuration:
COM.FMC_SetupTime = 0x01;
COM.FMC_WaitSetupTime = 0x03;
COM.FMC_HoldSetupTime = 0x02;
COM.FMC_HiZSetupTime = 0x01;
ATT.FMC_SetupTime = 0x01;
ATT.FMC_WaitSetupTime = 0x03;
ATT.FMC_HoldSetupTime = 0x02;
ATT.FMC_HiZSetupTime = 0x01;
Bank = FMC_Bank_NAND;
MemoryDataWidth = FMC_MemoryDataWidth_16b;
ECC = FMC_ECC_Enable;
ECCPageSize = FMC_ECCPageSize_512Bytes;
TCLRSetupTime = 0;
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Table 100. Switching characteristics for PC Card/CF read and write cycles
in I/O space(1)(2)
Symbol Parameter Min Max Unit
tw(NIOWR) FMC_NIOWR low width 8THCLK 0.5 - ns
tv(NIOWR-D) FMC_NIOWR low to FMC_D[15:0] valid - 0 ns
th(NIOWR-D) FMC_NIOWR high to FMC_D[15:0] invalid 9THCLK 2-ns
td(NCE4_1-NIOWR) FMC_NCE4_1 low to FMC_NIOWR valid - 5THCLK ns
th(NCEx-NIOWR) FMC_NCEx high to FMC_NIOWR invalid 5THCLK -ns
td(NIORD-NCEx) FMC_NCEx low to FMC_NIORD valid - 5THCLK ns
th(NCEx-NIORD) FMC_NCEx high to FMC_NIORD) valid 6THCLK+2 - ns
tw(NIORD) FMC_NIORD low width 8THCLK 0.5 8THCLK+0.5 ns
tsu(D-NIORD) FMC_D[15:0] valid before FMC_NIORD high THCLK -ns
td(NIORD-D) FMC_D[15:0] valid after FMC_NIORD high 0 - ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
DocID024030 Rev 5 181/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 69. NAND controller waveforms for read access
Figure 70. NAND controller waveforms for write access
&-#?.7%
&-#?./%.2%
&-#?$;=
TSU$./% TH./%$
-36
!,%&-#?!
#,%&-#?!
&-#?.#%X
TD!,%./% TH./%!,%
-36
TH.7%$
TV.7%$
&-#?.7%
&-#?./%.2%
&-#?$;=
!,%&-#?!
#,%&-#?!
&-#?.#%X
TD!,%.7% TH.7%!,%
Electrical characteristics STM32F427xx STM32F429xx
182/226 DocID024030 Rev 5
Figure 71. NAND controller waveforms for common memory read access
Figure 72. NAND controller waveforms for common memory write access
Table 101. Switching characteristics for NAND Flash read cycles(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(N0E) FMC_NOE low width 4THCLK 0.5 4THCLK+0.5 ns
tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high 9 - ns
th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high 0 - ns
td(ALE-NOE) FMC_ALE valid before FMC_NOE low - 3THCLK 0.5 ns
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid 3THCLK 2- ns
-36
&-#?.7%
&-#?./%
&-#?$;=
TW./%
TSU$./% TH./%$
!,%&-#?!
#,%&-#?!
&-#?.#%X
TD!,%./% TH./%!,%
-36
TW.7%
TH.7%$
TV.7%$
&-#?.7%
&-#?.
/%
&-#?$;=
TD$.7%
!,%&-#?!
#,%&-#?!
&-#?.#%X
TD!,%./% TH./%!,%
DocID024030 Rev 5 183/226
STM32F427xx STM32F429xx Electrical characteristics
191
SDRAM waveforms and timings
Figure 73. SDRAM read access waveforms (CL = 1)
Table 102. Switching characteristics for NAND Flash write cycles(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(NWE) FMC_NWE low width 4THCLK 4THCLK+1 ns
tv(NWE-D) FMC_NWE low to FMC_D[15-0] valid 0 - ns
th(NWE-D) FMC_NWE high to FMC_D[15-0] invalid 3THCLK 1-ns
td(D-NWE) FMC_D[15-0] valid before FMC_NWE high 5THCLK 3-ns
td(ALE-NWE) FMC_ALE valid before FMC_NWE low - 3THCLK0.5 ns
th(NWE-ALE) FMC_NWE high to FMC_ALE invalid 3THCLK 1-ns
-36
2OWN #OL
&-#?3$#,+
&-#?!>@
&-#?3$.2!3
&-#?3$.#!3
&-#?3$.7%
&-#?$;=
&-#?3$.%;=
TD3$#,+,?!DD2 TD3$#,+,?!DD#
TH3$#,+,?!DD2
TH3$#,+,?!DD#
TD3$#,+,?3.$%
TSU3$#,+(?$ATA TH3$#,+(?$ATA
#OL #OLI #OLN
$ATA $ATAI $ATAN$ATA
TH3$#,+,?3.$%
TD3$#,+,?.2!3
TD3$#,+,?.#!3 TH3$#,+,?.#!3
TH3$#,+,?.2!3
Electrical characteristics STM32F427xx STM32F429xx
184/226 DocID024030 Rev 5
Table 103. SDRAM read timings(1)(2)
1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK 0.5 2THCLK+0.5
ns
tsu(SDCLKH _Data) Data input setup time 2 -
th(SDCLKH_Data) Data input hold time 0 -
td(SDCLKL_Add) Address valid time - 1.5
td(SDCLKL- SDNE) Chip select valid time - 0.5
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 0.5
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
Table 104. LPSDR SDRAM read timings(1)(2)
1. CL = 10 pF.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tW(SDCLK) FMC_SDCLK period 2THCLK 0.5 2THCLK+0.5
ns
tsu(SDCLKH_Data) Data input setup time 2.5 -
th(SDCLKH_Data) Data input hold time 0 -
td(SDCLKL_Add) Address valid time - 1
td(SDCLKL_SDNE) Chip select valid time - 1
th(SDCLKL_SDNE) Chip select hold time 1 -
td(SDCLKL_SDNRAS SDNRAS valid time - 1
th(SDCLKL_SDNRAS) SDNRAS hold time 1 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 1
th(SDCLKL_SDNCAS) SDNCAS hold time 1 -
DocID024030 Rev 5 185/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 74. SDRAM write access waveforms
-36
2OWN #OL
&-#?3$#,+
&-#?!>@
&-#?3$.2!3
&-#?3$.#!3
&-#?3$.7%
&-#?$;=
&-#?3$.%;=
TD3$#,+,?!DD2 TD3$#,+,?!DD#
TH3$#,+,?!DD2
TH3$#,+,?!DD#
TD3$#,+,?3.$%
TD3$#,+,?$ATA
TH3$#,+,?$ATA
#OL #OLI #OLN
$ATA $ATAI $ATAN$ATA
TH3$#,+,?3.$%
TD3$#,+,?.2!3
TD3$#,+,?.#!3 TH3$#,+,?.#!3
TH3$#,+,?.2!3
TD3$#,+,?.7% TH3$#,+,?.7%
&-#?.",;=
TD3$#,+,?.",
Electrical characteristics STM32F427xx STM32F429xx
186/226 DocID024030 Rev 5
Table 105. SDRAM write timings(1)(2)
1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.
2. Guaranteed by characterization results, not tested in production.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK 0.5 2THCLK+0.5
ns
td(SDCLKL _Data) Data output valid time - 2.5
th(SDCLKL _Data) Data output hold time 3.5 -
td(SDCLKL_Add) Address valid time - 1.5
td(SDCLKL_SDNWE) SDNWE valid time - 1
th(SDCLKL_SDNWE) SDNWE hold time 0 -
td(SDCLKL_ SDNE) Chip select valid time - 0.5
th(SDCLKL-_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 2
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5
td(SDCLKL_SDNCAS) SDNCAS hold time 0 -
td(SDCLKL_NBL) NBL valid time - 0.5
th(SDCLKL_NBL) NBLoutput time 0 -
Table 106. LPSDR SDRAM write timings(1)(2)
1. CL = 10 pF.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK 0.5 2THCLK+0.5
ns
td(SDCLKL _Data) Data output valid time - 5
th(SDCLKL _Data) Data output hold time 2 -
td(SDCLKL_Add) Address valid time - 2.8
td(SDCLKL-SDNWE) SDNWE valid time - 2
th(SDCLKL-SDNWE) SDNWE hold time 1 -
td(SDCLKL- SDNE) Chip select valid time - 1.5
th(SDCLKL- SDNE) Chip select hold time 1 -
td(SDCLKL-SDNRAS) SDNRAS valid time - 1.5
th(SDCLKL-SDNRAS) SDNRAS hold time 1.5 -
td(SDCLKL-SDNCAS) SDNCAS valid time - 1.5
td(SDCLKL-SDNCAS) SDNCAS hold time 1.5 -
td(SDCLKL_NBL) NBL valid time - 1.5
th(SDCLKL-NBL) NBL output time 1.5 -
DocID024030 Rev 5 187/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.3.27 Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 107 for DCMI are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 17, with the following configuration:
DCMI_PIXCLK polarity: falling
DCMI_VSYNC and DCMI_HSYNC polarity: high
Data formats: 14 bits
Figure 75. DCMI timing diagram
2. Guaranteed by characterization results, not tested in production.
Table 107. DCMI characteristics
Symbol Parameter Min Max Unit
Frequency ratio DCMI_PIXCLK/fHCLK -0.4
DCMI_PIXCLK Pixel clock input - 54 MHz
DPixel Pixel clock input duty cycle 30 70 %
tsu(DATA) Data input setup time 2 -
ns
th(DATA) Data input hold time 2.5 -
tsu(HSYNC)
tsu(VSYNC)
DCMI_HSYNC/DCMI_VSYNC input setup time 0.5 -
th(HSYNC)
th(VSYNC)
DCMI_HSYNC/DCMI_VSYNC input hold time 1 -
069
'&0,B3,;&/.
WVX96<1&
WVX+6<1&
'&0,B+6<1&
'&0,B96<1&
'$7$>@
'&0,B3,;&/.
WK+6<1&
WK+6<1&
WVX'$7$ WK'$7$
Electrical characteristics STM32F427xx STM32F429xx
188/226 DocID024030 Rev 5
6.3.28 LCD-TFT controller (LTDC) characteristics
Unless otherwise specified, the parameters given in Table 108 for LCD-TFT are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 17, with the following configuration:
LCD_CLK polarity: high
LCD_DE polarity : low
LCD_VSYNC and LCD_HSYNC polarity: high
Pixel formats: 24 bits
Table 108. LTDC characteristics
Symbol ParameterMinMaxUnit
fCLK LTDC clock output frequency - 42 MHz
DCLK LTDC clock output duty cycle 45 55 %
tw(CLKH)
tw(CLKL)
Clock High time, low time tw(CLK)/2 0.5 tw(CLK)/2+0.5
ns
tv(DATA) Data output valid time - 3.5
th(DATA) Data output hold time 1.5 -
tv(HSYNC)
HSYNC/VSYNC/DE output valid
time -2.5tv(VSYNC)
tv(DE)
th(HSYNC)
HSYNC/VSYNC/DE output hold
time 2-th(VSYNC)
th(DE)
DocID024030 Rev 5 189/226
STM32F427xx STM32F429xx Electrical characteristics
191
Figure 76. LCD-TFT horizontal timing diagram
Figure 77. LCD-TFT vertical timing diagram
069
/&'B&/.
WY+6<1&
/&'B+6<1&
/&'B'(
/&'B5>@
/&'B*>@
/&'B%>@
W&/.
/&'B96<1&
WY+6<1&
WY'( WK'(
1JYFM
1JYFM
WY'$7$
WK'$7$
1JYFM
/
+6<1&
ZLGWK
+RUL]RQWDO
EDFNSRUFK
$FWLYHZLGWK +RUL]RQWDO
EDFNSRUFK
2QHOLQH
069
/&'B&/.
WY96<1&
/&'B5>@
/&'B*>@
/&'B%>@
W&/.
/&'B96<1&
WY96<1&
-LINESDATA
96<1&
ZLGWK
9HUWLFDO
EDFNSRUFK
$FWLYHZLGWK 9HUWLFDO
EDFNSRUFK
2QHIUDPH
Electrical characteristics STM32F427xx STM32F429xx
190/226 DocID024030 Rev 5
6.3.29 SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 109 for the SDIO/MMC interface
are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD
supply voltage conditions summarized in Table 17, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Figure 78. SDIO high-speed mode
Figure 79. SD default mode
T7#+(
#+
$#-$
OUTPUT
$#-$
INPUT
T#
T7#+,
T/6 T/(
T)35 T)(
TFTR
AI
AI
#+
$#-$
OUTPUT
T/6$ T/($
DocID024030 Rev 5 191/226
STM32F427xx STM32F429xx Electrical characteristics
191
6.3.30 RTC characteristics
Table 109. Dynamic characteristics: SD / MMC characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode 0 48 MHz
- SDIO_CK/fPCLK2 frequency ratio - - 8/3 -
tW(CKL) Clock low time fpp =48 MHz 8.5 9 -
ns
tW(CKH) Clock high time fpp =48 MHz 8.3 10 -
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU Input setup time HS fpp =48 MHz 3.5 - -
ns
tIH Input hold time HS fpp =48 MHz 0 - -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time HS fpp =48 MHz - 4.5 7
ns
tOH Output hold time HS fpp =48 MHz 3 - -
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD fpp =24 MHz 1.5 - -
ns
tIHD Input hold time SD fpp =24 MHz 0.5 - -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD fpp =24 MHz -4.56.5
ns
tOHD Output hold default time SD fpp =24 MHz 3.5 - -
1. Guaranteed by characterization results, not tested in production.
2. VDD = 2.7 to 3.6 V.
Table 110. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
Package characteristics STM32F427xx STM32F429xx
192/226 DocID024030 Rev 5
7 Package characteristics
7.1 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 80. LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline
1. Drawing is not to scale.
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'0,!.%
$
$
$
%
%
%
+
CCC #
#




 

,?-%?6
!
!
!
,
,
C
B
!
DocID024030 Rev 5 193/226
STM32F427xx STM32F429xx Package characteristics
221
Table 111. LQPF100 100-pin, 14 x 14 mm low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package characteristics STM32F427xx STM32F429xx
194/226 DocID024030 Rev 5
Figure 81. LQPF100 recommended footprint
1. Dimensions are expressed in millimeters.
Device marking for LQFP100
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 82. LQFP100 marking example (package top view)
1. Samples identified with a marking beginning with "ES" or ‘E’ or accompanied by a specific notification are
to be considered as “Engineering Samples": i.e. they are intended to be sent to customer for electrical
compatibility evaluation and may be used to start customer qualification where specifically authorized by
ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized
in writing the customer qualification Engineering Samples can be used for reliability qualification trials.
 
 

 
 




AIC
DLG
'DWHFRGH \HDUZHHN
3LQ
LGHQWLILHU
45.'
7*53
3URGXFWLGHQWLILFDWLRQ
67ORJR
5HYLVLRQFRGH
:8 8
DocID024030 Rev 5 195/226
STM32F427xx STM32F429xx Package characteristics
221
Figure 83. WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
Table 112. WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.175 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
A3(2) - 0.025 - - 0.0010 -
b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110
$:(B0(B9
H
)
*
H
H%RWWRPYLHZ
%XPSVLGH
H
$EDOOORFDWLRQ
'
$RULHQWDWLRQ
UHIHUHQFH
7RSYLHZ
:DIHUEDFNVLGH
'HWDLO$
$
$
6LGHYLHZ
$
(
'HWDLO$
5RWDWHG
%XPS
6HDWLQJ
SODQH
E
$
$
DDD
FFF
GGG
=
=
;<
EEE
HHH
Package characteristics STM32F427xx STM32F429xx
196/226 DocID024030 Rev 5
Figure 84. WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
recommended footprint
D 4.486 4.521 4.556 0.1766 0.1780 0.1794
E 5.512 5.547 5.582 0.2170 0.2184 0.2198
e - 0.400 - - 0.0157 -
e1 - 4.000 - - 0.1575 -
e2 - 4.800 - - 0.1890 -
F - 0.2605 - - 0.0103 -
G - 0.3735 - - 0.0147 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Table 113. WLCSP143 recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4
Dpad
260 µm max. (circular)
220 µm recommended
Dsm 300 µm min. (for 260 µm diameter pad)
PCB pad design Non-solder mask defined via underbump allowed.
Table 112. WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
069
'VP
'SDG
DocID024030 Rev 5 197/226
STM32F427xx STM32F429xx Package characteristics
221
Device marking for WLCSP143
The following figure gives an example of topside marking orientation versus ball A 1
identifier location.
Figure 85. WLCSP143 marking example (package top view)
1. Samples identified with a marking beginning with "ES" or ‘E’ or accompanied by a specific notification are
to be considered as “Engineering Samples": i.e. they are intended to be sent to customer for electrical
compatibility evaluation and may be used to start customer qualification where specifically authorized by
ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized
in writing the customer qualification Engineering Samples can be used for reliability qualification trials.
06Y9
'DWHFRGH <HDU:HHN
EDOO$
(6)=,<
3URGXFW
LGHQWLILFDWLRQ
<:: 5
5HYLVLRQFRGH
Package characteristics STM32F427xx STM32F429xx
198/226 DocID024030 Rev 5
Figure 86. LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline
1. Drawing is not to scale.
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'
0,!.%
$
$
$
%
%
%
+
CCC #
#




 

!?-%?6
!
!
!
,
,
C
B
!
Table 114. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.874
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.689 -
DocID024030 Rev 5 199/226
STM32F427xx STM32F429xx Package characteristics
221
Figure 87. LQFP144- 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 114. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max


 




DLH






Package characteristics STM32F427xx STM32F429xx
200/226 DocID024030 Rev 5
Device marking for LQFP144
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 88. LQFP144 marking example (package top view)
1. Samples identified with a marking beginning with "ES" or ‘E’ or accompanied by a specific notification are
to be considered as “Engineering Samples": i.e. they are intended to be sent to customer for electrical
compatibility evaluation and may be used to start customer qualification where specifically authorized by
ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized
in writing the customer qualification Engineering Samples can be used for reliability qualification trials.
DLG
'DWHFRGH <HDU:HHN
3LQ
3
5HYLVLRQFRGH
';&5
3URGXFW
LGHQWLILFDWLRQ
:88
DocID024030 Rev 5 201/226
STM32F427xx STM32F429xx Package characteristics
221
Figure 89. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package outline
1. Drawing is not to scale.
4?-%?6
!
!
E
%(%
$
($
:$
:%
B
MM
GAUGEPLANE
! ,
,
K
C
)$%.4)&)#!4)/.
0).
3EATINGPLANE
#
!
Table 115. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 - 1.450 0.0531 - 0.0571
b 0.170 - 0.270 0.0067 - 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 23.900 - 24.100 0.9409 - 0.9488
HD 25.900 - 26.100 1.0197 - 1.0276
ZD - 1.250 - - 0.0492 -
E 23.900 - 24.100 0.9409 - 0.9488
Package characteristics STM32F427xx STM32F429xx
202/226 DocID024030 Rev 5
HE 25.900 - 26.100 1.0197 - 1.0276
ZE - 1.250 - - 0.0492 -
e - 0.500 - - 0.0197 -
L(2) 0.450 - 0.750 0.0177 - 0.0295
L1 - 1.000 - - 0.0394 -
k0° - 7°0° - 7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
Table 115. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
DocID024030 Rev 5 203/226
STM32F427xx STM32F429xx Package characteristics
221
Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended
footprint
1. Dimensions are expressed in millimeters.
4?&0?6






 







Package characteristics STM32F427xx STM32F429xx
204/226 DocID024030 Rev 5
Device marking for LQFP176
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 91. LQFP176 marking (package top view)
1. Samples identified with a marking beginning with "ES" or ‘E’ or accompanied by a specific notification are
to be considered as “Engineering Samples": i.e. they are intended to be sent to customer for electrical
compatibility evaluation and may be used to start customer qualification where specifically authorized by
ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized
in writing the customer qualification Engineering Samples can be used for reliability qualification trials.
DLF
::<
3LQ
LGHQWLILHU
(6),,7
5
'DWHFRGH 
<HDUZHHN
3URGXFW
LGHQWLILFDWLRQ
5HYLVLRQFRGH
DocID024030 Rev 5 205/226
STM32F427xx STM32F429xx Package characteristics
221
Figure 92. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline
1. Drawing is not to scale.
$
$
$
%
%
%
E
,
'!5'%0,!.%
MM
B
#
3%!4).'
0,!.%
CCC #
)$%.4)&)#!4)/.
0).







C
,
!
!
!
!
6)@.&@7
+
Table 116. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 -- - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
Package characteristics STM32F427xx STM32F429xx
206/226 DocID024030 Rev 5
Figure 93. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
D 29.800 30.000 30.200 1.1732 1.1811 1.1890
D1 27.800 28.000 28.200 1.0945 1.1024 1.1102
D3 - 25.500 - - 1.0039 -
E 29.800 30.000 30.200 1.1732 1.1811 1.1890
E1 27.800 28.000 28.200 1.0945 1.1024 1.1102
E3 - 25.500 - - 1.0039 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 3.5° 7.0° 3.5° 7.0°
ccc - -0.080 - -0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 116. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
8+B)3B9



 










DocID024030 Rev 5 207/226
STM32F427xx STM32F429xx Package characteristics
221
Device marking for LQFP208
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 94. LQFP208 marking example (package top view)
1. Samples identified with a marking beginning with "ES" or ‘E’ or accompanied by a specific notification are
to be considered as “Engineering Samples": i.e. they are intended to be sent to customer for electrical
compatibility evaluation and may be used to start customer qualification where specifically authorized by
ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized
in writing the customer qualification Engineering Samples can be used for reliability qualification trials.
069
::<
3LQ
LGHQWLILHU
(6)%,7
'DWHFRGH \HDUZHHN
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
Package characteristics STM32F427xx STM32F429xx
208/226 DocID024030 Rev 5
Figure 95. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
package outline
1. Drawing is not to scale.
Table 117. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 - 0.130 - - 0.0051 -
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.230 0.280 0.330 0.0091 0.0110 0.0130
D 6.950 7.000 7.050 0.2736 0.2756 0.2776
D1 5.950 6.000 6.050 0.2343 0.2362 0.2382
E 6.950 7.000 7.050 0.2736 0.2756 0.2776
E1 5.950 6.000 6.050 0.2343 0.2362 0.2382
e - 0.500 - - 0.0197 -
F 0.450 0.500 0.550 0.0177 0.0197 0.0217
ddd - - 0.100 - - 0.0039
$<9B0(B9
6HDWLQJSODQH
$
$
$
H)
)
H
1
$
%277209,(:
(
'
7239,(:
EEDOOV
<
;
<HHH0
III0
=
=
;
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
E
'
(
$
$

=
=
GGG
6,'(9,(:
DocID024030 Rev 5 209/226
STM32F427xx STM32F429xx Package characteristics
221
Device marking for UFBGA169
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 96. UFBGA169 marking example (package top view)
1. Samples identified with a marking beginning with "ES" or ‘E’ or accompanied by a specific notification are
to be considered as “Engineering Samples": i.e. they are intended to be sent to customer for electrical
compatibility evaluation and may be used to start customer qualification where specifically authorized by
ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized
in writing the customer qualification Engineering Samples can be used for reliability qualification trials.
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 117. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
069
5HYLVLRQ
FRGH
3URGXFW
LGHQWLILFDWLRQ
%DOO$
LGHQWLILHU
'DWHFRGH <HDUZHHN
<::
5
670)
$,+
Package characteristics STM32F427xx STM32F429xx
210/226 DocID024030 Rev 5
Figure 97. UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball
grid array
package outline
1. Drawing is not to scale.
Table 118. UFBGA176+25 - 201-ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball
grid array
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.002 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
b 0.230 0.280 0.330 0.0091 0.0110 0.0130
D 9.950 10.000 10.050 0.3917 0.3937 0.3957
E 9.950 10.000 10.050 0.3917 0.3937 0.3957
e - 0.650 - - 0.0256 -
F 0.400 0.450 0.500 0.0157 0.0177 0.0197
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0031
ϬϳͺDͺsϲ
^ĞĂƚŝŶŐƉůĂŶĞ
Ϯ ĚĚĚ
ϭ
Ğ&
&
Ğ
Z
ϭϱ ϭ
KddKDs/t
dKWs/t
EEDOOV
$
HHH 0
III0
&
&
$
&
$EDOO
LGHQWLILHU
$EDOO
LQGH[
DUHD
ď
ϰ
DocID024030 Rev 5 211/226
STM32F427xx STM32F429xx Package characteristics
221
Device marking for UFBGA176+25
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 98. UFBGA176+25 marking example (package top view)
1. Samples identified with a marking beginning with "ES" or ‘E’ or accompanied by a specific notification are
to be considered as “Engineering Samples": i.e. they are intended to be sent to customer for electrical
compatibility evaluation and may be used to start customer qualification where specifically authorized by
ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized
in writing the customer qualification Engineering Samples can be used for reliability qualification trials.
069
5HYLVLRQFRGH
670)
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH \HDUZHHN
<::
%DOO
LQGHQWLILHU
,,+8
5
Package characteristics STM32F427xx STM32F429xx
212/226 DocID024030 Rev 5
Figure 99. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array
package outline
1. Drawing is not to scale.
$/B0(B9
6HDWLQJSODQH
$
H)
)
'
5
EEDOOV
$
(
7239,(:%277209,(:

H
$
$
<
;
=
GGG =
'
(
HHH = < ;
III
0
0=
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
Table 119. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.100 - - 0.0433
A1 0.150 - - 0.0059 - -
A2 - 0.760 - - 0.0299 -
A4 - 0.210 - - 0.0083 -
b 0.350 0.400 0.450 0.0138 0.0157 0.0177
D 12.850 13.000 13.150 0.5118 0.5118 0.5177
D1 - 11.200 - - 0.4409 -
E 12.850 13.000 13.150 0.5118 0.5118 0.5177
E1 - 11.200 - - 0.4409 -
e - 0.800 - - 0.0315 -
F - 0.900 - - 0.0354 -
ddd - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID024030 Rev 5 213/226
STM32F427xx STM32F429xx Package characteristics
221
Device marking for TFBGA176
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 100. TFBGA176 marking example (package top view)
1. Samples identified with a marking beginning with "ES" or ‘E’ or accompanied by a specific notification are
to be considered as “Engineering Samples": i.e. they are intended to be sent to customer for electrical
compatibility evaluation and may be used to start customer qualification where specifically authorized by
ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized
in writing the customer qualification Engineering Samples can be used for reliability qualification trials.
069
%DOO$LGHQWLILHU 'DWHFRGH \HDUZHHN
<::
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
670)
1,+
Package characteristics STM32F427xx STM32F429xx
214/226 DocID024030 Rev 5
7.2 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 120. Package thermal characteristics
Symbol Parameter Value Unit
ΘJA
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 43
°C/W
Thermal resistance junction-ambient
WLCSP143 31.2
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch 40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch 38
Thermal resistance junction-ambient
LQFP208 - 28 × 28 mm / 0.5 mm pitch 19
Thermal resistance junction-ambient
UFBGA169 - 7 × 7mm / 0.5 mm pitch 52
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.5 mm pitch 39
Thermal resistance junction-ambient
TFBGA216 - 13 × 13 mm / 0.8 mm pitch 29
DocID024030 Rev 5 215/226
STM32F427xx STM32F429xx Part numbering
221
8 Part numbering
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 121. Ordering information scheme
Example: STM32 F 429 V I T 6 xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
427= STM32F427xx, USB OTG FS/HS, camera interface,
Ethernet
429= STM32F429xx, USB OTG FS/HS, camera interface,
Ethernet, LCD-TFT
Pin count
V = 100 pins
Z = 143 and 144 pins
A = 169 pins
I = 176 pins
B = 208 pins
N = 216 pins
Flash memory size
E = 512 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
I = 2048 Kbytes of Flash memory
Package
T = LQFP
H = BGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
Recommendations when using internal reset OFF STM32F427xx STM32F429xx
216/226 DocID024030 Rev 5
Appendix A Recommendations when using internal reset
OFF
When the internal reset is OFF, the following integrated features are no longer supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
The brownout reset (BOR) circuitry must be disabled.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin should be connected to VDD.
The over-drive mode is not supported.
A.1 Operating conditions
Table 122. Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
Maximum Flash
memory access
frequency with
wait states (1)(2)
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no
wait state is required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does
not impact the execution speed from Flash memory since the ART accelerator allows to achieve a
performance equivalent to 0 wait state program execution.
I/O operation
Possible Flash
memory
operations
VDD =1.7 to
2.1 V(3)
3. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to
Section 3.17.1: Internal reset ON).
Conversion
time up to
1.2 Msps
20 MHz(4)
4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and
power.
168 MHz with 8
wait states and
over-drive OFF
No I/O
compensation
8-bit erase and
program
operations only
DocID024030 Rev 5 217/226
STM32F427xx STM32F429xx Application block diagrams
221
Appendix B Application block diagrams
B.1 USB OTG full speed (FS) interface solutions
Figure 101. USB controller configured as peripheral-only and used
in Full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 102. USB controller configured as host-only and used in full speed mode
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
34-&XX
6TO6$$
6OLATGEREGULATOR 
6$$
6"53
$0
633
0!0"
0!0"
53"3TD"CONNECTOR
$-
/3#?).
/3#?/54
-36
34-&XX
6$$
6"53
$0
633
53"3TD!CONNECTOR
$-
'0)/)21
'0)/
%.
/VERCURRENT
60WR
/3#?).
/3#?/54
-36
#URRENTLIMITER
POWERSWITCH
0!0"
0!0"
Application block diagrams STM32F427xx STM32F429xx
218/226 DocID024030 Rev 5
Figure 103. USB controller configured in dual mode and used in full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
34-&XX
6$$
6"53
$0
633
0!0"
0!0"
0!0"
53"MICRO!"CONNECTOR
$-
'0)/)21
'0)/
%.
/VERCURRENT
60WR
6TO6
$$
VOLTAGEREGULATOR 
6$$
)$
0!0"
/3#?).
/3#?/54
-36
#URRENTLIMITER
POWERSWITCH
DocID024030 Rev 5 219/226
STM32F427xx STM32F429xx Application block diagrams
221
B.2 USB OTG high speed (HS) interface solutions
Figure 104. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F42x
with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible
connection.
2. The ID pin is required in dual role only.
$0
34-&XX
$-
6"53
633
$-
$0
)$
53"
53"(3
/4'#TRL
&30(9
5,0)
(IGHSPEED
/4'0(9
5,0)?#,+
5,0)?$;=
5,0)?$)2
5,0)?340
5,0)?.84
NOTCONNECTED
CONNECTOR
-#/OR-#/
OR-(Z84
0,, 84
8)
-36
Application block diagrams STM32F427xx STM32F429xx
220/226 DocID024030 Rev 5
B.3 Ethernet interface solutions
Figure 105. MII mode using a 25 MHz crystal
1. fHCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP optional signal.
Figure 106. RMII with a 50 MHz oscillator
1. fHCLK must be greater than 25 MHz.
-#5
%THERNET
-!#
%THERNET
0(9
0,, (#,+
84
0(9?#,+-(Z
-))?28?#,+
-))?28$;=
-))?28?$6
-))?28?%2
-))?48?#,+
-))?48?%.
-))?48$;=
-))?#23
-))?#/,
-$)/
-$#
(#,+
003?/54
84!,
-(Z
34-
/3#
4)- 4IMESTAMP
COMPARATOR
4IMER
INPUT
TRIGGER
)%%%040
-))
PINS
-))-$#
PINS
-36
-#/-#/
-#5
%THERNET
-!#
%THERNET
0(9
0,, (#,+
840(9?#,+-(Z
2-))?28$;=
2-))?#28?$6
2-))?2%&?#,+
2-))?48?%.
2-))?48$;=
-$)/
-$#
(#,+
34-
/3#
-(Z
4)- 4IMESTAMP
COMPARATOR
4IMER
INPUT
TRIGGER
)%%%040
2-))
PINS
2-))-$#
PINS
-36
OR
SYNCHRONOUS
OR-(Z -(Z
-(Z
DocID024030 Rev 5 221/226
STM32F427xx STM32F429xx Application block diagrams
221
Figure 107. RMII with a 25 MHz crystal and PHY with PLL
1. fHCLK must be greater than 25 MHz.
The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.
-#5
%THERNET
-!#
%THERNET
0(9
0,, (#,+
84
0(9?#,+-(Z
2-))?28$;=
2-))?#28?$6
2-))?2%&?#,+
2-))?48?%.
2-))?48$;=
-$)/
-$#
(#,+
34-&
4)- 4IMESTAMP
COMPARATOR
4IMER
INPUT
TRIGGER
)%%%040
2-))
PINS
2-))-$#
PINS
-36
OR
SYNCHRONOUS
OR-(Z -(Z
84!,
-(Z /3# 0,,
2%&?#,+
-#/-#/
Revision history STM32F427xx STM32F429xx
222/226 DocID024030 Rev 5
9 Revision history
Table 123. Document revision history
Date Revision Changes
19-Mar-2013 1 Initial release.
10-Sep-2013 2
Added STM32F429xx part numbers and related informations.
STM32F427xx part numbers:
Replaced FSMC by FMC added Chrom-ART Accelerator and SAI
interface.
Increased core, timer, GPIOs, SPI maximum frequencies
Updated Figure 8.Updated Figure 9.
Removed note in Section ·: Standby mode.
Updated Figure 18.
Updated Table 10: STM32F427xx and STM32F429xx pin and ball
definitions and Table 12: STM32F427xx and STM32F429xx alternate
function mapping..
Modified Figure 19: Memory map.
Updated Table 17: General operating conditions, Table 18: Limitations
depending on the operating power supply range. Removed note 1 in
Table 22: reset and power control block characteristics. Added
Table 23: Over-drive switching characteristics.
Updated Section : Typical and maximum current consumption,
Table 34: Switching output I/O current consumption, Table 35:
Peripheral current consumption and Section : On-chip peripheral
current consumption.
Updated Table 36: Low-power mode wakeup timings.
Modified Section : High-speed external user clock generated from an
external source, Section : Low-speed external user clock generated
from an external source, and Section 6.3.10: Internal clock source
characteristics.
Updated Table 43: Main PLL characteristics and Table 45: PLLISAI
(audio and LCD-TFT PLL) characteristics.
Updated Table 52: EMI characteristics.
Updated Table 57: Output voltage characteristics and Table 58: I/O AC
characteristics.
Updated Table 60: TIMx characteristics, Tabl e 61: I2C characteristics,
Table 62: SPI dynamic characteristics, Section : SAI characteristics.
Updated Table 103: SDRAM read timings and Table 105: SDRAM write
timings.
DocID024030 Rev 5 223/226
STM32F427xx STM32F429xx Revision history
225
24-Jan-2014 3
Added STM32F429xE part numbers featuring 512 Mbytes of Flash
memory and UFBGA169 package.
Added LPSDR SDRAM.
Changed INTN into INTR in Figure 4: STM32F427xx and
STM32F429xx block diagram.
Added note 4 in Table 2: STM32F427xx and STM32F429xx features
and peripheral counts.
Updated Section 3.15: Boot modes.
Updated for PA4 and PA5 in Table 10: STM32F427xx and
STM32F429xx pin and ball definitions.
Added VIN for BOOT0 pins in Table 14: Voltage characteristics.
Updated Note 6., added Note 1.,and updated maximum VIN for B pins
in Table 17: General operating conditions.
Updated maximum Flash memory access frequency with wait states
for VDD =1.8 to 2.1 V in Table 18: Limitations depending on the
operating power supply range.
Updated Table 24: Typical and maximum current consumption in Run
mode, code with data processing running from Flash memory (ART
accelerator enabled except prefetch) or RAM and Table 25: Typical
and maximum current consumption in Run mode, code with data
processing running from Flash memory (ART accelerator disabled).
Updated Table 30: Typical current consumption in Run mode, code
with data processing running from Flash memory or RAM, regulator
ON (ART accelerator enabled except prefetch), VDD=1.7 V, Table 31:
Typical current consumption in Run mode, code with data processing
running from Flash memory, regulator OFF (ART accelerator enabled
except prefetch), and Table 32: Typical current consumption in Sleep
mode, regulator ON, VDD=1.7 V.
Updated Table 57: Output voltage characteristics.
Updated Table 58: I/O AC characteristics. Added Figure 35.
Updated th(SDA), tr(SDA) and tr(SCL) and added tSP in Table 61: I2C
characteristics.
Updated fSCK in Table 62: SPI dynamic characteristics.
Updated Table 70: Dynamic characteristics: USB ULPI.
Updated Section 6.3.26: FMC characteristics conditions. Updated
Figure 73: SDRAM read access waveforms (CL = 1) and Figure 74:
SDRAM write access waveforms. Added Table 104: LPSDR SDRAM
read timings and Table 106: LPSDR SDRAM write timings. Updated
Table 103: SDRAM read timings and Table 105: SDRAM write timings
and added note 2.Table 109: Dynamic characteristics: SD / MMC
characteristics.
Table 123. Document revision history
Date Revision Changes
Revision history STM32F427xx STM32F429xx
224/226 DocID024030 Rev 5
24-Apr-2014 4
In the whole document, minimum supply voltage changed to 1.7 V
when external power supply supervisor is used.
Added DCMI_VSYNC alternate function on PG9 and updated note 6.
in Table 10: STM32F427xx and STM32F429xx pin and ball definitions
and Table 12: STM32F427xx and STM32F429xx alternate function
mapping. Added note 2.belowFigure 16: STM32F42x UFBGA169
ballout.
Changed SVGA (800x600) into XGA1024x768) on cover page and in
Section 3.10: LCD-TFT controller (available only on STM32F429xx).
Updated Section 3.18.2: Regulator OFF.
Updated signal corresponding to pin L5 in Figure 12: STM32F42x
WLCSP143 ballout.
Added ACCHSE in Table 39: HSE 4-26 MHz oscillator characteristics
and ACCLSE in Table 40: LSE oscillator characteristics (fLSE = 32.768
kHz).
Updated Table 53: ESD absolute maximum ratings.
Updated VIH in Table 56: I/O static characteristics. Added condition
VDD>1.7 V in Table 58: I/O AC characteristics.
Updated conditions in Table 62: SPI dynamic characteristics.
Added ZDRV in Table 67: USB OTG full speed electrical characteristics
Removed note 3 in Table 81: Temperature sensor characteristics.
Added Figure 82: LQFP100 marking example (package top view),
Figure 85: WLCSP143 marking example (package top view),
Figure 88: LQFP144 marking example (package top view), Figure 91:
LQFP176 marking (package top view), Figure 94: LQFP208 marking
example (package top view), Figure 96: UFBGA169 marking example
(package top view) and Figure 98: UFBGA176+25 marking example
(package top view).
Added Appendix A: Recommendations when using internal reset OFF.
Removed Internal reset OFF hardware connection appendix.
Table 123. Document revision history
Date Revision Changes
DocID024030 Rev 5 225/226
STM32F427xx STM32F429xx Revision history
225
19-Feb-2015 5
Update SPI/IS2 in Table 2: STM32F427xx and STM32F429xx features
and peripheral counts.
Updated LQFP208 in Table 4: Regulator ON/OFF and internal reset
ON/OFF availability.
Updated Figure 19: Memory map.
Changed PLS[2:0]=101 (falling edge) maximum value in Ta ble 22:
reset and power control block characteristics.
Updated current consumption with all peripherals disabled in Table 24:
Typical and maximum current consumption in Run mode, code with
data processing running from Flash memory (ART accelerator
enabled except prefetch) or RAM. Updated note 1. in Table 28: Typical
and maximum current consumptions in Standby mode.
Updated tWUSTOP in Table 36: Low-power mode wakeup timings.
Updated ESD standards and Table 53: ESD absolute maximum
ratings.
Updated Table 56: I/O static characteristics.
Section : I2C interface characteristics: updated section introduction,
removed Table I2C characteristics, Figure I2C bus AC waveforms and
measurement circuit and Table SCL frequency; added Table 61: I2C
analog filter characteristics.
Updated measurement conditions in Table 62: SPI dynamic
characteristics.
Updated Figure 51: Typical connection diagram using the ADC.
Updated Section : Device marking for LQFP100.
Updated Figure 83: WLCSP143 - 143-pin, 4.521x 5.547 mm, 0.4 mm
pitch wafer level chip scale package outline and Table 112: WLCSP143
- 143-pin, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale
package mechanical data; added Figure 84: WLCSP143 - 143-pin,
4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale recommended
footprint and Table 113: WLCSP143 recommended PCB design rules
(0.4 mm pitch). Updated Figure 85: WLCSP143 marking example
(package top view) and related note. Updated Section : Device
marking for WLCSP143.
Updated Section : Device marking for LQFP144.
Updated Section : Device marking for LQFP176.
Updated Figure 92: LQFP208 - 208-pin, 28 x 28 mm low-profile quad
flat package outline; Updated Section : Device marking for LQFP208.
Modified UFBGA169 pitch, updated Figure 95: UFBGA169 - 169-ball 7
x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package outline
and Table 117: UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra
fine pitch ball grid array package mechanical data; updated Section :
Device marking for LQFP208.
updated Section : Device marking for UFBGA169, Section : Device
marking for UFBGA176+25 and Section : Device marking for
TFBGA176.
Updated Z pin count in Table 121: Ordering information scheme.
Table 123. Document revision history
Date Revision Changes
STM32F427xx STM32F429xx
226/226 DocID024030 Rev 5
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved