U4062B
Rev . A1, 07-Dec-98 1 (21)
HF Front End for Car Radios and HiFi Receivers
Description
Technology: Bipolar
Features
D
Completely integrated FM front end increases quality
level and reliability
D
High performance due to three AGC loops allow
extreme large signal handling
D
Fulfils FTZ rules
D
Double-balanced high linear mixer with low-noise
figure
D
Oscillator with low phase noise and excellent
frequency stability
D
IF preamplifier with dB-linear gain control
D
Low noise and high stability of the reference voltage
circuit for internal and auxiliary functions
Block Diagram
16 14 4 2 13 12 15
3
1
18
17
65117
8
9
10
Figure 1. Block diagram
Ordering Information
Extended Type Number Package Remarks
U4062B-B DIP18
U4062B
Rev . A1, 07-Dec-982 (21)
Pin Description
1
2
3
4
5
6
7
8
10
9
18
17
16
14
15
13
12
11
IFout
GND
14928
MIXin
VRef
C
BRF
Oscout
VS
AGC
IFin
AGCin
MIXout
MIXout
GND
EOsc
BOsc
E AGCout
Figure 2. Pinning DIP18
Pin Symbol Function
1 Oscout Oscillator output
2 VSSupply voltage
3 IFout IF output
4 GND Ground
5 MIXin Mixer input
6 VRef Reference voltage output
7 C Collector
8 BRF Base, RF preamplifier
9 E Emitter
10 AGCout AGC output
11 GND Ground
12 MIXout Mixer output
13 MIXout Mixer output
14 AGCin AGC input (IF strip)
15 IFin IF input / IF gain control
16 AGC AGC time constant
17 BOsc Base oscillator
18 EOsc Emitter oscillator
Absolute Maximum Ratings
Reference point ground, Pins 4 and 11
Parameters Symbol Value Unit
Supply voltage Pins 2, 12 and 13 VS18 V
Power dissipation Tamb = 85°C Ptot 450 mW
Junction temperature Tj125 °C
Storage temperature range Tstg –50 to +125 °C
Ambient temperature range Tamb –25 to +85 °C
Thermal Resistance
Parameters Symbol Value Unit
Junction ambient RthJA 90 K/W
U4062B
Rev . A1, 07-Dec-98 3 (21)
Electrical Characteristics
VS = 10 V, fiRF = 50.3 MHz, fOsc
[
100 MHz, fIF = fOsc – fiRF
[
49.7 MHz, reference point Pins 4 and 11,
Tamb = +25°C, unless otherwise specified, see test circuit figure 4.
Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit
Supply voltage range VS7 16 V
Supply currents
Supply current Pin 2 IS11.5 mA
Mixer Pins 12 and 13 I12 + I13 9mA
RF stage R4 = 470
W
Pin 7 I79 mA
RF preamplifier (Rg9 = 50
W
, RL7 = 200
W
)
DC voltage Pin 7 V75.7 V
Pin 8 V80.77 V
Power gain GRF 10.5 dB
Third order intercept IP312 dBm
Dynamic characteristics, f = 100 MHz
Input impedance Z95
W
Forward current gain | i7/i9 | hfb 1 A/A
Parallel output resistance R73 k
W
Parallel output capacitance C13.8 pF
Noise figure NFRF 2dB
Oscillator (fOsc = 100 MHz, unloaded Q = 80, resonance resistance Rg17 = 250
W
)
DC voltage Pin 17 V17 3.2 V
Pin 18 V18 2.5 V
Oscillator voltage Pin 17 VOsc17 100 130 mV
Frequency drift By supply voltage change
dfo/dVS
D
fOsc(VS) 1.3 kHz/V
By temperature change
dfo/dK
D
fOsc(Tj) 2 kHz/K
FM noise
equivalent deviation, Frequency band 300 Hz to
20 kHz, unweighted
D
fnoise 5Hz
(Ripple voltage < 0.5 mV) Peak CCIR
D
fnoise 10.5 Hz
Peak CCIR, weighted with
75
m
s, deemphasis
D
fnoise 4.2 Hz
FM by AM signal at mixer
input fiRF = 90 MHz, m = 0.8,
fM = 1 kHz,
ViRF = 106 dB
m
V
D
fOsc
(ViRF)160 Hz
Oscillator output buffer (RL1 = 520
W
)
DC current load limitation Pin 1 I10.2 mA
DC voltage Pin 1 V11.7 V
Voltage gain VOsc17
x
200 mV
VOsc1/VOsc17 Pin 1 Gbuffer 0.86
Harmonics <–30 dBC
Output impedance Pin 1 Z180
W
U4062B
Rev . A1, 07-Dec-984 (21)
Electrical Characteristics (continued)
VS = 10 V, fiRF = 50.3 MHz, fOsc
[
100 MHz, fIF = fOsc – fiRF
[
49.7 MHz, reference point Pins 4 and 11,
Tamb = 25°C, unless otherwise specified, see test circuit figure 4.
Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit
Mixer (Rg5 = 200
W
, RL12–13 = 200
W
)
Conversion power gain GC7.5 dB
Third order intercept IP33.5 dBm
Parallel input resistance f = 100 MHz Pin 5 R55 k
W
Parallel input capacitance f = 100 MHz Pin 5 C53 pF
Parallel output resistance f = 10.7 MHz, Pins 12, 13
parallel connected R12 + 13 55 k
W
Effective output capacitance
between Pin 12 and 13 f = 10.7 MHz
V12, 13 = 10 V
V12, 13 = 7 V
V12, 13 = 16 V
C12–13
C12–13
C12–13
2.9
3.25
2.5
3.1
3.5
2.7
3.3
3.75
2.9
pF
pF
pF
Conversion transconductance | i12/u5 |, | i13/u5 | gc5.8 m–mho
Maximum available
conversion power gain fiRF = 100 MHz,
fIF = 10.7 MHz MACG 43 dB
Noise figure (fIF = 10.7 MHz)
Single side band Rg5(fiRF) = 450
W
,
fiRF = fOsc – fIF NFCSSB 5.6 dB
IF preamplifier (f = 10.7 MHz, RL3 = Rg15 = 200
W
)
DC voltage Pin 3 V37.6 V
Power gain Maximum control voltage
of V15 = 1.6 V is recom-
mended V15 = 1.6 V
V15 < 0.8 V GmaxIF
GminIF
24
–4 dB
dB
Gain control deviation by V15
D
GIF 28 dB
External control current at GmaxIF
at GminIF Pin 15 I15max
I15min
20
0
m
A
m
A
Gain control slope dGIF/dI15
dGIF/dV15 Pin 15 SI15
SV15
1.3
35 dB/
m
A
dB/V
Temperature coefficient of
voltage gain dGIF/dTj at
V15 1.6 V
V15 < 0.8 V
I15 = constant
TCG 0
0.04
–0.02
dB/K
dB/K
dB/K
Parallel input resistance Pin 15 R15 2.4 k
W
Parallel input capacitance Pin 15 C15 5.9 pF
Parallel output resistance Pin 3 R3350
W
Parallel output capacitance Pin 3 C34.1 pF
Noise figure V15 = 1.6 V NFIF 11 dB
U4062B
Rev . A1, 07-Dec-98 5 (21)
Electrical Characteristics (continued)
VS = 10 V, fiRF = 50.3 MHz, fOsc
[
100 MHz, fIF = fOsc – fiRF
[
49.7 MHz, reference point Pins 4 and 11,
Tamb = 25°C, unless otherwise specified, see test circuit figure 4.
Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit
AGC circuit (no signal at Pins 5 and 9)
DC voltage Pin 16 V16 1.0 V
Saturation voltage Pin 10 V10min 0.08 0.2 V
Input current V14
x
V6Pin 14 –I14 0.01 0.1
m
A
Maximum allowable current Pin 14 ± I14max 50
m
A
Maximum control current for
external PIN-diode I10 = 0 Idiode I7
AGC threshold voltages (respecting V10 = 0.25 V)
RF stage output Pin 7 VRF7 450 mV
Mixer -stage output V14 = V6Pin 13 VIF13 300 mV
External AGC voltage VIF13 = 1 V Pin 14 V14min 0.9 V
Internal AGC voltage Pin 16 V16min 1.4 V
Reference voltage source
Output voltage, without load I6 = 0 Pin 6 V61.6 1.7 1.8 V
Temperature dependence of V6|V6|T
amb = –25 to +85°C
D
V6 (T) 20 mV
Internal differential resistance dV6/dI6 when I6 = 0 mA rd6 50
W
Ripple rejection 20 log (dVs/dV6)
when I6 = 0 mA
a
665 dB
Noise voltage / Hz
Ǹ
when I6 = 0 and
f = 25 Hz
f = 125 Hz
f = 1 kHz
f = 10 kHz
0.6
0.37
0.1
0.1
m
V
m
V
m
V
m
V
U4062B
Rev . A1, 07-Dec-986 (21)
Test Circuit
Figure 3. Test circuit
RF Preamplifier
Figure 4. Test circuit
U4062B
Rev . A1, 07-Dec-98 7 (21)
6 8 10 12 14
4
5
5.5
6
6.5
7
V ( V )
7 ( Pin 7 )
VS ( V )
16
95 10410
4.5
Figure 5. V7 vs. VS
6 8 10 12 14
0
2.5
7.5
10
12.5
20
I ( mA )
7 ( Pin 7 )
VS ( V )
16
95 10411
5
15
17.5
Figure 6. I7 vs. VS
6 8 10 12 14
9
9.5
10
10.5
11
G ( dB )
RF
VS ( V )
16
95 10412
Figure 7. GRF vs. VS
–40 –20 02040
9
9.5
10
10.5
11
12
G ( dB )
RF
Tj ( °C )
100
95 10413
60 80
11.5
Figure 8. GRF vs. Tj
0 2.5 5 7.5 17.5
1
1.5
2
2.5
3.5
4
F ( dB )
RF
I9 ( mA )
20
95 10414
1512.510
3
Rg9=50
W
100
W
Figure 9. FRF vs. Ig
U4062B
Rev . A1, 07-Dec-988 (21)
Oscillator/ Oscillator Output Buffer
Figure 10. Test circuit – free running oscillator frequency fOsc ≈ 100 MHz
6 8 10 12 14
–10
–5
0
5
15
20
f ( kHz )
OSC
VS ( V )
16
95 10415
10
D
fosc=100MHz
Figure 11.
D
fOsc vs. VS
–40 –20 0 20 80
–20
–10
0
10
20
30
f ( kHz )
OSC
Tj ( °C )
100
95 10416
6040
D
fosc=100MHz
Figure 12.
D
fOsc vs. Tj
6 8 10 12 14
100
101
102
103
104
V Pin 1 ( dB )
OSC
VS ( V )
16
95 10418
m
Figure 13. VOsc vs. VS
–40 –20 0 20 80
101
102
103
V Pin 1 ( dB )
OSC
Tj ( °C )
100
95 10417
6040
m
Figure 14. VOsc vs. Tj
U4062B
Rev . A1, 07-Dec-98 9 (21)
80 90 100 110
70
80
90
100
110
120
V ( dB V )
O OSC
Vi OSC Pin 17 ( dB
m
V )
120
95 10419
m
Figure 15. VOsc vs. Vi Osc
80 85 90 95 110
20
30
40
50
90
100
a ( dB )
FM
ViRF ( dB
m
V )
115
95 10420
105100
80
70
60
Figure 16. aFM vs. ViRF
Mixer
Figure 17. Test circuit
IL1, IL2 = Insertion loss of the RF transformers
Conversion power gain GC = 20 log (2 VoIF/ViRF) + IL1 (dB) + IL2 (dB)
VRF5–6 (dB
m
V) = ViRF (dB
m
V) – IL1 (dB) + 6
VIF12–13 (dB
m
V) = VoIF (dB
m
V) – IL2 (dB) + 6
D
GC = GC (VOSC17) – GC (nominal)
Input to output IF isolation
aIF = 20 log (2 VoIF/ViIF) + IL1 (dB) + IL2 (dB) – GC (nominal)
Characteristics
a
FM versus viRF, see previous page
Oscillator frequency immunity against amplitude modulated signal at mixer input (Pin 5–6) related to FM standard
modulation:
a
FM = 20 log [75 kHz/
D
fOSC(viRF)] whereas
viRF = mixer input signal (fiRF = 89.3 MHz, m = 0.8, fM = 1 kHz)
U4062B
Rev . A1, 07-Dec-9810 (21)
6 8 10 12 14
6
7
8
9
10
I + I ( mA )
12 13
VS ( V )
16
95 10421
Figure 18. I12 + I13 vs. VS
6 8 10 13 14
6
6.5
7
7.5
8
G ( dB )
C
VS ( V )
15
95 10422
Figure 19. GC vs. VS
–40 –20 0 20 80
6
6.5
7
7.5
8
G ( dB )
C
Ti ( °C )
100
95 10423
6040
Figure 20. GC vs. Tj
80 90 100 110
–50
–40
–30
–20
0
10
G , a ( dB )
C IF
VOSC Pin 17 ( dB
m
V )
120
95 10424
–10
D
D
GC
aIF
Figure 21.
D
Gc, aIF vs. VOsc Pin 17
80 90 100 110
5
7
9
11
13
15
G , NF ( dB )
C C
VOSC pin 17 ( dB
m
V )
120
95 10425
GC
NFC
Figure 22. GC NFC vs. VOsc Pin 17
60 70 80 90 110
70
80
90
100
120
130
V pin 12–13 ( dB V )
IF
VRF pin 5–6 ( dB
m
V )
120
95 10426
100
110
m
Figure 23. VIF Pin 5–6 vs. VRF Pin 5–6
U4062B
Rev . A1, 07-Dec-98 11 (21)
6 8 10 12 14
2.0
2.25
2.5
2.75
3.25
3.75
C ( pF )
12–13
VS ( V )
16
95 10427
3.0
3.5
Figure 24. C12–13 vs. VS
0.1 0.2 0.5
4
5
6
7
8
10
F ( dB )
CSSB
Rg5 ( k
W
)
1.0
95 10428
9
Figure 25.
FCSSB = Noise figure reading /dB-IL/dB
IL = Insertion loss of the tuned transformer network
Figure 26. Test circuit for single sideband noise (FCSSB)
U4062B
Rev . A1, 07-Dec-9812 (21)
AGC Circuit
IL1, IL2 = Insertion loss of the RF transformers,
VRF7 (dB
m
V) = VIRF (dB
m
V) – IL1 (dB)+ 6
VIF13 (dB
m
V)= ViIF (dB
m
V) – IL2 (dB)
Figure 27. Test circuit
100 104 108 112 116
0
0.2
0.4
0.6
0.8
1.0
V ( V )
10
VRF7, VIF13 ( dB
m
V )
120
95 10429
V14=1.7V
10V
VIF13 VRF7
VS=15V
7V
Figure 28. V10 vs. VRF7, VIF13
105 107.5 110 112.5 122.5
0
0.2
0.4
0.6
0.8
1.0
V ( V )
10
VIF13 ( dB
m
V )
125
95 10430
120117.5115
V14=1.3V
1.2V
1.1V
1.0V 0.9V
0.8V
Figure 29. V10 vs. VIF13
U4062B
Rev . A1, 07-Dec-98 13 (21)
0.5 0.7 0.9 1.1 1.3
0
0.2
0.4
0.6
0.8
1.0
V ( V )
10
V16 ( V )
1.5
9510431
10V
VS=15V
7V
Figure 30. V10 vs. V16
–0.2 0 0.2 0.4 1.0
0
0.2
0.4
0.6
0.8
1.0
V ( V )
10
-I16 ( mA )
1.2
95 10432
0.80.6
10VVS=7V 15V
Figure 31. V10 vs. –I16
IF Preamplifier
IL1, IL2 = Insertion loss of the RF transformers
Power gain GF = 20 log (2 VoIF/ViRF) + IL1 (dB) + IL2 (dB)
ViIF15 (dB
m
V) = ViIF (dB
m
V) – IL1 (dB) + 6
VoIF3 (dB
m
V) = VoIF (dB
m
V) – IL2 (dB) + 6
Figure 32. Test circuit
U4062B
Rev . A1, 07-Dec-9814 (21)
6 8 10 12 14
10
15
20
25
30
35
G ( dB )
IF
VS ( V )
16
95 10433
V15=1.6V
1.2V
Figure 33. GIF vs. VS
–40 –20 0 20 80
5
10
15
20
30
35
G ( dB )
IF
Tj ( °C )
100
95 10434
6040
25
V15=1.7V
1.6V
1.5V
1.4V
1.3V
1.2V
1.1V
Figure 34. GIF vs. Tj
0 0.5 1.0 1.5
–10
0
10
20
30
G ( dB )
IF
V15 ( V )
2.0
95 10435
Figure 35. GIF vs. V15
60 70 80 90 110
60
70
80
90
110
120
V ( dB V )
oIF 3
VI IF Pin 15 ( dB
m
V )
120
95 10436
100
100
m
V15=1.8V
0.6V
Figure 36. VoIF3 vs. VI IF Pin 15
0 5 10 15 25
10
12.5
15
17.5
22.5
25
F ( dB )
IF
GIF ( dB )
30
95 10437
20
20
Figure 37. FIF vs. GIF
U4062B
Rev . A1, 07-Dec-98 15 (21)
Reference Voltage
Figure 38. Test circuit
6 8 10 12 14
10
10.5
11
11.5
12.5
13
I ( mA )
2
VS ( V )
16
95 10438
12
Figure 39. I2 vs. VS
6 8 10 12 14
–40
–30
–20
–10
10
20
V ( mV )
6
VS ( V )
16
95 10439
0
D
Figure 40.
D
V6 vs. VS
–20 0 20 40 60
–10
–7.5
–5
–2.5
7.5
10
V ( mV )
6
Tj ( °C )
100
95 10440
5
2.5
0
80
D
10V
VS=18V
7V
Figure 41.
D
V6 vs. Tj
–1 0 1 2 4
1.2
1.3
1.4
1.5
1.9
2.0
V ( V )
6
I6 ( mA )
5
95 10441
3
1.8
1.7
1.6
Figure 42. V6 vs. I6
U4062B
Rev . A1, 07-Dec-9816 (21)
Application Circuit
Figure 43. Typical Application circuit for high performance FM front end using non-repetitive alignment concept
U4062B
Rev . A1, 07-Dec-98 17 (21)
Coils Specifications
L8/L9Toko 7 PL9/ (18 + 18) turns
Nr. 218 ANS – 788 N
L10 Toko 7 Kl 3 turns
Nr. 291 ENS – 2054 IB or
Toko MC 122
Nr. E528 SNAS – 100075
L11/L12 Toko 7 Kl without case
4/8 turns
Nr. 291 ENF – 2342 x
L13 Toko 7 Kl 4 turns
Nr. 291 ENS – 2341 IB or
Toko MC 122
Nr. E528 SNAS – 100076
L14/L17 Choke 1.5
m
H
Toko 348 LS – 1R5 or similar
CF1; CF2 Toko CFSK – 107M3 or similar
VS = 8.5 V, Tamb = 25°C
Electrical Connections Pin
DIP18 Voltage (DC)
in V
LO output 1 1.73
VS2 8.5
IF output 3 6.1
Ground 4 0
Mixer input 5 1.7
Reference output voltage 6 1.7
RF preamplifier
(collector) 7 8.5
RF preamplifier (base) 8 1.3
RF preamplifier (emitter) 9 0.53
AGC output 10 0.07
Ground 11 0
Mixer output 12 8.5
Mixer output 13 8.5
AGC input 14 1.7
IF input, IF gain control 15 1.54
AGC time constant 16 1.06
LO (base) 17 3.2
LO (emitter) 18 2.51
FM Front End Data Using Application Circuit
Antenna impedance 75
W
, Zload IF = 330
W
, VS = 8.5 V, Tamb = 25°C
Characteristics Symbol Min. Typ. Max. Unit
Supply current IS32 mA
T uning range f 88 108 MHz
T uning voltage
– at 88 MHz (equal IC’s reference voltage)
– at 108 MHz Vtune
Vtune
1.7
6.5 V
V
Center IF f 10.7* MHz
IF output bandwidth at –3 dB BIF 130* kHz
Power gain G 46* dB
Gain variation versus the band
D
G 1 dB
Noise figure NF 6 dB
Image rejection 57 70 dB
RF intermodulation 70 dB
1/2 IF rejection 90 dB
Spurious response, second osc. harmonic 90 dB
IF rejection 85 dB
Osc. output voltage at 520
W
load VOSC 200 mV
* Depending on ceramic IF filters to be used
U4062B
Rev . A1, 07-Dec-9818 (21)
Figure 44. Block diagram of the test set up
Test conditions
D
De-emphasis - 75
m
s
D
AF bandwidth 30 to 20 kHz
D
RMS, unweighted
Setup for one signal measurement
D
fD = 98 MHz
Note: VoAF related to 75 kHz dev ., 1 kHz, V iD = 66 dB
m
V
Setup for three signals intermodulation measurement
D
SD:f
D
= 98 MHz, FM: 1 kHz, 22.5 kHz dev .
D
SUD1 : FM: 0.15 kHz, 22.5 kHz dev.
D
SUD2 : Unmodulated
D
ViD : for 35 dB SINAD
60 70 80 90 110
0
10
20
30
70
80
V ( dB V )
iD
ViUD1, 2 ( dB
m
V )
120
95 10443
100
60
50
40
m
fUD1=98.8MHz,
fUD2=99.6MHz
fUD1=101.2MHz,
fUD2=104.4MHz
fUD1=94.8MHz,
fUD2=91.6MHz
fUD1=97.2MHz,
fUD2=96.4MHz
Figure 45. VID vs. ViUD1,2
VID = input desired, ViUD = input undesired
010203040
–80
–60
–40
–20
0
20
V ( dB )
oAF
95 10442 ViD ( dB
m
V )
1101009080706050
FM: 1 kHz, 75 kHz dev.
FM: 1 kHz, 22.5 kHz dev.
THD: 1 kHz, 75 kHz dev.
AM: 1 kHz, 30%Noise
Figure 46. VoAF vs. ViD
U4062B
Rev . A1, 07-Dec-98 19 (21)
VHF/UHF-Application
Figure 47. Test circuit for conversion gain and noise measurement
Mixer, VHF Characteristics
Test conditions: Rg5 = 50
W
, RL12–13 = 200
W
, VS = 10 V
fIF = 10.7 MHz, fiRF = 200 MHz, fOSC = fiRF + fIF, VOSC17 = 140 mV
Parameter Symbol Typ. Unit
Conversion power gain, fIF = 10.7 MHz
fIF = 70 MHz GC
GC
2.5
2.3 dB
dB
Double side band noise figure fOSC = 200 MHz NFDSB 8.2 dB
3rd order intercept input signal level IP35.5 dBm
Parallel input resistance, Pin 5, f = 200 MHz
Parallel input capacitance, Pin 5, f= 200 MHz Rp5
Cp5
1500
3.3
W
pF
Parallel input resistance, Pin 17, f = 200 MHz
Parallel input capacitance, Pin 17, f = 200 MHz Rp17
Cp17
4000
2.7
W
pF
Conversion transconductance GC6.4 m-mho
0 100 200 300 400
–2
–1.5
–1
–0.5
0.5
1
G ( f )/G ( 100 MHz )
C C
fOSC ( MHz )
500
95 10444
0
70mV
280mV
140mV
Figure 48. GC vs. fOSC
0 100 200 300 400
6
7
8
9
11
12
NF ( dB )
DSB
fOSC ( MHz )
500
95 10445
10
70mV
140mV
280mV
Figure 49. NFDSB vs. fOSC
U4062B
Rev . A1, 07-Dec-9820 (21)
Package Information
13019
Package DIP18
Dimensions in mm
0.5 min
technical drawings
according to DIN
specifications
7.77
7.47
23.3 max
4.8 max
3.3 6.4 max
0.36 max
9.8
8.2
1.64
1.44 0.58
0.48 2.54
20.32
18 10
19
U4062B
Rev . A1, 07-Dec-98 21 (21)
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to impr ove technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or
unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages,
and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with
such unintended or unauthorized use.
TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423